Courses

LFM Pure

Year 12 course on pure mathematics

Add Section

2025 Paper 3 Q3
D: 1500.0 B: 1500.0

Let $f(x)$ be defined and positive for $x > 0$. Let $a$ and $b$ be real numbers with $0 < a < b$ and...

1987 Paper 1 Q2
D: 1500.0 B: 1500.0

\begin{center} \begin{tikzpicture} % Setting up the same viewport/dimensions \clip (-0.45,1.84) rect...

2016 Paper 1 Q5
D: 1484.0 B: 1516.0

\begin{questionparts} \item \noindent\vspace{-4cm} %%%%%%%The diagram requires scale of 1 unit = 15...

2015 Paper 2 Q7
D: 1600.0 B: 1484.0

A circle $C$ is said to be {\em bisected} by a curve $X$ if $X$ meets $C$ in exactly two points and ...

2013 Paper 2 Q4
D: 1600.0 B: 1484.0

The line passing through the point $(a,0)$ with gradient $b$ intersects the circle of unit radius ce...

2005 Paper 2 Q5
D: 1600.0 B: 1470.1

The angle $A$ of triangle $ABC$ is a right angle and the sides $BC$, $CA$ and $AB$ are of lengths $...

2005 Paper 1 Q6
D: 1500.0 B: 1490.2

\begin{questionparts} \item The point $A$ has coordinates $\l 5 \, , 16 \r$ and the point $B$ has c...

2004 Paper 1 Q6
D: 1484.0 B: 1500.0

The three points $A$, $B$ and $C$ have coordinates $\l p_1 \, , \; q_1 \r$, $\l p_2 \, , \; q_2 \r$...

2003 Paper 2 Q4
D: 1600.0 B: 1484.0

The line $y=d\,$, where $d>0\,$, intersects the circle $x^2+y^2=R^2$ at $G$ and $H$. Show that the a...

2002 Paper 1 Q6
D: 1500.0 B: 1500.0

A pyramid stands on horizontal ground. Its base is an equilateral triangle with sides of length~$a...

2002 Paper 1 Q1
D: 1516.0 B: 1500.0

Show that the equation of any circle passing through the points of intersection of the ellipse $(x+...

2001 Paper 1 Q1
D: 1516.0 B: 1500.0

The points $A$, $B$ and $C$ lie on the sides of a square of side 1 cm and no two points lie on th...

2000 Paper 3 Q1
D: 1700.0 B: 1485.5

Sketch on the same axes the two curves $C_1$ and $C_2$, given by \begin{center} \begin{align*} C_1...

1999 Paper 1 Q2
D: 1484.0 B: 1468.7

A point moves in the $x$-$y$ plane so that the sum of the squares of its distances from the three fi...

1996 Paper 2 Q7
D: 1600.0 B: 1484.0

Consider a fixed square $ABCD$ and a variable point $P$ in the plane of the square. We write the per...

1995 Paper 2 Q7
D: 1600.0 B: 1516.7

The diagram shows a circle, of radius $r$ and centre $I$, touching the three sides of a triangle $AB...

1995 Paper 2 Q5
D: 1600.0 B: 1545.6

The famous film star Birkhoff Maclane is sunning herself by the side of her enormous circular swimmi...

1994 Paper 2 Q7
D: 1600.0 B: 1500.0

Show that the equation \[ ax^{2}+ay^{2}+2gx+2fy+c=0 \] where $a>0$ and $f^{2}+g^{2}>ac$ represents ...

1994 Paper 1 Q1
D: 1500.0 B: 1500.0

My house has an attic consisting of a horizontal rectangular base of length $2q$ and breadth $2p$ (w...

1993 Paper 1 Q8
D: 1500.0 B: 1500.0

\begin{questionparts} \item Prove that the intersection of the surface of a sphere with a plane is a...

1989 Paper 3 Q1
D: 1700.0 B: 1516.0

Prove that the area of the zone of the surface of a sphere between two parallel planes cutting the s...

1989 Paper 1 Q1
D: 1500.0 B: 1500.0

\begin{center} \begin{tikzpicture}[scale = 3] \draw[domain = 0:180, samples=50, variable...

1988 Paper 1 Q3
D: 1516.0 B: 1500.0

Two points $P$ and $Q$ lie within, or on the boundary of, a square of side 1cm, one corner of which ...

2025 Paper 2 Q8
D: 1500.0 B: 1500.0

If we split a set $S$ of integers into two subsets $A$ and $B$ whose intersection is empty and whose...

2019 Paper 2 Q5
D: 1500.0 B: 1500.0

The sequence $u_0, u_1, \ldots$ is said to be a constant sequence if $u_n = u_{n+1}$ for $n = 0, 1, ...

2019 Paper 1 Q7
D: 1500.0 B: 1500.0

Consider the following steps in a proof that $\sqrt{2} + \sqrt{3}$ is irrational. \begin{enumerate} ...

1987 Paper 3 Q1
D: 1500.0 B: 1500.0

Find the set of positive integers $n$ for which $n$ does not divide $(n-1)!.$ Justify your answer. ...

2018 Paper 2 Q6
D: 1600.0 B: 1484.7

\begin{questionparts} \item Find all pairs of positive integers $(n,p)$, where $p$ is a prime number...

2017 Paper 2 Q2
D: 1600.0 B: 1516.0

The sequence of numbers $x_0$, $x_1$, $x_2$, $\ldots$ satisfies \[ x_{n+1} = \frac{ax_n-1}{x_n+b} \...

2016 Paper 1 Q7
D: 1500.0 B: 1500.0

The set $S$ % = \{1, 5, 9, 13, \,\ldots \}$ consists of all the positive integers that leave a rem...

2015 Paper 3 Q7
D: 1700.0 B: 1500.0

An operator $\rm D$ is defined, for any function $\f$, by \[ {\rm D}\f(x) = x\frac{\d\f(x)}{\d x} .\...

2015 Paper 3 Q5
D: 1700.0 B: 1516.0

\begin{questionparts} \item In the following argument to show that $\sqrt2$ is irrational, give proo...

2015 Paper 3 Q2
D: 1700.0 B: 1529.7

If $s_1$, $s_2$, $s_3$, $\ldots$ and $t_1$, $t_2$, $t_3$, $\ldots$ are sequences of positive numbers...

2015 Paper 1 Q8
D: 1484.0 B: 1516.0

Show that: \begin{questionparts} \item $1+2+3+ \cdots + n = \frac12 n(n+1)$; \item if ...

2014 Paper 1 Q5
D: 1500.0 B: 1516.0

\begin{questionparts} \item Let $\.f(x) = (x+2a)^3 -27 a^2 x$, where $a\ge 0$. By sketching $\.f(...

2014 Paper 1 Q1
D: 1500.0 B: 1500.0

\textit{All numbers referred to in this question are non-negative integers.} \begin{questionparts} \...

2013 Paper 3 Q5
D: 1700.0 B: 1487.0

In this question, you may assume that, if $a$, $b$ and $c$ are positive integers such that $a$ and $...

2013 Paper 2 Q7
D: 1600.0 B: 1516.0

\begin{questionparts} \item Write down a solution of the equation \[ x^2-2y^2 =1\,, \tag{$*$} \] for...

2012 Paper 3 Q5
D: 1700.0 B: 1554.6

\begin{questionparts} \item The point with coordinates $(a, b)$, where $a$ and $b$ are rational nu...

2011 Paper 2 Q2
D: 1600.0 B: 1516.0

Write down the cubes of the integers $1, 2, \ldots , 10$. The positive integers $x$, $y$ and $z$, wh...

2011 Paper 1 Q8
D: 1516.0 B: 1484.0

\begin{questionparts} \item The numbers $m$ and $n$ satisfy \[ m^3=n^3+n^2+1\,. \tag{$*$} \] \begin{...

2010 Paper 3 Q5
D: 1700.0 B: 1486.7

The vertices $A$, $B$, $C$ and $D$ of a square have coordinates $(0,0)$, $(a,0)$, $(a,a)$ and $(0,a)...

2010 Paper 1 Q8
D: 1500.0 B: 1484.0

\begin{questionparts} \item Suppose that $a$, $b$ and $c$ are integers that satisfy the equation \...

2009 Paper 1 Q1
D: 1500.0 B: 1500.0

A {\em proper factor} of an integer $N$ is a positive integer, not $1$ or $N$, that divides $N$. \b...

2008 Paper 2 Q1
D: 1600.0 B: 1500.7

A sequence of points $(x_1,y_1)$, $(x_2,y_2)$, $\ldots$ in the cartesian plane is generated by first...

2008 Paper 1 Q5
D: 1516.0 B: 1500.0

The polynomial $\p(x)$ is given by \[ \ds \p(x)= x^n +\sum\limits_{r=0}^{n-1}a_rx^r\,, \] where $...

2008 Paper 1 Q3
D: 1500.0 B: 1484.0

Prove that, if $c\ge a$ and $d\ge b$, then \[ ab+cd\ge bc+ad\,. \tag{$*$} \] \begin{questionparts} ...

2008 Paper 1 Q1
D: 1500.0 B: 1484.0

What does it mean to say that a number $x$ is \textit{irrational}? Prove by contradiction statements...

2006 Paper 3 Q8
D: 1700.0 B: 1500.0

$\triangle$ is an operation that takes polynomials in $x$ to polynomials in $x$; that is, given any...

2006 Paper 2 Q3
D: 1600.0 B: 1570.3

\begin{questionparts} \item Show that $\displaystyle \big( 5 + \sqrt {24}\;\big)^4 + \frac{1 }{\bi...

2006 Paper 1 Q6
D: 1500.0 B: 1606.3

\begin{questionparts} \item Show that, if $\l a \, , b\r$ is \textbf{any} point on the curve $x^2 -...

2006 Paper 1 Q3
D: 1500.0 B: 1500.0

In this question $b$, $c$, $p$ and $q$ are real numbers. \begin{questionparts} \item By considering ...

2006 Paper 1 Q1
D: 1500.0 B: 1516.0

Find the integer, $n$, that satisfies $n^2 < 33\,127< (n+1)^2$. Find also a small integer $m$ such t...

2005 Paper 2 Q2
D: 1600.0 B: 1516.0

For any positive integer $N$, the function $\f(N)$ is defined by \[ \f(N) = N\Big(1-\frac1{p_1}\Big)...

2004 Paper 1 Q5
D: 1484.0 B: 1500.0

The positive integers can be split into five distinct arithmetic progressions, as shown: \begin{ali...

2003 Paper 2 Q3
D: 1600.0 B: 1541.7

Prove that the cube root of any irrational number is an irrational number. Let $\ds u_n = {5\vphanto...

2003 Paper 1 Q7
D: 1484.0 B: 1516.0

Let $k$ be an integer satisfying $0\le k \le 9\,$. Show that $0\le 10k-k^2\le 25$ and that $k(k-1)...

2003 Paper 1 Q2
D: 1500.0 B: 1484.0

The first question on an examination paper is: \hspace*{3cm} Solve for $x$ the equation \ \ \ $\ds \...

2002 Paper 2 Q5
D: 1600.0 B: 1495.1

The numbers $x_n$, where $n=0$, $1$, $2$, $\ldots$ , satisfy \[ x_{n+1} = kx_n(1-x_n) \;. \] \begi...

2000 Paper 2 Q1
D: 1600.0 B: 1516.0

A number of the form $1/N$, where $N$ is an integer greater than 1, is called a {\it unit fraction}...

1999 Paper 3 Q4
D: 1700.0 B: 1516.0

A polyhedron is a solid bounded by $F$ plane faces, which meet in $E$ edges and $V$ vertices. You ma...

1998 Paper 2 Q1
D: 1600.0 B: 1500.0

Show that, if $n$ is an integer such that $$(n-3)^3+n^3=(n+3)^3,\quad \quad {(*)}$$ then $n$ is even...

1996 Paper 3 Q4
D: 1700.0 B: 1517.6

Find the integers $k$ satisfying the inequality $k\leqslant2(k-2).$ Given that $N$ is a strictly po...

1996 Paper 2 Q6
D: 1600.0 B: 1500.0

A {\sl proper factor} of a positive integer $N$ is an integer $M$, with $M\ne 1$ and $M\ne N$, which...

1996 Paper 1 Q3
D: 1500.0 B: 1486.0

Let $n$ be a positive integer. \begin{questionparts} \item Factorise $n^{5}-n^{3},$ and show that i...

1995 Paper 2 Q3
D: 1600.0 B: 1500.0

The Tour de Clochemerle is not yet as big as the rival Tour de France. This year there were five rid...

1994 Paper 2 Q1
D: 1600.0 B: 1484.0

In this question we consider only positive, non-zero integers written out in the usual (decimal) way...

1993 Paper 3 Q9
D: 1700.0 B: 1485.7

For the real numbers $a_1$, $a_2$, $a_3$, $\ldots$, \begin{questionparts} \item prove that $a_1^2+a_...

1993 Paper 2 Q1
D: 1600.0 B: 1500.0

In the game of ``Colonel Blotto'' there are two players, Adam and Betty. First Adam chooses three no...

1993 Paper 1 Q3
D: 1516.0 B: 1516.0

\begin{questionparts} \item Find all the integer solutions with $1\leqslant p\leqslant q\leqslant r$...

1992 Paper 1 Q1
D: 1484.0 B: 1500.0

Today's date is June 26th 1992 and the day of the week is Friday. Find which day of the week was Apr...

1991 Paper 1 Q9
D: 1500.0 B: 1516.0

\begin{questionparts} \itemSuppose that the real number $x$ satisfies the $n$ inequalities \begin{al...

1989 Paper 1 Q4
D: 1500.0 B: 1484.0

Six points $A,B,C,D,E$ and $F$ lie in three dimensional space and are in general positions, that is,...

1988 Paper 1 Q4
D: 1500.0 B: 1516.0

Each of $m$ distinct points on the positive $y$-axis is joined by a line segment to each of $n$ dist...

2025 Paper 2 Q4
D: 1500.0 B: 1500.0

Let $\lfloor x \rfloor$ denote the largest integer that satisfies $\lfloor x \rfloor \leq x$. For ex...

1987 Paper 3 Q10
D: 1500.0 B: 1500.0

The \textit{Bernoulli polynomials} $P_{n}(x)$, where $n$ is a non-negative integer, are defined by $...

2017 Paper 2 Q6
D: 1600.0 B: 1484.8

Let \[ S_n = \sum_{r=1}^n \frac 1 {\sqrt r \ } \,, \] where $n$ is a positive integer. \begin{questi...

2017 Paper 1 Q8
D: 1500.0 B: 1516.0

Two sequences are defined by $a_1 = 1$ and $b_1 = 2$ and, for $n \ge 1$, \begin{equation*} \begin{sp...

2011 Paper 3 Q7
D: 1700.0 B: 1486.2

Let \[ T _n = \left( \sqrt{a+1} + \sqrt a\right)^n\,, \] where $n$ is a positive integer and $a$...

2008 Paper 3 Q5
D: 1700.0 B: 1499.3

The functions ${\rm T}_n(x)$, for $n=0$, 1, 2, $\ldots\,$, satisfy the recurrence relation \[ {\rm T...

2007 Paper 3 Q3
D: 1700.0 B: 1469.5

A sequence of numbers, $F_1$, $F_2$, $\ldots$, is defined by $ F_1=1$, $F_2=1$, and \[ F_n=F_{n-1}+...

2003 Paper 1 Q1
D: 1484.0 B: 1484.0

It is given that $\sum\limits_{r=-1}^ {n} r^2$ can be written in the form $pn^3 +qn^2+rn+s\,$, whe...

2002 Paper 2 Q3
D: 1600.0 B: 1552.5

The $n$th Fermat number, $F_n$, is defined by \[ F_n = 2^{2^n} +1\, , \ \ \ \ \ \ \ n=0, \ 1, \ 2, ...

1999 Paper 2 Q3
D: 1600.0 B: 1500.0

Let $$ {\rm S}_n(x)=\mathrm{e}^{x^3}{{\d^n}\over{\d x^n}}{(\mathrm{e}^{-x^3})}. $$ Show that ${\rm ...

1997 Paper 2 Q2
D: 1600.0 B: 1464.0

Suppose that $$3=\frac{2}{ x_1}=x_1+\frac{2}{ x_2} =x_2+\frac{2}{ x_3}=x_3+\frac{2}{ x_4}=\cdots.$$ ...

1996 Paper 2 Q3
D: 1600.0 B: 1500.0

The Fibonacci numbers $F_{n}$ are defined by the conditions $F_{0}=0$, $F_{1}=1$ and \[F_{n+1}=F_{n}...

1995 Paper 2 Q2
D: 1600.0 B: 1516.0

I have $n$ fence posts placed in a line and, as part of my spouse's birthday celebrations, I wish to...

1993 Paper 2 Q8
D: 1600.0 B: 1500.0

Suppose that $a_{i}>0$ for all $i>0$. Show that \[ a_{1}a_{2}\leqslant\left(\frac{a_{1}+a_{2}}{2}\r...

1992 Paper 1 Q7
D: 1484.0 B: 1500.0

Let $\mathrm{g}(x)=ax+b.$ Show that, if $\mathrm{g}(0)$ and $\mathrm{g}(1)$ are integers, then $\mat...

1990 Paper 2 Q4
D: 1600.0 B: 1516.0

A plane contains $n$ distinct given lines, no two of which are parallel, and no three of which inter...

Sine and cosine rule, graphs of trig functions, solving trig equations

2019 Paper 1 Q6
D: 1500.0 B: 1518.2

In both parts of this question, $x$ is real and $0 < \theta < \pi$. \begin{questionparts} \item By c...

2017 Paper 1 Q7
D: 1500.0 B: 1516.0

The triangle $ABC$ has side lengths $\left| BC \right| = a$, $\left| CA \right| = b$ and $\left| AB...

2015 Paper 2 Q2
D: 1600.0 B: 1484.0

In the triangle $ABC$, angle $BAC = \alpha$ and angle $CBA= 2\alpha$, where $2\alpha$ is acute, and...

2015 Paper 1 Q3
D: 1484.0 B: 1516.0

A prison consists of a square courtyard of side $b$ bounded by a perimeter wall and a square buildi...

2014 Paper 2 Q1
D: 1600.0 B: 1500.0

In the triangle $ABC$, the base $AB$ is of length 1 unit and the angles at~$A$ and~$B$ are $\alpha...

2012 Paper 2 Q6
D: 1600.0 B: 1528.8

A cyclic quadrilateral $ABCD$ has sides $AB$, $BC$, $CD$ and $DA$ of lengths $a$, $b$, $c$ and $d$, ...

2010 Paper 2 Q6
D: 1600.0 B: 1516.0

Each edge of the tetrahedron $ABCD$ has unit length. The face $ABC$ is horizontal, and $P$ is the p...

2009 Paper 2 Q3
D: 1600.0 B: 1500.0

Prove that \[ \tan \left ( \tfrac14 \pi -\tfrac12 x \right)\equiv \sec x -\tan x\,. \tag{$...

2009 Paper 1 Q8
D: 1500.0 B: 1484.0

\begin{questionparts} \item The equation of the circle $C$ is \[ (x-2t)^2 +(y-t)^2 =t^2, \] where ...

2009 Paper 1 Q4
D: 1500.0 B: 1500.0

The sides of a triangle have lengths $p-q$, $p$ and $p+q$, where $p>q> 0\,$. The largest and smalle...

2006 Paper 1 Q8
D: 1500.0 B: 1484.0

{\it Note that the volume of a tetrahedron is equal to $\frac1 3$ $\times$ the area of the base ...

2002 Paper 3 Q7
D: 1700.0 B: 1484.0

Given that $\alpha$ and $\beta$ are acute angles, show that $\alpha + \beta = \tfrac{1}{2}\pi$ if ...

2000 Paper 1 Q5
D: 1500.0 B: 1484.0

Arthur and Bertha stand at a point $O$ on an inclined plane. The steepest line in the plane throug...

No problems in this section yet.

Reciprocal trig, addition formulae, double angle formula, product to sum, sum to product formulae, harmonic formulae, inverse functions

2019 Paper 3 Q8
D: 1500.0 B: 1500.0

A pyramid has a horizontal rectangular base $ABCD$ and its vertex $V$ is vertically above the centre...

2019 Paper 2 Q4
D: 1500.0 B: 1500.0

You are not required to consider issues of convergence in this question. For any sequence of numbers...

1987 Paper 2 Q2
D: 1500.0 B: 1500.0

Show that if at least one of the four angles $A\pm B\pm C$ is a multiple of $\pi$, then \begin{alig...

2018 Paper 2 Q4
D: 1600.0 B: 1484.0

In this question, you may use the following identity without proof: \[ \cos A + \cos B = 2\cos\tfra...

2018 Paper 2 Q2
D: 1600.0 B: 1516.0

A function $\f(x)$ is said to be {\em concave} for $a< x < b$ if \[ \ t\,\f(x_1) +(1-t)\,\f(...

2018 Paper 1 Q6
D: 1500.0 B: 1500.0

Use the identity \[ 2 \sin P\,\sin Q = \cos(Q-P)-\cos(Q+P)\, \] to show that \[ 2\sin\theta \,\big...

2018 Paper 1 Q3
D: 1484.0 B: 1487.8

The points $R$ and $S$ have coordinates $(-a,\, 0)$ and $(2a,\, 0)$, respectively, where $a > 0\,$. ...

2015 Paper 2 Q5
D: 1600.0 B: 1484.9

In this question, the $\mathrm{arctan}$ function satisfies $0\le \arctan x <\frac12 \pi$ for $x\ge0...

2015 Paper 2 Q4
D: 1600.0 B: 1516.0

\begin{questionparts} \item The continuous function $\f$ is defined by \[ \tan \f(x) = x \ \ \ \...

2015 Paper 1 Q2
D: 1484.0 B: 1500.0

\begin{questionparts} \item Show that $\cos 15^\circ = \dfrac{\sqrt3 +1}{2\sqrt2}$ and find a simila...

2014 Paper 1 Q6
D: 1500.0 B: 1474.3

\begin{questionparts} \item The sequence of numbers $u_0, u_1, \ldots $ is given by $u_0=u$ an...

2012 Paper 1 Q6
D: 1516.0 B: 1484.0

A thin circular path with diameter $AB$ is laid on horizontal ground. A vertical flagpole is erected...

2011 Paper 2 Q4
D: 1600.0 B: 1470.8

\begin{questionparts} \item Find all the values of $\theta$, in the range $0^\circ <\theta<180^\cir...

2011 Paper 1 Q3
D: 1500.0 B: 1500.0

Prove the identity \[ 4\sin\theta \sin(\tfrac13\pi-\theta) \sin (\tfrac13\pi+\theta)= \sin 3\theta\...

2010 Paper 3 Q6
D: 1700.0 B: 1484.0

The points $P$, $Q$ and $R$ lie on a sphere of unit radius centred at the origin, $O$, which is fi...

2010 Paper 1 Q3
D: 1500.0 B: 1473.5

Show that \[ \sin(x+y) -\sin(x-y) = 2 \cos x \, \sin y \] and deduce that \[ \sin A - \sin B = 2 ...

2008 Paper 2 Q6
D: 1600.0 B: 1484.0

A curve has the equation $y=\f(x)$, where \[ \f(x) = \cos \Big( 2x+ \frac \pi 3\Big) + \sin \Big ( \...

2008 Paper 1 Q7
D: 1484.0 B: 1500.0

The point $P$ has coordinates $(x,y)$ with respect to the origin $O$. By writing $x=r\cos\theta$ and...

2007 Paper 2 Q5
D: 1600.0 B: 1488.1

In this question, $\f^2(x)$ denotes $\f(\f(x))$, $\f^3(x)$ denotes $\f( \f (\f(x)))\,$, and so on. ...

2007 Paper 2 Q4
D: 1600.0 B: 1500.0

Given that $\cos A$, $\cos B$ and $\beta$ are non-zero, show that the equation \[ \alpha \sin(A-B) +...

2007 Paper 1 Q2
D: 1500.0 B: 1515.7

\begin{questionparts} \item Given that $A = \arctan \frac12$ and that $B = \arctan\frac13\,$ (where ...

2005 Paper 3 Q1
D: 1700.0 B: 1500.0

Show that $\sin A = \cos B$ if and only if $A = (4n+1)\frac{\pi}{2}\pm B$ for some integer $n$. Show...

2005 Paper 2 Q4
D: 1600.0 B: 1500.0

The positive numbers $a$, $b$ and $c$ satisfy $bc=a^2+1$. Prove that $$ \arctan\left(\frac1 {a+b}\r...

2005 Paper 1 Q7
D: 1500.0 B: 1516.0

The notation $\displaystyle \prod^n_{r=1} \f (r)$ denotes the product $\f (1) \times \f (2) \times ...

2005 Paper 1 Q4
D: 1500.0 B: 1500.0

\begin{questionparts} \item Given that $\displaystyle \cos \theta = \frac35$ and that $\displaystyle...

2004 Paper 3 Q5
D: 1700.0 B: 1516.0

Show that if $\, \cos(x - \alpha) = \cos \beta \,$ then either $\, \tan x = \tan ( \alpha + \beta)...

2004 Paper 3 Q4
D: 1700.0 B: 1609.8

The triangle $OAB$ is isosceles, with $OA = OB$ and angle $AOB = 2 \alpha$ where $0< \alpha < {\pi ...

2004 Paper 2 Q4
D: 1600.0 B: 1484.8

$\,$ \setlength{\unitlength}{1cm} \begin{center} \hspace{2cm} \begin{picture}(6,3.5) \put(-1.5,4.3){...

2003 Paper 2 Q2
D: 1600.0 B: 1500.0

Write down a value of $\theta\,$ in the interval $\frac{1}{4}\pi< \theta <\frac{1}{2}\pi$ that satis...

2003 Paper 1 Q4
D: 1500.0 B: 1500.0

Solve the inequality $$\frac{\sin\theta+1}{\cos\theta}\le1\;$$ where $0\le\theta<2\pi\,$ and $\cos\t...

2003 Paper 1 Q3
D: 1500.0 B: 1484.0

\begin{questionparts} \item Show that $ 2\sin(\frac12\theta)=\sin \theta$ if and only if $\sin(\fr...

2002 Paper 3 Q2
D: 1700.0 B: 1500.0

Prove that $\displaystyle \arctan a + \arctan b = \arctan \l {a + b \over 1-ab} \r\,$ when $0 < a ...

2002 Paper 2 Q6
D: 1600.0 B: 1484.0

The lines $l_1$, $l_2$ and $l_3$ lie in an inclined plane $P$ and pass through a common point $A...

2001 Paper 3 Q4
D: 1700.0 B: 1473.9

In this question, the function $\sin^{-1}$ is defined to have domain $ -1\le x \le 1$ and range \l...

2001 Paper 2 Q4
D: 1600.0 B: 1484.0

Let $$ \f(x) = P \, {\sin x} + Q\, {\sin 2x} + R\, {\sin 3x} \;. $$ Show that if $Q^2 < 4R(P-R)$, ...

2001 Paper 1 Q4
D: 1500.0 B: 1484.0

Show that $\displaystyle \tan 3\theta = \frac{3\tan\theta -\tan^3\theta}{1-3\tan^2\theta}$ . Given t...

1999 Paper 2 Q5
D: 1600.0 B: 1500.0

Show that if $\alpha$ is a solution of the equation $$ 5{\cos x} + 12{\sin x} = 7, $$ then either ...

1998 Paper 1 Q6
D: 1500.0 B: 1500.0

Let $a_{1}=\cos x$ with $0 < x < \pi/2$ and let $b_{1}=1$. Given that \begin{eqnarray*} a_{n+1}&=&{\...

1998 Paper 1 Q3
D: 1500.0 B: 1500.0

Which of the following statements are true and which are false? Justify your answers. \begin{questio...

1997 Paper 2 Q6
D: 1600.0 B: 1500.0

Show that, if $\,\tan^2\phi=2\tan\phi+1$, then $\tan2\phi=-1$. Find all solutions of the equation $$...

1995 Paper 3 Q4
D: 1700.0 B: 1499.3

Let \[ \mathrm{C}_{n}(\theta)=\sum_{k=0}^{n}\cos k\theta \] and let \[ \mathrm{S}_{n}(\theta)=\sum...

1994 Paper 2 Q6
D: 1600.0 B: 1500.0

Prove by induction, or otherwise, that, if $0<\theta<\pi$, \[ \frac{1}{2}\tan\frac{\theta}{2}+\frac...

1994 Paper 2 Q3
D: 1600.0 B: 1500.0

The function $\mathrm{f}$ satisfies $\mathrm{f}(0)=1$ and \[ \mathrm{f}(x-y)=\mathrm{f}(x)\mathrm{f...

1991 Paper 2 Q4
D: 1600.0 B: 1484.0

Let $y=\cos\phi+\cos2\phi$, where $\phi=\dfrac{2\pi}{5}.$ Verify by direct substitution that $y$ sat...

1991 Paper 1 Q1
D: 1484.0 B: 1513.2

If $\theta+\phi+\psi=\tfrac{1}{2}\pi,$ show that \[ \sin^{2}\theta+\sin^{2}\phi+\sin^{2}\psi+2\sin\...

1990 Paper 2 Q2
D: 1600.0 B: 1500.0

Prove that if $A+B+C+D=\pi,$ then \[ \sin\left(A+B\right)\sin\left(A+D\right)-\sin B\sin D=\sin A\s...

1990 Paper 1 Q1
D: 1500.0 B: 1500.0

$\,$ \begin{center} \begin{tikzpicture}[scale=2] % Semicircle \def\r{2}; \coordinate (D)...

1989 Paper 2 Q1
D: 1600.0 B: 1516.0

Prove that $\cos3\theta=4\cos^{3}\theta-3\cos\theta$. Show how the cubic equation \[ 24x^{3}-72x^{...

Product rule, quotient rule, chain rule, differentiating trig, exponentials, logarithm,

2025 Paper 2 Q6
D: 1500.0 B: 1500.0

\begin{questionparts} \item The circle $x^2 + (y-a)^2 = r^2$ touches the parabola $2ky = x^2$, where...

2025 Paper 2 Q3
D: 1500.0 B: 1515.3

\begin{questionparts} \item Sketch a graph of $y = \frac{\ln x}{x}$ for $x > 0$. \item Use your grap...

2019 Paper 2 Q2
D: 1500.0 B: 1500.0

The function f satisfies $f(0) = 0$ and $f'(t) > 0$ for $t > 0$. Show by means of a sketch that, fo...

2019 Paper 1 Q1
D: 1500.0 B: 1500.0

A straight line passes through the fixed point $(1 , k)$ and has gradient $- \tan \theta$, where $k ...

1987 Paper 3 Q11
D: 1500.0 B: 1500.0

A woman stands in a field at a distance of $a\,\mathrm{m}$ from the straight bank of a river which f...

1987 Paper 1 Q1
D: 1500.0 B: 1500.0

Find the stationary points of the function $\mathrm{f}$ given by \[ \mathrm{f}(x)=\mathrm{e}^{ax}\co...

2018 Paper 3 Q2
D: 1700.0 B: 1516.0

The sequence of functions $y_0$, $y_1$, $y_2$, $\ldots\,$ is defined by $y_0=1$ and, for $n\ge1\,$,...

2017 Paper 2 Q7
D: 1600.0 B: 1500.0

%In this question, %the definition of $a^b$ (for $a>0$) is %$ %a^b = \e^{b \ln a} \,. %$ %\\ The...

2017 Paper 1 Q5
D: 1500.0 B: 1456.4

A circle of radius $a$ is centred at the origin $O$. A rectangle $PQRS$ lies in the minor sector $O...

2016 Paper 2 Q3
D: 1600.0 B: 1517.4

For each non-negative integer $n$, the polynomial $\f_n$ is defined by \[ \f_n(x) = 1 + x + \frac{x^...

2016 Paper 1 Q2
D: 1516.0 B: 1516.0

Differentiate, with respect to $x$, \[ (ax^2+bx+c)\,\ln \big( x+\sqrt{1+x^2}\big) +\big(dx+e\big)\s...

2014 Paper 2 Q6
D: 1600.0 B: 1484.2

By simplifying $\sin(r+\frac12)x - \sin(r-\frac12)x$ or otherwise show that, for $\sin\frac12 x \n...

2014 Paper 1 Q4
D: 1500.0 B: 1484.0

An accurate clock has an hour hand of length $a$ and a minute hand of length $b$ (where $b>a$), both...

2013 Paper 2 Q1
D: 1600.0 B: 1484.0

\begin{questionparts} \item Find the value of $m$ for which the line $y = mx$ touches the curve $...

2012 Paper 2 Q5
D: 1600.0 B: 1484.0

\begin{questionparts} \item Sketch the curve $y=\f(x)$, where \[ \f(x) = \frac 1 {(x-a)^2 -1} \hspa...

2012 Paper 1 Q1
D: 1484.0 B: 1500.0

The line $L$ has equation $y=c-mx$, with $m>0$ and $c>0$. It passes through the point $R(a,b)$ and ...

2011 Paper 2 Q3
D: 1600.0 B: 1500.0

In this question, you may assume without proof that any function $\f$ for which $\f'(x)\ge 0$ is ...

2011 Paper 1 Q2
D: 1516.0 B: 1603.0

The number $E$ is defined by $\displaystyle E= \int_0^1 \frac{\e^x}{1+x} \, \d x\,.$ Show that \[ ...

2010 Paper 2 Q1
D: 1600.0 B: 1516.0

Let $P$ be a given point on a given curve $C$. The {\em osculating circle} to $C$ at $P$ is defined...

2010 Paper 1 Q2
D: 1500.0 B: 1484.0

The curve $\displaystyle y=\Bigl(\frac{x-a}{x-b}\Bigr)\e^{x}$, where $a$ and $b$ are constants, ...

2008 Paper 1 Q8
D: 1484.0 B: 1516.0

\begin{questionparts} \item The gradient $y'$ of a curve at a point $(x,y)$ satisfies \[ (y')^2 -xy'...

2008 Paper 1 Q4
D: 1500.0 B: 1500.7

A function $\f(x)$ is said to be \textit{convex} in the interval $a < x < b$ if $\f''(x)\ge0$ for al...

2006 Paper 2 Q2
D: 1600.0 B: 1500.0

Using the series \[ \e^x = 1 + x +\frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}+\cdots\,, \] show...

2006 Paper 1 Q4
D: 1500.0 B: 1514.2

By sketching on the same axes the graphs of $y=\sin x$ and $y=x$, show that, for $x>0$: \begin{que...

2005 Paper 2 Q1
D: 1600.0 B: 1500.0

Find the three values of $x$ for which the derivative of $x^2 \e^{-x^2}$ is zero. Given that $a$ and...

2002 Paper 1 Q3
D: 1500.0 B: 1488.5

Show that $(a+b)^2\le 2a^2+2b^2\,$. Find the stationary points on the curve $y=\big(a^2\cos^2\thet...

2002 Paper 1 Q2
D: 1500.0 B: 1500.0

Let $f(x) = x^m(x-1)^n$, where $m$ and $n$ are both integers greater than $1$. Show that the curve $...

2000 Paper 1 Q7
D: 1500.0 B: 1486.8

Let \[ {\f}(x)=a x-\frac{x^{3}}{1+x^{2}}, \] where $a$ is a constant. Show that, if $a\ge 9/8$, ...

1999 Paper 3 Q2
D: 1700.0 B: 1486.1

\begin{questionparts} \item Let $\f(x)=(1+x^2)\e^x$. Show that $\f'(x)\ge 0$ and sketch the graph of...

1999 Paper 2 Q8
D: 1600.0 B: 1500.0

Prove that $$ \sum_{k=0}^n \sin k\theta = \frac { \cos \half\theta - \cos (n+ \half) \theta} {2\sin...

1998 Paper 3 Q1
D: 1700.0 B: 1484.0

Let $$ {\rm f}(x)=\sin^2x + 2 \cos x + 1 $$ for $0 \le x \le 2\pi$. Sketch the curve $y={\rm f}(x)$,...

1998 Paper 2 Q7
D: 1600.0 B: 1458.4

\begin{eqnarray*} {\rm f}(x)&=& \tan x-x,\\ {\rm g}(x)&=& 2-2\cos x-x\sin x,\\ {\rm h}(x)&=& 2x+x\co...

1997 Paper 1 Q8
D: 1484.0 B: 1500.0

By considering the maximum of $\ln x-x\ln a$, or otherwise, show that the equation $x=a^{x}$ has no ...

1996 Paper 1 Q1
D: 1484.0 B: 1500.0

A cylindrical biscuit tin has volume $V$ and surface area $S$ (including the ends). Show that the mi...

1994 Paper 1 Q2
D: 1500.0 B: 1468.1

Given that $a$ is constant, differentiate the following expressions with respect to $x$: \begin{que...

1993 Paper 2 Q3
D: 1600.0 B: 1500.0

\begin{questionparts} \item Solve the differential equation \[ \frac{\mathrm{d}y}{\mathrm{d}x}-y-3y...

1992 Paper 1 Q9
D: 1500.0 B: 1500.0

The diagram shows a coffee filter consisting of an inverted hollow right circular cone of height $H$...

1991 Paper 1 Q7
D: 1516.0 B: 1484.0

According to the Institute of Economic Modelling Sciences, the Slakan economy has alternate years of...

1991 Paper 1 Q4
D: 1500.0 B: 1500.0

$\ $ \begin{center} \begin{tikzpicture}[scale=1] % Shaded area with lightgray fill \fill[co...

1991 Paper 1 Q2
D: 1516.0 B: 1469.6

Frosty the snowman is made from two uniform spherical snowballs, of initial radii $2R$ and $3R.$ The...

1990 Paper 3 Q5
D: 1700.0 B: 1500.0

Prove that, for any integers $n$ and $r$, with $1\leqslant r\leqslant n,$ \[ \binom{n}{r}+\binom{n}{...

1988 Paper 3 Q6
D: 1700.0 B: 1516.0

Let $\mathrm{f}(x)=\sin2x\cos x.$ Find the 1988th derivative of $\mathrm{f}(x).$ Show that the smal...

1988 Paper 1 Q2
D: 1500.0 B: 1516.0

The function $\mathrm{f}$ and $\mathrm{g}$ are related (for all real $x$) by \[ \mathrm{g}(x)=\math...

2025 Paper 3 Q1
D: 1500.0 B: 1500.0

\textit{You need not consider the convergence of the improper integrals in this question.} For $p, q...

2025 Paper 2 Q5
D: 1500.0 B: 1500.0

You need not consider the convergence of the improper integrals in this question. \begin{questionpar...

2019 Paper 3 Q5
D: 1500.0 B: 1500.0

\begin{questionparts} \item Let $$f(x) = \frac{x}{\sqrt{x^2 + p}},$$ where $p$ is a non-zero constan...

2019 Paper 1 Q3
D: 1500.0 B: 1500.0

By first multiplying the numerator and the denominator of the integrand by $(1 - \sin x)$, evaluate ...

2019 Paper 1 Q8
D: 1500.0 B: 1500.0

The function $f$ is defined, for $x > 1$, by $$f(x) = \int_1^x \sqrt{\frac{t-1}{t+1}} dt.$$ Do not a...

1987 Paper 2 Q7
D: 1500.0 B: 1500.0

A definite integral can be evaluated approximately by means of the Trapezium rule: \[ \int_{x_{0}}...

1987 Paper 2 Q6
D: 1500.0 B: 1500.0

Let \[ I=\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi}\frac{\cos^{2}\theta}{1-\sin\theta\sin2\alpha}\,\m...

1987 Paper 1 Q8
D: 1500.0 B: 1500.0

Explain why the use of the substitution $x=\dfrac{1}{t}$ does not demonstrate that the integrals \[...

1987 Paper 1 Q6
D: 1500.0 B: 1500.0

Let $y=\mathrm{f}(x)$, $(0\leqslant x\leqslant a)$, be a continuous curve lying in the first quadran...

1987 Paper 1 Q5
D: 1500.0 B: 1500.0

Using the substitution $x=\alpha\cos^{2}\theta+\beta\sin^{2}\theta,$ show that, if $\alpha<\beta$, ...

2018 Paper 2 Q3
D: 1600.0 B: 1529.7

\begin{questionparts} \item Let \[ \f(x) = \frac 1 {1+\tan x} \] for $0\le x < \frac12\pi\,$. Sho...

2018 Paper 1 Q8
D: 1500.0 B: 1543.7

The functions $\s$ and $\c$ satisfy $\s(0)= 0\,$, $\c(0)=1\,$ and \[ \s'(x) = \c(x)^2 ,\] \[ \c'(x)=...

2018 Paper 1 Q4
D: 1516.0 B: 1516.0

The function $\f$ is defined by \[ \phantom{\ \ \ \ \ \ \ \ \ \ \ \ (x>0, \ \ x\ne1)} \f(x) = \...

2017 Paper 3 Q6
D: 1700.0 B: 1500.0

\textit{In this question, you are not permitted to use any properties of trigonometric functions or ...

2017 Paper 3 Q4
D: 1700.0 B: 1484.0

For any function $\f$ satisfying $\f(x) > 0$, we define the {\em geometric mean}, F, by \[...

2017 Paper 2 Q4
D: 1600.0 B: 1500.0

The Schwarz inequality is \[ \left( \int_a^b \f(x)\, \g(x)\,\d x\right)^{\!\!2} \le \left( \int_a^b...

2017 Paper 2 Q1
D: 1600.0 B: 1516.0

\textbf{Note:} In this question you may use without proof the result $ \dfrac{\d \ }{\d x}\big(\!\ar...

2017 Paper 1 Q2
D: 1484.0 B: 1500.1

\begin{questionparts} \item The inequality $\dfrac 1 t \le 1$ holds for $t\ge1$. By integrating both...

2017 Paper 1 Q1
D: 1500.0 B: 1484.0

\begin{questionparts} \item Use the substitution $u= x\sin x +\cos x$ to find \[ \int \frac{x }{x\...

2016 Paper 3 Q3
D: 1700.0 B: 1484.0

\begin{questionparts} \item Given that \[ \int \frac {x^3-2}{(x+1)^2}\, \e ^x \d x = \frac{\P(x)}...

2016 Paper 2 Q7
D: 1600.0 B: 1516.0

Show that \[ \int_0^a \f(x) \d x= \int _0^a \f(a-x) \d x\,, \tag{$*$} \] where f is any function fo...

2015 Paper 2 Q6
D: 1600.0 B: 1504.2

\begin{questionparts} \item Show that \[ \mathrm{sec}^2\left(\tfrac14\pi-\tfrac12 x\right)=\frac{2...

2015 Paper 1 Q5
D: 1516.0 B: 1500.0

\begin{questionparts} \item The function $\f$ is defined, for $x>0$, by \[ \f(x) =\int_{1}^3 (t-1)^{...

2014 Paper 3 Q4
D: 1700.0 B: 1500.0

\begin{questionparts} \item Let \[ I = \int_0^1 \bigl((y')^2 -y^2\bigr)\d x \qquad\text{an...

2014 Paper 2 Q4
D: 1600.0 B: 1500.0

\begin{questionparts} \item By using the substitution $u=1/x$, show that for $b>0$ \[ ...

2014 Paper 2 Q2
D: 1600.0 B: 1500.0

This question concerns the inequality \begin{equation} \label{eq6:*} \int_0^\pi \bigl( \...

2014 Paper 1 Q3
D: 1500.0 B: 1484.0

The numbers $a$ and $b$, where $b > a\ge0$, are such that \[ \int_a^b x^2 \d x = \left ( \int_...

2014 Paper 1 Q2
D: 1500.0 B: 1484.0

\begin{questionparts} \item Show that $\int \ln (2-x) \d x = -(2-x)\ln (2-x) + (2-x) + c \,,\ $ whe...

2013 Paper 3 Q1
D: 1700.0 B: 1484.0

Given that $t= \tan \frac12 x$, show that $\dfrac {\d t}{\d x} = \frac12(1+t^2)$ and $ \sin x = \df...

2013 Paper 2 Q8
D: 1600.0 B: 1484.0

The function $\f$ satisfies $\f(x)>0$ for $x\ge0$ and is strictly decreasing (which means that $\...

2013 Paper 1 Q4
D: 1500.0 B: 1484.0

\begin{questionparts} \item Show that, for $n> 0$, \[ \int_0^{\frac14\pi} \tan^n x \,\sec^2 x \, \...

2012 Paper 2 Q3
D: 1600.0 B: 1516.0

Show that, for any function f (for which the integrals exist), \[ \int_0^\infty \f\big(x+\sqrt{1+x^2...

2012 Paper 1 Q5
D: 1500.0 B: 1485.6

Show that \[ \int_0^{\frac14\pi} \sin (2x) \ln(\cos x)\, \d x = \frac14(\ln 2 -1)\,, \] and that \...

2012 Paper 1 Q3
D: 1516.0 B: 1484.0

\begin{questionparts} \item Sketch the curve $y=\sin x$ for $0\le x \le \tfrac12 \pi$ and add to you...

2011 Paper 2 Q6
D: 1600.0 B: 1500.7

For any given function $\f$, let \[ I = \int [\f'(x)]^2 \,[\f(x)]^n \d x\,, \tag{$*$} \] where $n$ i...

2011 Paper 1 Q5
D: 1500.0 B: 1516.7

Given that $0 < k < 1$, show with the help of a sketch that the equation \[ \sin x = k x \tag{$*$}\]...

2010 Paper 2 Q8
D: 1600.0 B: 1498.7

The curves $C_1$ and $C_2$ are defined by \[ y= \e^{-x} \ \ \ (x>0) \text{ \ \ \ and \ \ \ } y= \e...

2010 Paper 2 Q4
D: 1600.0 B: 1516.0

\begin{questionparts} \item Let \[ I=\int_0^a \frac {\f(x)}{\f(x)+\f(a-x)} \, \d x\,. \] Use a su...

2010 Paper 2 Q2
D: 1600.0 B: 1506.8

Prove that \[ \cos 3x = 4 \cos^3 x - 3 \cos x \,. \] Find and prove a similar result for $\sin 3x$...

2010 Paper 1 Q4
D: 1500.0 B: 1500.0

Use the substitution $x=\dfrac{1}{t^{2}-1}\; $, where $t>1$, to show that, for $ x>0$, \[ \int ...

2009 Paper 3 Q4
D: 1700.0 B: 1500.0

For any given (suitable) function $\f$, the \textit{Laplace transform} of $\f$ is the function $\F$ ...

2009 Paper 2 Q7
D: 1600.0 B: 1500.0

Let $y= (x-a)^n \e^{bx} \sqrt{1+x^2}\,$, where $n$ and $a$ are constants and $b$ is a non-zero con...

2009 Paper 2 Q5
D: 1600.0 B: 1500.0

Expand and simplify $(\sqrt{x-1}+1)^2\,$. \begin{questionparts} \item Evaluate \[ \int_{5}^{10} \fr...

2009 Paper 1 Q7
D: 1484.0 B: 1484.0

Show that, for any integer $m$, \[ \int_0^{2\pi} \e^x \cos mx \, \d x = \frac {1}{m^2+1}\big(\e...

2009 Paper 1 Q6
D: 1484.0 B: 1502.7

\begin{questionparts} \item Show that, for $m>0\,$, \[ \int_{1/m}^m \frac{x^2}{x+1} \, \d x = \fra...

2008 Paper 2 Q5
D: 1600.0 B: 1516.0

Evaluate the integrals \[\int_0^{\frac{1}{2}\pi} \frac{\sin 2x}{1+\sin^2x} \d x \text{ and } \int_0...

2008 Paper 1 Q6
D: 1516.0 B: 1500.0

The function $\f$ is defined by \[ \f(x) = \frac{\e^x-1}{\e-1}, \ \ \ \ \ x\ge0, \] and the function...

2007 Paper 3 Q7
D: 1700.0 B: 1516.0

The functions $\s(x)$ ($0\le x<1$) and $t(x)$ ($x\ge0$), and the real number $p$, are defined by \...

2007 Paper 2 Q3
D: 1600.0 B: 1575.2

By writing $x=a\tan\theta$, show that, for $a\ne0$, $\displaystyle \int \frac 1 {a^2+x^2}\, \d x =...

2007 Paper 1 Q3
D: 1500.0 B: 1500.0

Prove the identities $\cos^4\theta -\sin^4\theta \equiv \cos 2\theta$ and $\cos^4 \theta + \sin^4 \...

2006 Paper 3 Q2
D: 1700.0 B: 1513.8

Let \[ I = \int_{-\frac12 \pi}^{\frac12\pi} \frac {\cos^2\theta}{1-\sin\theta\sin2\alpha} \, \d\th...

2006 Paper 2 Q4
D: 1600.0 B: 1530.0

By making the substitution $x=\pi-t\,$, show that \[ \! \int_0^\pi x\f(\sin x) \d x = \tfrac12 \pi ...

2006 Paper 1 Q7
D: 1516.0 B: 1503.2

\begin{questionparts} \item Sketch on the same axes the functions ${\rm cosec}\, x$ and $2x/ \pi$, ...

2006 Paper 1 Q5
D: 1500.0 B: 1500.0

\begin{questionparts} \item Use the substitution $u^2=2x+1$ to show that, for $x>4$, \[ \int \frac{...

2005 Paper 2 Q3
D: 1600.0 B: 1469.5

Give a sketch, for $0 \le x \le \frac{1}{2}\pi$, of the curve $$ y = (\sin x - x\cos x)\;, $$ and ...

2005 Paper 1 Q5
D: 1484.0 B: 1528.7

\begin{questionparts} \item Evaluate the integral \[ \int_0^1 \l x + 1 \r ^{k-1} \; \mathrm{d}x \] ...

2004 Paper 1 Q4
D: 1516.0 B: 1484.0

Differentiate $\sec {t}$ with respect to $t$. \begin{questionparts} \item Use the substitution $x=\s...

2004 Paper 1 Q2
D: 1484.0 B: 1499.3

The square bracket notation $\boldsymbol{[} x\boldsymbol{]}$ means the greatest integer less than ...

2003 Paper 3 Q3
D: 1700.0 B: 1484.0

If $m$ is a positive integer, show that $\l 1+x \r^m + \l 1-x \r^m \ne 0$ for any real $x\,$. ...

2003 Paper 2 Q6
D: 1600.0 B: 1500.0

The function $\f$ is defined by $$ \f(x)= \vert x-1 \vert\;, $$ where the domain is ${\bf R}\,$, ...

2003 Paper 1 Q6
D: 1500.0 B: 1484.0

Evaluate the following integrals, in the different cases that arise according to the value of the po...

2002 Paper 3 Q1
D: 1700.0 B: 1500.0

Find the area of the region between the curve $\displaystyle y = {\ln x \over x}\,$ and the $x$-axi...

2002 Paper 2 Q4
D: 1600.0 B: 1484.0

Give a sketch to show that, if $\f(x) > 0$ for $p < x < q\,$, then $\displaystyle \int_p^{q} \f(x) ...

2002 Paper 2 Q1
D: 1600.0 B: 1516.0

Show that \[ \int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} \frac 1{1-\cos2\theta} \;\d\theta = \frac{\sqrt3...

2002 Paper 1 Q7
D: 1484.0 B: 1500.0

Let \[ I= \int_0^a \frac {\cos x}{\sin x + \cos x} \; \d x \, \quad \mbox{ and } \quad J= \int_0^a ...

2002 Paper 1 Q4
D: 1500.0 B: 1500.0

Give a sketch of the curve $ \;\displaystyle y= \frac1 {1+x^2}\;$, for $x\ge0$. Find the equatio...

2001 Paper 2 Q6
D: 1600.0 B: 1500.0

Show that \[ \int_0^1 \frac{x^4}{1+x^2} \, \d x = \frac \pi {4} - \frac 23 \;. \] Determine the valu...

2001 Paper 1 Q5
D: 1500.0 B: 1544.5

Show that (for $t>0$) \begin{questionparts} \item \[ \int_0^1 \frac1{(1+tx)^2} \d x = \frac1{(1+t)} ...

2000 Paper 3 Q2
D: 1700.0 B: 1484.2

Use the substitution $x = 2-\cos \theta $ to evaluate the integral $$ \int_{3/2}^2 \left(x...

2000 Paper 2 Q6
D: 1600.0 B: 1585.4

Show that \[ \sin\theta = \frac {2t}{1+t^2}, \ \ \ \cos\theta = \frac{1-t^2}{1+t^2}, \ \ \ \frac{1+\...

2000 Paper 2 Q5
D: 1600.0 B: 1470.2

It is required to approximate a given function $\f(x)$, over the interval $0 \le x \le 1$, by the li...

2000 Paper 1 Q8
D: 1484.0 B: 1484.0

Show that \[ \int_{-1}^1 \vert \, x\e^x \,\vert \d x =- \int_{-1}^0 x\e^x \d x + \int_0^1 x\e^...

2000 Paper 1 Q4
D: 1500.0 B: 1474.7

\begin{questionparts} \item Show that, for $0\le x\le 1$, the largest value of $\displaystyle \...

1999 Paper 2 Q6
D: 1600.0 B: 1484.0

Find $\displaystyle \ \frac{\d y}{\d x} \ $ if $$ y = \frac{ax+b}{cx+d}. \eqno(*) $$ By using cha...

1999 Paper 1 Q8
D: 1500.0 B: 1500.0

The function $\f$ satisfies $0\leqslant\f(t)\leqslant K$ when $0\leqslant t\leqslant x$. Explain by...

1998 Paper 3 Q2
D: 1700.0 B: 1500.0

Let $$ {\rm I}(a,b) = \int_0^1 t^{a}(1-t)^{b} \, \d t \; \qquad (a\ge0,\ b\ge0) .$$ \begin{questio...

1998 Paper 2 Q4
D: 1600.0 B: 1470.2

The integral $I_n$ is defined by $$I_n=\int_0^\pi(\pi/2-x)\sin(nx+x/2)\,{\rm cosec}\,(x/2)\,\d x,$$ ...

1998 Paper 1 Q2
D: 1500.0 B: 1516.0

Show, by means of a suitable change of variable, or otherwise, that \[ \int_{0}^{\infty}\mathrm{f}((...

1997 Paper 2 Q3
D: 1600.0 B: 1500.0

Find constants $a,\,b,\,c$ and $d$ such that $$\frac{ax+b}{ x^2+2x+2}+\frac{cx+d}{ x^2-2x+2}= \frac{...

1997 Paper 1 Q6
D: 1516.0 B: 1500.0

Find constants $a_{0}$, $a_{1}$, $a_{2}$, $a_{3}$, $a_{4}$, $a_{5}$, $a_{6}$ and $b$ such that \[x...

1996 Paper 3 Q3
D: 1700.0 B: 1500.0

Find \[ \int_{0}^{\theta}\frac{1}{1-a\cos x}\,\mathrm{d}x\,, \] where $0 < \theta < \pi$ and $-1 < ...

1996 Paper 2 Q4
D: 1600.0 B: 1470.2

Show that $\cos 4u=8\cos^{4}u-8\cos^{2}u+1$. If \[ I=\int_{-1}^{1} \frac{1}{\vphantom{{\big(}^2}\; ...

1996 Paper 1 Q6
D: 1500.0 B: 1500.0

Let $\mathrm{f}(x)=\dfrac{\sin(n+\frac{1}{2})x}{\sin\frac{1}{2}x}$ for $0 < x\leqslant\pi.$ \begin{...

1996 Paper 1 Q4
D: 1484.0 B: 1500.0

Show that \[ \int_{0}^{1}\frac{1}{x^{2}+2ax+1}\,\mathrm{d}x=\begin{cases} \dfrac{1}{\sqrt{1-a^{2}}}...

1996 Paper 1 Q2
D: 1484.0 B: 1500.0

\begin{questionparts} \item Show that \[ \int_{0}^{1}\left(1+(\alpha-1)x\right)^{n}\,\mathrm{d}x=\f...

1995 Paper 1 Q5
D: 1500.0 B: 1500.0

If \[ \mathrm{f}(x)=nx-\binom{n}{2}\frac{x^{2}}{2}+\binom{n}{3}\frac{x^{3}}{3}-\cdots+(-1)^{r+1}\bi...

1995 Paper 1 Q2
D: 1500.0 B: 1516.0

\begin{questionparts} \item Suppose that \[ S=\int\frac{\cos x}{\cos x+\sin x}\,\mathrm{d}x\quad\m...

1994 Paper 2 Q4
D: 1600.0 B: 1500.0

By considering the area of the region defined in terms of Cartesian coordinates $(x,y)$ by \[ \{(x,y...

1994 Paper 2 Q2
D: 1600.0 B: 1516.0

If $\mathrm{Q}$ is a polynomial, $m$ is an integer, $m\geqslant1$ and $\mathrm{P}(x)=(x-a)^{m}\mathr...

1994 Paper 1 Q8
D: 1516.0 B: 1500.8

By means of the change of variable $\theta=\frac{1}{4}\pi-\phi,$ or otherwise, show that \[ \int_{0...

1994 Paper 1 Q4
D: 1484.0 B: 1628.6

Show that \begin{questionparts} \item $\dfrac{1-\cos\alpha}{\sin\alpha}=\tan\frac{1}{2}\alpha,$ \i...

1993 Paper 2 Q2
D: 1600.0 B: 1531.5

\begin{questionparts} \item Evaluate \[ \int_{0}^{2\pi}\cos(mx)\cos(nx)\,\mathrm{d}x, \] where $m...

1993 Paper 1 Q4
D: 1484.0 B: 1516.0

By making the change of variable $t=\pi-x$ in the integral \[ \int_{0}^{\pi}x\mathrm{f}(\sin x)\,\m...

1992 Paper 2 Q3
D: 1600.0 B: 1485.7

In the figure, the large circle with centre $O$ has radius $4$ and the small circle with centre $P$ ...

1992 Paper 1 Q3
D: 1500.0 B: 1486.1

Evaluate \begin{questionparts} \item ${\displaystyle \int_{-\pi}^{\pi}\left|\sin x\right|\,\mathrm...

1991 Paper 3 Q7
D: 1700.0 B: 1500.0

\begin{questionparts} \item Prove that \[ \int_{0}^{\frac{1}{2}\pi}\ln(\sin x)\,\mathrm{d}x=\int_{0...

1991 Paper 2 Q6
D: 1600.0 B: 1485.5

Show by means of a sketch, or otherwise, that if $0\leqslant\mathrm{f}(y)\leqslant\mathrm{g}(y)$ fo...

1991 Paper 1 Q8
D: 1500.0 B: 1516.9

\begin{questionparts} \item By a substitution of the form $y=k-x$ for suitable $k$, prove that, for ...

1990 Paper 2 Q8
D: 1600.0 B: 1500.0

The functions $\mathrm{x}$ and $\mathrm{y}$ are related by \[ \mathrm{x}(t)=\int_{0}^{t}\mathrm{y}(...

1990 Paper 1 Q9
D: 1484.0 B: 1516.0

Let $A$ and $B$ be the points $(1,1)$ and $(b,1/b)$ respectively, where $b>1$. The tangents at $A$ a...

1990 Paper 1 Q5
D: 1500.0 B: 1500.0

\begin{questionparts} \item Evaluate \[ \int_{1}^{3}\frac{1}{6x^{2}+19x+15}\,\mathrm{d}x\,. \] \i...

1988 Paper 3 Q1
D: 1700.0 B: 1500.0

Sketch the graph of \[ y=\frac{x^{2}\mathrm{e}^{-x}}{1+x}, \] for $-\infty< x< \infty.$ Show that ...

1988 Paper 2 Q7
D: 1600.0 B: 1500.0

The integral $I$ is defined by \[ I=\int_{1}^{2}\frac{(2-2x+x^{2})^{k}}{x^{k+1}}\,\mathrm{d}x \] wh...

1988 Paper 1 Q9
D: 1500.0 B: 1516.7

Find the following integrals: \begin{questionparts} \item $\ {\displaystyle \int_{1}^{\mathrm{e}}\fr...

2019 Paper 1 Q2
D: 1500.0 B: 1500.0

The curve $C$ is given parametrically by the equations $x = 3t^2$, $y = 2t^3$. Show that the equatio...

2017 Paper 2 Q3
D: 1600.0 B: 1500.0

\begin{questionparts} \item Sketch, on $x$-$y$ axes, the set of all points satisfying $\sin y = \sin...

2014 Paper 2 Q3
D: 1600.0 B: 1516.0

\begin{questionparts} \item Show, geometrically or otherwise, that the shortest distance between the...

2011 Paper 1 Q1
D: 1500.0 B: 1479.0

\begin{questionparts} \item Show that the gradient of the curve $\; \dfrac a x + \dfrac by =1$, whe...

2009 Paper 1 Q5
D: 1484.0 B: 1484.0

A right circular cone has base radius $r$, height $h$ and slant length $\ell$. Its volume $V$, and t...

2009 Paper 1 Q2
D: 1500.0 B: 1500.0

A curve has the equation \[ y^3 = x^3 +a^3+b^3\,, \] where $a$ and $b$ ar...

2008 Paper 2 Q4
D: 1600.0 B: 1532.0

A curve is given by \[x^2+y^2 +2axy = 1,\] where $a$ is a constant satisfying $0 < a < 1$. Show tha...

2008 Paper 1 Q2
D: 1500.0 B: 1500.0

The variables $t$ and $x$ are related by $t=x+ \sqrt{x^2+2bx+c\;} \,$, where $b$ and $c$ are constan...

1997 Paper 1 Q2
D: 1516.0 B: 1484.0

\begin{questionparts} \item If \[{\mathrm f}(x)=\tan^{-1}x+\tan^{-1}\left(\frac{1-x}{1+x}\right),\] ...

1991 Paper 2 Q7
D: 1600.0 B: 1500.0

The function $\mathrm{g}$ satisfies, for all positive $x$ and $y$, \[ \mathrm{g}(x)+\mathrm{g}(y...

1991 Paper 2 Q2
D: 1600.0 B: 1528.5

The equation of a hyperbola (with respect to axes which are displaced and rotated with respect to th...

1989 Paper 1 Q7
D: 1500.0 B: 1484.0

Sketch the curve $y^{2}=1-\left|x\right|$. A rectangle, with sides parallel to the axes, is inscribe...

2019 Paper 2 Q6
D: 1500.0 B: 1500.0

Note: You may assume that if the functions $y_1(x)$ and $y_2(x)$ both satisfy one of the differentia...

2016 Paper 2 Q6
D: 1600.0 B: 1484.0

This question concerns solutions of the differential equation \[ (1-x^2) \left(\frac{\d y}{\d x}\r...

2016 Paper 1 Q4
D: 1516.0 B: 1502.9

\begin{questionparts} \item Differentiate $\displaystyle \; \frac z {(1+z^2)^{\frac12}} \;$ with res...

2013 Paper 1 Q7
D: 1516.0 B: 1516.0

\begin{questionparts} \item Use the substitution $y=ux$, where $u$ is a function of $x$, to show tha...

2011 Paper 1 Q7
D: 1500.0 B: 1500.0

In this question, you may assume that $\ln (1+x) \approx x -\frac12 x^2$ when $\vert x \vert $ is sm...

2010 Paper 3 Q8
D: 1700.0 B: 1531.5

Given that ${\rm P} (x) = {\rm Q} (x){\rm R}'(x) - {\rm Q}'(x){\rm R}(x)$, write down an expression...

2008 Paper 2 Q7
D: 1600.0 B: 1472.0

\begin{questionparts} \item By writing $y=u{(1+x^2)\vphantom{\dot A}}^{\frac12}$, where $u$ is a ...

2007 Paper 2 Q6
D: 1600.0 B: 1469.4

\begin{questionparts} \item Differentiate $\ln\big (x+\sqrt{3+x^2}\,\big)$ and $x\sqrt{3+x^2}$ and ...

2005 Paper 3 Q2
D: 1700.0 B: 1502.0

Find the general solution of the differential equation $\displaystyle \frac{\mathrm{d}y}{\mathrm{d}...

2005 Paper 2 Q8
D: 1600.0 B: 1516.0

For $x \ge 0$ the curve $C$ is defined by $$ {\frac{\d y} {\d x}} = \frac{x^3y^2}{(1 + x^2)^{5/2}} ...

2005 Paper 1 Q8
D: 1500.0 B: 1484.0

Show that, if $y^2 = x^k \f(x)$, then $\displaystyle 2xy \frac{\mathrm{d}y }{ \mathrm{d}x} = ky^2 +...

2004 Paper 2 Q8
D: 1600.0 B: 1483.3

Let $x$ satisfy the differential equation $$ \frac {\d x}{\d t} = {\big( 1-x^n\big)\vphantom{\Big)}}...

2004 Paper 2 Q5
D: 1600.0 B: 1516.0

Evaluate $\int_0^{{\pi}} x \sin x\,\d x$ and $\int_0^{{\pi}} x \cos x\,\d x\;$. The function $\f$ s...

2003 Paper 2 Q8
D: 1600.0 B: 1516.0

It is given that $y$ satisfies $$ {{\d y} \over { \d t}} + k\left({{t^2-3t+2} \over {t+1}}\right)y...

2003 Paper 1 Q8
D: 1516.0 B: 1484.0

A liquid of fixed volume $V$ is made up of two chemicals $A$ and $B\,$. A reaction takes place in w...

2002 Paper 3 Q6
D: 1700.0 B: 1484.9

Find all the solution curves of the differential equation \[ y^4 \l {\mathrm{d}y \over \mathrm{d}x }...

2002 Paper 2 Q8
D: 1600.0 B: 1500.0

Find $y$ in terms of $x$, given that: \begin{eqnarray*} \mbox{for $x < 0\,$}, && \frac{\d y}{\d ...

2001 Paper 3 Q7
D: 1700.0 B: 1516.0

Sketch the graph of the function $\ln x - {1 \over 2} x^2$. Show that the differential equation \[ ...

2001 Paper 2 Q8
D: 1600.0 B: 1488.2

The function $\f$ satisfies $\f(x+1)= \f(x)$ and $\f(x)>0$ for all $x$. \begin{questionparts} \item...

2001 Paper 2 Q5
D: 1600.0 B: 1485.5

The curve $C_1$ passes through the origin in the $x$--$y$ plane and its gradient is given by $$ \fra...

2001 Paper 1 Q7
D: 1500.0 B: 1516.0

In a cosmological model, the radius $\rm R$ of the universe is a function of the age $t$ of the univ...

1998 Paper 1 Q8
D: 1516.0 B: 1500.0

Fluid flows steadily under a constant pressure gradient along a straight tube of circular cross-sec...

1996 Paper 1 Q7
D: 1484.0 B: 1469.7

\begin{questionparts} \item At time $t=0$ a tank contains one unit of water. Water flows out of the ...

1995 Paper 1 Q6
D: 1500.0 B: 1500.0

\begin{questionparts} \item In the differential equation \[ \frac{1}{y^{2}}\frac{\mathrm{d}y}{\math...

1994 Paper 3 Q4
D: 1700.0 B: 1484.7

Find the two solutions of the differential equation \[ \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)...

1993 Paper 1 Q9
D: 1500.0 B: 1484.0

In the manufacture of Grandma's Home Made Ice-cream, chemicals $A$ and $B$ pour at constant rates $a...

1992 Paper 3 Q4
D: 1700.0 B: 1500.0

A set of curves $S_{1}$ is defined by the equation \[ y=\frac{x}{x-a}, \] where $a$ is a constant w...

1992 Paper 2 Q2
D: 1600.0 B: 1516.0

Suppose that $y$ satisfies the differential equation \[ y=x\frac{\mathrm{d}y}{\mathrm{d}x}-\cosh\le...

1990 Paper 2 Q7
D: 1600.0 B: 1484.0

A damped system with feedback is modelled by the equation \[ \mathrm{f}'(t)+\mathrm{f}(t)-k\mathr...

1989 Paper 3 Q8
D: 1700.0 B: 1484.0

Given that \[ \frac{\mathrm{d}x}{\mathrm{d}t}=4(x-y)\qquad\mbox{ and }\qquad\frac{\mathrm{d}y}{\mat...

1989 Paper 1 Q6
D: 1500.0 B: 1500.0

The normal to the curve $y=\mathrm{f}(x)$ at the point $P$ with coordinates $(x,\mathrm{f}(x))$ cuts...

1988 Paper 3 Q10
D: 1700.0 B: 1500.0

Four greyhounds $A,B,C$ and $D$ are held at positions such that $ABCD$ is a large square. At a given...

LFM Pure and Mechanics

Year 12 course on Pure and Mechanics

Add Section

2017 Paper 1 Q4
D: 1500.0 B: 1516.0

\begin{questionparts} \item Let $r$ be a real number with $\vert r \vert<1$ and let \[ S = \sum_{n=...

2011 Paper 2 Q7
D: 1600.0 B: 1500.0

The two sequences $a_0$, $a_1$, $a_2$, $\ldots$ and $b_0$, $b_1$, $b_2$, $\ldots$ have general t...

2010 Paper 3 Q1
D: 1700.0 B: 1500.8

Let $x_{\low1}$, $x_{\low2}$, \ldots, $x_n$ and $x_{\vphantom {\dot A} n+1}$ be any fixed real numb...

2010 Paper 2 Q3
D: 1600.0 B: 1500.0

The first four terms of a sequence are given by $F_0=0$, $F_1=1$, $F_2=1$ and $F_3=2$. The general...

2009 Paper 2 Q6
D: 1600.0 B: 1516.0

The Fibonacci sequence $F_1$, $F_2$, $F_3$, $\ldots$ is defined by $F_1=1$, $F_2= 1$ and \[ F_{n+1...

2002 Paper 1 Q8
D: 1500.0 B: 1516.0

I borrow $C$ pounds at interest rate $100\alpha \,\%$ per year. The interest is added at the end of ...

1999 Paper 1 Q1
D: 1484.0 B: 1500.0

How many integers greater than or equal to zero and less than a million are not divisible by 2 or 5?...

1998 Paper 1 Q7
D: 1500.0 B: 1500.0

My bank pays $\rho$\% interest at the end of each year. I start with nothing in my account. Then for...

1997 Paper 2 Q1
D: 1600.0 B: 1500.0

Find the sum of those numbers between 1000 and 6000 every one of whose digits is one of the numbers ...

1996 Paper 1 Q8
D: 1500.0 B: 1500.0

\begin{questionparts} \item By using the formula for the sum of a geometric series, or otherwise, ex...

1995 Paper 1 Q3
D: 1500.0 B: 1500.0

\begin{questionparts} \item If $\mathrm{f}(r)$ is a function defined for $r=0,1,2,3,\ldots,$ show t...

1994 Paper 1 Q7
D: 1500.0 B: 1502.1

From the facts \begin{alignat*}{2} 1 & \quad=\quad & & 0\\ 2+3+4 & \quad=\quad & & 1+8\\ 5+6+7+8+...

1993 Paper 1 Q2
D: 1500.0 B: 1516.0

If $\left|r\right|\neq1,$ show that \[ 1+r^{2}+r^{4}+\cdots+r^{2n}=\frac{1-r^{2n+2}}{1-r^{2}}\,. \]...

1990 Paper 1 Q4
D: 1516.0 B: 1500.0

The sequence $a_{1},a_{2},\ldots,a_{n},\ldots$ forms an arithmetic progression. Establish a formula,...

1988 Paper 3 Q5
D: 1700.0 B: 1500.0

A firm of engineers obtains the right to dig and exploit an undersea tunnel. Each day the firm borro...

2019 Paper 3 Q2
D: 1500.0 B: 1500.0

The definition of the derivative $f'$ of a (differentiable) function f is $$f'(x) = \lim_{h\to 0} \f...

2019 Paper 2 Q1
D: 1500.0 B: 1500.0

Let $f(x) = (x-p)g(x)$, where g is a polynomial. Show that the tangent to the curve $y = f(x)$ at th...

2018 Paper 3 Q5
D: 1700.0 B: 1484.0

The real numbers $a_1$, $a_2$, $a_3$, $\ldots$ are all positive. For each positive integer $n$, $A_n...

2018 Paper 1 Q1
D: 1516.0 B: 1516.0

The line $y=a^2 x$ and the curve $y=x(b-x)^2$, where $0 < a < b\,$, intersect at the origin $...

2017 Paper 1 Q3
D: 1500.0 B: 1500.0

The points $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$, where $p>0$ and $q<0$, lie on the curve $C$ with equa...

2015 Paper 1 Q7
D: 1500.0 B: 1500.0

Let \[ \f(x) = 3ax^2 - 6x^3\, \] and, for each real number $a$, let ${\rm M}(a)$ be the greatest v...

2014 Paper 1 Q8
D: 1500.0 B: 1484.0

Let $L_a$ denote the line joining the points $(a,0)$ and $(0, 1-a)$, where $0< a < 1$. The li...

2013 Paper 2 Q5
D: 1600.0 B: 1484.0

\begin{questionparts} \item A function $\f(x)$ satisfies $\f(x) = \f(1-x)$ for all $x$. Show, by dif...

2012 Paper 1 Q2
D: 1484.0 B: 1484.0

\begin{questionparts} \item Sketch the curve $y= x^4-6x^2+9$ giving the coordinates of the stationar...

2008 Paper 2 Q3
D: 1600.0 B: 1516.0

\begin{questionparts} \item Find the coordinates of the turning points of the curve $y=27x^3-27x^2...

2006 Paper 1 Q2
D: 1516.0 B: 1500.0

A small goat is tethered by a rope to a point at ground level on a side of a square barn which stan...

2005 Paper 1 Q2
D: 1516.0 B: 1484.0

The point $P$ has coordinates $\l p^2 , 2p \r$ and the point $Q$ has coordinates $\l q^2 , 2q \...

1998 Paper 1 Q4
D: 1500.0 B: 1533.8

Prove that the rectangle of greatest perimeter which can be inscribed in a given circle is a square....

1995 Paper 2 Q1
D: 1600.0 B: 1484.0

\begin{questionparts} \item By considering $(1+x+x^{2}+\cdots+x^{n})(1-x)$ show that, if $x\neq1$, ...

1992 Paper 2 Q4
D: 1600.0 B: 1500.0

$\lozenge$ is an operation which take polynomials in $x$ to polynomials in $x$; that is, given a pol...

1990 Paper 1 Q3
D: 1516.0 B: 1484.0

Given a curve described by $y=\mathrm{f}(x)$, and such that $y\geqslant0$, a \textit{push-off }of th...

1988 Paper 1 Q7
D: 1484.0 B: 1500.0

The function $\mathrm{f}$ is defined by \[ \mathrm{f}(x)=ax^{2}+bx+c. \] Show that \[ \mathrm{f}'(...

Vectors in two dimensions (addition, scalar multiplication, equation of a line), scalar product

2025 Paper 3 Q5
D: 1500.0 B: 1500.0

Three points, $A$, $B$ and $C$, lie in a horizontal plane, but are not collinear. The point $O$ lies...

2019 Paper 2 Q7
D: 1500.0 B: 1500.0

\begin{questionparts} \item The points $A$, $B$ and $C$ have position vectors $\mathbf{a}$, $\mathbf...

1987 Paper 2 Q8
D: 1500.0 B: 1487.0

Let $\mathbf{r}$ be the position vector of a point in three-dimensional space. Describe fully the lo...

1987 Paper 1 Q9
D: 1500.0 B: 1500.0

$ABC$ is a triangle whose vertices have position vectors $\mathbf{a,b,c}$brespectively, relative to ...

2015 Paper 1 Q6
D: 1484.0 B: 1500.0

The vertices of a plane quadrilateral are labelled $A$, $B$, $A'$ and $B'$, in clockwise order. A po...

2011 Paper 2 Q11
D: 1600.0 B: 1487.5

Three non-collinear points $A$, $B$ and $C$ lie in a horizontal ceiling. A particle $P$ of weight $W...

2007 Paper 1 Q5
D: 1500.0 B: 1484.0

\textit{ Note: a regular octahedron is a polyhedron with eight faces each of which is an equilateral...

2006 Paper 2 Q6
D: 1600.0 B: 1516.0

By considering a suitable scalar product, prove that \[ (ax+by+cz)^2 \le (a^2+b^2+c^2)(x^2+y^2+z^2)...

2002 Paper 2 Q7
D: 1600.0 B: 1484.0

In 3-dimensional space, the lines $m_1$ and $m_2$ pass through the origin and have directions $\bf ...

2001 Paper 3 Q10
D: 1700.0 B: 1516.0

Three ships $A$, $B$ and $C$ move with velocities ${\bf v}_1$, ${\bf v}_2$ and $\bf u$ respectively...

2001 Paper 3 Q6
D: 1700.0 B: 1488.0

The plane \[ {x \over a} + {y \over b} +{z \over c} = 1 \] meets the co-ordinate axes at the points ...

2001 Paper 2 Q3
D: 1600.0 B: 1500.0

The cuboid $ABCDEFGH$ is such $AE$, $BF$, $CG$, $DH$ are perpendicular to the opposite faces $ABCD...

2001 Paper 1 Q9
D: 1500.0 B: 1484.0

A ship sails at $20$ kilometres/hour in a straight line which is, at its closest, 1 kilometre from a...

1998 Paper 3 Q6
D: 1700.0 B: 1516.0

\begin{questionparts} \item Show that four vertices of a cube, no two of which are adjacent, form th...

1998 Paper 2 Q8
D: 1600.0 B: 1487.4

Points $\mathbf{A},\mathbf{B},\mathbf{C}$ in three dimensions have coordinate vectors $\mathbf{a},\m...

1997 Paper 1 Q9
D: 1500.0 B: 1484.0

A single stream of cars, each of width $a$ and exactly in line, is passing along a straight road of ...

1997 Paper 1 Q5
D: 1500.0 B: 1484.0

Four rigid rods $AB$, $BC$, $CD$ and $DA$ are freely jointed together to form a quadrilateral in the...

1995 Paper 3 Q11
D: 1700.0 B: 1500.0

A ship is sailing due west at $V$ knots while a plane, with an airspeed of $kV$ knots, where $k>\sqr...

1995 Paper 1 Q7
D: 1500.0 B: 1516.0

Let $A,B,C$ be three non-collinear points in the plane. Explain briefly why it is possible to choose...

1994 Paper 3 Q10
D: 1700.0 B: 1502.0

The island of Gammaland is totally flat and subject to a constant wind of $w$ kh$^{-1},$ blowing fro...

1994 Paper 3 Q3
D: 1700.0 B: 1516.0

Describe geometrically the possible intersections of a plane with a sphere. Let $P_{1}$ and $P_{2}...

1993 Paper 3 Q8
D: 1700.0 B: 1484.0

A square pyramid has its base vertices at the points $A$ $(a,0,0)$, $B$ $(0,a,0)$, $C$ $(-a,0,0)$ an...

1992 Paper 3 Q7
D: 1700.0 B: 1474.8

The points $P$ and $R$ lie on the sides $AB$ and $AD,$ respectively, of the parallelogram $ABCD.$ Th...

1992 Paper 3 Q5
D: 1700.0 B: 1484.0

The tetrahedron $ABCD$ has $A$ at the point $(0,4,-2)$. It is symmetrical about the plane $y+z=2,$ w...

1991 Paper 2 Q10
D: 1600.0 B: 1500.0

A straight stick of length $h$ stands vertically. On a sunny day, the stick casts a shadow on flat h...

1991 Paper 1 Q5
D: 1500.0 B: 1484.0

A set of $n$ distinct vectors $\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n},$ where $n\geqsla...

1990 Paper 3 Q2
D: 1700.0 B: 1500.0

The distinct points $O\,(0,0,0),$ $A\,(a^{3},a^{2},a),$ $B\,(b^{3},b^{2},b)$ and $C\,(c^{3},c^{2},c)...

1990 Paper 1 Q6
D: 1500.0 B: 1505.5

Let $ABCD$ be a parallelogram. By using vectors, or otherwise, prove that: \begin{questionparts} \i...

1989 Paper 1 Q3
D: 1516.0 B: 1516.0

In the triangle $OAB,$ $\overrightarrow{OA}=\mathbf{a},$ $\overrightarrow{OB}=\mathbf{b}$ and $OA=OB...

1988 Paper 1 Q8
D: 1500.0 B: 1468.0

$ABCD$ is a skew (non-planar) quadrilateral, and its pairs of opposite sides are equal, i.e. $AB=CD$...

Simple static contexts

2019 Paper 2 Q10
D: 1500.0 B: 1500.0

A small light ring is attached to the end $A$ of a uniform rod $AB$ of weight $W$ and length $2a$. T...

2017 Paper 2 Q9
D: 1600.0 B: 1500.0

Two identical rough cylinders of radius $r$ and weight $W$ rest, not touching each other but a ...

2015 Paper 1 Q11
D: 1500.0 B: 1484.0

Two long circular cylinders of equal radius lie in equilibrium on an inclined plane, in \mbox{conta...

2013 Paper 2 Q9
D: 1600.0 B: 1485.6

The diagram shows three identical discs in equilibrium in a vertical plane. Two discs rest, not in ...

2011 Paper 1 Q11
D: 1516.0 B: 1516.0

A thin non-uniform bar $AB$ of length $7d$ has centre of mass at a point $G$, where $AG=3d$. A lig...

2010 Paper 2 Q11
D: 1600.0 B: 1500.0

A uniform rod $AB$ of length $4L $ and weight $W$ is inclined at an angle $\theta$ to the horizon...

2006 Paper 2 Q9
D: 1600.0 B: 1500.7

A painter of weight $kW$ uses a ladder to reach the guttering on the outside wall of a house. The ...

2003 Paper 2 Q9
D: 1600.0 B: 1484.0

$AB$ is a uniform rod of weight $W\,$. The point $C$ on $AB$ is such that $AC>CB\,$. The rod is in...

2002 Paper 2 Q11
D: 1600.0 B: 1484.0

A rigid straight beam $AB$ has length $l$ and weight $W$. Its weight per unit length at a distance ...

2002 Paper 1 Q9
D: 1500.0 B: 1470.9

$\,$ \vspace*{-0.5in} \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dots...

1995 Paper 2 Q9
D: 1600.0 B: 1484.0

\noindent \begin{center} \psset{xunit=0.8cm,yunit=0.8cm,algebraic=true,dotstyle=o,dotsize=3pt 0,line...

1995 Paper 1 Q11
D: 1500.0 B: 1500.0

Two identical uniform cylinders, each of mass $m,$ lie in contact with one another on a horizontal p...

1994 Paper 2 Q9
D: 1600.0 B: 1484.0

A light rod of length $2a$ is hung from a point $O$ by two light inextensible strings $OA$ and $OB$ ...

Parametric differentiation, parametric integration

2017 Paper 3 Q7
D: 1700.0 B: 1500.0

Show that the point $T$ with coordinates \[ \left( \frac{a(1-t^2)}{1+t^2} \; , \; \frac{2bt}{1+t^2}\...

2017 Paper 2 Q5
D: 1600.0 B: 1484.0

A curve $C$ is determined by the parametric equations \[ x=at^2 \, , \; y = 2at\,, \] where $a>0$\,....

2016 Paper 2 Q1
D: 1600.0 B: 1516.0

The curve $C_1$ has parametric equations $x=t^2$, $y= t^3$, where $-\infty < t < \infty\,$. Let $O...

2015 Paper 1 Q4
D: 1500.0 B: 1500.0

The midpoint of a rod of length $2b$ slides on the curve $y =\frac14 x^2$, $x\ge0$, in such a way t...

2012 Paper 1 Q4
D: 1516.0 B: 1500.0

The curve $C$ has equation $xy = \frac12$. The tangents to $C$ at the distinct points $P\big(p, \fra...

2011 Paper 1 Q4
D: 1500.0 B: 1524.2

The distinct points $P$ and $Q$, with coordinates $(ap^2,2ap)$ and $(aq^2,2aq)$ respectively, lie on...

2007 Paper 3 Q4
D: 1700.0 B: 1484.0

A curve is given parametrically by \begin{align*} x&= a\big( \cos t +\ln \tan \tfrac12 t\big)\,,\\ y...

2006 Paper 2 Q7
D: 1600.0 B: 1500.0

An ellipse has equation $\dfrac{x^2}{a^2} +\dfrac {y^2}{b^2} = 1$. Show that the equation of the t...

2003 Paper 3 Q4
D: 1700.0 B: 1516.0

A curve is defined parametrically by \[ x=t^2 \;, \ \ \ y=t (1 + t^2 ) \;. \] The...

2001 Paper 3 Q5
D: 1700.0 B: 1500.0

Show that the equation $x^3 + px + q=0$ has exactly one real solution if $p \ge 0\,$. A parabola $C...

1999 Paper 3 Q6
D: 1700.0 B: 1516.0

A closed curve is given by the equation $$ x^{2/n} + y^{2/n} = a^{2/n} \eqno(*) $$ where $n$ is an o...

1998 Paper 2 Q6
D: 1600.0 B: 1500.0

Two curves are given parametrically by \[ x_{1}=(\theta+\sin\theta),\qquad y_{1}=(1+\cos\theta),\tag...

1992 Paper 3 Q3
D: 1700.0 B: 1484.0

Sketch the curve $C_{1}$ whose parametric equations are $x=t^{2},$ $y=t^{3}.$ The circle $C_{2}$ pas...

2019 Paper 2 Q9
D: 1500.0 B: 1500.0

A particle $P$ is projected from a point $O$ on horizontal ground with speed $u$ and angle of projec...

2019 Paper 1 Q10
D: 1500.0 B: 1500.0

In this question, the $x$-axis is horizontal and the positive $y$-axis is vertically upwards. A part...

2017 Paper 2 Q11
D: 1600.0 B: 1516.0

Two thin vertical parallel walls, each of height $2a$, stand a distance $a$ apart on horizontal grou...

2017 Paper 1 Q9
D: 1484.0 B: 1484.0

A particle is projected at speed $u$ from a point $O$ on a horizontal plane. It passes through a fix...

2016 Paper 2 Q11
D: 1600.0 B: 1484.0

\begin{questionparts} \item Two particles move on a smooth horizontal surface. The positions, in Car...

2016 Paper 1 Q11
D: 1516.0 B: 1484.7

The point $O$ is at the top of a vertical tower of height $h$ which stands in the middle of a large...

2015 Paper 1 Q9
D: 1516.0 B: 1516.0

A short-barrelled machine gun stands on horizontal ground. The gun fires bullets, from ground level...

2014 Paper 2 Q10
D: 1600.0 B: 1484.0

A particle is projected from a point $O$ on horizontal ground with initial speed $u$ and at an angl...

2014 Paper 1 Q9
D: 1516.0 B: 1500.0

A particle of mass $m$ is projected due east at speed $U$ from a point on horizontal ground at a...

2013 Paper 2 Q10
D: 1600.0 B: 1484.0

A particle is projected at an angle of elevation $\alpha$ (where $\alpha>0$) from a point $A$ on ho...

2013 Paper 1 Q9
D: 1516.0 B: 1516.0

Two particles, $A$ and $B$, are projected simultaneously towards each other from two points which ar...

2012 Paper 2 Q9
D: 1600.0 B: 1500.0

A tennis ball is projected from a height of $2h$ above horizontal ground with speed $u$ and at an a...

2012 Paper 1 Q9
D: 1500.0 B: 1488.1

A tall shot-putter projects a small shot from a point $2.5\,$m above the ground, which is horizontal...

2011 Paper 2 Q10
D: 1600.0 B: 1470.2

A particle is projected from a point on a horizontal plane, at speed $u$ and at an angle~$\theta$ a...

2011 Paper 1 Q9
D: 1516.0 B: 1484.7

A particle is projected at an angle $\theta$ above the horizontal from a point on a horizontal plane...

2010 Paper 2 Q9
D: 1600.0 B: 1500.0

Two points $A$ and $B$ lie on horizontal ground. A particle $P_1$ is projected from $A$ towards $...

2009 Paper 3 Q9
D: 1700.0 B: 1500.0

A particle is projected under gravity from a point $P$ and passes through a point $Q$. The angles of...

2009 Paper 1 Q9
D: 1500.0 B: 1484.0

Two particles $P$ and $Q$ are projected simultaneously from points $O$ and $D$, respectively, where~...

2008 Paper 2 Q9
D: 1600.0 B: 1484.0

In this question, use $g=10\,$m\,s$^{-2}$. In cricket, a fast bowler projects a ball at $40\,$m\,s$^...

2007 Paper 3 Q10
D: 1700.0 B: 1500.7

A particle is projected from a point on a plane that is inclined at an angle~$\phi$ to the horizo...

2007 Paper 2 Q11
D: 1600.0 B: 1500.0

{\sl In this question take the acceleration due to gravity to be $10\,{\rm m \,s}^{-2}$ and negle...

2007 Paper 2 Q9
D: 1600.0 B: 1500.0

A solid right circular cone, of mass $M$, has semi-vertical angle $\alpha$ and smooth surfaces. I...

2007 Paper 1 Q11
D: 1500.0 B: 1484.0

A smooth, straight, narrow tube of length $L$ is fixed at an angle of $30^\circ$ to the horizontal....

2006 Paper 2 Q11
D: 1600.0 B: 1484.0

A projectile of unit mass is fired in a northerly direction from a point on a horizontal plain at sp...

2006 Paper 1 Q10
D: 1484.0 B: 1500.0

A particle $P$ is projected in the $x$-$y$ plane, where the $y$-axis is vertical and the $x$-axis i...

2005 Paper 2 Q10
D: 1600.0 B: 1465.9

The points $A$ and $B$ are $180$ metres apart and lie on horizontal ground. A missile is launche...

2004 Paper 1 Q9
D: 1484.0 B: 1489.3

A particle is projected over level ground with a speed $u$ at an angle $\theta$ above the horizont...

2003 Paper 2 Q11
D: 1600.0 B: 1488.4

A particle $P_1$ is projected with speed $V$ at an angle of elevation ${\alpha}\,\,\,( > 45^{\circ})...

2003 Paper 1 Q9
D: 1500.0 B: 1500.0

A particle is projected with speed $V$ at an angle $\theta$ above the horizontal. The particle p...

2002 Paper 2 Q9
D: 1600.0 B: 1500.0

A particle is projected from a point $O$ on a horizontal plane with speed $V$ and at an angle of ele...

2001 Paper 2 Q11
D: 1600.0 B: 1484.0

A two-stage missile is projected from a point $A$ on the ground with horizontal and vertical velocit...

2001 Paper 1 Q10
D: 1500.0 B: 1487.8

A gun is sited on a horizontal plain and can fire shells in any direction and at any elevation at sp...

2000 Paper 1 Q9
D: 1500.0 B: 1515.2

A child is playing with a toy cannon on the floor of a long railway carriage. The carriage is moving...

1998 Paper 2 Q11
D: 1600.0 B: 1546.5

A fielder, who is perfectly placed to catch a ball struck by the batsman in a game of cricket, watch...

1998 Paper 1 Q10
D: 1500.0 B: 1471.6

A shell explodes on the surface of horizontal ground. Earth is scattered in all directions with vary...

1997 Paper 2 Q11
D: 1600.0 B: 1484.0

A tennis player serves from height $H$ above horizontal ground, hitting the ball downwards with spe...

1996 Paper 1 Q11
D: 1484.0 B: 1484.0

A particle is projected under the influence of gravity from a point $O$ on a level plane in such a w...

1995 Paper 3 Q10
D: 1700.0 B: 1500.0

A cannon is situated at the bottom of a plane inclined at angle $\beta$ to the horizontal. A (small)...

1995 Paper 1 Q9
D: 1500.0 B: 1484.0

A particle is projected from a point $O$ with speed $\sqrt{2gh},$ where $g$ is the acceleration due ...

1994 Paper 2 Q11
D: 1600.0 B: 1484.0

As part of a firework display a shell is fired vertically upwards with velocity $v$ from a point on ...

1994 Paper 1 Q9
D: 1484.0 B: 1500.0

A cannon-ball is fired from a cannon at an initial speed $u$. After time $t$ it has reached height $...

1993 Paper 1 Q12
D: 1500.0 B: 1484.0

In a clay pigeon shoot the target is launched vertically from ground level with speed $v$. At a time...

1992 Paper 2 Q11
D: 1600.0 B: 1500.0

I am standing next to an ice-cream van at a distance $d$ from the top of a vertical cliff of height ...

1991 Paper 2 Q11
D: 1600.0 B: 1500.0

The Ruritanian army is supplied with shells which may explode at any time in flight but not before ...

1990 Paper 1 Q11
D: 1500.0 B: 1484.0

A shell of mass $m$ is fired at elevation $\pi/3$ and speed $v$. Superman, of mass $2m$, catches the...

1989 Paper 1 Q11
D: 1516.0 B: 1470.2

A shot-putter projects a shot at an angle $\theta$ above the horizontal, releasing it at height $h$ ...

1988 Paper 1 Q10
D: 1500.0 B: 1500.0

A sniper at the top of a tree of height $h$ is hit by a bullet fired from the undergrowth covering t...

LFM Stats And Pure

Year 12 course on Pure and Statistics

Add Section

1987 Paper 2 Q1
D: 1500.0 B: 1500.0

Prove that: \begin{questionparts} \item if $a+2b+3c=7x$, then \[ a^{2}+b^{2}+c^{2}=\left(x-a\right...

2016 Paper 2 Q4
D: 1600.0 B: 1500.0

Let \[ y=\dfrac{x^2+x\sin\theta+1}{x^2+x\cos\theta+1} \,.\] \begin{questionparts} \item Given that ...

2013 Paper 1 Q1
D: 1516.0 B: 1516.0

\begin{questionparts} \item Use the substitution $\sqrt x = y$ (where $y\ge0$) to find the real root...

2009 Paper 1 Q3
D: 1516.0 B: 1468.7

\begin{questionparts} \item By considering the equation $x^2+x-a=0\,$, show that the equation $x={...

2005 Paper 3 Q3
D: 1700.0 B: 1500.0

Let $\f(x)=x^2+px+q$ and $\g(x)=x^2+rx+s\,$. Find an expression for $\f ( \g (x))$ and hence f...

2005 Paper 1 Q3
D: 1484.0 B: 1487.1

In this question $a$ and $b$ are distinct, non-zero real numbers, and $c$ is a real number. \begin{...

2004 Paper 2 Q2
D: 1600.0 B: 1516.0

Prove that, if $\vert \alpha\vert < 2\sqrt{2},$ then there is no value of $x$ for which \begin{equat...

2004 Paper 2 Q1
D: 1600.0 B: 1516.0

Find all real values of $x$ that satisfy: \begin{questionparts} \item $ \ds \sqrt{3x^2+1} + \sqrt{x}...

2004 Paper 1 Q1
D: 1500.0 B: 1516.0

\begin{questionparts} \item Express $\left(3+2\sqrt{5} \, \right)^3$ in the form $a+b\sqrt{5}$ wher...

2002 Paper 3 Q5
D: 1700.0 B: 1516.0

Give a condition that must be satisfied by $p$, $q$ and $r$ for it to be possible to write the qua...

2002 Paper 3 Q4
D: 1700.0 B: 1490.1

Show that if $x$ and $y$ are positive and $x^3 + x^2 = y^3 - y^2$ then $x < y\,$. Show further that...

2002 Paper 3 Q3
D: 1700.0 B: 1516.0

Let \[\f(x) = a \sqrt{x} - \sqrt{x - b}\;, \] where $x\ge b >0$ and $a>1\,$. Sketch the graph of $...

2002 Paper 2 Q2
D: 1600.0 B: 1484.6

Show that setting $z - z^{-1}=w$ in the quartic equation \[ z^4 +5z^3 +4z^2 -5z +1=0 \] results in t...

2001 Paper 3 Q3
D: 1700.0 B: 1516.0

Consider the equation \[ x^2 - b x + c = 0 \;, \] where $b$ and $c$ are real numbers. \begin{questi...

2001 Paper 1 Q2
D: 1500.0 B: 1484.0

Solve the inequalities \begin{questionparts} \item $1+2x-x^2 >2/x \quad (x\ne0)$ , \item $\sqrt{3x+...

2000 Paper 1 Q6
D: 1516.0 B: 1500.0

Show that \[ x^2-y^2 +x+3y-2 = (x-y+2)(x+y-1) \] and hence, or otherwise, indicate by means of a s...

1999 Paper 2 Q2
D: 1600.0 B: 1516.0

Consider the quadratic equation $$ nx^2+2x \sqrt{pn^2+q} + rn + s = 0, \tag{*} $$ where $p>0$, $...

1999 Paper 1 Q6
D: 1484.0 B: 1500.0

\begin{questionparts} \item Find the greatest and least values of $bx+a$ for $-10\leqslant x \leqsla...

1999 Paper 1 Q3
D: 1500.0 B: 1500.0

The $n$ positive numbers $x_{1},x_{2},\dots,x_{n}$, where $n\ge3$, satisfy $$ x_{1}=1+\frac{1}{x_...

1995 Paper 1 Q1
D: 1484.0 B: 1484.0

\begin{questionparts} \item Find the real values of $x$ for which \[ x^{3}-4x^{2}-x+4\geqslant0. \...

1994 Paper 3 Q2
D: 1700.0 B: 1516.0

\begin{questionparts} \item By setting $y=x+x^{-1},$ find the solutions of \[ x^{4}+10x^{3}+26x^{2...

1990 Paper 2 Q6
D: 1600.0 B: 1484.0

Let $a,b,c,d,p$ and $q$ be positive integers. Prove that: \begin{questionparts} \item if $b > a$ and...

1990 Paper 2 Q1
D: 1600.0 B: 1516.0

Prove that both $x^{4}-2x^{3}+x^{2}$ and $x^{2}-8x+17$ are non-negative for all real $x$. By conside...

2025 Paper 2 Q1
D: 1500.0 B: 1500.0

The function $\mathrm{Min}$ is defined as \[ \mathrm{Min}(a, b) = \begin{cases} a & \text{if } a \le...

2019 Paper 3 Q7
D: 1500.0 B: 1500.0

The \textit{Devil's Curve} is given by $$y^2(y^2 - b^2) = x^2(x^2 - a^2),$$ where $a$ and $b$ are po...

2016 Paper 1 Q3
D: 1500.0 B: 1487.6

In this question, $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to $x...

2015 Paper 1 Q1
D: 1484.0 B: 1538.1

\begin{questionparts} \item Sketch the curve $y = \e^x (2x^2 -5x+ 2)\,.$ Hence determine how many...

2013 Paper 1 Q2
D: 1500.0 B: 1487.3

In this question, $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to $x...

2011 Paper 2 Q1
D: 1600.0 B: 1500.0

\begin{questionparts} \item Sketch the curve $y=\sqrt{1-x} + \sqrt{3+x}\;$. Use your sketch to show...

2007 Paper 2 Q2
D: 1600.0 B: 1500.0

A curve has equation $y=2x^3-bx^2+cx$. It has a maximum point at $(p,m)$ and a minimum point at $(q,...

2006 Paper 3 Q1
D: 1700.0 B: 1500.0

Sketch the curve with cartesian equation \[ y = \frac{2x(x^2-5)}{x^2-4} \] and give the equations o...

2006 Paper 2 Q5
D: 1600.0 B: 1469.6

The notation ${\lfloor } x \rfloor$ denotes the greatest integer less than or equal to the real numb...

2004 Paper 3 Q2
D: 1700.0 B: 1516.0

The equation of a curve is $y=\f ( x )$ where \[ \f ( x ) = x-4-\frac{16 \l 2x+1 \r^2}{x^2 \l x - 4 ...

2004 Paper 2 Q3
D: 1600.0 B: 1600.7

The curve $C$ has equation $$ y = x(x+1)(x-2)^4. $$ Determine the coordinates of all the stationary ...

2003 Paper 3 Q5
D: 1700.0 B: 1500.0

Find the coordinates of the turning point on the curve $y = x^2 - 2bx + c\,$. Sketch the curve in th...

2001 Paper 2 Q2
D: 1600.0 B: 1500.0

Sketch the graph of the function $[x/N]$, for $0 < x < 2N$, where the notation $[y]$ means the...

2000 Paper 3 Q4
D: 1700.0 B: 1484.0

The function $\f(x)$ is defined by $$ \f(x) = \frac{x( x - 2 )(x-a)}{ x^2 - 1}. $$ Prove algeb...

1999 Paper 2 Q7
D: 1600.0 B: 1500.0

The curve $C$ has equation $$ y = \frac x {\sqrt{x^2-2x+a}}\; , $$ where the square root is positiv...

1997 Paper 2 Q7
D: 1600.0 B: 1516.0

Let $$y^2=x^2(a^2-x^2),$$ where $a$ is a real constant. Find, in terms of $a$, the maximum and minim...

1994 Paper 2 Q8
D: 1600.0 B: 1516.0

`24 Hour Spares' stocks a small, widely used and cheap component. Every $T$ hours $X$ units arrive b...

1994 Paper 2 Q5
D: 1600.0 B: 1484.8

\begin{questionparts} \item Show that the equation \[ (x-1)^{4}+(x+1)^{4}=c \] has exactly two real...

1993 Paper 1 Q7
D: 1500.0 B: 1516.0

Sketch the curve \[ \mathrm{f}(x)=x^{3}+Ax^{2}+B \] first in the case $A>0$ and $B>0$, and then in ...

1993 Paper 1 Q6
D: 1500.0 B: 1500.0

Let $N=10^{100}.$ The graph of \[ \mathrm{f}(x)=\frac{x^{N}}{1+x^{N}}+2 \] for $-3\leqslant x\leqsl...

1990 Paper 2 Q3
D: 1600.0 B: 1500.0

Sketch the curves given by \[ y=x^{3}-2bx^{2}+c^{2}x, \] where $b$ and $c$ are non-negative, in the...

1989 Paper 3 Q4
D: 1700.0 B: 1500.0

Sketch the curve whose cartesian equation is \[ y=\frac{2x(x^{2}-5)}{x^{2}-4}, \] and give the equa...

1989 Paper 2 Q4
D: 1600.0 B: 1500.0

The function $\mathrm{f}$ is defined by \[ \mathrm{f}(x)=\frac{\left(x-a\right)\left(x-b\right)}{\l...

1989 Paper 1 Q9
D: 1516.0 B: 1500.1

Sketch the graph of $8y=x^{3}-12x$ for $-4\leqslant x\leqslant4$, marking the coordinates of the tur...

Be able to manipulate polynomials algebraically and know how to use the factor theorem Be able to simplify rational expressions

2019 Paper 2 Q3
D: 1500.0 B: 1500.0

For any two real numbers $x_1$ and $x_2$, show that $$|x_1 + x_2| \leq |x_1| + |x_2|.$$ Show further...

2019 Paper 1 Q4
D: 1500.0 B: 1500.0

\begin{questionparts} \item Find integers $m$ and $n$ such that $$\sqrt{3+2\sqrt{2}} = m + n\sqrt{2...

2018 Paper 2 Q1
D: 1600.0 B: 1516.0

Show that, if $k$ is a root of the quartic equation \[ x^4 + ax^3 + bx^2 + ax + 1 = 0\,, \tag{$*$} \...

2018 Paper 1 Q5
D: 1484.0 B: 1516.0

\begin{questionparts} \item Write down the most general polynomial of degree 4 that leaves a remain...

2016 Paper 2 Q2
D: 1600.0 B: 1516.0

Use the factor theorem to show that $a+b-c$ is a factor of \[ (a+b+c)^3 -6(a+b+c)(a^2+b^2+c^2) +8(a...

2016 Paper 1 Q1
D: 1500.0 B: 1516.0

\begin{questionparts} \item For $n=1$, $2$, $3$ and $4$, the functions $\p_n$ and $\q_n$ are defined...

2013 Paper 2 Q3
D: 1600.0 B: 1500.0

\begin{questionparts} \item Given that the cubic equation $x^3+3ax^2 + 3bx +c=0$ has three distinct...

2012 Paper 2 Q2
D: 1600.0 B: 1530.0

If $\p(x)$ and $\q(x)$ are polynomials of degree $m$ and $n$, respectively, what is the degree of $\...

2011 Paper 3 Q2
D: 1700.0 B: 1516.0

The polynomial $\f(x)$ is defined by \[ \f(x) = x^n + a_{\low{n-1}}x^{n-1} + \cdots + a_{\lo...

2010 Paper 3 Q4
D: 1700.0 B: 1516.0

\begin{questionparts} \item The number $\alpha$ is a common root of the equations $x^2 +ax +b=0$ an...

2010 Paper 2 Q7
D: 1600.0 B: 1484.0

\begin{questionparts} \item By considering the positions of its turning points, show that the curv...

2009 Paper 3 Q1
D: 1700.0 B: 1471.4

The points $S$, $T$, $U$ and $V$ have coordinates $(s,ms)$, $(t,mt)$, $(u,nu)$ and $(v,nv)$, respect...

2009 Paper 2 Q4
D: 1600.0 B: 1500.0

The polynomial $\p(x)$ is of degree 9 and $\p(x)-1$ is exactly divisible by $(x-1)^5$. \begin{que...

2007 Paper 1 Q8
D: 1500.0 B: 1516.0

A curve is given by the equation \[ y = ax^3 - 6ax^2+ \left( 12a + 12 \right)x - \left( 8a + 16 \rig...

2007 Paper 1 Q6
D: 1500.0 B: 1489.2

\begin{questionparts} \item Given that $x^2 - y^2 = \left( x - y \right)^3$ and that $x-y = d$ (wh...

2007 Paper 1 Q4
D: 1516.0 B: 1530.2

Show that $x^3-3xbc + b^3 + c^3$ can be written in the form $\left( x+ b+ c \right) {\rm Q}( x)$, w...

2004 Paper 1 Q3
D: 1500.0 B: 1500.0

\begin{questionparts} \item Show that $x-3$ is a factor of \begin{equation} x^3-5x^2+2x^2y+xy^2-8xy...

2002 Paper 1 Q5
D: 1484.0 B: 1516.0

Let \[ \f(x) = x^n + a_1 x^{n-1} + \cdots + a_n\;, \] where $a_1$, $a_2$, $\ldots$, $a_n$ are given...

2001 Paper 1 Q3
D: 1500.0 B: 1516.0

Sketch, without calculating the stationary points, the graph of the function $\f(x)$ given by \[ \f(...

2000 Paper 3 Q6
D: 1700.0 B: 1500.0

Given that \[ x^4 + p x^2 + q x + r = ( x^2 - a x + b ) ( x^2 + a x + c ) , \] express $p$, $q...

2000 Paper 2 Q2
D: 1600.0 B: 1503.8

Prove that if ${(x-a)^{2}}$ is a factor of the polynomial $\p(x)$, then $\p'(a)=0$. Prove a correspo...

1999 Paper 3 Q1
D: 1700.0 B: 1500.0

Consider the cubic equation \[ x^3-px^2+qx-r=0\;, \] where $p\ne0$ and $r\ne 0$. \begin{questionpart...

1997 Paper 2 Q4
D: 1600.0 B: 1484.0

Show that, when the polynomial ${\rm p} (x)$ is divided by $(x-a)$, where $a$ is a real number, the...

1992 Paper 1 Q5
D: 1484.0 B: 1500.0

Let $\mathrm{p}_{0}(x)=(1-x)(1-x^{2})(1-x^{4}).$ Show that $(1-x)^{3}$ is a factor of $\mathrm{p}_{0...

2016 Paper 2 Q5
D: 1600.0 B: 1484.0

In this question, the definition of $\displaystyle\binom pq$ is taken to be \[ \binom pq = \begin{c...

2016 Paper 1 Q8
D: 1500.0 B: 1530.6

Given an infinite sequence of numbers $u_0$, $u_1$, $u_2$, $\ldots\,$, we define the {\em generatin...

2012 Paper 2 Q1
D: 1600.0 B: 1500.0

Write down the general term in the expansion in powers of $x$ of $(1-x^6)^{-2}\,$. \begin{question...

2011 Paper 1 Q6
D: 1500.0 B: 1500.0

Use the binomial expansion to show that the coefficient of $x^r$ in the expansion of $(1-x)^{-3}...

2007 Paper 3 Q2
D: 1700.0 B: 1516.0

\begin{questionparts} \item Show that $1.3.5.7. \;\ldots \;.(2n-1)=\dfrac {(2n)!}{2^n n!}\;$ and th...

2007 Paper 2 Q1
D: 1600.0 B: 1516.0

\textit{In this question, you are not required to justify the accuracy of the approximations.} \beg...

2005 Paper 2 Q6
D: 1600.0 B: 1500.0

\begin{questionparts} \item Write down the general term in the expansion in powers of $x$ of $(1...

2004 Paper 1 Q7
D: 1500.0 B: 1500.0

\begin{questionparts} \item The function $\f(x)$ is defined for $\vert x \vert < \frac15$ by \[ \f(...

2003 Paper 3 Q2
D: 1700.0 B: 1484.0

Show that $\ds ^{2r} \! {\rm C}_r =\frac{1\times3\times\dots\times (2r-1)}{r!} \, \times 2^r ...

2003 Paper 1 Q5
D: 1500.0 B: 1500.6

\begin{questionparts} \item In the binomial expansion of $(2x+1/x^{2})^{6}\;$ for $x\ne0$, show that...

2001 Paper 2 Q1
D: 1600.0 B: 1500.0

Use the binomial expansion to obtain a polynomial of degree $2$ which is a good approximation to ...

1998 Paper 2 Q2
D: 1600.0 B: 1454.6

Use the first four terms of the binomial expansion of $(1-1/50)^{1/2}$, writing $1/50 = 2/100$ to s...

1996 Paper 2 Q1
D: 1600.0 B: 1529.8

\begin{questionparts} \item Find the coefficient of $x^{6}$ in \[(1-2x+3x^{2}-4x^{3}+5x^{4})^{3}.\]...

1988 Paper 1 Q5
D: 1500.0 B: 1487.0

Given that $b>a>0$, find, by using the binomial theorem, coefficients $c_{m}$ ($m=0,1,2,\ldots$) suc...

Complex numbers up until Argand Diagram and Loci

2025 Paper 2 Q2
D: 1500.0 B: 1500.0

\begin{questionparts} \item \begin{enumerate} \item Show that if the complex number $z$ satisfies t...

2019 Paper 3 Q6
D: 1500.0 B: 1500.0

The point $P$ in the Argand diagram is represented by the the complex number $z$, which satisfies $$...

2018 Paper 3 Q6
D: 1700.0 B: 1516.0

\begin{questionparts} \item The distinct points $A$, $Q$ and $C$ lie on a straight line in the Argan...

2014 Paper 3 Q5
D: 1700.0 B: 1500.0

A quadrilateral drawn in the complex plane has vertices $A$, $B$, $C$ and~$D$, labelled anticlockw...

2013 Paper 3 Q6
D: 1700.0 B: 1500.0

Let $z$ and $w$ be complex numbers. Use a diagram to show that $\vert z-w \vert \le \vert z\vert + ...

2012 Paper 3 Q6
D: 1700.0 B: 1516.0

Let $x+{\rm i} y$ be a root of the quadratic equation $z^2 + pz +1=0$, where $p$ is a real number...

2011 Paper 3 Q8
D: 1700.0 B: 1500.0

The complex numbers $z$ and $w$ are related by \[ w= \frac{1+\mathrm{i}z}{\mathrm{i}+z}\,. \] Let $z...

2008 Paper 3 Q7
D: 1700.0 B: 1500.0

The points $A$, $B$ and $C$ in the Argand diagram are the vertices of an equilateral triangle d...

2007 Paper 3 Q6
D: 1700.0 B: 1472.0

The distinct points $P$, $Q$, $R$ and $S$ in the Argand diagram lie on a circle of radius $a$ centre...

2006 Paper 3 Q5
D: 1700.0 B: 1516.0

Show that the distinct complex numbers $\alpha$, $\beta$ and $\gamma$ represent the vertices of an ...

2005 Paper 3 Q8
D: 1700.0 B: 1484.0

In this question, $a$ and $c$ are distinct non-zero complex numbers. The complex conjugate of any ...

2002 Paper 3 Q8
D: 1700.0 B: 1469.7

Four complex numbers $u_1$, $u_2$, $u_3$ and $u_4$ have unit modulus, and arguments $\theta_1$, $\...

2001 Paper 3 Q8
D: 1700.0 B: 1500.0

\begin{questionparts} \item Prove that the equations $$ \left|z - (1 + \mathrm{i}) \right|^2 = 2 \eq...

2001 Paper 2 Q7
D: 1600.0 B: 1470.8

In an Argand diagram, $O$ is the origin and $P$ is the point $2+0\mathrm{i}$. The points $Q$, $R$ ...

1998 Paper 2 Q5
D: 1600.0 B: 1470.9

Define the modulus of a complex number $z$ and give the geometric interpretation of $\vert\,z_1-z_2\...

1998 Paper 1 Q5
D: 1484.0 B: 1529.9

\begin{questionparts} \item In the Argand diagram, the points $Q$ and $A$ represent the complex numb...

1997 Paper 2 Q5
D: 1600.0 B: 1484.0

The complex numbers $w=u+\mathrm{i}v$ and $z=x+\mathrm{i}y$ are related by the equation $$z= (\cos v...

1996 Paper 2 Q5
D: 1600.0 B: 1500.0

If $$ z^{4}+z^{3}+z^{2}+z+1=0\tag{*} $$ and $u=z+z^{-1}$, find the ...

1996 Paper 1 Q5
D: 1484.0 B: 1500.0

\begin{questionparts} \item Find all rational numbers $r$ and $s$ which satisfy \[ (r+s\sqrt{3})^{2...

1995 Paper 3 Q6
D: 1700.0 B: 1501.9

The variable non-zero complex number $z$ is such that \[ \left|z-\mathrm{i}\right|=1. \] Find the m...

1994 Paper 3 Q8
D: 1700.0 B: 1516.0

Let $a,b,c,d,p,q,r$ and $s$ be real numbers. By considering the determinant of the matrix product \...

1994 Paper 3 Q6
D: 1700.0 B: 1501.5

The four points $A,B,C,D$ in the Argand diagram (complex plane) correspond to the complex numbers $a...

1994 Paper 1 Q6
D: 1500.0 B: 1516.0

The function $\mathrm{f}$ is defined, for any complex number $z$, by \[ \mathrm{f}(z)=\frac{\mathrm...

1993 Paper 3 Q6
D: 1700.0 B: 1484.0

The point in the Argand diagram representing the complex number $z$ lies on the circle with centre $...

1993 Paper 2 Q9
D: 1600.0 B: 1500.0

\textit{In this question, the argument of a complex number is chosen to satisfy $0\leqslant\arg z<2\...

1993 Paper 1 Q5
D: 1500.0 B: 1516.0

If $z=x+\mathrm{i}y$ where $x$ and $y$ are real, define $\left|z\right|$ in terms of $x$ and $y$. Sh...

1992 Paper 2 Q10
D: 1600.0 B: 1529.8

Let $\alpha$ be a fixed angle, $0 < \alpha \leqslant\frac{1}{2}\pi.$ In each of the following cases,...

1992 Paper 1 Q4
D: 1500.0 B: 1516.0

Sketch the following subsets of the complex plane using Argand diagrams. Give reasons for your answe...

1990 Paper 2 Q5
D: 1600.0 B: 1484.0

The distinct points $L,M,P$ and $Q$ of the Argand diagram lie on a circle $S$ centred on the origin ...

1988 Paper 3 Q3
D: 1700.0 B: 1500.0

Give a parametric form for the curve in the Argand diagram determined by $\left|z-\mathrm{i}\right|=...

1988 Paper 2 Q4
D: 1600.0 B: 1516.0

The complex number $w$ is such that $w^{2}-2w$ is real. \begin{questionparts} \item Sketch the locu...

1988 Paper 2 Q3
D: 1600.0 B: 1530.2

The quadratic equation $x^{2}+bx+c=0$, where $b$ and $c$ are real, has the properly that if $k$ is a...

1988 Paper 1 Q6
D: 1500.0 B: 1516.0

The complex numbers $z_{1},z_{2},\ldots,z_{6}$ are represented by six distinct points $P_{1},P_{2},\...

2016 Paper 1 Q12
D: 1516.0 B: 1484.7

\begin{questionparts} \item Alice tosses a fair coin twice and Bob tosses a fair coin three times. C...

2013 Paper 1 Q13
D: 1516.0 B: 1532.0

From the integers $1, 2, \ldots , 52$, I choose seven (distinct) integers at random, all choices be...

2013 Paper 1 Q12
D: 1500.0 B: 1468.0

Each day, I have to take $k$ different types of medicine, one tablet of each. The tablets are identi...

2012 Paper 1 Q13
D: 1500.0 B: 1529.2

I choose at random an integer in the range 10000 to 99999, all choices being equally likely. Given ...

2011 Paper 1 Q12
D: 1500.0 B: 1470.2

I am selling raffle tickets for $\pounds1$ per ticket. In the queue for tickets, there are $m$ peop...

2008 Paper 1 Q13
D: 1500.0 B: 1452.7

Three married couples sit down at a round table at which there are six chairs. All of the possible s...

2007 Paper 1 Q12
D: 1500.0 B: 1484.0

\begin{questionparts} \item A bag contains $N$ sweets (where $N \ge 2$), of which $a$ are red. Two s...

2004 Paper 1 Q14
D: 1500.0 B: 1488.1

Three pirates are sharing out the contents of a treasure chest containing $n$ gold coins and $2$ lea...

2001 Paper 1 Q14
D: 1500.0 B: 1516.8

On the basis of an interview, the $N$ candidates for admission to a college are ranked in order acco...

1995 Paper 1 Q12
D: 1500.0 B: 1501.9

A school has $n$ pupils, of whom $r$ play hocket, where $n\geqslant r\geqslant2.$ All $n$ pupils are...

1991 Paper 1 Q14
D: 1516.0 B: 1457.1

A set of $2N+1$ rods consists of one of each length $1,2,\ldots,2N,2N+1$, where $N$ is an integer gr...

2018 Paper 2 Q13
D: 1600.0 B: 1502.8

Four children, $A$, $B$, $C$ and $D$, are playing a version of the game `pass the parcel'. They st...

2018 Paper 1 Q11
D: 1500.0 B: 1513.7

A bag contains three coins. The probabilities of their showing heads when tossed are $p_1$, $p_2...

2017 Paper 1 Q13
D: 1500.0 B: 1484.0

I have a sliced loaf which initially contains $n$ slices of bread. Each time I finish setting a STE...

2015 Paper 2 Q12
D: 1600.0 B: 1500.0

Four players $A$, $B$, $C$ and $D$ play a coin-tossing game with a fair coin. Each player chooses a ...

2012 Paper 2 Q12
D: 1600.0 B: 1484.0

A modern villa has complicated lighting controls. In order for the light in the swimming pool to be ...

2011 Paper 2 Q12
D: 1600.0 B: 1484.0

Xavier and Younis are playing a match. The match consists of a series of games and each game consist...

2010 Paper 2 Q13
D: 1600.0 B: 1502.2

Rosalind wants to join the Stepney Chess Club. In order to be accepted, she must play a challenge m...

2009 Paper 2 Q13
D: 1600.0 B: 1500.0

Satellites are launched using two different types of rocket: the Andover and the Basingstoke. The An...

2009 Paper 1 Q12
D: 1500.0 B: 1501.5

Prove that, for any real numbers $x$ and $y$, $x^2+y^2\ge2xy\,$. \begin{questionparts} \item Carol h...

2008 Paper 2 Q13
D: 1600.0 B: 1516.0

Bag $P$ and bag $Q$ each contain $n$ counters, where $n\ge2$. The counters are identical in shape a...

2008 Paper 2 Q12
D: 1600.0 B: 1500.0

In the High Court of Farnia, the outcome of each case is determined by three judges: the ass, the b...

2001 Paper 1 Q12
D: 1500.0 B: 1484.0

Four students, Arthur, Bertha, Chandra and Delilah, exchange gossip. When Arthur hears a rumour, he ...

1999 Paper 1 Q12
D: 1500.0 B: 1516.0

\begin{questionparts} \item Prove that if $x>0$ then $x+x^{-1}\ge2.\;$ I have a pair of six-faced di...

1991 Paper 3 Q15
D: 1700.0 B: 1485.9

A pack of $2n$ (where $n\geqslant4$) cards consists of two each of $n$ different sorts. If four card...

1987 Paper 3 Q15
D: 1500.0 B: 1500.0

A patient arrives with blue thumbs at the doctor's surgery. With probability $p$ the patient is suff...

1987 Paper 2 Q16
D: 1500.0 B: 1500.0

My two friends, who shall remain nameless, but whom I shall refer to as $P$ and $Q$, both told me th...

2018 Paper 1 Q12
D: 1500.0 B: 1500.0

A multiple-choice test consists of five questions. For each question, $n$ answers are given ($n\ge2...

2007 Paper 1 Q13
D: 1500.0 B: 1469.5

A bag contains eleven small discs, which are identical except that six of the discs are blank and fi...

2006 Paper 2 Q13
D: 1600.0 B: 1516.0

I know that ice-creams come in $n$ different sizes, but I don't know what the sizes are. I am offer...

2006 Paper 1 Q12
D: 1500.0 B: 1499.3

Oxtown and Camville are connected by three roads, which are at risk of being blocked by flooding. ...

2005 Paper 2 Q12
D: 1600.0 B: 1500.0

The twins Anna and Bella share a computer and never sign their e-mails. When I e-mail them, only th...

2003 Paper 3 Q13
D: 1700.0 B: 1500.0

In a rabbit warren, underground chambers $A, B, C$ and $D$ are at the vertices of a square, and bu...

2002 Paper 3 Q12
D: 1700.0 B: 1502.1

In a game, a player tosses a biased coin repeatedly until two successive tails occur, when the game...

2002 Paper 1 Q13
D: 1484.0 B: 1443.0

The random variable $U$ takes the values $+1$, $0$ and $-1\,$, each with probability $\frac13\,$. Th...

2001 Paper 3 Q13
D: 1700.0 B: 1500.0

In a game for two players, a fair coin is tossed repeatedly. Each player is assigned a sequence o...

2000 Paper 1 Q13
D: 1484.0 B: 1484.7

Every person carries two genes which can each be either of type $A$ or of type $B$. It is known ...

1999 Paper 2 Q12
D: 1600.0 B: 1484.0

It is known that there are three manufacturers $A, B, C,$ who can produce micro chip MB666. The pr...

1998 Paper 3 Q13
D: 1700.0 B: 1500.0

Write down the probability of obtaining $k$ heads in $n$ tosses of a fair coin. Now suppose that $k$...

1998 Paper 2 Q12
D: 1600.0 B: 1560.2

The diagnostic test AL has a probability 0.9 of giving a positive result when applied to a person su...

1998 Paper 1 Q13
D: 1484.0 B: 1532.0

I have a bag initially containing $r$ red fruit pastilles (my favourites) and $b$ fruit pastilles of...

1997 Paper 1 Q13
D: 1500.0 B: 1547.3

Mr Blond returns to his flat to find it in complete darkness. He knows that this means that one of f...

1996 Paper 3 Q12
D: 1700.0 B: 1554.3

It has been observed that Professor Ecks proves three types of theorems: 1, those that are correct a...

1996 Paper 1 Q14
D: 1484.0 B: 1484.0

A biased coin, with a probability $p$ of coming up heads and a probability $q=1-p$ of coming up tail...

1995 Paper 3 Q13
D: 1700.0 B: 1500.0

A message of $10^{k}$ binary digits is sent along a fibre optic cable with high probabilities $p_{0}...

1995 Paper 2 Q12
D: 1600.0 B: 1516.0

Bread roll throwing duels at the Drones' Club are governed by a strict etiquette. The two duellists ...

1994 Paper 2 Q12
D: 1600.0 B: 1499.3

Calamity Jane sits down to play the game of craps with Buffalo Bill. In this game she rolls two fair...

1994 Paper 1 Q12
D: 1500.0 B: 1468.0

There are 28 colleges in Cambridge, of which two (New Hall and Newnham) are for women only; the othe...

1993 Paper 1 Q15
D: 1500.0 B: 1532.0

Captain Spalding is on a visit to the idyllic island of Gambriced. The population of the island cons...

1992 Paper 2 Q16
D: 1600.0 B: 1500.0

A taxi driver keeps a packet of toffees and a packet of mints in her taxi. From time to time she tak...

1991 Paper 1 Q16
D: 1500.0 B: 1484.0

At any instant the probability that it is safe to cross a busy road is $0.1$. A toad is waiting to c...

1990 Paper 2 Q16
D: 1600.0 B: 1494.9

Each day, I choose at random between my brown trousers, my grey trousers and my expensive but fashio...

1990 Paper 1 Q16
D: 1500.0 B: 1486.1

A bus is supposed to stop outside my house every hour on the hour. From long observation I know that...

1989 Paper 1 Q16
D: 1516.0 B: 1470.2

A and B play a guessing game. Each simultaneously names one of the numbers $1,2,3.$ If the numbers d...

2025 Paper 2 Q11
D: 1500.0 B: 1500.0

\begin{questionparts} \item By considering the sum of a geometric series, or otherwise, show that \[...

2019 Paper 1 Q11
D: 1500.0 B: 1500.0

\begin{questionparts} \item Two people adopt the following procedure for deciding where to go for a ...

1987 Paper 1 Q14
D: 1500.0 B: 1500.0

$A,B$ and $C$ play a table tennis tournament. The winner of the tournament will be the first person ...

2018 Paper 2 Q12
D: 1600.0 B: 1500.0

In a game, I toss a coin repeatedly. The probability, $p$, that the coin shows Heads on any given ...

2013 Paper 2 Q13
D: 1600.0 B: 1516.0

A biased coin has probability $p$ of showing a head and probability $q$ of showing a tail, where $p\...

2010 Paper 3 Q12
D: 1700.0 B: 1500.0

The infinite series $S$ is given by \[ S = 1 + (1 + d)r + (1 + 2d)r^2 + \cdots + (1+nd)r^n +\...

2007 Paper 2 Q12
D: 1600.0 B: 1484.0

I have two identical dice. When I throw either one of them, the probability of it showing a 6 is $p$...

2004 Paper 3 Q13
D: 1700.0 B: 1473.0

A men's endurance competition has an unlimited number of rounds. In each round, a competitor has, in...

2003 Paper 2 Q12
D: 1600.0 B: 1484.0

The life of a certain species of elementary particles can be described as follows. Each particle has...

2003 Paper 1 Q13
D: 1484.0 B: 1518.1

If a football match ends in a draw, there may be a "penalty shoot-out". Initially the teams each t...

2000 Paper 1 Q12
D: 1500.0 B: 1480.9

I have $k$ different keys on my key ring. When I come home at night I try one key after another unt...

1997 Paper 2 Q12
D: 1600.0 B: 1500.1

The game of Cambridge Whispers starts with the first participant Albert flipping an un-biased coin a...

1994 Paper 2 Q13
D: 1600.0 B: 1629.1

The makers of Cruncho (`The Cereal Which Cares') are giving away a series of cards depicting $n$ gre...

1990 Paper 3 Q15
D: 1700.0 B: 1482.6

An unbiased twelve-sided die has its faces marked $A,A,A,B,B,B,B,B,B,B,B,B.$ In a series of throws o...

No problems in this section yet.

No problems in this section yet.

2019 Paper 2 Q12
D: 1500.0 B: 1500.0

The random variable $X$ has the probability density function on the interval $[0, 1]$: $$f(x) = \beg...

2014 Paper 1 Q13
D: 1500.0 B: 1483.3

A continuous random variable $X$ has a \textit{triangular} distribution, which means that it has a ...

2012 Paper 1 Q12
D: 1484.0 B: 1516.0

Fire extinguishers may become faulty at any time after manufacture and are tested annually on the a...

2011 Paper 1 Q13
D: 1484.0 B: 1471.5

In this question, you may use without proof the following result: \[ \int \sqrt{4-x^2}\, \d x = 2 \...

2006 Paper 2 Q14
D: 1600.0 B: 1500.0

Sketch the graph of \[ y= \dfrac1 { x \ln x} \text{ for $x>0$, $x\ne1$}.\] You may assume that $x\...

2005 Paper 1 Q14
D: 1516.0 B: 1513.9

The random variable $X$ can take the value \mbox{$X=-1$}, and also any value in the range \mbox{$0\l...

2001 Paper 2 Q13
D: 1600.0 B: 1517.3

The life times of a large batch of electric light bulbs are independently and identically distribute...

1999 Paper 2 Q13
D: 1600.0 B: 1484.0

A stick is broken at a point, chosen at random, along its length. Find the probability that the rati...

1994 Paper 1 Q14
D: 1500.0 B: 1532.7

Each of my $n$ students has to hand in an essay to me. Let $T_{i}$ be the time at which the $i$th es...

1993 Paper 1 Q14
D: 1500.0 B: 1505.6

When he sets out on a drive Mr Toad selects a speed $V$ kilometres per minute where $V$ is a random ...

1989 Paper 1 Q14
D: 1516.0 B: 1453.5

The prevailing winds blow in a constant southerly direction from an enchanted castle. Each year, acc...

1988 Paper 1 Q16
D: 1500.0 B: 1498.6

Wondergoo is applied to all new cars. It protects them completely against rust for three years, but ...

1987 Paper 2 Q15
D: 1500.0 B: 1500.0

A train of length $l_{1}$ and a lorry of length $l_{2}$ are heading for a level crossing at speeds $...

1987 Paper 1 Q15
D: 1500.0 B: 1516.7

A point $P$ is chosen at random (with uniform distribution) on the circle $x^{2}+y^{2}=1$. The rando...

2012 Paper 3 Q12
D: 1700.0 B: 1469.4

\begin{questionparts} \item A point $P$ lies in an equilateral triangle $ABC$ of height 1. The perp...

2007 Paper 3 Q14
D: 1700.0 B: 1500.0

\begin{questionparts} \item My favourite dartboard is a disc of unit radius and centre $O$. I never...

2006 Paper 3 Q13
D: 1700.0 B: 1530.6

Two points are chosen independently at random on the perimeter (including the diameter) of a semicir...

2002 Paper 2 Q14
D: 1600.0 B: 1484.1

A densely populated circular island is divided into $N$ concentric regions $R_1$, $R_2$, $\ldots\,$...

2002 Paper 1 Q12
D: 1484.0 B: 1469.5

Harry the Calculating Horse will do any mathematical problem I set him, providing the answer is 1, ...

1999 Paper 3 Q13
D: 1700.0 B: 1484.0

The cakes in our canteen each contain exactly four currants, each currant being randomly placed in t...

1999 Paper 1 Q14
D: 1500.0 B: 1516.0

When I throw a dart at a target, the probability that it lands a distance $X$ from the centre is a ...

1998 Paper 1 Q14
D: 1500.0 B: 1498.5

To celebrate the opening of the financial year the finance minister of Genland flings a Slihing, a c...

1997 Paper 2 Q13
D: 1600.0 B: 1516.0

\item A needle of length two cm is dropped at random onto a large piece of paper ruled with parallel...

1994 Paper 3 Q14
D: 1700.0 B: 1516.0

Three points, $P,Q$ and $R$, are independently randomly chosen on the perimeter of a circle. Prove t...

1994 Paper 2 Q14
D: 1600.0 B: 1502.2

When Septimus Moneybags throws darts at a dart board they are certain to end on the board (a disc o...

1993 Paper 1 Q16
D: 1516.0 B: 1531.3

By making the substitution $y=\cos^{-1}t,$ or otherwise, show that \[ \int_{0}^{1}\cos^{-1}t\,\mathr...

1989 Paper 2 Q15
D: 1600.0 B: 1484.0

Two points are chosen independently at random on the perimeter (including the diameter) of a semicir...

No problems in this section yet.

UFM Additional Further Pure

Year 13 course on additional further pure

Add Section

1987 Paper 3 Q9
D: 1500.0 B: 1500.0

Let $(G,*)$ and $(H,\circ)$ be two groups and $G\times H$ be the set of ordered pairs $(g,h)$ with $...

1987 Paper 2 Q10
D: 1500.0 B: 1500.0

The set $S$ consists of $N(>2)$ elements $a_{1},a_{2},\ldots,a_{N}.$ $S$ is acted upon by a binary o...

1999 Paper 3 Q7
D: 1680.5 B: 1516.0

Let $a$ be a non-zero real number and define a binary operation on the set of real numbers by $$ x*y...

1996 Paper 3 Q6
D: 1674.0 B: 1529.9

\begin{questionparts} \item Let $S$ be the set of matrices of the form \[ \begin{pmatrix}a & a\\ a ...

1995 Paper 3 Q7
D: 1654.7 B: 1516.0

Consider the following sets with the usual definition of multiplication appropriate to each. In each...

1994 Paper 3 Q7
D: 1679.5 B: 1503.1

Let $S_{3}$ be the group of permutations of three objects and $Z_{6}$ be the group of integers under...

1993 Paper 3 Q5
D: 1730.5 B: 1466.6

The set $S$ consists of ordered pairs of complex numbers $(z_1,z_2)$ and a binary operation $\circ$...

1992 Paper 2 Q5
D: 1577.1 B: 1470.1

Explain what is meant by the order of an element $g$ of a group $G$. The set $S$ consists of all ...

1991 Paper 2 Q9
D: 1616.2 B: 1500.0

Let $G$ be the set of all matrices of the form \[ \begin{pmatrix}a & b\\ 0 & c \end{pma...

1990 Paper 3 Q3
D: 1667.9 B: 1490.9

The elements $a,b,c,d$ belong to the group $G$ with binary operation $*.$ Show that \begin{questionp...

1989 Paper 3 Q3
D: 1675.2 B: 1469.0

The matrix $\mathbf{M}$ is given by \[ \mathbf{M}=\begin{pmatrix}\cos(2\pi/m) & -\sin(2\pi/m)\\ \si...

1989 Paper 2 Q8
D: 1665.0 B: 1499.2

Let $\Omega=\exp(\mathrm{i}\pi/3).$ Prove that $\Omega^{2}-\Omega+1=0.$ Two transformations, $R$ ...

1988 Paper 3 Q9
D: 1725.3 B: 1516.0

Let $G$ be a finite group with identity $e.$ For each element $g\in G,$ the order of $g$, $o(g),$ is...

1988 Paper 2 Q9
D: 1654.1 B: 1558.3

Give a careful argument to show that, if $G_{1}$ and $G_{2}$ are subgroups of a finite group $G$ suc...

1987 Paper 3 Q2
D: 1500.0 B: 1500.0

Let ${\displaystyle I_{m,n}=\int\cos^{m}x\sin nx\,\mathrm{d}x,}$ where $m$ and $n$ are non-negative ...

2016 Paper 3 Q1
D: 1700.0 B: 1500.0

Let \[ \displaystyle I_n= \int_{-\infty}^\infty \frac 1 {(x^2+2ax+b)^n} \, \d x \] where $a$ and $b...

2015 Paper 3 Q1
D: 1700.0 B: 1500.0

\begin{questionparts} \item Let \[ I_n= \int_0^\infty \frac 1 {(1+u^2)^n}\, \d u \,, \] where $n$ i...

2013 Paper 2 Q2
D: 1600.0 B: 1500.0

For $n\ge 0$, let \[ I_n = \int_0^1 x^n(1-x)^n\d x\,. \] \begin{questionparts} \item For $n\ge 1$, ...

2009 Paper 3 Q8
D: 1700.0 B: 1516.0

Let $m$ be a positive integer and let $n$ be a non-negative integer. \begin{qu...

2004 Paper 3 Q7
D: 1700.0 B: 1500.0

For $n=1$, $2$, $3$, $\ldots\,$, let \[ I_n = \int_0^1 {t^{n-1} \over \l t+1 \r^n} \, \mathrm{d} t \...

1995 Paper 3 Q2
D: 1700.0 B: 1586.3

If \[ \mathrm{I}_{n}=\int_{0}^{a}x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\,\mathrm{d}x, \] show that $\...

1995 Paper 2 Q4
D: 1600.0 B: 1504.3

Let \[ u_{n}=\int_{0}^{\frac{1}{2}\pi}\sin^{n}t\,\mathrm{d}t \] for each integer $n\geqslant0$. By ...

1994 Paper 3 Q1
D: 1700.0 B: 1516.0

Calculate \[ \int_{0}^{x}\mathrm{sech}\, t\,\mathrm{d}t. \] Find the reduction formula involving $I...

1992 Paper 3 Q6
D: 1700.0 B: 1500.0

Given that ${\displaystyle I_{n}=\int_{0}^{\pi}\frac{x\sin^{2}(nx)}{\sin^{2}x}\,\mathrm{d}x,}$ where...

1991 Paper 3 Q8
D: 1700.0 B: 1500.1

\begin{questionparts} \item The integral $I_{k}$ is defined by \[ I_{k}=\int_{0}^{\theta}\cos^{k}x\...

1991 Paper 2 Q5
D: 1600.0 B: 1516.0

Give a rough sketch of the function $\tan^{k}\theta$ for $0\leqslant\theta\leqslant\frac{1}{4}\pi$ ...

UFM Mechanics

Year 13 course on Further Mechanics

Add Section

2025 Paper 3 Q10
D: 1500.0 B: 1500.0

A plank $AB$ of length $L$ initially lies horizontally at rest along the $x$-axis on a flat surface,...

2019 Paper 1 Q9
D: 1500.0 B: 1500.0

A box has the shape of a uniform solid cuboid of height $h$ and with a square base of side $b$, wher...

1987 Paper 2 Q12
D: 1500.0 B: 1500.0

A long, inextensible string passes through a small fixed ring. One end of the string is attached to ...

1987 Paper 2 Q11
D: 1500.0 B: 1500.0

A rough ring of radius $a$ is fixed so that it lies in a plane inclined at an angle $\alpha$ to the ...

2017 Paper 1 Q11
D: 1516.0 B: 1500.0

A plane makes an acute angle $\alpha$ with the horizontal. A box in the shape of a cube is fixed on...

2004 Paper 1 Q11
D: 1500.0 B: 1500.0

Two uniform ladders $AB$ and $BC$ of equal length are hinged smoothly at $B$. The weight of $AB$ is ...

2000 Paper 3 Q10
D: 1700.0 B: 1500.0

A sphere of radius $a$ and weight $W$ rests on horizontal ground. A thin uniform beam of weight $3...

1997 Paper 2 Q9
D: 1600.0 B: 1475.3

A uniform solid sphere of diameter $d$ and mass $m$ is drawn very slowly and without slipping from ...

1996 Paper 3 Q10
D: 1700.0 B: 1500.0

Two rough solid circular cylinders, of equal radius and length and of uniform density, lie side by s...

1993 Paper 2 Q12
D: 1600.0 B: 1484.0

\begin{center} \begin{tikzpicture}[scale=0.5] % Circle \def\a{5} \def\b{10} \def\k{\...

1992 Paper 1 Q12
D: 1484.0 B: 1471.5

The diagram shows a crude step-ladder constructed by smoothly hinging-together two light ladders $AB...

1991 Paper 3 Q11
D: 1700.0 B: 1484.0

\begin{center} \begin{tikzpicture} % Coordinate axes lines \coordinate (O) at (0,0); \co...

1991 Paper 1 Q12
D: 1484.0 B: 1500.0

$\ $\vspace{-1.5cm} \noindent \begin{center} \psset{xunit=0.8cm,yunit=0.8cm,algebraic=true,dotstyle...

1990 Paper 3 Q14
D: 1700.0 B: 1484.0

The edges $OA,OB,OC$ of a rigid cube are taken as coordinate axes and $O',A',B',C'$ are the vertices...

1990 Paper 1 Q13
D: 1500.0 B: 1484.0

A rough circular cylinder of mass $M$ and radius $a$ rests on a rough horizontal plane. The curved s...

1989 Paper 1 Q13
D: 1516.0 B: 1540.5

A uniform ladder of mass $M$ rests with its upper end against a smooth vertical wall, and with its l...

1988 Paper 3 Q11
D: 1700.0 B: 1484.0

A uniform ladder of length $l$ and mass $m$ rests with one end in contact with a smooth ramp incline...

2018 Paper 3 Q9
D: 1700.0 B: 1484.0

A particle $P$ of mass $m$ is projected with speed $u_0$ along a smooth horizontal floor directly to...

2018 Paper 2 Q9
D: 1600.0 B: 1485.5

Two small beads, $A$ and $B$, of the same mass, are threaded onto a vertical wire on which they slid...

2017 Paper 3 Q11
D: 1700.0 B: 1484.0

A railway truck, initially at rest, can move forwards without friction on a long straight \mbox{hor...

2017 Paper 1 Q10
D: 1500.0 B: 1484.0

Particles $P_1$, $P_2$, $\ldots$ are at rest on the $x$-axis, and the $x$-coordinate of $P_n$ is $n...

2016 Paper 1 Q10
D: 1484.0 B: 1500.0

Four particles $A$, $B$, $C$ and $D$ are initially at rest on a smooth horizontal table. They lie ...

2014 Paper 1 Q10
D: 1500.0 B: 1500.0

\begin{questionparts} \item A uniform spherical ball of mass $M$ and radius $R$ is released from r...

2013 Paper 2 Q11
D: 1600.0 B: 1500.0

Three identical particles lie, not touching one another, in a straight line on a smooth horizontal s...

2013 Paper 1 Q10
D: 1500.0 B: 1500.0

Two parallel vertical barriers are fixed a distance $d$ apart on horizontal ice. A small ice hockey ...

2012 Paper 2 Q11
D: 1600.0 B: 1484.9

A small block of mass $km$ is initially at rest on a smooth horizontal surface. Particles $P_1$, $P_...

2011 Paper 2 Q9
D: 1600.0 B: 1484.0

Two particles, $A$ of mass $2m$ and $B$ of mass $m$, are moving towards each other in a straight lin...

2011 Paper 1 Q10
D: 1516.0 B: 1484.0

A particle, $A$, is dropped from a point $P$ which is at a height $h$ above a horizontal plane. A~...

2010 Paper 3 Q11
D: 1700.0 B: 1469.5

A bullet of mass $m$ is fired horizontally with speed $u$ into a wooden block of mass $M$ at rest o...

2010 Paper 2 Q10
D: 1600.0 B: 1516.0

\begin{questionparts} \item In an experiment, a particle $A$ of mass $m$ is at rest on a smooth hori...

2009 Paper 1 Q11
D: 1500.0 B: 1500.0

Two particles move on a smooth horizontal table and collide. The masses of the particles are $m$ and...

2006 Paper 3 Q11
D: 1700.0 B: 1516.0

A lift of mass $M$ and its counterweight of mass $M$ are connected by a light inextensible cable w...

2006 Paper 2 Q10
D: 1600.0 B: 1500.0

Three particles, $A$, $B$ and $C$, of masses $m$, $km$ and $3m$ respectively, are initially at rest ...

2006 Paper 1 Q11
D: 1500.0 B: 1470.9

Particles $A_1$, $A_2$, $A_3$, $\ldots$, $A_n$ (where $n\ge 2$) lie at rest in that order in a smo...

2005 Paper 3 Q9
D: 1700.0 B: 1484.0

Two particles, A and B, move without friction along a horizontal line which is perpendicular to a ...

2005 Paper 1 Q10
D: 1500.0 B: 1484.0

Three collinear, non-touching particles $A$, $B$ and $C$ have masses $a$, $b$ and $c$, respectively,...

2003 Paper 1 Q11
D: 1516.0 B: 1516.0

A smooth plane is inclined at an angle $\alpha$ to the horizontal. $A$ and $B$ are two points a dist...

2002 Paper 1 Q10
D: 1516.0 B: 1470.2

A bicycle pump consists of a cylinder and a piston. The piston is pushed in with steady speed~$u$. A...

2001 Paper 2 Q10
D: 1600.0 B: 1486.3

Two particles $A$ and $B$ of masses $m$ and $km$, respectively, are at rest on a smooth horizontal s...

2000 Paper 1 Q10
D: 1516.0 B: 1500.0

Three particles $P_1$, $P_2$ and $P_3$ of masses $m_{1}$, $m_{2}$ and $m_{3}$ respectively lie at ...

1999 Paper 3 Q10
D: 1700.0 B: 1484.0

A chain of mass $m$ and length $l$ is composed of $n$ small smooth links. It is suspended verticall...

1999 Paper 2 Q10
D: 1600.0 B: 1500.0

$N$ particles $P_1$, $P_2$, $P_3$, $\ldots$, $P_N$ with masses $m$, $qm$, $q^2m$, $\ldots$ , ${q^{N-...

1997 Paper 2 Q10
D: 1600.0 B: 1500.0

\noindent{\it In this question the effect of gravity is to be neglected.} A small body of mass $M$ i...

1996 Paper 1 Q10
D: 1500.0 B: 1516.0

A spaceship of mass $M$ is at rest. It separates into two parts in an explosion in which the total k...

1995 Paper 2 Q10
D: 1600.0 B: 1484.0

Three small spheres of masses $m_{1},m_{2}$ and $m_{3},$ move in a straight line on a smooth horizon...

1993 Paper 2 Q14
D: 1600.0 B: 1516.0

A ball of mass $m$ is thrown vertically upwards from the floor of a room of height $h$ with speed $\...

1992 Paper 3 Q11
D: 1700.0 B: 1500.0

$\,$ \begin{center} \begin{tikzpicture} % Draw vertical lines \draw (0,0) -- (0,4) node[abov...

1992 Paper 2 Q13
D: 1600.0 B: 1484.0

Two particles $P_{1}$ and $P_{2}$, each of mass $m$, are joined by a light smooth inextensible strin...

1991 Paper 1 Q11
D: 1500.0 B: 1500.1

A piledriver consists of a weight of mass $M$ connected to a lighter counterweight of mass $m$ by a ...

1990 Paper 3 Q12
D: 1700.0 B: 1500.0

A uniform smooth wedge of mass $m$ has congruent triangular end faces $A_{1}B_{1}C_{1}$ and $A_{2}B_...

1990 Paper 2 Q14
D: 1600.0 B: 1484.0

The identical uniform smooth spherical marbles $A_{1},A_{2},\ldots,A_{n},$ where $n\geqslant3,$ each...

2019 Paper 3 Q10
D: 1500.0 B: 1500.0

Two identical smooth spheres $P$ and $Q$ can move on a smooth horizontal table. Initially, $P$ moves...

1987 Paper 2 Q13
D: 1500.0 B: 1500.0

Ice snooker is played on a rectangular horizontal table, of length $L$ and width $B$, on which a sma...

1987 Paper 1 Q12
D: 1500.0 B: 1500.0

$\,$ \vspace{-1cm} \begin{center} \begin{tikzpicture}[scale=1.3] % Setting up the same viewport/dim...

2010 Paper 1 Q11
D: 1500.0 B: 1484.1

Two particles of masses $m$ and $M$, with $M>m$, lie in a smooth circular groove on a horizontal pl...

2009 Paper 2 Q10
D: 1600.0 B: 1500.0

$\,$ \begin{center} \psset{xunit=1.5cm,yunit=1.5cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth...

2008 Paper 2 Q10
D: 1600.0 B: 1540.1

The lengths of the sides of a rectangular billiards table $ABCD$ are given by $AB = DC = a$ and $AD...

2002 Paper 3 Q11
D: 1700.0 B: 1484.0

A particle moves on a smooth triangular horizontal surface $AOB$ with angle $AOB = 30^\circ$. Th...

2002 Paper 1 Q11
D: 1500.0 B: 1484.0

$\,$ \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=...

2000 Paper 3 Q9
D: 1700.0 B: 1500.0

Two small discs of masses $m$ and $\mu m$ lie on a smooth horizontal surface. The disc of mass $...

1998 Paper 3 Q10
D: 1700.0 B: 1500.0

Two identical spherical balls, moving on a horizontal, smooth table, collide in such a way that both...

1993 Paper 3 Q14
D: 1700.0 B: 1484.0

A particle rests at a point $A$ on a horizontal table and is joined to a point $O$ on the table by a...

1991 Paper 3 Q13
D: 1700.0 B: 1500.0

A smooth particle $P_{1}$ is projected from a point $O$ on the horizontal floor of a room with has a...

1990 Paper 2 Q12
D: 1600.0 B: 1484.0

A straight staircase consists of $N$ smooth horizontal stairs each of height $h$. A particle slides ...

1989 Paper 3 Q11
D: 1700.0 B: 1499.3

A smooth uniform sphere, with centre $A$, radius $2a$ and mass $3m,$ is suspended from a fixed point...

1988 Paper 3 Q12
D: 1700.0 B: 1484.0

A smooth billiard ball moving on a smooth horizontal table strikes another identical ball which is a...

2025 Paper 2 Q10
D: 1500.0 B: 1500.0

The lower end of a rigid uniform rod of mass $m$ and length $a$ rests at point $M$ on rough horizont...

1987 Paper 1 Q10
D: 1500.0 B: 1500.0

A rubber band band of length $2\pi$ and modulus of elasticity $\lambda$ encircles a smooth cylinder ...

2017 Paper 3 Q9
D: 1700.0 B: 1500.9

Two particles $A$ and $B$ of masses $m$ and $2 m$, respectively, are connected by a light spr...

2016 Paper 3 Q9
D: 1700.0 B: 1475.6

Three pegs $P$, $Q$ and $R$ are fixed on a smooth horizontal table in such a way that they form the...

2013 Paper 3 Q11
D: 1700.0 B: 1484.0

An equilateral triangle, comprising three light rods each of length $\sqrt3a$, has a particle of mas...

2012 Paper 3 Q11
D: 1700.0 B: 1500.0

One end of a thin heavy uniform inextensible perfectly flexible rope of length $2L$ and mass $2M$ is...

2011 Paper 3 Q10
D: 1700.0 B: 1486.1

Particles $P$ and $Q$, each of mass $m$, lie initially at rest a distance $a$ apart on a smooth hor...

2009 Paper 2 Q11
D: 1600.0 B: 1516.0

A train consists of an engine and $n$ trucks. It is travelling along a straight horizontal section ...

2008 Paper 3 Q10
D: 1700.0 B: 1484.0

A long string consists of $n$ short light strings joined together, each of natural length $\ell$ and...

2007 Paper 3 Q9
D: 1700.0 B: 1484.0

Two small beads, $A$ and $B$, each of mass $m$, are threaded on a smooth horizontal circular hoop...

2006 Paper 3 Q9
D: 1700.0 B: 1484.0

A long, light, inextensible string passes through a small, smooth ring fixed at the point $O$. One...

2005 Paper 3 Q10
D: 1700.0 B: 1486.8

Two thin discs, each of radius $r$ and mass $m$, are held on a rough horizontal surface with their c...

2001 Paper 1 Q11
D: 1484.0 B: 1469.5

A smooth cylinder with circular cross-section of radius $a$ is held with its axis horizontal. A~ligh...

1997 Paper 3 Q9
D: 1700.0 B: 1500.0

A uniform rigid rod $BC$ is suspended from a fixed point $A$ by light stretched springs $AB,AC$. The...

1996 Paper 1 Q9
D: 1500.0 B: 1485.6

A bungee-jumper of mass $m$ is attached by means of a light rope of natural length $l$ and modulus o...

1995 Paper 1 Q10
D: 1500.0 B: 1500.0

A small ball of mass $m$ is suspended in equilibrium by a light elastic string of natural length $l$...

1994 Paper 3 Q11
D: 1700.0 B: 1516.0

A step-ladder has two sections $AB$ and $AC,$ each of length $4a,$ smoothly hinged at $A$ and connec...

1994 Paper 2 Q10
D: 1600.0 B: 1486.7

A truck is towing a trailer of mass $m$ across level ground by means of an elastic rope of natural l...

1994 Paper 1 Q10
D: 1516.0 B: 1484.0

One end $A$ of a light elastic string of natural length $l$ and modulus of elasticity $\lambda$ is f...

1993 Paper 3 Q12
D: 1700.0 B: 1432.3

$ABCD$ is a horizontal line with $AB=CD=a$ and $BC=6a$. There are fixed smooth pegs at $B$ and $C$...

1993 Paper 1 Q10
D: 1500.0 B: 1500.0

A small lamp of mass $m$ is at the end $A$ of a light rod $AB$ of length $2a$ attached at $B$ to a v...

1992 Paper 3 Q13
D: 1700.0 B: 1500.0

$\,$ \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3p...

1992 Paper 2 Q12
D: 1600.0 B: 1500.0

In the figure, $W_{1}$ and $W_{2}$ are wheels, both of radius $r$. Their centres $C_{1}$ and $C_{2}$...

1992 Paper 1 Q11
D: 1500.0 B: 1470.8

Three light elastic strings $AB,BC$ and $CD$, each of natural length $a$ and modulus of elasticity $...

1990 Paper 1 Q12
D: 1516.0 B: 1484.0

$\,$ \begin{center} \begin{tikzpicture}[scale=1.0] % Define coordinates \coordinate (A) at (...

1989 Paper 2 Q11
D: 1600.0 B: 1484.0

A lift of mass $M$ and its counterweight of mass $M$ are connected by a light inextensible cable whi...

1989 Paper 1 Q12
D: 1500.0 B: 1504.2

A regular tetrahedron $ABCD$ of mass $M$ is made of 6 identical uniform rigid rods, each of length $...

1988 Paper 1 Q13
D: 1484.0 B: 1486.3

A piece of circus apparatus consists of a rigid uniform plank of mass 1000$\,$kg, suspended in a hor...

2025 Paper 2 Q9
D: 1500.0 B: 1500.0

Points $A$ and $B$ are at the same height and a distance $\sqrt{2}r$ apart. Two small, spherical pa...

2019 Paper 3 Q9
D: 1500.0 B: 1500.0

In this question, $\mathbf{i}$ and $\mathbf{j}$ are perpendicular unit vectors and $\mathbf{j}$ is v...

1987 Paper 3 Q12
D: 1500.0 B: 1482.0

A firework consists of a uniform rod of mass $M$ and length $2a$, pivoted smoothly at one end so tha...

1987 Paper 1 Q11
D: 1500.0 B: 1486.7

A smooth sphere of radius $r$ stands fixed on a horizontal floor. A particle of mass $m$ is displace...

2018 Paper 3 Q11
D: 1700.0 B: 1487.9

A particle is attached to one end of a light inextensible string of length $b$. The other end of the...

2016 Paper 3 Q10
D: 1700.0 B: 1484.0

A smooth plane is inclined at an angle $\alpha$ to the horizontal. A particle $P$ of mass $m$ is at...

2015 Paper 2 Q9
D: 1600.0 B: 1484.0

An equilateral triangle $ABC$ is made of three light rods each of length $a$. It is free to rotate i...

2012 Paper 3 Q10
D: 1700.0 B: 1500.0

A small ring of mass $m$ is free to slide without friction on a hoop of radius $a$. The hoop is f...

2011 Paper 3 Q11
D: 1700.0 B: 1484.0

A thin uniform circular disc of radius $a$ and mass $m$ is held in equilibrium in a horizontal plane...

2011 Paper 3 Q9
D: 1700.0 B: 1484.0

Particles $P$ and $Q$ have masses $3m$ and $4m$, respectively. They lie on the outer curved surface ...

2010 Paper 3 Q9
D: 1700.0 B: 1468.9

$\,$ \begin{center} \newrgbcolor{wwwwww}{0.4 0.4 0.4} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,...

2008 Paper 1 Q9
D: 1500.0 B: 1484.0

Two identical particles $P$ and $Q$, each of mass $m$, are attached to the ends of a diameter of a ...

2007 Paper 3 Q11
D: 1700.0 B: 1500.0

\begin{questionparts} \item A wheel consists of a thin light circular rim attached by light spokes ...

2005 Paper 3 Q11
D: 1700.0 B: 1500.0

A horizontal spindle rotates freely in a fixed bearing. Three light rods are each attached by one e...

2004 Paper 3 Q9
D: 1700.0 B: 1455.8

A circular hoop of radius $a$ is free to rotate about a fixed horizontal axis passing through a poi...

2002 Paper 3 Q10
D: 1700.0 B: 1516.0

A light hollow cylinder of radius $a$ can rotate freely about its axis of symmetry, which is fixed...

1997 Paper 1 Q10
D: 1516.0 B: 1484.0

The point $A$ is vertically above the point $B$. A light inextensible string, with a smooth ring $P...

1996 Paper 3 Q9
D: 1700.0 B: 1516.0

A particle of mass $m$ is at rest on top of a smooth fixed sphere of radius $a$. Show that, if the p...

1996 Paper 2 Q10
D: 1600.0 B: 1516.0

The plot of `Rhode Island Red and the Henhouse of Doom' calls for the heroine to cling on to the cir...

1992 Paper 3 Q14
D: 1700.0 B: 1500.0

$\,$ \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3p...

1992 Paper 3 Q12
D: 1700.0 B: 1500.0

$\,$ \begin{center} \begin{tikzpicture} % Draw horizontal line \coordinate (O) at (0,0); ...

1991 Paper 3 Q14
D: 1700.0 B: 1486.2

\begin{center} \begin{tikzpicture} % Main lines \draw (1,1) -- (5,7); \draw (5,7) -- (5,...

1991 Paper 3 Q12
D: 1700.0 B: 1487.9

A smooth tube whose axis is horizontal has an elliptic cross-section in the form of the curve with p...

1990 Paper 3 Q13
D: 1700.0 B: 1500.0

A particle $P$ is projected, from the lowest point, along the smooth inside surface of a fixed spher...

1989 Paper 3 Q12
D: 1700.0 B: 1500.0

A smooth horizontal plane rotates with constant angular velocity $\Omega$ about a fixed vertical axi...

1989 Paper 2 Q14
D: 1600.0 B: 1473.5

One end of a light inextrnsible string of length $l$ is fixed to a point on the upper surface of a t...

1988 Paper 2 Q14
D: 1600.0 B: 1488.9

Two particles of mass $M$ and $m$ $(M>m)$ are attached to the ends of a light rod of length $2l.$ Th...

1988 Paper 2 Q11
D: 1600.0 B: 1500.0

A heavy particle lies on a smooth horizontal table, and is attached to one end of a light inextensib...

No problems in this section yet.

1987 Paper 1 Q13
D: 1500.0 B: 1500.0

A particle of mass $m$ moves along the $x$-axis. At time $t=0$ it passes through $x=0$ with velocity...

2018 Paper 2 Q10
D: 1600.0 B: 1500.0

A uniform elastic string lies on a smooth horizontal table. One end of the string is attached to a ...

2017 Paper 2 Q10
D: 1600.0 B: 1500.0

A car of mass $m$ makes a journey of distance $2d$ in a straight line. It experiences air resis...

2016 Paper 3 Q11
D: 1700.0 B: 1484.0

A car of mass $m$ travels along a straight horizontal road with its engine working at a constant r...

2015 Paper 3 Q10
D: 1700.0 B: 1500.0

A light rod of length $2a$ has a particle of mass $m$ attached to each end and it moves in a vertic...

2015 Paper 3 Q9
D: 1700.0 B: 1541.9

A particle $P$ of mass $m$ moves on a smooth fixed straight horizontal rail and is attached to a f...

2014 Paper 3 Q9
D: 1700.0 B: 1500.0

A particle of mass $m$ is projected with velocity $\+ u$. It is acted upon by the force $m\+g$ due...

2009 Paper 3 Q11
D: 1700.0 B: 1500.1

A comet in deep space picks up mass as it travels through a large stationary dust cloud. It is subj...

2008 Paper 3 Q9
D: 1700.0 B: 1484.0

A particle of mass $m$ is initially at rest on a rough horizontal surface. The particle experience...

2004 Paper 3 Q11
D: 1700.0 B: 1500.0

Particles $P$, of mass $2$, and $Q$, of mass $1$, move along a line. Their distances from a fixed...

2004 Paper 2 Q11
D: 1600.0 B: 1500.0

The maximum power that can be developed by the engine of train $A$, of mass $m$, when travelling a...

2003 Paper 3 Q10
D: 1700.0 B: 1500.0

A particle moves along the $x$-axis in such a way that its acceleration is $kx \dot{x}\,$ where $k$...

2001 Paper 2 Q9
D: 1600.0 B: 1484.0

A particle of unit mass is projected vertically upwards with speed $u$. At height $x$, while the par...

2000 Paper 2 Q9
D: 1600.0 B: 1500.0

In an aerobatics display, Jane and Karen jump from a great height and go through a period of free f...

1999 Paper 2 Q9
D: 1600.0 B: 1500.0

In the $Z$--universe, a star of mass $M$ suddenly blows up, and the fragments, with various initial ...

1997 Paper 1 Q11
D: 1484.0 B: 1500.0

A particle of unit mass is projected vertically upwards in a medium whose resistance is $k$ times th...

1995 Paper 2 Q11
D: 1600.0 B: 1500.0

Two identical particles of unit mass move under gravity in a medium for which the magnitude of the r...

1993 Paper 2 Q11
D: 1600.0 B: 1484.0

\textit{In this question, take the value of $g$ to be $10\ \mathrm{ms}^{-2}.$} A body of mass $m$ kg...

1993 Paper 1 Q13
D: 1516.0 B: 1470.3

A train starts from a station. The tractive force exerted by the engine is at first constant and equ...

1992 Paper 1 Q13
D: 1500.0 B: 1484.0

A comet, which may be regarded as a particle of mass $m$, moving in the sun's gravitational field, a...

1991 Paper 2 Q14
D: 1600.0 B: 1500.0

The current in a straight river of constant width $h$ flows at uniform speed $\alpha v$ parallel to...

1989 Paper 1 Q10
D: 1516.0 B: 1484.0

A spaceship of mass $M$ is travelling at constant speed $V$ in a straight line when it enters a forc...

1988 Paper 3 Q13
D: 1700.0 B: 1503.7

A goalkeeper stands on the goal-line and kicks the football directly into the wind, at an angle $\al...

1987 Paper 2 Q14
D: 1500.0 B: 1500.0

A thin uniform elastic band of mass $m,$ length $l$ and modulus of elasticity $\lambda$ is pushed on...

2004 Paper 3 Q10
D: 1700.0 B: 1484.0

A particle $P$ of mass $m$ is attached to points $A$ and $B$, where $A$ is a distance $9a$ vertical...

2003 Paper 3 Q9
D: 1700.0 B: 1503.8

A particle $P$ of mass $m$ is constrained to move on a vertical circle of smooth wire with centre~$...

2001 Paper 3 Q9
D: 1700.0 B: 1484.1

$B_1$ and $B_2$ are parallel, thin, horizontal fixed beams. $B_1$ is a vertical distance $d \sin \a...

2000 Paper 2 Q11
D: 1600.0 B: 1484.0

The string $AP$ has a natural length of $1\!\cdot5\!$ metres and modulus of elasticity equal to $5g$...

1999 Paper 1 Q10
D: 1500.0 B: 1500.0

A particle is attached to a point $P$ of an unstretched light uniform spring $AB$ of modulus of ela...

1998 Paper 3 Q11
D: 1700.0 B: 1500.0

Consider a simple pendulum of length $l$ and angular displacement $\theta$, which is {\bf not} assum...

1998 Paper 1 Q9
D: 1500.0 B: 1484.0

Two small spheres $A$ and $B$ of equal mass $m$ are suspended in contact by two light inextensible s...

1996 Paper 3 Q11
D: 1700.0 B: 1484.0

A smooth circular wire of radius $a$ is held fixed in a vertical plane with light elastic strings of...

1996 Paper 2 Q11
D: 1600.0 B: 1484.0

A particle hangs in equilibrium from the ceiling of a stationary lift, to which it is attached by an...

1994 Paper 3 Q9
D: 1700.0 B: 1500.0

A smooth, axially symmetric bowl has its vertical cross-sections determined by $s=2\sqrt{ky},$ where...

1993 Paper 2 Q13
D: 1600.0 B: 1500.0

The force $F$ of repulsion between two particles with positive charges $Q$ and $Q'$ is given by $F=k...

1991 Paper 2 Q12
D: 1600.0 B: 1500.0

A particle is attached to one end $B$ of a light elastic string of unstretched length $a$. Initially...

1989 Paper 3 Q13
D: 1700.0 B: 1500.0

The points $A,B,C,D$ and $E$ lie on a thin smooth horizontal table and are equally spaced on a circl...

UFM Pure

Method of differences (telescoping)

1987 Paper 3 Q7
D: 1500.0 B: 1500.0

Prove that \[ \tan^{-1}t=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\cdots+\frac{(-1)^{n}t^{2n+1}}{2n+1}+(-1...

1987 Paper 2 Q5
D: 1500.0 B: 1500.0

If $y=\mathrm{f}(x)$, then the inverse of $\mathrm{f}$ (when it exists) can be obtained from \textit...

1987 Paper 1 Q4
D: 1500.0 B: 1500.0

Show that the sum of the infinite series \[ \log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{...

2017 Paper 3 Q8
D: 1700.0 B: 1500.0

Prove that, for any numbers $a_1$, $a_2$, $\ldots$\,, and $b_1$, $b_2$, $\ldots$\,, and for $n\ge1$,...

2017 Paper 3 Q1
D: 1700.0 B: 1516.0

\begin{questionparts} \item Prove that, for any positive integers $n$ and $r$, \[ \frac{1}{^{n+r}\C_...

2016 Paper 3 Q4
D: 1700.0 B: 1484.0

\begin{questionparts} \item By considering \ $\displaystyle \frac1 {1+ x^r} - \frac1 {1+ x^{r +1}} ...

2016 Paper 2 Q8
D: 1600.0 B: 1500.0

Evaluate the integral \[ \hphantom{ \ \ \ \ \ \ \ \ \ (m> \tfrac12)\,.} \int_{m-\frac12} ^\infty \...

2014 Paper 3 Q8
D: 1700.0 B: 1516.0

The numbers $\.f(r)$ satisfy $\.f(r)>\.f(r+1)$ for $r=1$, $2$, \dots. Show that, for any non-nega...

2013 Paper 2 Q6
D: 1600.0 B: 1485.5

In this question, the following theorem may be used.\newline {\sl Let $u_1$, $u_2$, $\ldots$ be a s...

2012 Paper 3 Q8
D: 1700.0 B: 1500.0

The sequence $F_0$, $F_1$, $F_2$, $\ldots\,$ is defined by $F_0=0$, $F_1=1$ and, for $n\ge0$, \[ F_{...

2012 Paper 3 Q2
D: 1700.0 B: 1516.0

In this question, $\vert x \vert <1$ and you may ignore issues of convergence. \begin{questionparts}...

2012 Paper 2 Q8
D: 1600.0 B: 1485.7

The positive numbers $\alpha$, $\beta$ and $q$ satisfy $\beta-\alpha >q$. Show that \[ \frac{\alpha^...

2012 Paper 1 Q7
D: 1500.0 B: 1500.0

A sequence of numbers $t_0$, $t_1$, $t_2$, $\ldots\,$ satisfies \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...

2010 Paper 3 Q7
D: 1700.0 B: 1516.0

Given that $y = \cos(m \arcsin x)$, for $\vert x \vert <1$, prove that \[ (1-x^2) \frac {\d^2 y}{\d ...

2008 Paper 3 Q2
D: 1700.0 B: 1555.2

Let $S_k(n) \equiv \sum\limits_{r=0}^n r^k\,$, where $k$ is a positive integer, so that \[ S_1(n) \e...

2006 Paper 2 Q1
D: 1600.0 B: 1485.5

The sequence of real numbers $u_1$, $u_2$, $u_3$, $\ldots$ is defined by \begin{equation*} u_1=2 \,,...

2005 Paper 3 Q4
D: 1700.0 B: 1457.9

The sequence $u_n$ ($n= 1, 2, \ldots$) satisfies the recurrence relation \[ u_{n+2}= \frac{u_{n+1}...

2004 Paper 3 Q6
D: 1700.0 B: 1503.0

Given a sequence $w_0$, $w_1$, $w_2$, $\ldots\,$, the sequence $F_1$, $F_2$, $\ldots$ is defined by ...

2004 Paper 3 Q3
D: 1700.0 B: 1516.0

Given that $\f''(x) > 0$ when $a \le x \le b\,$, explain with the aid of a sketch why \[ (b-a) \, \...

2004 Paper 1 Q8
D: 1500.0 B: 1547.8

A sequence $t_0$, $t_1$, $t_2$, $...$ is said to be {\sl strictly increasing} if $t_{n+1} > t_n$ f...

2003 Paper 3 Q6
D: 1700.0 B: 1516.0

Show that \[ 2\sin \frac12 \theta \, \cos r\theta = \sin\big(r+\frac12\big)\theta - \sin\big(r-\...

2003 Paper 2 Q7
D: 1600.0 B: 1500.0

Show that, if $n>0\,$, then $$ \int_{e^{1/n}}^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x = {2 \over ...

2000 Paper 3 Q7
D: 1700.0 B: 1516.0

Given that $$\e = 1 + {1 \over 1 !} + {1 \over 2 !} + {1 \over 3 !} + \cdots + {1 \over r !} + \cdo...

1999 Paper 3 Q5
D: 1700.0 B: 1516.0

The sequence $u_0$, $u_1$, $u_2$, ... is defined by $$ u_0=1,\hspace{0.2in} u_1=1, \quad u_{n+1}=u...

1999 Paper 3 Q3
D: 1700.0 B: 1518.8

Justify, by means of a sketch, the formula $$ \lim_{n\rightarrow\infty}\left\{{1\over n}\sum_{m=1}^n...

1998 Paper 2 Q3
D: 1600.0 B: 1516.0

Show that the sum $S_N$ of the first $N$ terms of the series $$\frac{1}{1\cdot2\cdot3}+\frac{3}{\cdo...

1997 Paper 3 Q7
D: 1700.0 B: 1516.0

For each positive integer $n$, let \begin{align*} a_n&=\frac1{n+1}+\frac1{(n+1)(n+2)}+\frac1{(n+1)(n...

1993 Paper 3 Q4
D: 1700.0 B: 1500.0

Sum the following infinite series. \begin{questionparts} \item \[ 1 + \frac13 \bigg({\frac12}\bigg...

1989 Paper 3 Q9
D: 1700.0 B: 1516.0

Obtain the sum to infinity of each of the following series. \begin{questionparts} \item $1{\display...

1989 Paper 1 Q2
D: 1484.0 B: 1500.0

For $x>0$ find $\int x\ln x\,\mathrm{d}x$. By approximating the area corresponding to $\int_{0}^{1}...

2025 Paper 3 Q6
D: 1500.0 B: 1500.0

\begin{questionparts} \item Let $a$, $b$ and $c$ be three non-zero complex numbers with the properti...

2019 Paper 3 Q4
D: 1500.0 B: 1500.0

The $n$th degree polynomial P$(x)$ is said to be \textit{reflexive} if: \begin{enumerate} \item[(a)]...

2018 Paper 3 Q1
D: 1700.0 B: 1484.0

\begin{questionparts} \item The function $\f$ is given by \[ \f(\beta)=\beta - \frac 1 \beta - \fr...

2017 Paper 3 Q3
D: 1700.0 B: 1500.0

Let $\alpha$, $\beta$, $\gamma$ and $\delta$ be the roots of the quartic equation \[ x^4 +px^3 +qx^...

2015 Paper 3 Q6
D: 1700.0 B: 1553.5

\begin{questionparts} \item Let $w$ and $z$ be complex numbers, and let $u= w+z$ and $v=w^2+z^2$. Pr...

2014 Paper 3 Q1
D: 1700.0 B: 1542.2

Let $a$, $b$ and $c$ be real numbers such that $a+b+c=0$ and let \[(1+ax)(1+bx)(1+cx) = 1+qx^2 +rx^3...

2009 Paper 3 Q5
D: 1700.0 B: 1516.0

The numbers $x$, $y$ and $z$ satisfy \begin{align*} x+y+z&= 1\\ x^2+y^2+z^2&=2\\ x^3+y^3+z^3&=3\,. \...

2008 Paper 3 Q1
D: 1700.0 B: 1516.0

Find all values of $a$, $b$, $x$ and $y$ that satisfy the simultaneous equations \begin{alignat*}{3}...

2007 Paper 3 Q1
D: 1700.0 B: 1500.0

\textit{In this question, do not consider the special cases in which the denominators of any of your...

1997 Paper 3 Q4
D: 1700.0 B: 1516.0

In this question, you may assume that if $k_1,\dots,k_n$ are distinct positive real numbers, then \[...

1996 Paper 3 Q7
D: 1700.0 B: 1515.1

\begin{questionparts} \item If $x+y+z=\alpha,$ $xy+yz+zx=\beta$ and $xyz=\gamma,$ find numbers $A,...

1992 Paper 2 Q7
D: 1600.0 B: 1500.0

The cubic equation \[ x^{3}-px^{2}+qx-r=0 \] has roots $a,b$ and $c$. Express $p,q$ and $r$ in term...

1991 Paper 3 Q10
D: 1700.0 B: 1516.0

The equation \[ x^{n}-qx^{n-1}+r=0, \] where $n\geqslant5$ and $q$ and $r$ are real constants, has...

2018 Paper 3 Q4
D: 1700.0 B: 1503.2

The point $P(a\sec \theta, b\tan \theta )$ lies on the hyperbola \[ \dfrac{x^{2}}{a^{2}}-\dfrac{y^...

2017 Paper 3 Q5
D: 1700.0 B: 1484.0

The point with cartesian coordinates $(x,y)$ lies on a curve with polar equation $r=\f(\theta)\,$. ...

2015 Paper 3 Q8
D: 1700.0 B: 1500.0

\begin{questionparts} \item Show that under the changes of variable $x= r\cos\theta$ and $y = r\sin\...

2015 Paper 3 Q3
D: 1700.0 B: 1484.0

In this question, $r$ and $\theta$ are polar coordinates with $r \ge0$ and $- \pi < \theta\le \pi$...

2011 Paper 3 Q5
D: 1700.0 B: 1476.9

A movable point $P$ has cartesian coordinates $(x,y)$, where $x$ and $y$ are functions of $t$. T...

2006 Paper 3 Q6
D: 1700.0 B: 1516.0

Show that in polar coordinates the gradient of any curve at the point $(r,\theta)$ is \[ \frac{ \ \...

1998 Paper 3 Q4
D: 1700.0 B: 1516.0

Show that the equation (in plane polar coordinates) $r=\cos\theta$, for $-\frac{1}{2}\pi \le \theta ...

1993 Paper 3 Q2
D: 1700.0 B: 1500.0

The curve $C$ has the equation $x^3+y^3 = 3xy$. \begin{questionparts} \item Show that there is no po...

1993 Paper 2 Q5
D: 1600.0 B: 1500.0

\noindent \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt 0,line...

1992 Paper 3 Q10
D: 1700.0 B: 1484.8

Sketch the curve $C$ whose polar equation is \[ r=4a\cos2\theta\qquad\mbox{ for }-\tfrac{1}{4}\pi<\...

1991 Paper 3 Q9
D: 1700.0 B: 1485.6

The parametric equations $E_{1}$ and $E_{2}$ define the same ellipse, in terms of the parameters $\t...

1991 Paper 3 Q5
D: 1700.0 B: 1500.0

The curve $C$ has the differential equation in polar coordinates \[ \frac{\mathrm{d}^{2}r}{\mathrm{d...

1990 Paper 2 Q9
D: 1600.0 B: 1500.0

Show by means of a sketch that the parabola $r(1+\cos\theta)=1$ cuts the interior of the cardioid $r...

1989 Paper 3 Q6
D: 1700.0 B: 1500.0

Show that, for a given constant $\gamma$ $(\sin\gamma\neq0)$ and with suitable choice of the constan...

1989 Paper 2 Q5
D: 1600.0 B: 1561.1

\begin{questionparts} \item Show that in polar coordinates, the gradient of any curve at the poin...

2018 Paper 3 Q8
D: 1700.0 B: 1516.0

In this question, you should ignore issues of convergence. \begin{questionparts} \item Let \[ I = \...

2018 Paper 2 Q5
D: 1600.0 B: 1505.3

In this question, you should ignore issues of convergence. \begin{questionparts} \item Write down t...

2015 Paper 2 Q1
D: 1600.0 B: 1516.0

\begin{questionparts} \item By use of calculus, show that $x- \ln(1+x)$ is positive for all positive...

2013 Paper 3 Q2
D: 1700.0 B: 1516.0

In this question, you may ignore questions of convergence. Let $y= \dfrac {\arcsin x}{\sqrt{1-x^2}}\...

2012 Paper 3 Q4
D: 1700.0 B: 1500.0

\begin{questionparts} \item Show that \[ \sum_{n=1} ^\infty \frac{n+1}{n!} = 2\e - 1 \] and \...

2012 Paper 2 Q4
D: 1600.0 B: 1500.0

In this question, you may assume that the infinite series \[ \ln(1+x) = x-\frac{x^2}2 + \frac{x^3}{...

2009 Paper 3 Q3
D: 1700.0 B: 1500.0

The function $\f(t)$ is defined, for $t\ne0$, by \[ \f(t) = \frac t {\e^t-1}\,. \] \begin{quest...

2006 Paper 3 Q4
D: 1700.0 B: 1516.0

The function $f$ satisfies the identity \begin{equation} f(x) +f(y) \equiv f(x+y) \tag{$*$} \end{eq...

2006 Paper 3 Q3
D: 1700.0 B: 1500.0

\begin{questionparts} \item Let \[ \tan x = \sum\limits_{n=0}^\infty a_n x^n \text{ and } \cot x = ...

2001 Paper 3 Q1
D: 1700.0 B: 1500.0

Given that $y = \ln ( x + \sqrt{x^2 + 1})$, show that $ \displaystyle \frac{\d y}{\d x} = \frac1 {\...

1998 Paper 3 Q7
D: 1700.0 B: 1500.0

Sketch the graph of ${\rm f}(s)={ \e}^s(s-3)+3$ for $0\le s < \infty$. Taking ${\e\approx 2.7}$, fin...

1998 Paper 3 Q5
D: 1700.0 B: 1516.0

The exponential of a square matrix ${\bf A}$ is defined to be $$ \exp ({\bf A}) = \sum_{r=0}^\infty ...

1997 Paper 3 Q1
D: 1700.0 B: 1500.0

\begin{questionparts} \item By considering the series expansion of $(x^2+5x+4){\rm \; e}^x$ show tha...

1994 Paper 3 Q5
D: 1700.0 B: 1486.8

The function $\mathrm{f}$ is given by $\mathrm{f}(x)=\sin^{-1}x$ for $-1 < x < 1.$ Prove that \[ (1...

1991 Paper 3 Q1
D: 1700.0 B: 1501.5

\begin{questionparts} \item Evaluate \[ \sum_{r=1}^{n}\frac{6}{r(r+1)(r+3)}. \] \item Expand $\ln(1...

1990 Paper 3 Q7
D: 1700.0 B: 1552.4

The points $P\,(0,a),$ $Q\,(a,0)$ and $R\,(a,-a)$ lie on the curve $C$ with cartesian equation \[ x...

1989 Paper 2 Q2
D: 1600.0 B: 1543.0

Let \begin{alignat*}{2} \tan x & =\ \ \, \quad{\displaystyle \sum_{n=0}^{\infty}a_{n}x^{n}} & & \t...

1987 Paper 3 Q4
D: 1500.0 B: 1500.0

\begin{center} \begin{tikzpicture}[scale=0.5] \draw[domain = -2.5:2.5, samples=180, vari...

2016 Paper 3 Q6
D: 1700.0 B: 1484.0

Show, by finding $R$ and $\gamma$, that $A \sinh x + B\cosh x $ can be written in the form $R\cosh...

2014 Paper 3 Q6
D: 1700.0 B: 1516.0

Starting from the result that \[ \.h(t) >0\ \mathrm{for}\ 0< t < x \Longrightarrow \int_0^x \.h(...

2007 Paper 3 Q5
D: 1700.0 B: 1516.0

Let $y = \ln (x^2-1)\,$, where $x >1$, and let $r$ and $\theta$ be functions of $x$ determined by ...

2006 Paper 3 Q7
D: 1700.0 B: 1500.0

\begin{questionparts} \item Solve the equation $u^2+2u\sinh x -1=0$ giving $u$ in terms of $x$. Find...

1996 Paper 3 Q1
D: 1700.0 B: 1500.0

Define $\cosh x$ and $\sinh x$ in terms of exponentials and prove, from your definitions, that \[ \...

1993 Paper 3 Q7
D: 1700.0 B: 1516.0

The real numbers $x$ and $y$ satisfy the simultaneous equations $$ \sinh (2x) = \cosh y \qquad\hbox{...

1992 Paper 3 Q1
D: 1700.0 B: 1500.0

\begin{questionparts} \item Given that \[ \mathrm{f}(x)=\ln(1+\mathrm{e}^{x}), \] prove that $\ln[\...

1991 Paper 3 Q6
D: 1700.0 B: 1516.0

The transformation $T$ from $\binom{x}{y}$ to $\binom{x'}{y'}$ in two-dimensional space is given by ...

1991 Paper 2 Q8
D: 1600.0 B: 1484.8

Solve the quadratic equation $u^{2}+2u\sinh x-1=0$, giving $u$ in terms of $x$. Find the solution...

1990 Paper 3 Q9
D: 1700.0 B: 1484.7

The real variables $\theta$ and $u$ are related by the equation $\tan\theta=\sinh u$ and $0\leqslant...

1989 Paper 3 Q5
D: 1700.0 B: 1516.0

Given that $y=\cosh(n\cosh^{-1}x),$ for $x\geqslant1,$ prove that \[ y=\frac{(x+\sqrt{x^{2}-1})^{n}+...

1989 Paper 2 Q3
D: 1600.0 B: 1500.0

The real numbers $x$ and $y$ are related to the real numbers $u$ and $v$ by \[ 2(u+\mathrm{i}v)=\...

1988 Paper 2 Q6
D: 1600.0 B: 1500.0

Show that the following functions are positive when $x$ is positive: \begin{questionparts} \item[ $...

2025 Paper 3 Q7
D: 1500.0 B: 1500.0

Let $f(x) = \sqrt{x^2 + 1} - x$. \begin{questionparts} \item Using a binomial series, or otherwise, ...

2014 Paper 3 Q2
D: 1700.0 B: 1513.2

\begin{questionparts} \item Show, by means of the substitution $u=\cosh x\,$, that \[ \in...

2011 Paper 3 Q6
D: 1700.0 B: 1536.7

The definite integrals $T$, $U$, $V$ and $X$ are defined by \begin{align*} T&= \int_{\frac13}^{\frac...

2011 Paper 3 Q4
D: 1700.0 B: 1516.0

The following result applies to any function $\f$ which is continuous, has positive gradient and...

2010 Paper 3 Q2
D: 1700.0 B: 1485.5

In this question, $a$ is a positive constant. \begin{questionparts} \item Express $\cosh a$ in term...

2008 Paper 3 Q4
D: 1700.0 B: 1516.0

\begin{questionparts} \item Show, with the aid of a sketch, that $y> \tanh (y/2)$ for $y>0$ and d...

2005 Paper 3 Q7
D: 1700.0 B: 1471.4

Show that if $\displaystyle \int\frac1{u \, \f(u)}\; \d u = \F(u) + c\;$, then $\displaystyle ...

2004 Paper 3 Q1
D: 1700.0 B: 1603.9

Show that \[ \int_0^a \frac{\sinh x}{2\cosh^2 x -1} \, \mathrm{d} x = \frac{1}{2 \sqrt{2}} \ln \l \f...

2003 Paper 3 Q1
D: 1700.0 B: 1516.0

Given that $x+a>0$ and $x+b>0\,$, and that $b>a\,$, show that \[ \frac{\mathrm{d} \ }{\mathrm{d...

2001 Paper 3 Q2
D: 1700.0 B: 1484.0

Show that $ \cosh^{-1} x = \ln ( x + \sqrt{x^2-1})$. Show that the area of the region defined by th...

1992 Paper 2 Q8
D: 1600.0 B: 1484.0

Calculate the following integrals \begin{questionparts} \item ${\displaystyle \int\frac{x}{(x-1)(x^...

Scalar product, equation of plane, angles, vector product, shortest distances (point and line, point and plane, two lines)

2019 Paper 1 Q5
D: 1500.0 B: 1500.0

\begin{questionparts} \item The four points $P$, $Q$, $R$ and $S$ are the vertices of a plane quadri...

2018 Paper 2 Q7
D: 1600.0 B: 1500.0

The points $O$, $A$ and $B$ are the vertices of an acute-angled triangle. The points $M$ and $N$ li...

2017 Paper 2 Q8
D: 1600.0 B: 1500.0

All vectors in this question lie in the same plane. The vertices of the non-right-angled triangle...

2016 Paper 1 Q6
D: 1500.0 B: 1484.7

The sides $OA$ and $CB$ of the quadrilateral $OABC$ are parallel. The point $X$ lies on $OA$, betwee...

2015 Paper 2 Q8
D: 1600.0 B: 1500.0

\noindent \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsi...

2014 Paper 3 Q7
D: 1700.0 B: 1484.0

The four distinct points $P_i$ ($i=1$, $2$, $3$, $4$) are the vertices, labelled anticlockwise, ...

2014 Paper 1 Q7
D: 1516.0 B: 1500.0

In the triangle $OAB$, the point $D$ divides the side $BO$ in the ratio $r:1$ (so that $BD = rDO$)...

2013 Paper 3 Q3
D: 1700.0 B: 1516.0

The four vertices $P_i$ ($i= 1, 2, 3, 4$) of a regular tetrahedron lie on the surface of a sphere ...

2012 Paper 2 Q7
D: 1600.0 B: 1516.0

Three distinct points, $X_1$, $X_2$ and $X_3$, with position vectors ${\bf x}_1$, ${\bf x}_2$ and ${...

2011 Paper 2 Q5
D: 1600.0 B: 1484.0

The points $A$ and $B$ have position vectors $\bf a $ and $\bf b$ with respect to an origin $O$, a...

2010 Paper 2 Q5
D: 1600.0 B: 1500.0

The points $A$ and $B$ have position vectors $\bf i +j+k$ and $5{\bf i} - {\bf j} -{\bf k}$, respect...

2010 Paper 1 Q7
D: 1484.0 B: 1500.0

Relative to a fixed origin $O$, the points $A$ and $B$ have position vectors $\bf{a}$ and $\bf{b}...

2009 Paper 2 Q8
D: 1600.0 B: 1484.8

The non-collinear points $A$, $B$ and $C$ have position vectors $\bf a$, $\bf b$ and $\bf c$, respe...

2008 Paper 2 Q8
D: 1600.0 B: 1484.0

The points $A$ and $B$ have position vectors $\bf a$ and $\bf b$, respectively, relative to the or...

2007 Paper 2 Q8
D: 1600.0 B: 1529.3

The points $B$ and $C$ have position vectors $\mathbf{b}$ and $\mathbf{c}$, respectively, relative t...

2007 Paper 1 Q7
D: 1500.0 B: 1500.0

\begin{questionparts} \item The line $L_1$ has vector equation $\displaystyle {\bf r} = \begin{pmatr...

2006 Paper 2 Q8
D: 1600.0 B: 1500.0

Show that the line through the points with position vectors $\bf x$ and $\bf y$ has equation \[{\bf...

2005 Paper 2 Q7
D: 1600.0 B: 1501.0

The position vectors, relative to an origin $O$, at time $t$ of the particles $P$ and $Q$ are $$\co...

2000 Paper 3 Q5
D: 1700.0 B: 1500.0

Given two non-zero vectors $\mathbf{a}=\begin{pmatrix}a_{1}\\ a_{2} \end{pmatrix}$ and $\mathbf{b}...

2000 Paper 2 Q7
D: 1600.0 B: 1486.1

The line $l$ has vector equation ${\bf r} = \lambda {\bf s}$, where \[ {\bf s} = (\cos\theta+\sqrt...

1998 Paper 3 Q8
D: 1700.0 B: 1484.0

\begin{questionparts} %\item[(i)] Consider the sphere of radius $a$ and centre the origin. %Show tha...

1995 Paper 3 Q8
D: 1700.0 B: 1500.0

A plane $\pi$ in 3-dimensional space is given by the vector equation $\mathbf{r}\cdot\mathbf{n}=p,$ ...

1993 Paper 2 Q4
D: 1600.0 B: 1470.3

Two non-parallel lines in 3-dimensional space are given by $\mathbf{r}=\mathbf{p}_{1}+t_{1}\mathbf{m...

1992 Paper 2 Q9
D: 1600.0 B: 1515.9

Let $\mathbf{a},\mathbf{b}$ and $\mathbf{c}$ be the position vectors of points $A,B$ and $C$ in thre...

1989 Paper 3 Q2
D: 1700.0 B: 1484.0

The points $A,B$ and $C$ lie on the surface of the ground, which is an inclined plane. The point $B$...

1988 Paper 2 Q10
D: 1600.0 B: 1516.0

The surface $S$ in 3-dimensional space is described by the equation \[ \mathbf{a}\cdot\mathbf{r}+ar=...

1987 Paper 1 Q3
D: 1500.0 B: 1500.0

By substituting $y(x)=xv(x)$ in the differential equation \[ x^{3}\frac{\mathrm{d}v}{\mathrm{d}x}+x...

2018 Paper 2 Q8
D: 1600.0 B: 1484.0

\begin{questionparts} \item Use the substitution $v= \sqrt y$ to solve the differential equation \[...

2014 Paper 2 Q5
D: 1600.0 B: 1486.1

Given that $y=xu$, where $u$ is a function of $x$, write down an expression for $\dfrac {\d y}{\d x}...

2012 Paper 1 Q8
D: 1516.0 B: 1484.0

\begin{questionparts} \item Show that substituting $y=xv$, where $v$ is a function of $x$, in the ...

2004 Paper 3 Q8
D: 1700.0 B: 1484.0

Show that if \[ {\mathrm{d}y \over \mathrm{d} x}=\f(x)y + {\g(x) \over y} \] then the substitution $...

2003 Paper 3 Q8
D: 1700.0 B: 1516.0

\begin{questionparts} \item Show that the gradient at a point $\l x\,, \, y \r$ on the curve \[ \l ...

2000 Paper 2 Q8
D: 1600.0 B: 1500.1

\begin{questionparts} \item Let $y$ be the solution of the differential equation \[ \frac{\d y}{\d x...

1995 Paper 2 Q8
D: 1600.0 B: 1500.8

If there are $x$ micrograms of bacteria in a nutrient medium, the population of bacteria will grow a...

1990 Paper 3 Q8
D: 1700.0 B: 1484.7

Let $P,Q$ and $R$ be functions of $x$. Prove that, for any function $y$ of $x$, the function \[ Py'...

1990 Paper 1 Q7
D: 1500.0 B: 1500.0

Let $y,u,v,P$ and $Q$ all be functions of $x$. Show that the substitution $y=uv$ in the differential...

1989 Paper 2 Q9
D: 1600.0 B: 1515.3

The matrix $\mathbf{F}$ is defined by \[ \mathbf{F}=\mathbf{I}+\sum_{n=1}^{\infty}\frac{1}{n!}t^{n}...

Eulers formulae, de moivre, roots of unity

2025 Paper 3 Q8
D: 1500.0 B: 1500.0

\begin{questionparts} \item Show that $$z^{m+1} - \frac{1}{z^{m+1}} = \left(z - \frac{1}{z}\right)\...

1987 Paper 3 Q3
D: 1500.0 B: 1500.0

\begin{questionparts} \item If $z=x+\mathrm{i}y,$ with $x,y$ real, show that \[ \left|x\right|\...

1987 Paper 2 Q4
D: 1500.0 B: 1500.0

Explain the geometrical relationship between the points in the Argand diagram represented by the com...

1987 Paper 1 Q7
D: 1500.0 B: 1500.0

Sum each of the series \[ \sin\left(\frac{2\pi}{23}\right)+\sin\left(\frac{6\pi}{23}\right)+\sin\lef...

2018 Paper 3 Q7
D: 1700.0 B: 1516.0

\begin{questionparts} \item Use De Moivre's theorem to show that, if $\sin\theta\ne0$\,, then \[ \fr...

2017 Paper 3 Q2
D: 1700.0 B: 1500.1

The transformation $R$ in the complex plane is a rotation (anticlockwise) by an angle $\theta$ about...

2016 Paper 3 Q7
D: 1700.0 B: 1516.0

Let $\omega = \e^{2\pi {\rm i}/n}$, where $n$ is a positive integer. Show that, for any complex num...

2015 Paper 3 Q4
D: 1700.0 B: 1516.0

\begin{questionparts} \item If $a$, $b$ and $c$ are all real, show that the equation \[ z^3+az^2+bz+...

2013 Paper 3 Q8
D: 1700.0 B: 1484.0

Evaluate $\displaystyle \sum_{r=0}^{n-1} \e^{2i(\alpha + r\pi/n)}$ where $\alpha$ is a fixed angle a...

2013 Paper 3 Q4
D: 1700.0 B: 1516.0

Show that $(z-\e^{i\theta})(z-\e^{-i\theta})=z^2 -2z\cos\theta +1\,$. Write down the $(2n)$th roots ...

2011 Paper 3 Q3
D: 1700.0 B: 1484.0

Show that, provided $q^2\ne 4p^3$, the polynomial \[ \hphantom{(p\ne0, \ q\ne0)\hspace{2cm}} x^3-3...

2010 Paper 3 Q3
D: 1700.0 B: 1545.2

For any given positive integer $n$, a number $a$ (which may be complex) is said to be a \textit{prim...

2009 Paper 3 Q6
D: 1700.0 B: 1473.1

Show that $\big\vert \e^{\i\beta} -\e^{\i\alpha}\big\vert = 2\sin\frac12 (\beta-\alpha)\,$ for $0<\a...

2005 Paper 3 Q6
D: 1700.0 B: 1516.0

In this question, you may use without proof the results \[ 4 \cosh^3 y - 3 \cosh y = \cosh (3y) \ \ ...

2000 Paper 3 Q3
D: 1700.0 B: 1484.0

Given that $\alpha = \e^{\mathrm{i} \pi/3}$ , prove that $1 + \alpha^2 = \alpha$. A triangle i...

2000 Paper 2 Q4
D: 1600.0 B: 1500.0

Prove that \[ (\cos\theta +\mathrm{i}\sin\theta) (\cos\phi +\mathrm{i}\sin\phi) = \cos(\theta+\phi) ...

1997 Paper 3 Q3
D: 1700.0 B: 1504.6

By considering the solutions of the equation $z^n-1=0$, or otherwise, show that \[(z-\omega)(z-\ome...

1996 Paper 3 Q5
D: 1700.0 B: 1516.0

Show, using de Moivre's theorem, or otherwise, that \[ \tan7\theta=\frac{t(t^{6}-21t^{4}+35t^{2}-7)...

1995 Paper 2 Q6
D: 1600.0 B: 1516.0

If $u$ and $v$ are the two roots of $z^{2}+az+b=0,$ show that $a=-u-v$ and $b=uv.$ Let $\alpha=\cos...

1995 Paper 1 Q4
D: 1484.0 B: 1500.0

By applying de Moivre's theorem to $\cos5\theta+\mathrm{i}\sin5\theta,$ expanding the result using t...

1992 Paper 3 Q8
D: 1700.0 B: 1515.1

Show that \[ \sin(2n+1)\theta=\sin^{2n+1}\theta\sum_{r=0}^{n}(-1)^{n-r}\binom{2n+1}{2r}\cot^{2r}\th...

1991 Paper 1 Q3
D: 1516.0 B: 1500.0

A path is made up in the Argand diagram of a series of straight line segments $P_{1}P_{2},$ $P_{2}P_...

1990 Paper 3 Q4
D: 1700.0 B: 1516.0

Given that $\sin\beta\neq0,$ sum the series \[ \cos\alpha+\cos(\alpha+2\beta)+\cdots+\cos(\alpha+2r...

1990 Paper 3 Q1
D: 1700.0 B: 1516.0

Show, using de Moivre's theorem, or otherwise, that \[ \tan9\theta=\frac{t(t^{2}-3)(t^{6}-33t^{4}+2...

1990 Paper 1 Q2
D: 1500.0 B: 1516.0

Let $\omega=\mathrm{e}^{2\pi\mathrm{i}/3}.$ Show that $1+\omega+\omega^{2}=0$ and calculate the modu...

1989 Paper 1 Q8
D: 1500.0 B: 1516.0

By using de Moivre's theorem, or otherwise, show that \begin{questionparts} \item $\cos4\theta=8\co...

1988 Paper 2 Q5
D: 1600.0 B: 1484.0

By considering the imaginary part of the equation $z^{7}=1,$ or otherwise, find all the roots of the...

2025 Paper 2 Q7
D: 1500.0 B: 1500.0

The differential equation \[\frac{d^2x}{dt^2} = 2x\frac{dx}{dt}\] describes the motion of a particl...

2019 Paper 3 Q1
D: 1500.0 B: 1500.0

The coordinates of a particle at time $t$ are $x$ and $y$. For $t \geq 0$, they satisfy the pair of ...

1987 Paper 3 Q6
D: 1500.0 B: 1500.0

The functions $x(t)$ and $y(t)$ satisfy the simultaneous differential equations \begin{alignat*}{1}...

2018 Paper 3 Q3
D: 1700.0 B: 1500.0

Show that the second-order differential equation \[ x^2y''+(1-2p) x\, y' + (p^2-q^2) \, y= \f(x) \,...

2014 Paper 3 Q10
D: 1700.0 B: 1473.3

Two particles $X$ and $Y$, of equal mass $m$, lie on a smooth horizontal table and are connected by ...

2013 Paper 3 Q9
D: 1700.0 B: 1484.8

A sphere of radius $R$ and uniform density $\rho_{\text{s}}$ is floating in a large tank of liquid ...

2013 Paper 3 Q7
D: 1700.0 B: 1500.0

\begin{questionparts} \item Let $y(x)$ be a solution of the differential equation $ \dfrac {\d^2 y...

2012 Paper 3 Q7
D: 1700.0 B: 1484.0

A pain-killing drug is injected into the bloodstream. It then diffuses into the brain, where it is ...

2012 Paper 3 Q1
D: 1700.0 B: 1500.0

Given that $\displaystyle z = y^n \left( \frac{\d y}{\d x}\right)^{\!2}$, show that \[ \frac{\d z}{\...

2011 Paper 3 Q1
D: 1700.0 B: 1500.0

\begin{questionparts} \item Find the general solution of the differential equation \[ \frac{\d u}{\d...

2010 Paper 3 Q10
D: 1700.0 B: 1500.0

A small bead $B$, of mass $m$, slides without friction on a fixed horizontal ring of radius $a$. Th...

2010 Paper 1 Q6
D: 1500.0 B: 1516.0

Show that, if $y=\e^x$, then \[ (x-1) \frac{\d^2 y}{\d x^2} -x \frac{\d y}{\d x} +y=0\,. \tag{$*...

2009 Paper 3 Q10
D: 1700.0 B: 1484.0

A light spring is fixed at its lower end and its axis is vertical. When a certain particle $P$ rest...

2009 Paper 3 Q7
D: 1700.0 B: 1485.5

\begin{questionparts} \item The functions $\f_n(x)$ are defined for $n=0$, $1$, $2$, $\ldots$\, ,...

2009 Paper 3 Q2
D: 1700.0 B: 1484.0

\begin{questionparts} \item Let $\displaystyle y= \sum_{n=0}^\infty a_n x^n\,$, where the coefficien...

2008 Paper 3 Q6
D: 1700.0 B: 1500.0

In this question, $p$ denotes $\dfrac{\d y}{\d x}\,$. \begin{questionparts} \item Given that \[ y=p...

2007 Paper 3 Q8
D: 1700.0 B: 1487.5

\begin{questionparts} \item Find functions ${\rm a}(x)$ and ${\rm b}(x)$ such that $u=x$ and $u=\e...

2001 Paper 1 Q8
D: 1500.0 B: 1487.5

Given that $y=x$ and $y=1-x^2$ satisfy the differential equation $$ \frac{\d^2 {y}}{\d x^2} + \p(x)...

1999 Paper 3 Q8
D: 1700.0 B: 1516.0

The function $y(x)$ is defined for $x\ge0$ and satisfies the conditions \[ y=0 \mbox{ \ \ and \ \...

1999 Paper 1 Q7
D: 1500.0 B: 1516.0

Show that $\sin(k\sin^{-1} x)$, where $k$ is a constant, satisfies the differential equation $$ (1...

1997 Paper 3 Q6
D: 1700.0 B: 1516.0

Suppose that $y_n$ satisfies the equations \[(1-x^2)\frac{{\rm d}^2y_n}{{\rm d}x^2}-x\frac{{\rm d}y_...

1996 Paper 2 Q8
D: 1600.0 B: 1485.5

Suppose that \[{\rm f}''(x)+{\rm f}(-x)=x+3\cos 2x\] and ${\rm f}(0)=1$, ${\rm f}'(0)=-1$. If ${\rm ...

1995 Paper 3 Q5
D: 1700.0 B: 1500.0

Show that $y=\sin^{2}(m\sin^{-1}x)$ satisfies the differential equation \[ (1-x^{2})y^{(2)}=xy^{(1)}...

1995 Paper 3 Q3
D: 1700.0 B: 1500.0

What is the general solution of the differential equation \[ \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}...

1995 Paper 1 Q8
D: 1500.0 B: 1532.8

Find functions $\mathrm{f,g}$ and $\mathrm{h}$ such that \[ \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}...

1989 Paper 2 Q7
D: 1600.0 B: 1484.0

By means of the substitution $x^{\alpha},$ where $\alpha$ is a suitably chosen constant, find the ge...

1988 Paper 3 Q7
D: 1700.0 B: 1554.3

For $n=0,1,2,\ldots,$ the functions $y_{n}$ satisfy the differential equation \[ \frac{\mathrm{d}^{...

UFM Statistics

Year 13 course of Further Statistics

Add Section

2025 Paper 2 Q12
D: 1500.0 B: 1500.0

Let $X$ be a Poisson random variable with mean $\lambda$ and let $p_r = P(X = r)$, for $r = 0, 1, 2,...

2019 Paper 3 Q11
D: 1500.0 B: 1500.0

The number of customers arriving at a builders' merchants each day follows a Poisson distribution wi...

2017 Paper 2 Q12
D: 1600.0 B: 1563.6

Adam and Eve are catching fish. The number of fish, $X$, that Adam catches in any time interval is...

2016 Paper 3 Q12
D: 1700.0 B: 1516.0

Let $X$ be a random variable with mean $\mu$ and standard deviation $\sigma$. \textit{Chebyshev's i...

2015 Paper 1 Q12
D: 1500.0 B: 1461.6

The number $X$ of casualties arriving at a hospital each day follows a Poisson distribution with me...

2013 Paper 2 Q12
D: 1600.0 B: 1484.0

The random variable $U$ has a Poisson distribution with parameter $\lambda$. The random variables $X...

2012 Paper 2 Q13
D: 1600.0 B: 1516.0

In this question, you may assume that $\displaystyle \int_0^\infty \!\!\! \e^{-x^2/2} \d x = \sqrt{\...

2010 Paper 1 Q13
D: 1484.0 B: 1516.0

The number of texts that George receives on his mobile phone can be modelled by a Poisson random va...

2007 Paper 1 Q14
D: 1500.0 B: 1484.0

The discrete random variable $X$ has a Poisson distribution with mean $\lambda$. \begin{questionpart...

2006 Paper 1 Q13
D: 1484.0 B: 1468.0

A very generous shop-owner is hiding small diamonds in chocolate bars. Each diamond is hidden indep...

2005 Paper 2 Q13
D: 1600.0 B: 1500.0

The number of printing errors on any page of a large book of $N$ pages is modelled by a Poisson va...

2003 Paper 3 Q12
D: 1700.0 B: 1470.9

Brief interruptions to my work occur on average every ten minutes and the number of interruptions i...

2003 Paper 1 Q14
D: 1500.0 B: 1475.2

Jane goes out with any of her friends who call, except that she never goes out with more than two ...

2001 Paper 1 Q13
D: 1500.0 B: 1500.0

Four students, one of whom is a mathematician, take turns at washing up over a long period of time. ...

2000 Paper 3 Q12
D: 1700.0 B: 1553.7

In a lottery, any one of $N$ numbers, where $N$ is large, is chosen at random and independently fo...

1999 Paper 3 Q14
D: 1700.0 B: 1487.9

In the basic version of Horizons (H1) the player has a maximum of $n$ turns, where $n \ge 1$. At ea...

1998 Paper 2 Q14
D: 1600.0 B: 1500.0

The staff of Catastrophe College are paid a salary of $A$ pounds per year. With a Teaching Assessmen...

1997 Paper 2 Q14
D: 1600.0 B: 1469.6

Traffic enters a tunnel which is 9600 metres long, and in which overtaking is impossible. The number...

1996 Paper 3 Q14
D: 1700.0 B: 1484.0

Whenever I go cycling I start with my bike in good working order. However if all is well at time $t$...

1995 Paper 2 Q13
D: 1600.0 B: 1484.0

Fly By Night Airlines run jumbo jets which seat $N$ passengers. From long experience they know that ...

1995 Paper 1 Q13
D: 1500.0 B: 1484.0

A scientist is checking a sequence of microscope slides for cancerous cells, marking each cancerous ...

1993 Paper 2 Q16
D: 1600.0 B: 1500.0

At the terminus of a bus route, passengers arrive at an average rate of 4 per minute according to a ...

1992 Paper 3 Q16
D: 1700.0 B: 1484.0

The probability that there are exactly $n$ misprints in an issue of a newspaper is $\mathrm{e}^{-\la...

1989 Paper 1 Q15
D: 1500.0 B: 1516.0

I can choose one of three routes to cycle to school. Via Angle Avenue the distance is 5$\,$km, and I...

2025 Paper 3 Q11
D: 1500.0 B: 1500.0

\begin{questionparts} \item Let $\lambda > 0$. The independent random variables $X_1, X_2, \ldots, X...

2014 Paper 3 Q12
D: 1700.0 B: 1500.0

The random variable $X$ has probability density function $\f(x)$ (which you may assume is different...

2014 Paper 2 Q12
D: 1600.0 B: 1484.8

The lifetime of a fly (measured in hours) is given by the continuous random variable~$T$ with prob...

2013 Paper 3 Q13
D: 1700.0 B: 1484.0

\begin{questionparts} \item The continuous random variable $X$ satisfies $0\le X\le 1$, and has prob...

2011 Paper 2 Q13
D: 1600.0 B: 1500.0

What property of a distribution is measured by its {\em skewness}? \begin{questionparts} \item One...

2010 Paper 2 Q12
D: 1600.0 B: 1486.8

The continuous random variable $X$ has probability density function $\f(x)$, where \[ \f(x) = \beg...

2007 Paper 2 Q14
D: 1600.0 B: 1484.0

The random variable $X$ has a continuous probability density function $\f(x)$ given by \begin{equat...

2005 Paper 3 Q14
D: 1700.0 B: 1484.0

In this question, you may use the result \[ \displaystyle \int_0^\infty \frac{t^m}{(t+k)^{n+2}} \; ...

2004 Paper 2 Q12
D: 1600.0 B: 1516.0

Sketch the graph, for $x \ge 0\,$, of $$ y = kx\e^{-ax^2} \;, $$ where $a$ and $k$ are positive c...

2002 Paper 2 Q13
D: 1600.0 B: 1484.0

Let $\F(x)$ be the cumulative distribution function of a random variable $X$, which satisfies $\F(a)...

1996 Paper 2 Q12
D: 1600.0 B: 1500.0

\begin{questionparts} \item Let $X_{1}$, $X_{2}$, \dots, $X_{n}$ be independent random variables ea...

1992 Paper 3 Q15
D: 1700.0 B: 1500.0

A goat $G$ lies in a square field $OABC$ of side $a$. It wanders randomly round its field, so that a...

1990 Paper 2 Q15
D: 1600.0 B: 1500.0

A target consists of a disc of unit radius and centre $O$. A certain marksman never misses the targe...

1989 Paper 3 Q15
D: 1700.0 B: 1503.8

The continuous random variable $X$ is uniformly distributed over the interval $[-c,c].$ Write down e...

2018 Paper 3 Q12
D: 1700.0 B: 1516.0

A random process generates, independently, $n$ numbers each of which is drawn from a uniform (rectan...

2017 Paper 3 Q12
D: 1700.0 B: 1500.2

The discrete random variables $X$ and $Y$ can each take the values $1$, $\ldots\,$, $n$ (where $n\g...

2016 Paper 3 Q13
D: 1700.0 B: 1500.0

Given a random variable $X$ with mean $\mu$ and standard deviation $\sigma$, we define the \textit{k...

2015 Paper 3 Q13
D: 1700.0 B: 1500.0

Each of the two independent random variables $X$ and $Y$ is uniformly distributed on the interval~$...

2013 Paper 3 Q12
D: 1700.0 B: 1500.0

A list consists only of letters $A$ and $B$ arranged in a row. In the list, there are $a$ letter $A$...

2010 Paper 3 Q13
D: 1700.0 B: 1516.0

In this question, ${\rm Corr}(U,V)$ denotes the product moment correlation coefficient between the r...

2007 Paper 3 Q12
D: 1700.0 B: 1487.4

I choose a number from the integers $1, 2, \ldots$, $(2n-1)$ and the outcome is the random variable~...

2006 Paper 3 Q14
D: 1700.0 B: 1516.0

For any random variables $X_1$ and $X_2$, state the relationship between $\E(aX_1+bX_2)$ and $\E(X_1...

2005 Paper 3 Q12
D: 1700.0 B: 1516.0

Five independent timers time a runner as she runs four laps of a track. Four of the timers measure t...

2004 Paper 3 Q12
D: 1700.0 B: 1500.0

A team of $m$ players, numbered from $1$ to $m$, puts on a set of a $m$ shirts, similarly numbered ...

2002 Paper 3 Q14
D: 1700.0 B: 1500.0

Prove that, for any two discrete random variables $X$ and $Y$, \[ \mathrm{Var} \left(X + Y \right) ...

2000 Paper 3 Q14
D: 1700.0 B: 1500.0

The random variable $X$ takes only the values $x_1$ and $x_2$ (where $ x_1 \not= x_2 $), and the ...

1997 Paper 3 Q14
D: 1700.0 B: 1516.0

An industrial process produces rectangular plates of mean length $\mu_{1}$ and mean breadth $\mu_{2}...

1995 Paper 3 Q12
D: 1700.0 B: 1484.0

The random variables $X$ and $Y$ are independently normally distributed with means 0 and variances 1...

1991 Paper 3 Q16
D: 1700.0 B: 1504.3

The random variables $X$ and $Y$ take integer values $x$ and $y$ respectively which are restricted b...

1990 Paper 3 Q16
D: 1700.0 B: 1484.0

\begin{questionparts} \item A rod of unit length is cut into pieces of length $X$ and $1-X$; the lat...

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

No problems in this section yet.

zNo longer examinable

Problems which are no longer examinable from mechanics

Add Section

1987 Paper 3 Q13
D: 1500.0 B: 1500.0

A uniform rod, of mass $3m$ and length $2a,$ is freely hinged at one end and held by the other end i...

2018 Paper 3 Q10
D: 1700.0 B: 1484.0

A uniform disc with centre $O$ and radius $a$ is suspended from a point $A$ on its circumference, so...

2017 Paper 3 Q10
D: 1700.0 B: 1484.0

A uniform rod $PQ$ of mass $m$ and length $3a$ is freely hinged at $P$. The rod is held horizontall...

2013 Paper 3 Q10
D: 1700.0 B: 1500.0

A uniform rod $AB$ has mass $M$ and length $2a$. The point $P$ lies on the rod a distance $a-x$ from...

2012 Paper 3 Q9
D: 1700.0 B: 1500.0

A pulley consists of a disc of radius $r$ with centre $O$ and a light thin axle through $O$ perpendi...

2008 Paper 3 Q11
D: 1700.0 B: 1500.0

A circular wheel of radius $r$ has moment of inertia $I$ about its axle, which is fixed in a horizon...

2006 Paper 3 Q10
D: 1700.0 B: 1469.6

A disc rotates freely in a horizontal plane about a vertical axis through its centre. The moment of...

2001 Paper 3 Q11
D: 1700.0 B: 1500.0

A uniform cylinder of radius $a$ rotates freely about its axis, which is fixed and horizontal. The m...

2000 Paper 3 Q11
D: 1700.0 B: 1484.0

A thin beam is fixed at a height $2a$ above a horizontal plane. A uniform straight rod $ACB$ of len...

1999 Paper 3 Q11
D: 1700.0 B: 1500.0

Calculate the moment of inertia of a uniform thin circular hoop of mass $m$ and radius $a$ about a...

1999 Paper 3 Q9
D: 1700.0 B: 1470.3

The gravitational force between two point particles of masses $m$ and $m'$ is mutually attractive a...

1998 Paper 3 Q9
D: 1700.0 B: 1484.0

A uniform right circular cone of mass $m$ has base of radius $a$ and perpendicular height $h$ from ...

1997 Paper 3 Q11
D: 1700.0 B: 1500.0

$\,$ \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth...

1997 Paper 3 Q10
D: 1700.0 B: 1484.0

By pressing a finger down on it, a uniform spherical marble of radius $a$ is made to slide along a ...

1995 Paper 3 Q9
D: 1700.0 B: 1470.3

A thin circular disc of mass $m$, radius $r$ and with its centre of mass at its centre $C$ can rotat...

1993 Paper 3 Q13
D: 1700.0 B: 1484.0

$\ $\vspace{-1cm} \noindent \begin{center} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotst...

1993 Paper 3 Q11
D: 1700.0 B: 1500.0

\textit{In this question, all gravitational forces are to be neglected. } A rigid frame is construc...

1991 Paper 2 Q13
D: 1600.0 B: 1500.0

A non-uniform rod $AB$ of mass $m$ is pivoted at one end $A$ so that it can swing freely in a vertic...

1990 Paper 3 Q11
D: 1700.0 B: 1484.0

The points $O,A,B$ and $C$ are the vertices of a uniform square lamina of mass $M.$ The lamina can t...

1990 Paper 2 Q11
D: 1600.0 B: 1516.0

A disc is free to rotate in a horizontal plane about a vertical axis through its centre. The moment ...

1989 Paper 3 Q14
D: 1700.0 B: 1472.2

\begin{questionparts} \item A solid circular disc has radius $a$ and mass $m.$ The density is propor...

1989 Paper 2 Q13
D: 1600.0 B: 1502.0

A body of mass $m$ and centre of mass $O$ is said to be dynamically equivalent to a system of partic...