UFM Additional Further Pure

Year 13 course on additional further pure

Showing 1-6 of 6 problems
1987 Paper 2 Q3
D: 1500.0 B: 1500.0

Let \(a\) and \(b\) be positive integers such that \(b<2a-1\). For any given positive integer \(n\), the integers \(N\) and \(M\) are defined by \[ [a+\sqrt{a^{2}-b}]^{n}=N-r, \] \[ [a-\sqrt{a^{2}-b}]^{n}=M+s, \] where \(0\leqslant r<1\) and \(0\leqslant s<1\). Prove that \begin{questionparts} \item \(M=0\), \item \(r=s\), \item \(r^{2}-Nr+b^{n}=0.\) \end{questionpart} Show that for large \(n\), \(\left(8+3\sqrt{7}\right)^{n}\) differs from an integer by about \(2^{-4n}\).

Show Solution
  1. If we can show that \(0 < a - \sqrt{a^2-b} < 1\) then we will be done, since raising a number in \([0,1)\) to a positive integer power will always remain in the same interval. Clearly \(\sqrt{a^2-b} < \sqrt{a^2} = a\) so we have \(a-\sqrt{a^2-b} > 0\) We also have that \(\sqrt{a^2-b} > \sqrt{a^2-(2a-1)} = (a-1)\). Therefore \(a - \sqrt{a^2-b} < a - (a-1) = 1\) as required.
  2. If we can show that \(\l a + \sqrt{a^2-b} \r^n + \l a - \sqrt{a^2-b} \r^n = N -r + s\) is an integer we will be done, since the only integer value \(-r+s\) can be is \(0\). This is easy to see, since \begin{align*} \l a + \sqrt{a^2-b} \r^n + \l a - \sqrt{a^2-b} \r^n &= \sum_{k=0}^n \binom{n}{k}a^{n-k}(\sqrt{a^2-b})^k +\sum_{k=0}^n \binom{n}{k}a^{n-k}(-\sqrt{a^2-b})^k \\ &= \sum_{k=0}^n \binom{n}{k}a^{n-k}\l (\sqrt{a^2-b})^k +(-\sqrt{a^2-b})^k \r \\ \end{align*} But every term where \(k\) is odd in this sum is \(0\) (since they cancel) and ever term where \(k\) is even in this sum is an integer. Therefore the sum is an integer and we're done.
  3. \begin{align*} -r^2+rN &= -r(r-N) \\ &= s(r-N) \\ &=- \l a - \sqrt{a^2-b} \r^n \l a + \sqrt{a^2-b} \r^n \\ &= -\l \l a - \sqrt{a^2-b} \r \l a + \sqrt{a^2-b} \r\r^n \\ &= - \l a^2 - a^2+b\r^n \\ &= b^n \end{align*} Therefore \(r^2-rN + b^n = 0\)
Looking at \(\left(8+3\sqrt{7}\right)^{n}\) we have \(a = 8, b = 1\) (since \(8^2 - 1 = 9 \cdot 7\). So we can apply the result of the previous question to see that: \(\left(8+3\sqrt{7}\right)^{n}\) differs from an integer by \(\left(8-3\sqrt{7}\right)^{n}\). \begin{align*} 8-3\sqrt{7} &= \frac{1}{8+3\sqrt{7}} \\ &\approx \frac{1}{8 + 8} \\ &\approx 2^{-4} \end{align*} Therefore it differs by approximation \((2^{-4})^n = 2^{-4n}\)
2008 Paper 3 Q8
D: 1700.0 B: 1500.0

  1. The coefficients in the series \[ S= \tfrac13 x + \tfrac 16 x^2 + \tfrac1{12} x^3 + \cdots + a_rx^r + \cdots \] satisfy a recurrence relation of the form \(a_{r+1} + p a_r =0\). Write down the value of \(p\). By considering \((1+px)S\), find an expression for the sum to infinity of \(S\) (assuming that it exists). Find also an expression for the sum of the first \(n+1\) terms of \(S\).
  2. The coefficients in the series \[ T=2 + 8x +18x^2+37 x^3 +\cdots + a_rx^r + \cdots \] satisfy a recurrence relation of the form \(a_{r+2}+pa_{r+1} +qa_r=0\). Find an expression for the sum to infinity of \(T\) (assuming that it exists). By expressing \(T\) in partial fractions, or otherwise, find an expression for the sum of the first \(n+1\) terms of \(T\).

2000 Paper 3 Q8
D: 1700.0 B: 1484.0

The sequence \(a_n\) is defined by \(a_0 = 1\) , \(a_1 = 1\) , and $$ a_n = {1 + a_{n - 1}^2 \over a_{n - 2} } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( n \ge 2 ) . $$ Prove by induction that $$ a_n = 3 a_{n - 1} - a_{n - 2} \ \ \ \ \ \ \ \ \ \ \ ( n \ge2 ) . $$ Hence show that $$ a_n = {\alpha^{2 n - 1} + \alpha^{- ( 2 n - 1 )} \over \sqrt 5} \ \ \ \ \ \ (n\ge1), $$ where \(\displaystyle{\alpha = {1 + \sqrt 5 \over 2}}\).

1998 Paper 3 Q3
D: 1700.0 B: 1484.0

The value \(V_N\) of a bond after \(N\) days is determined by the equation $$ V_{N+1} = (1+c) V_{N} -d \qquad (c>0, \ d>0), $$ where \(c\) and \(d\) are given constants. By looking for solutions of the form \(V_T= A k^T + B\) for some constants \(A,B\) and \(k\), or otherwise, find \(V_N\) in terms of \(V_0\). What is the solution for \(c=0\)? Show that this is the limit (for fixed \(N\)) as \(c\rightarrow 0\) of your solution for \(c>0\).

Show Solution
Suppose \(V_T = Ak^T + B\), then \begin{align*} && Ak^{T+1}+B &= (1+c)(Ak^T+B) - d \\ \Rightarrow && (k-1-c)Ak^T &= cB -d \\ \Rightarrow && k &= 1+c \\ && B &= \frac{d}{c} \\ && A &= V_0 - B \\ \Rightarrow && V_N &= (V_0 - \frac{d}{c})(1+c)^{N} + \frac{d}{c} \end{align*} When \(c = 0\), \(V_{N+1} = V_N - d \Rightarrow V_N = V_0 - Nd\). \begin{align*} \lim_{c \to 0} \left ( (V_0 - \frac{d}{c})(1+c)^{N} + \frac{d}{c} \right) &= \lim_{c \to 0} \left ( \frac{(V_0 c-d)(1+c)^N + d}{c} \right ) \\ &= \lim_{c \to 0} \left ( \frac{V_0c - d-Ncd+NV_0c^2 + o(c^2) + d}{c} \right ) \\ &= \lim_{c \to 0} \left ( V_0 - Nd + o(c) \right ) \\ &= V_0 - Nd \end{align*}
1988 Paper 3 Q15
D: 1700.0 B: 1486.2

Each day, books returned to a library are placed on a shelf in order of arrival, and left there. When a book arrives for which there is no room on the shelf, that book and all books subsequently returned are put on a trolley. At the end of each day, the shelf and trolley are cleared. There are just two-sizes of book: thick, requiring two units of shelf space; and thin, requiring one unit. The probability that a returned book is thick is \(p\), and the probability that it is thin is \(q=1-p.\) Let \(M(n)\) be the expected number of books that will be put on the shelf, when the length of the shelf is \(n\) units and \(n\) is an integer, on the assumption that more books will be returned each day than can be placed on the shelf. Show, giving reasoning, that

  1. \(M(0)=0;\)
  2. \(M(1)=q;\)
  3. \(M(n)-qM(n-1)-pM(n-2)=1,\) for \(n\geqslant2.\)
Verify that a possible solution to these equations is \[ M(n)=A(-p)^{n}+B+Cn, \] where \(A,B\) and \(C\) are numbers independent of \(n\) which you should express in terms of \(p\).

Show Solution
  1. \(M(0) = 0\) since if there's no space on the shelf, we wont be able to put any books on the shelf.
  2. If the shelf has length \(1\) it can only fit a thin book. For a thin book to be placed on the shelf, the very first book which comes to be placed must be thin. But this happens with probability \(q\). Therefore \(M(1) = q\).
  3. Suppose no books have been placed on the shelf, then with probability \(p\) a large book gets placed on the shelf, and the expected number of books to be placed on the shelf is equivalent to how many books will be placed on the shelf if the shelf only had \(n-2\) spaces. This is \(M(n-2)\). Similar if the book which arrives first is thin (with probability \(q\)) then there will be \(M(n-1)\) more books placed on the shelf in expectation. We've just added \(1\) more book, therefore \(M(n) = 1+pM(n-2) + qM(n-1)\) or rearranging \(M(n) - qM(n-1) - pM(n-2) = 1\).
Suppose \(M(n) = (-p)^n\), notice that: \begin{align*} M(n) - qM(n-1) - pM(n-2) &= (-p)^n - (1-p)(-p)^n - p(-p)^{n-2} \\ &= (-p)^{n-2}(p^2+(1-p)p-p) \\ &= 0 \end{align*} Suppose \(M(n) = B\), notice that: \begin{align*} M(n) - qM(n-1) - pM(n-2) &= B - (1-p)B - pB \\ &= 0 \end{align*} Finally, if \(M(n) = Cn\) notice that: \begin{align*} M(n) - qM(n-1) - pM(n-2) &= Cn - (1-p)C(n-1) - pC(n-2) \\ &= C(n(1-(1-p)+p)+(1-p)+2p) \\ &= C(1+p) \end{align*} Therefore if \(C = \frac{1}{1+p}\) we have that: \(M(n) = A(-p)^n + B + Cn\) satisfies our recurrence. We also need \(M(0) = 0\) and \(M(1) = q\) \begin{align*} 0 &= M(0) \\ &= A + B \\ 1-p &= M(1) \\ &= -pA+B \end{align*} \((1+p)A = p-1 \Rightarrow A = \frac{p-1}{1+p}, B = \frac{1-p}{1+p}\). Therefore: \[ M(n) = -\frac{1-p}{1+p}(-p)^n + \frac{1-p}{1+p} + \frac{n}{1+p} \] is a possible solution to this equation
1988 Paper 3 Q2
D: 1700.0 B: 1555.0

The real numbers \(u_{0},u_{1},u_{2},\ldots\) satisfy the difference equation \[ au_{n+2}+bu_{n+1}+cu_{n}=0\qquad(n=0,1,2,\ldots), \] where \(a,b\) and \(c\) are real numbers such that the quadratic equation \[ ax^{2}+bx+c=0 \] has two distinct real roots \(\alpha\) and \(\beta.\) Show that the above difference equation is satisfied by the numbers \(u_{n}\) defined by \[ u_{n}=A\alpha^{n}+B\beta^{n}, \] where \[ A=\frac{u_{1}-\beta u_{0}}{\alpha-\beta}\qquad\mbox{ and }\qquad B=\frac{u_{1}-\alpha u_{0}}{\beta-\alpha}. \] Show also, by induction, that these numbers provide the only solution. Find the numbers \(v_{n}\) \((n=0,1,2,\ldots)\) which satisfy \[ 8(n+2)(n+1)v_{n+2}-2(n+3)(n+1)v_{n+1}-(n+3)(n+2)v_{n}=0 \] with \(v_{0}=0\) and \(v_{1}=1.\)

Show Solution
First notice that \(u_n = \alpha^n\) and \(u_n = \beta^n\) both satisfy the recurrence, since: \begin{align*} && a \alpha^2 + b \alpha + c &= 0 \\ \Rightarrow && a \alpha^{n+2} + b \alpha^{n+1} + c \alpha^n &= 0 \\ \Rightarrow && a u_{n+2} + bu_{n+1} + cu_n &=0 \end{align*} Notice also that if \(u_n\) and \(v_n\) both satisfy the recurrence, then any linear combination of them will satisfy the recurrence: \begin{align*} && \begin{cases} au_{n+2} + bu_{n+1} + cu_n &= 0 \\ av_{n+2} + bv_{n+1} + cv_n &= 0 \\ \end{cases} \\ \Rightarrow && a (\lambda u_{n+2}+ \mu v_{n+2}) + b (\lambda u_{n+1}+ \mu v_{n+1}) + c (\lambda u_{n}+ \mu v_{n}) &= 0 \end{align*} by adding a linear combination of the top two equations. Therefore it suffices to check that the constants \(A\) and \(B\) are such that we match \(u_0\) and \(u_1\). \(\frac{u_1 - \beta u_0}{\alpha - \beta} + \frac{u_1 - \alpha u_0}{\beta - \alpha} = u_0\) and \(\frac{u_1 - \beta u_0}{\alpha - \beta}\alpha + \frac{u_1 - \alpha u_0}{\beta - \alpha}\beta = u_1\). So we are done. Suppose we have another sequence, then we first notice that the first and second terms must be identical to each other. Suppose the first \(k\) terms are identical, then since the \(k+1\)th term depends only on the \(k\) and \(k-1\)th terms (both of which are equal) the \(k+1\)th term is the same. Therefore, by the principle of mathematical induction, all terms are the same. First notice that if you put \(v_n = (n+1)w_n\) we have \begin{align*} && 8(n+3)(n+2)(n+1)w_{n+2} - 2(n+3)(n+2)(n+1)w_{n+1} - (n+3)(n+2)(n+1)w_n &= 0 \\ \Rightarrow && 8w_{n+2}-2w_{n+1}-w_n &= 0 \end{align*} This has characteristic equation \(8\lambda^2 - 2\lambda - 1 = 0 \Rightarrow \lambda = \frac12, -\frac14\). Therefore the general solution is \(w_n = A \l \frac12 \r^n + B \l -\frac14\r^n\) and \(v_n = (n+1)\l A \l \frac12 \r^n + B \l -\frac14\r^n \r\). When \(n = 0\) we have \(A+B = 0 \Rightarrow B =-A\). When \(n=1\) we have \(1 = 2 \l \frac{A}{2} + \frac{A}{4} \r \Rightarrow A = \frac{4}{3}\), therefore \[ v_n = \frac{4}{3}(n+1) \l \frac{1}{2^n} + \l -\frac14\r^n \r\]

Showing 1-2 of 2 problems
1987 Paper 3 Q5
D: 1500.0 B: 1500.0

A secret message consists of the numbers \(1,3,7,23,24,37,39,43,43,43,45,47\) arranged in some order as \(a_{1},a_{2},\ldots,a_{12}.\) The message is encoded as \(b_{1},b_{2},\ldots,b_{12}\) with \(0\leqslant b_{j}\leqslant49\) and \begin{alignat*}{1} b_{2j} & \equiv a_{2j}+n_{0}+j\pmod{50},\\ b_{2j+1} & \equiv a_{2j+1}+n_{1}+j\pmod{50}, \end{alignat*} for some integers \(n_{0}\) and \(n_{1}.\) If the coded message is \(35,27,2,36,15,35,8,40,40,37,24,48,\) find the original message, explaining your method carefully.

Show Solution
Considering the odd numbers, we have \begin{array}{l|rrrrrr} b_{2j+1} & 35 & 2 & 15 & 8 & 40 & 24 \\ a_{2j+1}+n_1 & 35 & 1 & 13 & 5 & 36 & 19 \end{array} Considering the even numbers, we have \begin{array}{l|rrrrrr} b_{2j} & 27& 36 & 35 & 40 & 37 & 48 \\ a_{2j}+n_0 & 27 & 35 & 33 & 37 & 33 & 43 \end{array} There are three numbers in the original sequence which are repeated (\(43\)). By the pigeonhole principle, one of the odds or evens must have at least two of them. We can see that the even numbers have some number repeated twice (\(33\)). Therefore these must be the \(43\)s. Therefore \(n_0 = -10\) \begin{array}{l|rrrrrr} b_{2j} & 27& 36 & 35 & 40 & 37 & 48 \\ a_{2j}+n_0 & 27 & 35 & 33 & 37 & 33 & 43 \\ a_{2j} & 37 & 45 & 43 & 47 & 43 & 3 \end{array} This leaves the remaining numbers to be decoded from the original sequence as \(1,7,23,24,39,43\). Two of these numbers are consecutive (\(23\) and \(24\)), and two numbers in our sequence are \(35\) and \(36\). Therefore \(n_1\) must be \(12\). \begin{array}{l|rrrrrr} b_{2j+1} & 35 & 2 & 15 & 8 & 40 & 24 \\ a_{2j+1}+n_1 & 35 & 1 & 13 & 5 & 36 & 19 \\ a_{2j+1} & 23 & 39 & 1 &43 & 24& 7 \end{array} Therefore the original sequence was: \(23, 37, 39, 45, 1, 43, 43, 47, 24, 43, 7, 3\)
1993 Paper 2 Q7
D: 1600.0 B: 1491.2

The integers \(a,b\) and \(c\) satisfy \[ 2a^{2}+b^{2}=5c^{2}. \] By considering the possible values of \(a\pmod5\) and \(b\pmod5\), show that \(a\) and \(b\) must both be divisible by \(5\). By considering how many times \(a,b\) and \(c\) can be divided by \(5\), show that the only solution is \(a=b=c=0.\)

Show Solution
\begin{array}{c|ccccc} a & 0 & 1 & 2 & 3 & 4 \\ a^2 & 0 & 1 & 4 & 4 & 1 \end{array} Therefore \(a^2 \in \{0,1,4\}\) and so we can have \begin{array} $2a^2+b^2 & 0 & 1 & 4 \\ \hline 0 & 0 & 1 & 4 \\ 1 & 2 & 3 & 1 \\ 4 & 3 & 4 & 2 \end{array} Therefore the only solution must have \(5 \mid a,b\), but then we can write them has \(5a'\) and \(5b'\) so the equation becomes \(2\cdot25 a'^2 + 25b'^2 = 5c^2\) ie \(5 \mid c^2 \Rightarrow 5 \mid c\). But that means we can always divide \((a,b,c)\) by \(5\), which is clearly a contradiction if we consider the lowest power of \(5\) dividing \(a,b,c\) for any solution.

Showing 1-3 of 3 problems
1997 Paper 3 Q5
D: 1700.0 B: 1484.0

Find the ratio, over one revolution, of the distance moved by a wheel rolling on a flat surface to the distance traced out by a point on its circumference.

Show Solution
The point on the circumference will have position \((a\cos t, a \sin t )\) relative to the circumference where \(t \in [0, 2\pi]\). the wheel will travel \(2\pi a\), therefore the position is \((a\cos t + at, a \sin t )\). The total distance travelled can be computed using the arc length: \begin{align*} && s &= \int_0^{2\pi} \sqrt{\left ( \frac{\d y}{\d t} \right)^2 +\left ( \frac{\d x}{\d t} \right)^2} \d t \\ &&&= \int_0^{2\pi} \sqrt{(a - a\sin t)^2 +(a \cos t)^2 } \d t \\ &&&= a \int_0^{2\pi} \sqrt{2 - 2 \sin t } \d t \\ &&&= \sqrt{2}a \int_0^{2 \pi} \sqrt{1 - \sin t} \d t \\ &&&= \sqrt{2}a \int_0^{2 \pi} \frac{|\cos t|}{\sqrt{1 + \sin t}} \d t \\ &&&= 2\sqrt{2} a \int_{-\pi/2}^{\pi/2} \frac{\cos t}{\sqrt{1+\sin t}} \d t \\ &&&= 2\sqrt{2} a \left [ 2\sqrt{1+\sin t} \right]_{-\pi/2}^{\pi/2} \\ &&& = 2\sqrt{2} a 2\sqrt{2} \\ &&&= 8a \end{align*} Therefore the ratio is \(\frac{4}{\pi}\)
1993 Paper 3 Q1
D: 1700.0 B: 1500.0

The curve \(P\) has the parametric equations $$ x= \sin\theta, \quad y=\cos2\theta \qquad\hbox{ for }-\pi/2 \le \theta \le \pi/2. $$ Show that \(P\) is part of the parabola \(y=1-2x^2\) and sketch \(P\). Show that the length of \(P\) is \(\surd (17) + {1\over 4} \sinh^{-1}4\). Obtain the volume of the solid enclosed when \(P\) is rotated through \(2\pi\) radians about the line \(y=-1\).

Show Solution
First notice that \(y = \cos 2 \theta = 1 - 2\sin^2 \theta = 1- 2x^2\), therefore \(P\) is lies on that parabola.
TikZ diagram
The arc length is \begin{align*} && s &= \int_{-\pi/2}^{\pi/2} \sqrt{\left ( \frac{\d x}{\d \theta} \right)^2+\left ( \frac{\d y}{\d \theta} \right)^2} \d \theta\\ && &= \int_{-\pi/2}^{\pi/2} \sqrt{\cos^2 \theta+16 \sin^2 \theta \cos^2 \theta } \d \theta\\ && &= \int_{-\pi/2}^{\pi/2} \cos \theta\sqrt{1+16 \sin^2 \theta} \d \theta\\ u = \sin \theta, \d u = \cos \theta \d \theta && &= \int_{u=-1}^{u=1} \sqrt{1+16 u^2} \d u\\ 4u = \sinh v, 4\d u = \cosh v: && &= \int_{v=-\sinh^{-1} 4}^{v=\sinh^{-1} 4} \sqrt{1+\sinh^2 v} \tfrac14\cosh v \d v\\ && &= \frac14 \int_{-\sinh^{-1} 4}^{\sinh^{-1} 4} \cosh^2 v \d v\\ && &= \frac18 \int_{-\sinh^{-1} 4}^{\sinh^{-1} 4} (1 + \cosh 2v) \d v\\ && &= \frac14 \sinh^{-1} 4 + \frac18\left [ \frac12\sinh 2v \right]_{-\sinh^{-1} 4}^{\sinh^{-1} 4}\\ && &= \frac14 \sinh^{-1} 4 + \frac18\left [ \sinh v \sqrt{1 + \sinh^2 v} \right]_{-\sinh^{-1} 4}^{\sinh^{-1} 4}\\ && &= \frac14 \sinh^{-1} 4 + \left (\frac18 \cdot 4 \sqrt{17} \right) - \left (\frac18 \cdot (-4) \sqrt{17} \right)\\ && &= \frac14 \sinh^{-1} 4 + \sqrt{17}\\ \end{align*} The volume of revolution is \begin{align*} && V &=\pi \int_{-1}^1 (2-2x^2)^2 \d x \\ &&&= \pi \left [4x-\frac83x^3+\frac45x^5 \right]_{-1}^1 \\ &&&= \pi \left ( 8-\frac{16}3+\frac85 \right) \\ &&&= \frac{64}{15}\pi \end{align*}
1988 Paper 3 Q4
D: 1700.0 B: 1472.3

A kingdom consists of a vast plane with a central parabolic hill. In a vertical cross-section through the centre of the hill, with the \(x\)-axis horizontal and the \(z\)-axis vertical, the surface of the plane and hill is given by \[ z=\begin{cases} \dfrac{1}{2a}(a^{2}-x^{2}) & \mbox{ for }\left|x\right|\leqslant a,\\ 0 & \mbox{ for }\left|x\right|>a. \end{cases} \] The whole surface is formed by rotating this cross-section about the \(z\)-axis. In the \((x,z)\) plane through the centre of the hill, the king has a summer residence at \((-R,0)\) and a winter residence at \((R,0)\), where \(R>a.\) He wishes to connect them by a road, consisting of the following segments: \begin{itemize} \item a path in the \((x,z)\) plane joining \((-R,0)\) to \((-b,(a^{2}-b^{2})/2a),\) where \(0\leqslant b\leqslant a.\) \item a horizontal semicircular path joining the two points \((\pm b,(a^{2}-b^{2})/2a),\) if \(b\neq0;\) \item a path in the \((x,z)\) plane joining \((b,(a^{2}-b^{2})/2a)\) to \((R,0).\) \end{itemiz} The king wants the road to be as short as possible. Advise him on his choice of \(b.\)

Show Solution
The path can be broken down into \(5\) sections. 1. The section from \((-R,0)\) to \((-a,0)\) which will have distance \(R-a\) and is unchangeable. 2. The distance from \((-a,0)\) to \((-b, \frac{a^2-b^2}{2a})\) whose distance we will calculate shortly. 3. The distance from \((-b, \frac{a^2-b^2}{2a})\) to \((b, \frac{a^2-b^2}{2a})\) which will have distance \(\pi b\). 4. The distance from \((b, \frac{a^2-b^2}{2a})\) to \((a,0)\) which will have the same distance as 2. 5. The distance from \((a,0)\) to \((R,0)\) which will have distance \(R-a\) and we have no control over. \begin{align*} \text{distance 2.} &= \int_b^a \sqrt{1 + \left ( \frac{x}{a}\right)^2 } \d x \end{align*} We want to minimize the total, by varying \(b\), so it makes sense to differentiate and set to zero. \begin{align*} &&0&= -2\sqrt{1+\frac{b^2}{a^2}} + \pi \\ \Rightarrow && \frac{\pi^2}{4} &= 1 + \frac{b^2}{a^2} \\ \Rightarrow && b &= a \sqrt{\frac{\pi^2}{4}-1} \end{align*} Since \(\pi \approx 3\) this point is outside our range \(0 \leq b \leq a\), and our derivative is always positive. Therefore the distance is always increasing and the king would be better off going around the hill as soon as he arrives at it.

Showing 1-14 of 14 problems
1987 Paper 3 Q9
D: 1500.0 B: 1500.0

Let \((G,*)\) and \((H,\circ)\) be two groups and \(G\times H\) be the set of ordered pairs \((g,h)\) with \(g\in G\) and \(h\in H.\) A multiplication on \(G\times H\) is defined by \[ (g_{1},h_{1})(g_{2},h_{2})=(g_{1}*g_{2},h_{1}\circ h_{2}) \] for all \(g_{1},g_{2}\in G\) and \(h_{1},h_{2}\in H\). Show that, with this multiplication, \(G\times H\) is a group. State whether the following are true or false and prove your answers.

  1. \(G\times H\) is abelian if and only if both \(G\) and \(H\) are abelian.
  2. \(G\times H\) contains a subgroup isomorphic to \(G\).
  3. \(\mathbb{Z}_{2}\times\mathbb{Z}_{2}\) is isomorphic to \(\mathbb{Z}_{4}.\)
  4. \(S_{2}\times S_{3}\) is isomorphic to \(S_{6}.\)
{[}\(\mathbb{Z}_{n}\) is the cyclic group of order \(n\), and \(S_{n}\) is the permutation group on \(n\) objects.{]}

Show Solution
Claim: \(G \times H\) is a group. (Called the product group). Proof: Checking the group axioms:
  1. (Closure) is inherited from \(G\) and \(H\), since \(g_1 * g_2 \in G\) and \(h_1 \circ h_2 \in H\)
  2. (Associativity) \begin{align*} (g_1, h_1)\l (g_2, h_2)(g_3,h_3)\r &= (g_1, h_1)(g_2 *g_3, h_2 \circ h_3) \\ &= (g_1*(g_2 *g_3), h_1 \circ (h_2 \circ h_3)) \\ &= ((g_1*g_2) *g_3), (h_1 \circ h_2) \circ h_3) \\ &= (g_1*g_2, h_1 \circ h_2)(g_3, h_3) \\ &= \l(g_1, h_1)(g_2, h_2) \r(g_3,h_3) \end{align*}
  3. (Identity) Consider \((e_G, e_H)\), then \((e_G, e_H)(g,h) = (g,h) = (g,h)(e_G, e_H)\)
  4. (Inverses) If \((g,h) \in G \times H\) then consider \((g^{-1}, h^{-1})\) and we have \((g^{-1}, h^{-1})(g,h) = (e_G,e_H) = (g,h)(g^{-1}, h^{-1})\)
  • Claim: \(G \times H\) is abelian iff \(G\) and \(H\) are. Proof: \(\Rightarrow\) Suppose \(g_1, g_2 \in G\) and \(h_1, h_2 \in H\) then \((g_1, g_2)(h_1,h_2) = (g_1 * g_2, h_1 \circ h_2) = (h_1,h_2)(g_1, g_2) = (g_2 * g_1, h_2 \circ h_1)\) so \(g_1*g_2 = g_2*g_1\) and \(h_1 \circ h_2 = h_2 \circ h_1\), therefore \(G\) and \(H\) are commutative. \(\Leftarrow\) If \(H\) and \(G\) are commutative then: \((g_1, g_2)(h_1,h_2) = (g_1 * g_2, h_1 \circ h_2) = (g_2 * g_1, h_2 \circ h_1) = (h_1,h_2)(g_1, g_2)\) so \(G \times H\) is commutative.
  • Claim: \(G\times H\) contains a subgroup isomorphic to \(G\). Consider the subset \(S = \{(g,e_H) : g \in G \}\). Then this is a subgroup isomorphic to \(G\) with isomorphism given by \(\phi : S \to G\) by \(\phi((g,e_H)) = g\)
  • If \(x \in \mathbb{Z}_2 \times \mathbb{Z}_2\) then \(x^2 = e\), but \(1\) does not have order 2 in \(\mathbb{Z}_4\)
  • \(S_2 \times S_3\) has order \(2 \times 6 = 12\). \(S_6\) has order \(6! \neq 12\)
1987 Paper 2 Q10
D: 1500.0 B: 1500.0

The set \(S\) consists of \(N(>2)\) elements \(a_{1},a_{2},\ldots,a_{N}.\) \(S\) is acted upon by a binary operation \(\circ,\) defined by \[ a_{j}\circ a_{k}=a_{m}, \] where \(m\) is equal to the greater of \(j\) and \(k\). Determine, giving reasons, which of the four group axioms hold for \(S\) under \(\circ,\) and which do not. Determine also, giving reasons, which of the group axioms hold for \(S\) under \(*\), where \(*\) is defined by \[ a_{j}*a_{k}=a_{n}, \] where \(n=\left|j-k\right|+1\).

Show Solution
  1. (Closure) This operation is clearly closed by construction
  2. (Associative) \(a_j \circ (a_k \circ a_l) = a_j \circ a_{\max(k,l)} = a_{\max(j,k,l)} = a_{\max(j,k)} \circ a_l = (a_j \circ a_k) \circ a_l\), so it is associative
  3. (Identity) \(a_1 \circ a_k = a_{\max(1,k)} = a_k = a_{\max(k,1)} = a_k \circ a_1\) so \(a_1\) is an identity.
  4. (Inverses) There is no inverse, since \(a_N \circ a_k = a_N\) for all \(k\), and hence \(a_N\) can have no inverse.
  1. (Closure) \(n = |j-k|+1 \geq 1\) so we need to show that \(n \leq N\) to ensure closure. This is true since the largest \(j-k\) can be is if \(j = N\) and \(k = 1\), and this also satisfies \(|j-k| + 1 \leq N\). Hence the operation is closed.
  2. (Associative) \(a_j * (a_k * a_l) = a_j * (a_{|k-l|+1}) = a_{|j-|k-l|-1|+1}\). \((a_j * a_k) * a_l = a_{|j-k|+1}*a_l = a_{|l-|j-k|-1|+1}\). \(a_2 * (a_2 * a_3) = a_2 * a_2 = a_1\). \((a_2 *a_2)*a_3 = a_1 * a_3 = a_3 \neq a_2\) therefore this isn't associative for any \(N > 2\)
  3. (Identity) \(a_1\) is an identity, since \(a_1 * a_k = a_{|k-1|+1} = a_{k-1+1} = a_k\).
  4. (Inverse) Every element is self-inverse since \(a_k * a_k = a_{|k-k|+1} = a_1\)
1999 Paper 3 Q7
D: 1680.5 B: 1516.0

Let \(a\) be a non-zero real number and define a binary operation on the set of real numbers by $$ x*y = x+y+axy \,. $$ Show that the operation \(*\) is associative. Show that \((G,*)\) is a group, where \(G\) is the set of all real numbers except for one number which you should identify. Find a subgroup of \((G,*)\) which has exactly 2 elements.

Show Solution
Claim: \(*\) is associative. Proof: Then \(x*(y*z) = x*(y+z+ayz) = x + (y+z+ayz) + ax(y+z+ayz) = x + y + z + a(yz + xy + zx) + a^2xyz\) and \((x*y)*z = (x+y+axy)*z = (x+y+axy) + z+ a(x+y+axy)z = x + y + z + a(yz + xy + zx) + a^2xyz\) so \(x*(y*z) = (x*y)*z\) and we are done. Let \(G = \mathbb{R} \setminus \{-\frac1{a} \}\) In order to show that \((G, *)\) is a group we need to check:
  1. closure \(x*y = x + y + axy\) is a real number
  2. associativity we have already checked
  3. identity \(x*0 = x + 0 + 0 = x = 0*x\), so \(0\) is an identity
  4. inverses \(x*\left ( \frac{-x}{1+ax} \right ) = x - \frac{x}{1+ax} + ax \frac{-x}{1+ax} = \frac{x +ax^2 - x - ax^2}{1+ax} = 0\) so \(x\) has an identity, assuming \(1+ax \neq 0\) which is true for everything in our set
Consider the set \(\{0, \frac{-2}{a} \}\). Then \(\frac{-2}{a} * \frac{-2}{a} = \frac{-4}{a} + a \frac{4}{a^2} = 0\), so this is a group of order \(2\)
1996 Paper 3 Q6
D: 1674.0 B: 1529.9

  1. Let \(S\) be the set of matrices of the form \[ \begin{pmatrix}a & a\\ a & a \end{pmatrix}, \] where \(a\) is any real non-zero number. Show that \(S\) is closed under matrix multiplication and, further, that \(S\) is a group under matrix multiplication.
  2. Let \(G\) be a set of \(n\times n\) matrices which is a group under matrix multiplication, with identity element \(\mathbf{E}.\) By considering equations of the form \(\mathbf{BC=D}\) for suitable elements \(\mathbf{B},\) \(\mathbf{C}\) and \(\mathbf{D}\) of \(G\), show that if a given element \(\mathbf{A}\) of \(G\) is a singular matrix (i.e. \(\det\mathbf{A}=0\)), then all elements of \(G\) are singular. Give, with justification, an example of such a group of singular matrices in the case \(n=3.\)

Show Solution
  1. Let $\mathbf{A} = \begin{pmatrix}1 & 1\\ 1 & 1 \end{pmatrix}\(, then we need to show that \)(a\mathbf{A})(b\mathbf{A})\( is of the form \)cA\( where \)a, b, c \neq 0$. Since $\mathbf{A}^2 = \begin{pmatrix}2 & 2\\ 2 & 2 \end{pmatrix} = 2\mathbf{A}\( this is certainly the case, since \)(a\mathbf{A})(b\mathbf{A}) = 2ab\mathbf{A}$. To check that we have a group be need to check:
    • Closure (done)
    • Associativity (inherited from matrix multiplication)
    • Identity (\(\frac12 \mathbf{A}\))
    • Inverses the inverse of \(a\mathbf{A}\) is \(\frac{1}{4a}\mathbf{A}\)
  2. Suppose \(\mathbf{A}\) is singular (ie \(\det\mathbf{A}=0\)), then \(\mathbf{AA^{-1}B=B}\) (where inverse is the group inverse rather than the matrix inverse) for any matrix \(\mathbf{B}\). Taking determinants we have: \(\det(\mathbf{AA^{-1}B}) = \det(B) \Rightarrow \det(A) \det(A^{-1}B) = \det(B) \Rightarrow 0 = \det(B)\), ie all matrices are singular. Consider the set of non-zero multiples of \(\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\), then the same logic as part (i) will suffice
1995 Paper 3 Q7
D: 1654.7 B: 1516.0

Consider the following sets with the usual definition of multiplication appropriate to each. In each case you may assume that the multiplication is associative. In each case state, giving adequate reasons, whether or not the set is a group.

  1. the complex numbers of unit modulus;
  2. the integers modulo 4;
  3. the matrices \[ \mathrm{M}(\theta)=\begin{pmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}, \] where \(0\leqslant\theta<2\pi\);
  4. the integers \(1,3,5,7\) modulo 8;
  5. the \(2\times2\) matrices all of whose entries are integers;
  6. the integers \(1,2,3,4\) modulo 5.
In the case of each pair of groups above state, with reasons, whether or not they are isomorphic.

Show Solution
  1. \(\{ z \in \mathbb{C} : |z| = 1\}\) is a group.
    1. (Closure) \(|z_1z_2| = |z_1||z_2| = 1\). Set is closed under multiplication
    2. (Associativity) Multiplication of complex numbers is associative
    3. (Identity) \(|1| = 1\)
    4. (Inverses) \(| \frac{1}{z} | = \frac{1}{|z|} = \frac{1}{1} = 1\), the set contains inverses
  2. the integers \(\pmod{4}\) are not a group under multiplication, \(2\) has no inverse, since \(0 \times k \equiv 0 \pmod{4}\)
  3. The set of rotation matrices is a group:
    1. (Closure) \begin{align*} \begin{pmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1 \end{pmatrix} \begin{pmatrix}\cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2 \end{pmatrix} &= {\scriptscriptstyle\begin{pmatrix}\cos\theta_1 \cos \theta_2 - \sin \theta_1\sin \theta_2 & -\sin\theta_1\ \cos \theta_1 - \sin \theta_2\cos\theta_1\\ \sin\theta_1\ \cos \theta_1 + \sin \theta_2\cos\theta_1 & \cos\theta_1 \cos \theta_2 - \sin \theta_1\sin \theta_2 \end{pmatrix}} \\ &= \begin{pmatrix}\cos(\theta_1+\theta_2) & -\sin(\theta_1+\theta_2)\\ \sin(\theta_1+\theta_2) & \cos(\theta_1+\theta_2) \end{pmatrix} \end{align*} Since \(\cos, \sin\) are periodic with period \(2\pi\), we can find \(\theta_3 = \theta_1 + \theta_2 + 2k\pi\) such that \(0 \leq \theta_3 < 2 \pi\), so our set is closed
    2. (Associativity) Matrix multiplication is associative
    3. (Identity) Consider \(\theta = 0\)
    4. (Inverses) Consider \(2\pi - \theta\)
  4. \(\{1, 3, 5, 7\} \pmod{8}\) is a group: \begin{tabular}{c|cccc} & 1 & 3 & 5 & 7 \\ \hline 1 & 1 & 3 & 5 & 7 \\ 3 & 3 & 1 & 7 & 5 \\ 5 & 5 & 7 & 1 & 3 \\ 7 & 7 & 5 & 3 & 1 \\ \end{tabular}
    1. (Closure) See Cayley table
    2. (Associativity) Integer multiplication is associative
    3. (Identity) \(1\)
    4. (Inverses) \(x \mapsto x\) (See Cayley table)
  5. \(2\times2\) matrices are not a group, consider $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\(, then \)\mathbf{0}\mathbf{M} = \mathbf{0}$ for all other matrices.
  6. \begin{tabular}{c|cccc} & 1 & 2 & 3 & 4 \\ \hline 1 & 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 1 & 3 \\ 3 & 3 & 1 & 4 & 2 \\ 4 & 4 & 3 & 2 & 1 \\ \end{tabular}
    1. (Closure) See Cayley table
    2. (Associativity) Integer multiplication is associative
    3. (Identity) \(1\)
    4. (Inverses) \(1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 2, 4 \mapsto 4\) (See Cayley table)
\begin{tabular}{c|c|c|c|c} & (i) & (iii) & (iv) & (vi) \\ \hline (i) & \(\checkmark\) & \(\checkmark\) consider \(z \mapsto \begin{pmatrix} \cos \arg (z) & - \sin \arg(z) \\ \sin \arg(z) & \cos \arg(z) \end{pmatrix}\) & not finite & not finite \\ (iii) & & \(\checkmark\) & not finite & not finite \\ (iv) & & & \(\checkmark\) & no element order \(4\) \\ (vi) & & & & \(\checkmark\)\\ \end{tabular}
1994 Paper 3 Q7
D: 1679.5 B: 1503.1

Let \(S_{3}\) be the group of permutations of three objects and \(Z_{6}\) be the group of integers under addition modulo 6. List all the elements of each group, stating the order of each element. State, with reasons, whether \(S_{3}\) is isomorphic with \(Z_{6}.\) Let \(C_{6}\) be the group of 6th roots of unity. That is, \(C_{6}=\{1,\alpha,\alpha^{2},\alpha^{3},\alpha^{4},\alpha^{5}\}\) where \(\alpha=\mathrm{e}^{\mathrm{i}\pi/3}\) and the group operation is complex multiplication. Prove that \(C_{6}\) is isomorphic with \(Z_{6}.\) Is there any (multiplicative or additive) subgroup of the complex numbers which is isomorphic with \(S_{3}\)? Give a reason for your answer.

Show Solution
\(S_3 \) $\begin{array}{c | c |c |c |c |c |c |} \text{elements} & e & (12) & (13) & (23) & (123) & (132) \\ \text{order} & 1 & 2 & 2 & 2 & 3 & 3 \\ \end{array}$ \(\mathbb{Z}_6\) $\begin{array}{c | c |c |c |c |c |c |} \text{elements} & 0 & 1 & 2 & 3 & 4 & 5 \\ \text{order} & 1 & 6 & 3 & 2 & 3 & 6 \\ \end{array}$ \(S_3\) is not isomorphic to \(\mathbb{Z}_6\) since \(\mathbb{Z}_6\) has two elements of order \(6\) but \(S_3\) has none. Consider the map \(f : \mathbb{Z}_6 \to C_6\) with \(i \mapsto \alpha^i\). This is an isomorphism, since \(i + j \mapsto \alpha^{i+j} = \alpha^i\alpha^j\) \(S_3\) is non-abelian, since \((12)(123) = (23) \neq (13) = (123)(12)\) but multiplication and addition of complex numbers is commutative.
1993 Paper 3 Q5
D: 1730.5 B: 1466.6

The set \(S\) consists of ordered pairs of complex numbers \((z_1,z_2)\) and a binary operation \(\circ\) on \(S\) is defined by $$ (z_1,z_2)\circ(w_1,w_2)= (z_1w_1-z_2w^*_2, \; z_1w_2+z_2w^*_1). $$ Show that the operation \(\circ\) is associative and determine whether it is commutative. Evaluate \((z,0)\circ(w,0)\), \((z,0)\circ(0,w)\), \((0,z)\circ(w,0)\) and \((0,z)\circ(0,w)\). The set \(S_1\) is the subset of \(S\) consisting of \(A\), \(B\), \(\ldots\,\), \(H\), where \(A=(1,0)\), \(B=(0,1)\), \(C=(i,0)\), \(D=(0,i)\), \(E=(-1,0)\), \(F=(0,-1)\), \(G=(-i,0)\) and \(H=(0,-i)\). Show that \(S_1\) is closed under \(\circ\) and that it has an identity element. Determine the inverse and order of each element of \(S_1\). Show that \(S_1\) is a group under \(\circ\). \hfil\break [You are not required to compute the multiplication table in full.] Show that \(\{A,B,E,F\}\) is a subgroup of \(S_1\) and determine whether it is isomorphic to the group generated by the \(2\times2\) matrix $\begin{pmatrix}0 & 1\\ -1 & 0 \end{pmatrix}$ under matrix multiplication.

1992 Paper 2 Q5
D: 1577.1 B: 1470.1

Explain what is meant by the order of an element \(g\) of a group \(G\). The set \(S\) consists of all \(2\times2\) matrices whose determinant is \(1\). Find the inverse of the element \(\mathbf{A}\) of \(S\), where \[ \mathbf{A}=\begin{pmatrix}w & x\\ y & z \end{pmatrix}. \] Show that \(S\) is a group under matrix multiplication (you may assume that matrix multiplication is associative). For which elements \(\mathbf{A}\) is \(\mathbf{A}^{-1}=\mathbf{A}\)? Which element or elements have order 2? Show that the element \(\mathbf{A}\) of \(S\) has order 3 if, and only if, \(w+z+1=0.\) Write down one such element.

Show Solution
The order of an element \(g\) is the smallest positive number \(k\) such that \(g^k = e\). $\mathbf{A}^{-1} = \begin{pmatrix}z & -x\\ -y & w \end{pmatrix}$. Claim, \(S\) is a group. \begin{enumerate} \item (Closure) The product of two \(2\times2\) matrices is always a \(2\times 2\) matrix so we only need to check the determinant. Suppose \(\det(\mathbf{A}) = \det (\mathbf{B}) = 1\), then \(\det(AB) = \det(A)\det(B) = 1\), so our operation is closed \item (Associativity) Inherited from matrix multiplication \item (Identity) $\mathbf{I} =\begin{pmatrix}1 & 0\\ 1 & 1 \end{pmatrix}\( has determinant \)1$. \item (Inverses) The inverse is always fine since the matrix of cofactors always contains integers and the determinant is one, so we never end up with anything which isn't an integer. \end{itemize} If \(\mathbf{A}^-1 = \mathbf{A}\) then assuming $\mathbf{A} = \begin{pmatrix}a & b\\ c & d \end{pmatrix}\( then \)\mathbf{A}^{-1} = \begin{pmatrix}d & - b\\ -c & a \end{pmatrix}\( so we must have \)a=d, -b=b, -c=c\(, so \)b = c = 0\( and \)a = d\(. For the determinant to be \)1\( we must have \)ad = a^2 = 1\(, ie \)a = \pm 1\(. Therefore we must have \)\mathbf{A} = \begin{pmatrix}1 & 0\\ 0 & 1 \end{pmatrix}\( or \)\mathbf{A} = \begin{pmatrix}-1 & 0\\ 0 & -1 \end{pmatrix}$. For an element to have order \(2\) then \(\mathbf{A}^2 = \mathbf{I}\) ie, \(\mathbf{A} = \mathbf{A}^{-1}\) and \(\mathbf{A} \neq \mathbf{I}\) therefore the only element of order \(2\) is $\begin{pmatrix}-1 & 0\\ 0 & -1 \end{pmatrix}$. For an element to have order \(3\) we must have \(\mathbf{A}^2 = \mathbf{A}^{-1}\), ie $\begin{pmatrix}w^2 + xy & x(w+z)\\ y(w+z) & z^2 + xy \end{pmatrix} = \begin{pmatrix}z & -x\\ -y & w \end{pmatrix}$. Therefore \(w^2 + xy = z, x(w+z) = -x, y(w+z) = -y, z^2+xy = w\). The second and third equations are satisfied iff \(w+z+1 = 0\) or \(x = 0\) and \(y = 0\), but if \(x = 0\) and \(y = 0\) then we aren't order \(3\), so we just need to check this is sufficient for the first and last equations. Since \(\det(\mathbf{A}) = 1\) we have \(wz =xy +1\), so the first and last equations are equivalent to \(w^2 + wz - 1 = z\) and \(x^2 + wz-1 = w\) which are equivalent to \(w(w+z) = z+1\) or \(w + z+ 1 = 0\) as required
1991 Paper 2 Q9
D: 1616.2 B: 1500.0

Let \(G\) be the set of all matrices of the form \[ \begin{pmatrix}a & b\\ 0 & c \end{pmatrix}, \] where \(a,b\) and \(c\) are integers modulo 5, and \(a\neq0\neq c\). Show that \(G\) forms a group under matrix multiplication (which may be assumed to be associative). What is the order of \(G\)? Determine whether or not \(G\) is commutative. Determine whether or not the set consisting of all elements in \(G\) of order \(1\) or \(2\) is a subgroup of \(G\).

Show Solution
Claim \(G\) is a group under matrix multiplication
  • (Closure) Suppose \(\mathbf{A}\) and \(\mathbf{B}\) are matrices of that form, then \(\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 & a_1b_2 + b_1c_2 \\ 0 & c_1c_2 \end{pmatrix}\), this is clearly of the required form since if \(a_1, a_2, c_1, c_2 \neq 0\) then \(a_1a_2, c_1c_2 \neq 0\)
  • (Associative) By inheritance from matrix multiplication
  • (Identity) Consider \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) also clearly of the required form.
  • (Inverse) Consider \((ac)^{-1}\begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}\), since \(ac \neq 0\) we can assume it has an inverse mod \(5\). therefore we have another matrix of the required form.
There are \(4\) possible values for \(a\) and \(c\) and \(5\) possible values for \(b\), so \(4 \times 4 \times 5 = 80\) elements, so the group is order \(80\). \(G\) is not commutative, consider \(\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}\) \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}\) The elements of order \(1\) or \(2\) satisfy \(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a^{-1} & -ba^{-1}c^{-1} \\ 0 & c^{-1} \end{pmatrix}\) Therefore \(a^2 = 1, c^2 = 1 \Rightarrow a, c = 1, 4\) and \(b = -ba^{-1}c^{-1} \Rightarrow b = 0\) or , \(ac = -1\), so we have \((a,b,c) = (1,0,1), (4,0,4), (1, *, 4), (4, *, 1)\) So there are \(12\) elements of order \(1\) or \(2\). But this can't be a subgroup since \(12 \not \mid 80\)
1990 Paper 3 Q3
D: 1667.9 B: 1490.9

The elements \(a,b,c,d\) belong to the group \(G\) with binary operation \(*.\) Show that

  1. if \(a,b\) and \(a*b\) are of order 2, then \(a\) and \(b\) commute;
  2. \(c*d\) and \(d*c\) have the same order;
  3. if \(c^{-1}*b*c=b^{r},\) then \(c^{-1}*b^{s}*c=b^{sr}\) and \(c^{-n}*b^{s}*c^{n}=b^{sr^{n}}.\)

Show Solution
\begin{questionparts} \item \((ab)^2 = abab = e\) (since \(ab\) has order \(2\)), but \(a^2 = e, b^2 = e \Rightarrow a^{-1} = a, b^{-1} = b\) (since \(a\) and \(b\) have order 2) so \(ba = ab\) by multiplication on the left by \(a\) and right by \(b\). \item Suppose \((cd)^n = e \Leftrightarrow d(cd)^nc = dc \Leftrightarrow (dc)^n(dc) = e \Leftrightarrow (dc)^n = e\) Therefore any number for which \((cd)^n = e\) has the property that \((dc)^n = e\) and vice-versa, in particular the smallest number for either \(cd\) or \(dc\) will also be the smallest number for the other. \item Given \(c^{-1}bc=b^r\), then \(b^{rs} = (b^r)^s = (c^{-1}bc)^s =\underbrace{(c^{-1}bc)(c^{-1}bc) \cdots (c^{-1}bc)}_{s \text{ times}} = c^{-1}\underbrace{bb\cdots b}_{s \text{ times}}c = c^{-1}b^sc\) We proceed by induction on \(n\). When \(n = 0\), we have \(b^s = b^{sr^0}\) so the base case is true. Suppose it is true for some \(n = k\), ie \(c^{-k}b^sc^k = b^{sr^k}\). Now consider \(c^{-{k+1}}b^sc^{k+1} = c^{-1}c^{-k}b^sc^kc = c^{-1}b^{sr^k}c = (b^{sr^k \cdot r}) = b^{sr^{k+1}}\) (where the second to last equality was by the previous part). Therefore if our statement is true for \(n=k\) it is true for \(n = k+1\). Therefore, since it is also true for \(n=0\), by the principle of mathematical induction it is true for all non-negative integers \(n\).
1989 Paper 3 Q3
D: 1675.2 B: 1469.0

The matrix \(\mathbf{M}\) is given by \[ \mathbf{M}=\begin{pmatrix}\cos(2\pi/m) & -\sin(2\pi/m)\\ \sin(2\pi/m) & \cos(2\pi/m) \end{pmatrix}, \] where \(m\) is an integer greater than \(1.\) Prove that \[ \mathbf{M}^{m-1}+\mathbf{M}^{m-2}+\cdots+\mathbf{M}^{2}+\mathbf{M}+\mathbf{I}=\mathbf{O}, \] where $\mathbf{I}=\begin{pmatrix}1 & 0\\ 0 & 1 \end{pmatrix}\( and \)\mathbf{O}=\begin{pmatrix}0 & 0\\ 0 & 0 \end{pmatrix}.$ The sequence \(\mathbf{X}_{0},\mathbf{X}_{1},\mathbf{X}_{2},\ldots\) is defined by \[ \mathbf{X}_{k+1}=\mathbf{PX}_{k}+\mathbf{Q}, \] where \(\mathbf{P,Q}\) and \(\mathbf{X}_{0}\) are given \(2\times2\) matrices. Suggest a suitable expression for \(\mathbf{X}_{k}\) in terms of \(\mathbf{P},\) \(\mathbf{Q}\) and \(\mathbf{X}_{0},\) and justify it by induction. The binary operation \(*\) is defined as follows: \[ \mathbf{X}_{i}*\mathbf{X}_{j}\mbox{ is the result of substituting \ensuremath{\mathbf{X}_{j}}for \ensuremath{\mathbf{X}_{0}}in the expression for \ensuremath{\mathbf{X}_{i}}. } \] Show that if \(\mathbf{P=M},\) the set \(\{\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\ldots\}\) forms a finite group under the operation \(*\).

Show Solution
\(\mathbf{M}^m = \mathbf{I}\), we also have \(\mathrm{det}(\mathbf{M - I}) = \cos^2(2\pi/m) - 2\cos(2\pi/m) + 1 + \sin^2(2\pi/m) = 2(1-\cos(2\pi/m))\) therefore \(\mathbf{M-I}\) is invertible. Therefore since \(\mathbf{(M-I)(M^{m-1} + M^{m-1} + \cdots + M^2 + M + I)= M^m-I = 0}\) we can cancel the \(\mathbf{M-I}\) to obtain the desired result. \(\mathbf{X_0 = X_0}\) \(\mathbf{X_1 = PX_0+Q}\) \(\mathbf{X_2 = P(PX_0+Q)+Q = P^2X_0 + PQ + Q}\) Claim: \(\mathbf{X_k = P^k X_0 + (P^{k-1} + P^{k-2} + \cdots + I)Q}\) Proof: (By induction on \(k\)). Base case \(k = 0\) is true. Assume it's true for some \(k = l\), then consider \(k = l+1\) \(\mathbf{X_{l+1} = PX_l + Q = P( P^l X_0 + (P^{l-1} + P^{l-2} + \cdots + I)Q) + Q = P^{l+1}X_0 + (P^l + P^{l-1} + \cdots + P)Q + Q = P^{l+1}X_0 + (P^l + P^{l-1} + \cdots + P + I)Q}\) Suppose \(\mathbf{P} = \mathbf{M}\), then consider the set \(\{\mathbf{X_1, X_2}, \ldots\}\) with the operation \(*\) as defined. \(\mathbf{X_i * X_j} = M^{i}(X_j) + (M^{i-1} + M^{i-2} + \cdots + M + I)Q = M^{i}(M^jX_0 + (M^{j-1} + M^{j-2} + \cdots + M + I)Q) + (M^{i-1} + M^{i-2} + \cdots + M + I)Q = M^{i+j}X_0 + (M^{i+j-1}+\cdots + M + I)Q = X_{i+j}\) Since \(X_m = X_0\) we can check all the requirements of the group, but this is going to be isomorphic to the cyclic group with \(m\) elements.
1989 Paper 2 Q8
D: 1665.0 B: 1499.2

Let \(\Omega=\exp(\mathrm{i}\pi/3).\) Prove that \(\Omega^{2}-\Omega+1=0.\) Two transformations, \(R\) and \(T\), of the complex plane are defined by \[ R:z\longmapsto\Omega^{2}z\qquad\mbox{ and }\qquad T:z\longmapsto\dfrac{\Omega z+\Omega^{2}}{2\Omega^{2}z+1}. \] Verify that each of \(R\) and \(T\) permute the four point \(z_{0}=0,\) \(z_{1}=1,\) \(z_{2}=\Omega^{2}\) and \(z_{3}=-\Omega.\) Explain, without explicitly producing a group multiplication table, why the smallest group of transformations which contains elements \(R\) and \(T\) has order at least 12. Are there any permutations of these points which cannot be produced by repeated combinations of \(R\) and \(T\)?

Show Solution
\(R(0) = 0\), \(R(1) = \Omega^2 1 = \Omega^2\), \(R(\Omega^2) = \Omega^4 = -\Omega\), \(R(-\Omega) = -\Omega^3 = 1\) \(T(0) = \frac{\Omega^2}1 = \Omega^2\), \(T(1) = \frac{\Omega + \Omega^2}{2\Omega^2+1} = \frac{2\Omega - 1}{2\Omega-1} = 1\) \(T(\Omega^2) = \frac{\Omega^3 + \Omega^2}{2\Omega^4+1} = \Omega \frac{\Omega^2+\Omega}{-2\Omega+1} = \Omega \frac{2\Omega-1}{-2\Omega+1} = - \Omega\) \(T(-\Omega) = \frac{-\Omega^2 + \Omega^2}{-2\Omega^3+1} = \frac{0}{3} = 0\) Thinking of \(R\) and \(S\) as elements of \(S_4\), we have that \(R = (234), S = (134)\), we can also construct \(RS = (14)(23), R^2S = (12)(34), RSR^2S = (13)(24)\). Therefore we have the subgroups \(\{e, (234), (243)\}\) of order \(3\) and the subgroup \(\{e, (12)(34), (13)(24), (14)(23) \}\) of order \(4\). By Lagrange's theorem this means that both \(3\) and \(4\) divide the order of the group, therefore the group has order divisible by \(12\) (and therefore is at least \(12\)). Yes, we cannot produce any odd permutation, for example \((12)\) cannot be produced. (Since all our generators are even permutations).
1988 Paper 3 Q9
D: 1725.3 B: 1516.0

Let \(G\) be a finite group with identity \(e.\) For each element \(g\in G,\) the order of \(g\), \(o(g),\) is defined to be the smallest positive integer \(n\) for which \(g^{n}=e.\)

  1. Show that, if \(o(g)=n\) and \(g^{N}=e,\) then \(n\) divides \(N.\)
  2. Let \(g\) and \(h\) be elements of \(G\). Prove that, for any integer \(m,\) \[ gh^{m}g^{-1}=(ghg^{-1})^{m}. \]
  3. Let \(g\) and \(h\) be elements of \(G\), such that \(g^{5}=e,h\neq e\) and \(ghg^{-1}=h^{2}.\) Prove that \(g^{2}hg^{-2}=h^{4}\) and find \(o(h).\)

Show Solution
\begin{questionparts} \item Show that, if \(o(g)=n\) and \(g^{N}=e,\) then \(n\) divides \(N.\) Using the division algorithm, write \(N = qn + r\) where \(0 \leq r < n\) to divide \(N\) by \(n\). Then we have \(e = g^N = g^{qn + r} = g^{qn}g^r = (g^{n})^qg^r = e^qg^r = g^r\) therefore \(r\) is a number smaller than \(n\) such that \(g^r = e\). Therefore either \(r = 0\) or \(o(g) = r\), but by definition \(o(g) = n\) therefore \(r = 0\) and \(n \mid N\). \item Let \(g\) and \(h\) be elements of \(G\). Prove that, for any integer \(m,\) \[ gh^{m}g^{-1}=(ghg^{-1})^{m}. \] \((ghg^{-1})^m = \underbrace{(ghg^{-1})(ghg^{-1})\cdots(ghg^{-1})}_{m \text{ times}} = gh(g^{-1}g)h(g^{-1}g)\cdots (g^{-1}g)hg^{-1} = gh^mg^{-1}\) \item Let \(g\) and \(h\) be elements of \(G\), such that \(g^{5}=e,h\neq e\) and \(ghg^{-1}=h^{2}.\) Prove that \(g^{2}hg^{-2}=h^{4}\) and find \(o(h).\) \(g^2hg^{-2} = g(ghg^{-1})g^{-1} = gh^2g^{-1} = (ghg^{-1})^2 = (h^2)^2 = h^4\). \(h = g^{5}hg^{-5} = g^4ghg^{-1}g^{-4} = g^4h^2g^{-4} = g^3(ghg^{-1})^2g^{-3} = g^3h^4g^{-3} = h^32\) Therefore \(e = h^{31}\). Therfore \(o(h) \mid 31 \Rightarrow \boxed{o(h) = 31}\) since \(31\) is prime and \(o(h) \neq 1\)
1988 Paper 2 Q9
D: 1654.1 B: 1558.3

Give a careful argument to show that, if \(G_{1}\) and \(G_{2}\) are subgroups of a finite group \(G\) such that every element of \(G\) is either in \(G_{1}\) or in \(G_{2},\) then either \(G_{1}=G\) or \(G_{2}=G\). Give an example of a group \(H\) which has three subgroups \(H_{1},H_{2}\) and \(H_{3}\) such that every element of \(H\) is either in \(H_{1},H_{2}\) or \(H_{3}\) and \(H_{1}\neq H,H_{2}\neq H,H_{3}\neq H\).

Show Solution
Suppose \(|G_1|, |G_2| < |G|\) for sake of contraction. Then by Lagrange's theorem \(|G_1| \mid |G|\) and \(|G_2| \mid |G|\), so \(|G_1|, |G_2| \leq \frac{|G|}{2}\). But \(|G_1 \cup G_2| = |G_1| + |G_2| - |G_1 \cap G_2|\). \(|G_1 \cup G_2| = |G|\) by assumption, and \(e \in G_1 \cap G_2\), so \(|G_1 \cap G_2| \geq 1\). Therefore \(|G| = |G_1| + |G_2| - |G_1 \cap G_2| \leq \frac{|G|}{2} + \frac{|G|}{2} - 1 = |G| - 1 < |G|\), contradiction! Let \(H = K_4 = \{e, a, b, c\}\) with \(a^2 = b^2 = c^2 = e\). then \(H = \{e, a\} \cup \{e, b\} \cup \{e, c\}\) with all subgroups distinct

Showing 1-12 of 12 problems
1987 Paper 3 Q2
D: 1500.0 B: 1500.0

Let \({\displaystyle I_{m,n}=\int\cos^{m}x\sin nx\,\mathrm{d}x,}\) where \(m\) and \(n\) are non-negative integers. Prove that for \(m,n\geqslant1,\) \[ (m+n)I_{m,n}=-\cos^{m}x\cos nx+mI_{m-1,n-1}. \]

  1. Show that \({\displaystyle \int_{0}^{\pi}\cos^{m}x\sin nx\,\mathrm{d}x=0}\) whenever \(m,n\) are both even or both odd.
  2. Evaluate \({\displaystyle \int_{0}^{\frac{\pi}{2}}\sin^{2}x\sin3x\,\mathrm{d}x.}\)

Show Solution
Let \({\displaystyle I_{m,n}=\int\cos^{m}x\sin nx\,\mathrm{d}x,}\) Then \begin{align*} && I_{m,n} &= \int\cos^{m}x\sin nx\,\mathrm{d}x \\ &&&= \left [ -\frac1n \cos^m x \cos n x \right] - \frac{m}{n} \int \sin^{m-1} x \cos x \cos n x \d x \\ &&&= \left [ -\frac1n \cos^m x \cos n x \right] + \frac{m}{n} \int \sin^{m-1} x (\cos (n-1)x -\sin x \sin nx) \d x\\ &&&= \left [ -\frac1n \cos^m x \cos n x \right] + \frac{m}{n} \int \sin^{m-1} x \cos (n-1)x \d x-\frac{m}{n} I_{m,n} \\ &&&= \left [ -\frac1n \cos^m x \cos n x \right] + \frac{m}{n} I_{m-1,n-1} -\frac{m}{n} I_{m,n} \\ \Rightarrow && nI_{m,n} &= -\cos^m x \cos n x + mI_{m-1,n-1} -mI_{m,n}\\ \Rightarrow && (m+n)I_{m,n} &= -\cos^m x \cos n x + mI_{m-1,n-1} \end{align*}
  1. Note that \(I_{2m,0} = 0\) (the integrand is 0) and \(I_{0, 2m} = 0\) (symmetry for our limits). \(\displaystyle \left [-\cos^m x \cos n x \right]_0^\pi = \l - (-1)^m (-1)^n \r - \l -1 \r = 1 - (-1)^{m+n} = 0\) since \(m+n\) is even. Therefore all reductions are \(I_{m,n} = \frac{I_{m-1,n-1}}{m+n}\) terminating at \(0\), so all values are zero
  2. \begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{2}x\sin3x\,\mathrm{d}x &= \int_{0}^{\frac{\pi}{2}}(1-\cos^2x)\sin3x\,\mathrm{d}x \\ &= I_{0,3} - I_{2,3} \\ &= \frac13 - \frac15 \l \left [-\cos^2 x \cos 3 x \right]_0^{\pi/2} + 2 \cdot I_{1,2} \r \\ &= \frac13 - \frac15 \l 1 + \frac23 \l \left [-\cos x \cos 2 x \right]_0^{\pi/2} + 1\cdot I_{0,1} \r \r \\ &= \frac13 - \frac15 -\frac2{15} - \frac2{15} \\ &= \frac{5}{15} - \frac{3}{15} - \frac{4}{15} \\ &= -\frac2{15} \end{align*}
2016 Paper 3 Q1
D: 1700.0 B: 1500.0

Let \[ \displaystyle I_n= \int_{-\infty}^\infty \frac 1 {(x^2+2ax+b)^n} \, \d x \] where \(a\) and \(b\) are constants with \(b > a^2\), and \(n\) is a positive integer.

  1. By using the substitution \(x + a = \sqrt{b- a^2} \, \tan u\,\), or otherwise, show that \[ I_1 = \dfrac \pi {\sqrt{b-a^2}}\, . \]
  2. Show that \(2n(b - a^2)\, I_{n+1} =(2n - 1) \, I_n\,\).
  3. Hence prove by induction that \[ I_n =\frac{\pi}{2^{2n-2}( b - a^2)^{n-\frac12}} \, \binom {2n-2}{n-1} \]

Show Solution
  1. \(\,\) \begin{align*} && I_1 &= \int_{-\infty}^{\infty} \frac{1}{x^2+2ax+b} \d x \\ &&&= \int_{-\infty}^{\infty} \frac{1}{b-a^2 +(x+a)^2} \d x \\ &&&= \left [ \frac{1}{\sqrt{b-a^2}} \tan^{-1} \frac{x+a}{\sqrt{b-a^2}} \right]_{-\infty}^{\infty} \\ &&&= \frac{\pi}{\sqrt{b-a^2}} \end{align*}
  2. \(\,\) Here is the corrected LaTeX code for the second part, maintaining your exact styling and notation.
  3. \(\,\) \begin{align*} && I_{n} &= \int_{-\infty}^{\infty} \frac{1}{(x^2+2ax+b)^{n}} \d x \\ &&&= \left[ \frac{x}{(x^2+2ax+b)^n} \right]_{-\infty}^{\infty} - \int_{-\infty}^\infty x \cdot \frac{-n(2x+2a)}{(x^2+2ax+b)^{n+1}} \d x \\ &&&= 0 + n \int_{-\infty}^\infty \frac{2x^2+2ax}{(x^2+2ax+b)^{n+1}} \d x \\ &&&= n \int_{-\infty}^\infty \frac{2(x^2+2ax+b) - (2ax+2b)}{(x^2+2ax+b)^{n+1}} \d x \\ &&&= 2n I_n - n \int_{-\infty}^\infty \frac{2ax+2b}{(x^2+2ax+b)^{n+1}} \d x \\ &&&= 2n I_n - n \int_{-\infty}^\infty \frac{a(2x+2a) + 2(b-a^2)}{(x^2+2ax+b)^{n+1}} \d x \\ &&&= 2n I_n - n \int_{-\infty}^\infty \frac{a(2x+2a)}{(x^2+2ax+b)^{n+1}} \d x - 2n(b-a^2) I_{n+1} \\ &&&= 2n I_n - n \left[ \frac{-a}{n(x^2+2ax+b)^n} \right]_{-\infty}^\infty - 2n(b-a^2) I{n+1} \\ &&&= 2n I_n - 0 - 2n(b-a^2) I_{n+1} \\ \Rightarrow && 2n(b-a^2)I_{n+1} &= (2n-1)I_n \end{align*}
  4. \(\,\) \begin{align*} && I_{n+1} &= \frac{2n-1}{2n(b-a^2)} I_n \\ &&&= \frac{2n-1}{2n(b-a^2)} \cdot \frac{2n-3}{2(n-1)(b-a^2)} I_{n-1} \\ &&&= \frac{2n-1}{2n(b-a^2)} \cdot \frac{2n-3}{2(n-1)(b-a^2)} \cdots I_{1} \\ &&&= \frac{(2n-1)(2n-3) \cdots 1}{2n \cdot 2(n-1) \cdots 2 (b-a^2)^n} \frac{\pi}{\sqrt{b-a^2}} \\ &&&= \frac{(2n-1)(2n-3) \cdots 1}{2^n n!} \frac{\pi}{(b-a^2)^{n+\frac12}} \\ &&&= \frac{(2n-1)(2n-3) \cdots 1 \cdot 2n \cdot 2(n-1) \cdots 2}{2^{2n} n!n!} \frac{\pi}{(b-a^2)^{n+\frac12}} \\ &&&= \frac{(2n)!}{2^{2n}n!n!}\frac{\pi}{(b-a^2)^{n+\frac12}} \\ &&&= \frac{\pi}{2^{2n}(b-a^2)^{n+\frac12}} \binom{2n}{n} \\ \Rightarrow && I_n &= \frac{\pi}{2^{2n-2}(b-a^2)^{n-\frac12}} \binom{2n-2}{n-1} \\ \end{align*}
2015 Paper 3 Q1
D: 1700.0 B: 1500.0

  1. Let \[ I_n= \int_0^\infty \frac 1 {(1+u^2)^n}\, \d u \,, \] where \(n\) is a positive integer. Show that \[ I_n - I_{n+1} = \frac 1 {2n} I_n \] and deduce that \[ I_{n+1} = \frac{(2n)!\, \pi}{2^{2n+1}(n!)^2} \,. \]
  2. Let \[ J = \int_0^\infty \f\big( (x- x^{-1})^2\big ) \, \d x \,, \] where \(\f\) is any function for which the integral exists. Show that \[ J = \int_0^\infty x^{-2} \f\big( (x- x^{-1})^2\big) \, \d x \, = \frac12 \int_0^\infty (1 + x^{-2}) \f\big( (x- x^{-1})^2\big ) \, \d x \, = \int_0^\infty \f\big(u^2\big) \,\d u \,. \]
  3. Hence evaluate \[ \int_0^\infty \frac {x^{2n-2}}{(x^4-x^2+1)^n} \, \d x \,, \] where \(n\) is a positive integer.

Show Solution
\begin{align*} I_n - I_{n+1} &= \int_0^\infty \frac 1 {(1+u^2)^n}\, \d u - \int_0^\infty \frac 1 {(1+u^2)^{n+1}}\, \d u \\ &= \int_0^\infty \l \frac 1 {(1+u^2)^n}- \frac 1 {(1+u^2)^{n+1}} \r\, \d u \\ &= \int_0^\infty \frac {u^2} {(1+u^2)^{n+1}} \, \d u \\ &= \left [ u \frac{u}{(1+u^2)^{n+1}} \right]_0^{\infty} - \frac{-1}{2n}\int_0^{\infty} \frac{1}{(1+u^2)^n} \d u \tag{\(IBP: u = u, v' = \frac{u}{(1+u^2)^{n+1}}\)}\\ &= \frac{1}{2n} I_n \end{align*} \(\displaystyle I_1 = \int_0^{\infty} \frac{1}{1+u^2} \d u = \left [ \tan^{-1} u \right]_0^\infty = \frac{\pi}{2}\) as expected. We also have, \(I_{n+1} = \frac{2n(2n-1)}{2n \cdot 2n} I_n \), by rearranging the recurrence relation. Therefore, when we multiply out the top we will have \(2n!\) and the bottom we will have two factors of \(n!\) and two factors of \(2^n\) combined with the original \(\frac{\pi}{2}\) we get \[ I_{n+1} = \frac{(2n)! \pi}{2^{2n+1} (n!)^2} \] \begin{align*} J = \int_0^\infty f\big( (x- x^{-1})^2\big ) \, \d x &= \int_{u = \infty}^{u = 0} f((u^{-1}-u)^2)(-u^{-2} )\d u \tag{\(u = x^{-1}, \d u = -x^{-2} \d x\)} \\ &= \int^{u = \infty}_{u = 0} f((u^{-1}-u)^2)u^{-2} \d u \\ &= \int^{\infty}_{0} u^{-2}f((u-u^{-1})^2) \d u \\ \end{align*} Therefore adding the two forms for \(J\) we have \begin{align*} 2 J &= \int_0^\infty f\big( (x- x^{-1})^2\big ) \, \d x + \int_0^\infty x^{-2} f\big( (x- x^{-1})^2\big ) \, \d x \\ &= \int_0^\infty (1+x^{-2}) f\big( (x- x^{-1})^2\big ) \, \d x \end{align*} And letting \(u = x - x^{-1}\), we have \(\d u = (1 + x^{-2}) \d x\), and \(u\) runs from \(-\infty\) to \(\infty\) so we have: \begin{align*} \int_0^\infty (1+x^{-2}) f\big( (x- x^{-1})^2\big ) \, \d x &= \int_{-\infty}^\infty f(u^2) \, \d u \\ &=2 \int_{0}^\infty f(u^2) \, \d u \end{align*} Since both of these are \(2J\) we have the result we are after. Finally, \begin{align*} \int_0^\infty \frac {x^{2n-2}}{(x^4-x^2+1)^n} \, \d x &= \int_0^{\infty} \frac{x^{2n-2}}{x^{2n}(x^2-1+x^{-2})^n} \d x \\ &= \int_0^{\infty} \frac{x^{-2}}{((x-x^{-1})^2+1)^n} \d x \\ &= \int_0^{\infty} \frac{1}{(x^2+1)^n} \d x \tag{Where \(f(x) = (1+x^2)^{-n}\) in \(J\) integral} \\ &= I_n = \frac{(2n-2)! \pi}{2^{2n-1} ((n-1)!)^2} \end{align*}
2013 Paper 2 Q2
D: 1600.0 B: 1500.0

For \(n\ge 0\), let \[ I_n = \int_0^1 x^n(1-x)^n\d x\,. \]

  1. For \(n\ge 1\), show by means of a substitution that \[ \int_0^1 x^{n-1}(1-x)^n\d x = \int_0^1 x^n(1-x)^{n-1}\d x\, \] and deduce that \[ 2 \int_0^1 x^{n-1}(1-x)^n\d x = I_{n-1}\,. \] Show also, for \(n\ge1\), that \[ I_n = \frac n {n+1} \int_0^1 x^{n-1} (1-x)^{n+1} \d x \] and hence that \(I_n = \dfrac{n}{2(2n+1)} I_{n-1}\,.\)
  2. When \(n\) is a positive integer, show that \[ I_n = \frac{(n!)^2}{(2n+1)!}\,. \]
  3. Use the substitution \(x= \sin^2 \theta\) to show that \(I_{\frac12}= \frac \pi 8\), and evaluate \(I_{\frac32}\).

Show Solution
  1. \(\,\) \begin{align*} u = 1-x, \d u = -\d x && \int_0^1 x^{n-1}(1-x)^n \d x &= \int_{u=1}^{u=0} (1-u)^{n-1}u^n (-1) \d u \\ &&&= \int_0^1 u^n (1-u)^{n-1} \d u \\ &&&= \int_0^1 x^n (1-x)^{n-1} \d x \\ \\ \Rightarrow && 2\int_0^1 x^{n-1}(1-x)^n \d x &= \int_0^1 \left ( x^{n-1}(1-x)^n + x^{n}(1-x)^{n-1} \right)\d x \\ &&&= \int_0^1x^{n-1}(1-x)^{n-1} \left ( (1-x) + x \right) \d x\\ &&&= I_{n-1} \\ \\ && I_n &= \left [x^n \cdot (-1)\frac{(1-x)^{n+1}}{n+1}\right]_0^1 + \int_0^1 n x^{n-1} \frac{(1-x)^{n+1}}{n+1} \d x\\ &&&= \frac{n}{n+1} \int_0^1 x^{n-1} (1-x)^{n+1} \d x \\ \\ && I_n &= \frac{n}{n+1} \int_0^1 x^{n-1} (1-x)^{n+1} \d x \\ &&&= \frac{n}{n+1} \int_0^1 \left ( x^{n-1} (1-x)^{n} - x^n(1-x)^n \right) \d x \\ &&&= \frac{n}{n+1} \left (\frac12 I_{n-1} - I_n \right) \\ \Rightarrow && I_n \cdot \left ( \frac{2n+1}{n+1} \right) &= \frac{n}{2(n+1)} I_{n-1}\\ \Rightarrow && I_n &= \frac{n}{2(2n+1)} I_{n-1} \end{align*}
  2. \(\,\) \begin{align*} && I_0 &= \int_0^1 1 \d x = 1 \\ \Rightarrow && I_1 &= \frac{1}{2 \cdot 3} \\ && I_n &= \frac{n}{2(2n+1)} \cdot \frac{n-1}{2(2n-1)}\cdot \frac{n-2}{2(2n-3)} \cdots \frac{1}{2 \cdot 3} \\ &&&= \frac{n!}{2^n (2n+1)(2n-1)(2n-3) \cdots 3} \\ &&&= \frac{n! (2n)(2n-2)\cdots 2}{2^n (2n+1)!} \\ &&&= \frac{(n!)^2 2^n}{2^n(2n+1)!} \\ &&&= \frac{(n!)^2}{(2n+1)^2} \end{align*}
  3. \(\,\) \begin{align*} && I_{\frac12} &= \int_0^1 \sqrt{x(1-x)} \d x\\ x = \sin^2 \theta, \d x = 2 \sin \theta \cos \theta \d \theta: &&&= \int_{\theta =0}^{\theta = \frac{\pi}{2}} \sin \theta \cos \theta 2 \sin \theta \cos \theta \d \theta \\ &&&= \frac12 \int_0^{\pi/2} \sin^2 2 \theta \d \theta \\ &&&= \frac12 \int_0^{\pi/2} \frac{1-\cos 2 \theta}{2} \d \theta \\ &&&= \frac14 \left [\theta - \frac12 \sin 2 \theta \right]_0^{\pi/2} \\ &&&= \frac{\pi}{8} \\ \\ && I_{\frac32} &= \frac{3/2}{2 \cdot ( 2 \cdot \frac32 + 1)} I_{\frac12} \\ &&&= \frac{3}{4 \cdot 4} \frac{\pi}{8} \\ &&&= \frac{3 \pi}{128} \end{align*}
2009 Paper 3 Q8
D: 1700.0 B: 1516.0

Let \(m\) be a positive integer and let \(n\) be a non-negative integer.

  1. Use the result \(\displaystyle \lim_{t\to\infty}\e^{-mt} t^n=0\) to show that \[ \lim_{x\to0} x^m (\ln x)^n =0\,. \] By writing \(x^x\) as \(\e^{x\ln x}\) show that \[ \lim _{x\to0} x^x=1\,. \]
  2. Let \(\displaystyle I_{n} = \int_0^1 x^m (\ln x)^n \d x\,\). Show that \[ I_{n+1} = - \frac {n+1}{m+1} I_{n} \] and hence evaluate \(I_{n}\).
  3. Show that \[ \int_0^1 x^x \d x = 1 -\left(\tfrac12\right)^2 +\left(\tfrac13\right)^3 -\left(\tfrac14\right)^4 + \cdots \,. \]

Show Solution
  1. \(\,\) \begin{align*} && \lim_{x \to 0} x^m(\ln x)^n &= \lim_{t \to \infty} (e^{-t})^m (\ln e^{-t})^n \\ &&&= \lim_{t \to \infty} e^{-mt} (-t)^n \\ &&&= (-1)^n \lim_{t \to \infty} e^{-mt} t^n = 0 \\ \\ && \lim_{x \to 0} x^x &= \lim_{x \to 0} e^{x \ln x} \\ &&&= \exp \left (\lim_{x \to 0} x \ln x \right) \\ &&&= \exp \left (0 \right) = 1 \end{align*}
  2. \(\,\) \begin{align*} && I_{n} &= \int_0^1 x^m (\ln x)^n \d x \\ && I_{n+1} &= \int_0^1 x^m (\ln x)^{n+1} \d x \\ &&&= \left [\frac{x^{m+1}}{m+1} (\ln x)^{n+1} \right]_0^1 - \frac{1}{m+1} \int_0^1 x^{m+1} (n+1) (\ln x)^n \cdot x^{-1} \d x \\ &&&= 0 - \frac{1}{m+1} \lim_{x \to 0} \left (x^{m+1} (\ln x)^{n+1} \right) - \frac{n+1}{m+1} \int_0^1 x^m (\ln x)^n \d x \\ &&&= - \frac{n+1}{m+1} I_n \\ \\ && I_0 &= \int_0^1 x^m \d x = \frac{1}{m+1} \\ && I_1 &= -\frac{1}{(m+1)^2} \\ && I_2 &= \frac{2}{(m+1)^3} \\ && I_n &= (-1)^n \frac{n!}{(m+1)^{n+1}} \end{align*}
  3. \(\,\) \begin{align*} && \int_0^1 x^x \d x &= \int_0^1 e^{x \ln x} \d x \\ &&&= \int_0^1 \sum_{k=0}^{\infty} \frac{x^k(\ln x)^k}{k!} \d x \\ &&&= \sum_{k=0}^{\infty} \int_0^1 \frac{x^k(\ln x)^k}{k!} \d x\\ &&&= \sum_{k=0}^{\infty} (-1)^k \frac{k!}{k!(k+1)^{k+1}}\\ &&&= \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)^{k+1}}\\ &&&= 1 - \frac{1}{2^2} + \frac{1}{3^3} - \frac{1}{4^4} + \cdots \end{align*}
2004 Paper 3 Q7
D: 1700.0 B: 1500.0

For \(n=1\), \(2\), \(3\), \(\ldots\,\), let \[ I_n = \int_0^1 {t^{n-1} \over \l t+1 \r^n} \, \mathrm{d} t \, . \] By considering the greatest value taken by \(\displaystyle {t \over t+1}\) for \(0 \le t \le 1\) show that \(I_{n+1} < {1 \over 2} I_{n}\,\). Show also that \(\; \displaystyle I_{n+1}= - \frac 1{\; n\, 2^n} + I_{n}\,\). Deduce that \(\; \displaystyle I_n < \frac1 {\; n \, 2^{n-1}}\,\). Prove that \[ \ln 2 = \sum_{r=1}^n {1 \over \; r\, 2^r} + I_{n+1} \] and hence show that \({2 \over 3} < \ln 2 < {17 \over 24}\,\).

Show Solution
\begin{align*} && \frac{t}{t+1} &= 1 - \frac{1}{t+1} \geq \frac12 \\ \Rightarrow && I_{n+1} &= \int_0^1 \frac{t^{n}}{(t+1)^{n+1}} \d t \\ &&&= \int_0^1\frac{t}{t+1} \frac{t^{n-1}}{(t+1)^{n}} \d t \\ &&&< \int_0^1\frac12\frac{t^{n-1}}{(t+1)^{n}} \d t \\ &&&= \frac12 I_n \\ \\ && I_{n+1} &= \int_0^1 \frac{t^{n}}{(t+1)^{n+1}} \d t \\ &&&= \left [ t^n \frac{(1+t)^{-n}}{-n} \right]_0^1 +\frac1n \int_0^1 n t^{n-1}(1+t)^{-n} \d t \\ &&&= -\frac{1}{n2^n} + I_n \\ \Rightarrow && \frac12 I_n &> -\frac1{n2^n} + I_n \\ \Rightarrow && \frac{1}{n2^{n-1}} &> I_n \end{align*} \begin{align*} && \ln 2 &= \int_0^1 \frac{1}{1+t} \d t \\ &&&= I_1 \\ &&&= \frac1{2} + I_2 \\ &&&= \frac1{2} + \frac{1}{2 \cdot 2^2} + I_3 \\ &&&= \sum_{r=1}^n \frac{1}{r2^r} + I_{n+1} \\ \\ && \ln 2 &= \frac12 + \frac18 + \frac1{24} + I_4 \\ \Rightarrow && \ln 2 &> \frac12 + \frac18 + \frac1{24} = \frac{12+3+1}{24} = \frac{16}{24} = \frac23 \\ \Rightarrow && \ln 2 &= \frac12 + \frac18 + I_3 \\ &&&< \frac12 + \frac18 +\frac{1}{3 \cdot 4} \\ &&&< \frac{12}{24} + \frac{3}{24} + \frac{2}{24} = \frac{17}{24} \end{align*}
1995 Paper 3 Q2
D: 1700.0 B: 1586.3

If \[ \mathrm{I}_{n}=\int_{0}^{a}x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\,\mathrm{d}x, \] show that \(\mathrm{I}_{0}=\pi a^{2}/8.\) Show that \((2n+4)\mathrm{I}_{n}=(2n+1)a\mathrm{I}_{n-1}\) and hence evaluate \(\mathrm{I}_{n}\).

Show Solution
\begin{align*} && I_n &= \int_{0}^{a}x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\,\mathrm{d}x\\ && I_0 &= \int_0^a x^{\frac12}(a-x)^{\frac12} \d x \\ x = a \sin^2 \theta, \d x = 2a \sin \theta \cos \theta \d \theta &&&= \int_{\theta =0}^{\theta = \pi/2} \sqrt{a}\sin \theta\sqrt{a} \cos \theta 2a \sin \theta \cos \theta \d \theta \\ &&&= \frac{a^2}{2} \int_0^{\pi/2} \sin^2 2 \theta \d \theta \\ &&&= \frac{a^2}{4} \int_0^{\pi/2}(1- \underbrace{\cos 4\theta}_{\text{runs round the whole unit circle}}) \d \theta \\ &&&= \frac{\pi a^2}{8} \\ \\ && I_n &= \int_0^a x^{n+\frac12}(a-x)^{\frac12} \d x \\ &&&=\underbrace{\left [-\frac23x^{n+\frac12}(a-x)^\frac32 \right]_0^a}_{=0} + \frac23 \left(n+\frac12\right) \int_0^ax^{n-1+\frac12}(a-x)^\frac32 \d x \\ &&&= \frac23 \left(n+\frac12\right) \int_0^ax^{n-1+\frac12}(a-x)(a-x)^\frac12 \d x \\ &&&= \frac23 \left(n+\frac12\right)aI_{n-1}-\frac23 \left(n+\frac12\right)I_{n} \\ \Rightarrow && \left(n+\frac12+\frac32\right)I_{n} &= \left(n+\frac12\right)aI_{n-1}\\ \Rightarrow && (2n+4)I_n &= (2n+1)aI_{n-1} \\ \\ \Rightarrow && I_n &= \frac{2n+1}{2n+4}a I_{n-1} \\ &&&=\frac{2n+1}{2n+4}\frac{2n-1}{2n+2}a^2 I_{n-2} \\ &&&= \frac{(2n+1)!!}{(2n+4)!!} \pi a^{n+2} \end{align*}
1995 Paper 2 Q4
D: 1600.0 B: 1504.3

Let \[ u_{n}=\int_{0}^{\frac{1}{2}\pi}\sin^{n}t\,\mathrm{d}t \] for each integer \(n\geqslant0\). By integrating \[ \int_{0}^{\frac{1}{2}\pi}\sin t\sin^{n-1}t\,\mathrm{d}t \] by parts, or otherwise, obtain a formula connecting \(u_{n}\) and \(u_{n-2}\) when \(n\geqslant2\) and deduce that \[ nu_{n}u_{n-1}=\left(n-1\right)u_{n-1}u_{n-2} \] for all \(n\geqslant2\). Deduce that \[ nu_{n}u_{n-1}=\tfrac{1}{2}\pi. \] Sketch graphs of \(\sin^{n}t\) and \(\sin^{n-1}t\), for \(0\leqslant t\leqslant\frac{1}{2}\pi,\) on the same diagram and explain why \(0 < u_{n} < u_{n-1}.\) By using the result of the previous paragraph show that \[ nu_{n}^{2} < \tfrac{1}{2}\pi < nu_{n-1}^{2} \] for all \(n\geqslant1\). Hence show that \[ \left(\frac{n}{n+1}\right)\tfrac{1}{2}\pi < nu_{n}^{2} < \tfrac{1}{2}\pi \] and deduce that \(nu_{n}^{2}\rightarrow\tfrac{1}{2}\pi\) as \(n\rightarrow\infty\).

Show Solution
\begin{align*} && u_n &= \int_0^{\tfrac12 \pi} \sin^{n} t \, \d t \\ && &= \int_0^{\tfrac12 \pi} \sin t \sin^{n-1} t \, \d t \\ && &= \left [ -\cos t \sin^{n-1} t \right]_0^{\tfrac12 \pi} + \int_0^{\tfrac12 \pi} \cos t (n-1) \sin^{n-2} t \cos t \d t \\ && &= 0 + (n-1)\int_0^{\tfrac12 \pi} \cos^2 t \sin^{n-2} t \d t \\ && &= (n-1) \int_0^{\tfrac12 \pi}(1-\sin^2 t) \sin^{n-2} t \d t \\ && &= (n-1)u_{n-2} - (n-1)u_n \\ \Rightarrow && n u_n &= (n-1)u_{n-2} \\ \end{align*} Mutplying both sides by \(u_{n-1}\) we obtain \(nu_{n}u_{n-1}=\left(n-1\right)u_{n-1}u_{n-2}\). Therefore \(nu_nu_{n-1}\) is constant, ie is equal to \(\displaystyle u_1u_0 = \int_0^{\tfrac12 \pi} \sin^{1} t \, \d t \int_0^{\tfrac12 \pi} \sin^{0} t \, \d t = 1 \cdot \frac{\pi}{2} = \frac{\pi}{2}\)
TikZ diagram
Since \(0 < \sin t < 1\) for \(t \in (0, \tfrac{\pi}{2})\) we must have \(0 < \sin^n t < \sin^{n-1} t\), in particular \(0 < u_n < u_{n-1}\) Therefore \begin{align*} && nu_{n}u_{n-1} &= \tfrac{1}{2}\pi \\ \Rightarrow && nu_n u_n &< \tfrac{1}{2}\pi \tag{\(u_n < u_{n-1}\)} \\ \Rightarrow && nu_{n-1} u_{n-1} &> \tfrac{1}{2}\pi \tag{\(u_n < u_{n-1}\)} \\ \Rightarrow && nu_n^2 &< \tfrac12 \pi < n u_{n-1}^2 \end{align*} However we also have \(\tfrac12 \pi < (n+1)u_n^2\) (by considering the next inequality), so \(\left ( \frac{n}{n+1}\right) \tfrac12 \pi < n u_n^2 < \tfrac12 \pi\) but since as \(n \to \infty\) the right hand bound is constant and the left hand bound tends to \(\tfrac12 \pi\) therefore \(n u_n^2 \to \tfrac12 \pi\)
1994 Paper 3 Q1
D: 1700.0 B: 1516.0

Calculate \[ \int_{0}^{x}\mathrm{sech}\, t\,\mathrm{d}t. \] Find the reduction formula involving \(I_{n}\) and \(I_{n-2}\), where \[ I_{n}=\int_{0}^{x}\mathrm{sech}^{n}t\,\mathrm{d}t \] and, hence or otherwise, find \(I_{5}\) and \(I_{6}.\)

Show Solution
\begin{align*} && \int_0^x \mathrm{sech}\, t \d t &= \int_0^x \frac{2}{e^t+e^{-t}} \d t \\ &&&= \int_0^x \frac{2e^t}{e^{2t}+1} \d t \\ &&&= \left [2 \arctan e^t \right ]_0^x \\ &&&= 2\tan^{-1}e^x- \frac{\pi}{2} \end{align*} \begin{align*} && I_n &= \int_0^x \mathrm{sech}^n\, t \d t \\ &&&= \int_0^x \mathrm{sech}^{n-2}\, t \mathrm{sech}^2\, t \d t \\ &&&= \left [ \mathrm{sech}^{n-2}\, t \cdot \tanh t\right ]_0^x - \int_0^x (n-2) \mathrm{sech}^{n-3} \, t \cdot (- \tanh t \mathrm{sech}\, t) \tanh t \d t \\ &&&= \mathrm{sech}^{n-2}\, x \cdot \tanh x+(n-2)\int_0^x \mathrm{sech}^{n-2} t \tanh^2 t \d t \\ &&&= \mathrm{sech}^{n-2}\, x \cdot \tanh x+(n-2)\int_0^x \mathrm{sech}^{n-2} t (1-\mathrm{sech}^2 \, t) \d t \\ &&&= \mathrm{sech}^{n-2}\, x \cdot \tanh x+(n-2)I_{n-2}-(n-2)I_n \\ \Rightarrow && (n-1)I_n &= \mathrm{sech}^{n-2}\, x \cdot \tanh x+(n-2)I_{n-2} \\ \Rightarrow && I_n &= \frac{1}{n-1} \left ( \mathrm{sech}^{n-2}\, x \cdot \tanh x+(n-2)I_{n-2} \right) \\ \end{align*} \begin{align*} I_1 &= 2\tan^{-1}e^x- \frac{\pi}{2} \\ I_3 &= \frac12 \left ( \mathrm{sech}\, x \cdot \tanh x+ 2\tan^{-1}e^x- \frac{\pi}{2}\right) \\ &= \frac12 \mathrm{sech}\, x \cdot \tanh x+ \tan^{-1}e^x- \frac{\pi}{4} \\ I_5 &= \frac14 \left (\mathrm{sech}^3\, x \cdot \tanh x + 3 \left ( \frac12 \mathrm{sech}\, x \cdot \tanh x+ \tan^{-1}e^x- \frac{\pi}{4} \right) \right) \\ &= \frac14 \mathrm{sech}^3\, x \cdot \tanh x +\frac38 \mathrm{sech}\, x \cdot \tanh x+\frac34 \tan^{-1}e^x- \frac{3\pi}{16} \\ \\ I_2 &= \tanh x \\ I_4 &= \frac13 \left ( \mathrm{sech}^2 x\tanh x +2\tanh x\right) \\ &= \frac13 \mathrm{sech}^2 x\tanh x +\frac23 \tanh x \\ I_6 &= \frac15 \left ( \mathrm{sech}^4 x \tanh x+4\left ( \frac13 \mathrm{sech}^2 x\tanh x +\frac23 \tanh x \right) \right) \\ &= \frac15 \mathrm{sech}^4 x \tanh x + \frac4{15}\mathrm{sech}^2 x\tanh x + \frac{8}{15} \tanh x \end{align*}
1992 Paper 3 Q6
D: 1700.0 B: 1500.0

Given that \({\displaystyle I_{n}=\int_{0}^{\pi}\frac{x\sin^{2}(nx)}{\sin^{2}x}\,\mathrm{d}x,}\) where \(n\) is a positive integer, show that \(I_{n}-I_{n-1}=J_{n},\) where \[ J_{n}=\int_{0}^{\pi}\frac{x\sin(2n-1)x}{\sin x}\,\mathrm{d}x. \] Obtain also a reduction formula for \(J_{n}.\) The curve \(C\) is given by the cartesian equation \[ y=\dfrac{x\sin^{2}(nx)}{\sin^{2}x}, \] where \(n\) is a positive integer and \(0\leqslant x\leqslant\pi.\) Show that the area under the curve \(C\) is \(\frac{1}{2}n\pi^{2}.\)

Show Solution
\begin{align*} I_n - I_{n-1} &= \int_0^{\pi} \frac{x \sin^2(nx)}{\sin ^2 x} \d x-\int_0^{\pi} \frac{x \sin^2((n-1)x)}{\sin ^2 x} \d x \\ &= \int_0^{\pi} \frac{x}{\sin^2 x} \left ( \sin^2 (nx) - \sin^2((n-1)x) \right) \d x \\ &= \int_0^{\pi} \frac{x}{\sin^2 x}\frac12 \left ( \cos (2(n-1)x) - \cos(2nx) \right) \d x \\ &= \int_0^{\pi} \frac{x}{\sin^2 x}\frac12 2 \sin ((2n-1)x )\sin x \d x \\ &= \int_0^{\pi} \frac{x\sin ((2n-1)x )}{\sin x}d x \\ &= J_n \\ \\ J_{n+1} - J_{n} &= \int_0^{\pi} \frac{x \left (\sin ((2n+1)x )-\sin ((2n-1)x )\right)}{\sin x} \d x \\ &= \int_0^{\pi} \frac{x \left ( 2 \cos (\frac{4n x}{2}) \sin \frac{2x}{2} \right)}{\sin x} \d x \\ &= \int_0^{\pi}2x \cos (2n x) \d x \\ &= \left [ \frac{x}{2n} \sin (2n x) \right]_0^{\pi} - \int_0^{\pi} \frac{1}{2n} \sin (2n x) \d x \\ &= \left [ \frac{1}{4n^2} \cos (2n x)\right]_0^{\pi} \\ &= 0 \\ \\ J_1 &= \int_0^\pi x \d x \\ &= \frac{\pi^2}{2} \\ \Rightarrow J_n &= \frac{\pi^2}{2} \\ \end{align*} And so \(I_n = I_1 + (n-1) \frac{\pi^2}{2}\) and \(I_1 = \frac{\pi^2}{2}\) so \(I_n = \frac12 n \pi^2\). But \(I_n\) is exactly the area under the curve described.
1991 Paper 3 Q8
D: 1700.0 B: 1500.1

  1. The integral \(I_{k}\) is defined by \[ I_{k}=\int_{0}^{\theta}\cos^{k}x\,\cos kx\,\mathrm{d}x. \] Prove that \(2kI_{k}=kI_{k-1}+\cos^{k}\theta\sin k\theta.\)
  2. Prove that \[ 1+m\cos2\theta+\binom{m}{2}\cos4\theta+\cdots+\binom{m}{r}\cos2r\theta+\cdots+\cos2m\theta=2^{m}\cos^{m}\theta\cos m\theta. \]
  3. Using the results of (i) and (ii), show that \[ m\frac{\sin2\theta}{2}+\binom{m}{2}\frac{\sin4\theta}{4}+\cdots+\binom{m}{r}\frac{\sin2r\theta}{2r}+\cdots+\frac{\sin2m\theta}{2m} \] is equal to \[ \cos\theta\sin\theta+\cos^{2}\theta\sin2\theta+\cdots+\frac{1}{r}2^{r-1}\cos^{r}\theta\sin r\theta+\cdots+\frac{1}{m}2^{m-1}\cos^{m}\theta\sin m\theta. \]

Show Solution
  1. \begin{align*} kI_k &= \int_0^\theta \cos^k x k\cos kx \d x \\ &= \left [\cos^k x \sin kx \right]_0^\theta - \int_0^\theta k \cos^{k-1} x \sin x \sin k x \d x \\ &= \cos^k \theta \sin k \theta - k\int_0^\theta \cos^{k-1} x \sin x \sin k x \d x \\ &= \cos^k \theta \sin k \theta + k\int_0^\theta \cos^{k-1} x (\cos (k-1) x - \cos k x \cos x) \d x \\ &= \cos^k\theta \sin k \theta + k I_{k-1} - kI_k \\ \end{align*} So \(2kI_k = kI_{k-1} + \cos^k \sin k \theta\)
  2. \begin{align*} && \sum_{r=0}^m \binom{m}{r} \cos 2r \theta &= \textrm{Re} \left ( \sum_{r=0}^m \binom{m}{r} \exp(i 2r \theta)\right) \\ &&&= \textrm{Re} \left ( \sum_{r=0}^m \binom{m}{r} \exp(i 2 \theta)^r\right) \\ &&&= \textrm{Re} \left ( \left (1+e^{2i \theta} \right)^m\right) \\ &&&= \textrm{Re} \left (\left (e^{i\theta}(e^{i \theta} +e^{-i\theta})\right)^m\right) \\ &&&= \textrm{Re} \left (\left (e^{i\theta}2\cos \theta\right)^m\right) \\ &&&= \textrm{Re} \left (2^m \cos^m \theta e^{im\theta}\right) \\ &&&= 2^m \cos^m \theta \cos m\theta \\ \end{align*}
  3. \begin{align*} \sum_{r=1}^m \binom{m}{r}\frac{\sin 2r \theta}{2r} &= \int_0^\theta \sum_{r=1}^m \binom{m}{r}\cos 2r x\d x \\ &= \int_0^\theta \left (2^m \cos^m x\cos mx- 1 \right ) \d x\\ &= 2^m I_m - \theta \\ &= \frac{2^{m-1}}{m}\cos^m \theta \sin m \theta + 2^{m-1} I_{m-1} - \theta \\ &= \frac{2^{m-1}}{m}\cos^m \theta \sin m \theta + \frac{2^{m-2}}{m-1}\cos^m \theta \sin m \theta+2^{m-2} I_{m-2} - \theta \\ &= \sum_{r=0}^{m} \frac{2^{m-1-r}}{m-r} \cos^{m-r} \theta \sin (m-r) \theta + I_0 - \theta \\ &= \sum_{r=0}^{m} \frac{2^{m-1-r}}{m-r} \cos^{m-r} \theta \sin (m-r) \theta + \int_0^\theta 1 \cdot 1 \d \theta - \theta \\ &= \sum_{r=0}^{m} \frac{2^{m-1-r}}{m-r} \cos^{m-r} \theta \sin (m-r) \theta \\ &= \sum_{r=0}^{m} \frac{2^{r-1}}{r} \cos^{r} \theta \sin r \theta \end{align*}
1991 Paper 2 Q5
D: 1600.0 B: 1516.0

Give a rough sketch of the function \(\tan^{k}\theta\) for \(0\leqslant\theta\leqslant\frac{1}{4}\pi\) in the two cases \(k=1\) and \(k\gg1\) (i.e. \(k\) is much greater than 1). Show that for any positive integer \(n\) \[ \int_{0}^{\frac{1}{4}\pi}\tan^{2n+1}\theta\,\mathrm{d}\theta=(-1)^{n}\left(\tfrac{1}{2}\ln2+\sum_{m=1}^{n}\frac{(-1)^{m}}{2m}\right), \] and deduce that \[ \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m}=\tfrac{1}{2}\ln2. \] Show similarly that \[ \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m-1}=\frac{\pi}{4}. \]

Show Solution
TikZ diagram
Let \(\displaystyle I_n = \int_0^{\pi/4} \tan^{n} \theta \, \d \theta\), then \begin{align*} I_0 &= \int_0^{\pi/4} \tan \theta \d \theta \\ &= \left [ -\ln \cos \theta \right]_0^{\pi/4} \\ &= -\ln \frac{1}{\sqrt{2}} - 0 \\ &= \frac12 \ln 2 \\ \\ \\ I_{2n+1} &= \int_0^{\pi/4} \tan^{2n+1} \theta \, \d \theta \\&= \int_0^{\pi/4} \tan^{2n-1} \theta \tan ^2 \theta \, \d \theta \\ &= \int_0^{\pi/4} \tan^{2n-1} \theta (\sec^2 \theta - 1) \, \d \theta \\ &= \int_0^{\pi/4} \tan^{2n-1} \theta \sec^2 \theta - \tan^{2n-1} \theta \, \d \theta \\ &= \left[ \frac{1}{2n} \tan^{2n} \theta \right]_0^{\pi/4} - I_{2n-1} \\ &= \frac1{2n} - I_{2n-1} \end{align*} Therefore we can see that \(\displaystyle I_{2n+1} = (-1)^{n}\left(\tfrac{1}{2}\ln2+\sum_{m=1}^{n}\frac{(-1)^{m}}{2m}\right)\). As we can see as \(n \to \infty\), \(I_n \to 0\) Therefore \begin{align*} && 0 &= \tfrac{1}{2}\ln2+\lim_{n \to \infty} \sum_{m=1}^{n}\frac{(-1)^{m}}{2m} \\ \Rightarrow && \tfrac{1}{2}\ln2 &= \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m} \end{align*} \begin{align*} && I_{-1} &= \int_0^{\pi/4} 1 \d \theta \\ &&&= \frac{\pi}{4} \end{align*} Therefore \(\displaystyle I_{2n} = (-1)^n \left ( \frac{\pi}{4} + \sum_{m=1}^n \frac{(-1)^m}{2m-1} \right)\) and since \(I_{2m} \to 0\) the same result follows.