Year 13 course on additional further pure
Let \(a\) and \(b\) be positive integers such that \(b<2a-1\). For any given positive integer \(n\), the integers \(N\) and \(M\) are defined by \[ [a+\sqrt{a^{2}-b}]^{n}=N-r, \] \[ [a-\sqrt{a^{2}-b}]^{n}=M+s, \] where \(0\leqslant r<1\) and \(0\leqslant s<1\). Prove that \begin{questionparts} \item \(M=0\), \item \(r=s\), \item \(r^{2}-Nr+b^{n}=0.\) \end{questionpart} Show that for large \(n\), \(\left(8+3\sqrt{7}\right)^{n}\) differs from an integer by about \(2^{-4n}\).
Show SolutionThe sequence \(a_n\) is defined by \(a_0 = 1\) , \(a_1 = 1\) , and $$ a_n = {1 + a_{n - 1}^2 \over a_{n - 2} } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( n \ge 2 ) . $$ Prove by induction that $$ a_n = 3 a_{n - 1} - a_{n - 2} \ \ \ \ \ \ \ \ \ \ \ ( n \ge2 ) . $$ Hence show that $$ a_n = {\alpha^{2 n - 1} + \alpha^{- ( 2 n - 1 )} \over \sqrt 5} \ \ \ \ \ \ (n\ge1), $$ where \(\displaystyle{\alpha = {1 + \sqrt 5 \over 2}}\).
The value \(V_N\) of a bond after \(N\) days is determined by the equation $$ V_{N+1} = (1+c) V_{N} -d \qquad (c>0, \ d>0), $$ where \(c\) and \(d\) are given constants. By looking for solutions of the form \(V_T= A k^T + B\) for some constants \(A,B\) and \(k\), or otherwise, find \(V_N\) in terms of \(V_0\). What is the solution for \(c=0\)? Show that this is the limit (for fixed \(N\)) as \(c\rightarrow 0\) of your solution for \(c>0\).
Show SolutionEach day, books returned to a library are placed on a shelf in order of arrival, and left there. When a book arrives for which there is no room on the shelf, that book and all books subsequently returned are put on a trolley. At the end of each day, the shelf and trolley are cleared. There are just two-sizes of book: thick, requiring two units of shelf space; and thin, requiring one unit. The probability that a returned book is thick is \(p\), and the probability that it is thin is \(q=1-p.\) Let \(M(n)\) be the expected number of books that will be put on the shelf, when the length of the shelf is \(n\) units and \(n\) is an integer, on the assumption that more books will be returned each day than can be placed on the shelf. Show, giving reasoning, that
The real numbers \(u_{0},u_{1},u_{2},\ldots\) satisfy the difference equation \[ au_{n+2}+bu_{n+1}+cu_{n}=0\qquad(n=0,1,2,\ldots), \] where \(a,b\) and \(c\) are real numbers such that the quadratic equation \[ ax^{2}+bx+c=0 \] has two distinct real roots \(\alpha\) and \(\beta.\) Show that the above difference equation is satisfied by the numbers \(u_{n}\) defined by \[ u_{n}=A\alpha^{n}+B\beta^{n}, \] where \[ A=\frac{u_{1}-\beta u_{0}}{\alpha-\beta}\qquad\mbox{ and }\qquad B=\frac{u_{1}-\alpha u_{0}}{\beta-\alpha}. \] Show also, by induction, that these numbers provide the only solution. Find the numbers \(v_{n}\) \((n=0,1,2,\ldots)\) which satisfy \[ 8(n+2)(n+1)v_{n+2}-2(n+3)(n+1)v_{n+1}-(n+3)(n+2)v_{n}=0 \] with \(v_{0}=0\) and \(v_{1}=1.\)
Show SolutionA secret message consists of the numbers \(1,3,7,23,24,37,39,43,43,43,45,47\) arranged in some order as \(a_{1},a_{2},\ldots,a_{12}.\) The message is encoded as \(b_{1},b_{2},\ldots,b_{12}\) with \(0\leqslant b_{j}\leqslant49\) and \begin{alignat*}{1} b_{2j} & \equiv a_{2j}+n_{0}+j\pmod{50},\\ b_{2j+1} & \equiv a_{2j+1}+n_{1}+j\pmod{50}, \end{alignat*} for some integers \(n_{0}\) and \(n_{1}.\) If the coded message is \(35,27,2,36,15,35,8,40,40,37,24,48,\) find the original message, explaining your method carefully.
Show SolutionThe integers \(a,b\) and \(c\) satisfy \[ 2a^{2}+b^{2}=5c^{2}. \] By considering the possible values of \(a\pmod5\) and \(b\pmod5\), show that \(a\) and \(b\) must both be divisible by \(5\). By considering how many times \(a,b\) and \(c\) can be divided by \(5\), show that the only solution is \(a=b=c=0.\)
Show SolutionFind the ratio, over one revolution, of the distance moved by a wheel rolling on a flat surface to the distance traced out by a point on its circumference.
Show SolutionThe curve \(P\) has the parametric equations $$ x= \sin\theta, \quad y=\cos2\theta \qquad\hbox{ for }-\pi/2 \le \theta \le \pi/2. $$ Show that \(P\) is part of the parabola \(y=1-2x^2\) and sketch \(P\). Show that the length of \(P\) is \(\surd (17) + {1\over 4} \sinh^{-1}4\). Obtain the volume of the solid enclosed when \(P\) is rotated through \(2\pi\) radians about the line \(y=-1\).
Show SolutionA kingdom consists of a vast plane with a central parabolic hill. In a vertical cross-section through the centre of the hill, with the \(x\)-axis horizontal and the \(z\)-axis vertical, the surface of the plane and hill is given by \[ z=\begin{cases} \dfrac{1}{2a}(a^{2}-x^{2}) & \mbox{ for }\left|x\right|\leqslant a,\\ 0 & \mbox{ for }\left|x\right|>a. \end{cases} \] The whole surface is formed by rotating this cross-section about the \(z\)-axis. In the \((x,z)\) plane through the centre of the hill, the king has a summer residence at \((-R,0)\) and a winter residence at \((R,0)\), where \(R>a.\) He wishes to connect them by a road, consisting of the following segments: \begin{itemize} \item a path in the \((x,z)\) plane joining \((-R,0)\) to \((-b,(a^{2}-b^{2})/2a),\) where \(0\leqslant b\leqslant a.\) \item a horizontal semicircular path joining the two points \((\pm b,(a^{2}-b^{2})/2a),\) if \(b\neq0;\) \item a path in the \((x,z)\) plane joining \((b,(a^{2}-b^{2})/2a)\) to \((R,0).\) \end{itemiz} The king wants the road to be as short as possible. Advise him on his choice of \(b.\)
Show SolutionLet \((G,*)\) and \((H,\circ)\) be two groups and \(G\times H\) be the set of ordered pairs \((g,h)\) with \(g\in G\) and \(h\in H.\) A multiplication on \(G\times H\) is defined by \[ (g_{1},h_{1})(g_{2},h_{2})=(g_{1}*g_{2},h_{1}\circ h_{2}) \] for all \(g_{1},g_{2}\in G\) and \(h_{1},h_{2}\in H\). Show that, with this multiplication, \(G\times H\) is a group. State whether the following are true or false and prove your answers.
The set \(S\) consists of \(N(>2)\) elements \(a_{1},a_{2},\ldots,a_{N}.\) \(S\) is acted upon by a binary operation \(\circ,\) defined by \[ a_{j}\circ a_{k}=a_{m}, \] where \(m\) is equal to the greater of \(j\) and \(k\). Determine, giving reasons, which of the four group axioms hold for \(S\) under \(\circ,\) and which do not. Determine also, giving reasons, which of the group axioms hold for \(S\) under \(*\), where \(*\) is defined by \[ a_{j}*a_{k}=a_{n}, \] where \(n=\left|j-k\right|+1\).
Show SolutionLet \(a\) be a non-zero real number and define a binary operation on the set of real numbers by $$ x*y = x+y+axy \,. $$ Show that the operation \(*\) is associative. Show that \((G,*)\) is a group, where \(G\) is the set of all real numbers except for one number which you should identify. Find a subgroup of \((G,*)\) which has exactly 2 elements.
Show SolutionConsider the following sets with the usual definition of multiplication appropriate to each. In each case you may assume that the multiplication is associative. In each case state, giving adequate reasons, whether or not the set is a group.
Let \(S_{3}\) be the group of permutations of three objects and \(Z_{6}\) be the group of integers under addition modulo 6. List all the elements of each group, stating the order of each element. State, with reasons, whether \(S_{3}\) is isomorphic with \(Z_{6}.\) Let \(C_{6}\) be the group of 6th roots of unity. That is, \(C_{6}=\{1,\alpha,\alpha^{2},\alpha^{3},\alpha^{4},\alpha^{5}\}\) where \(\alpha=\mathrm{e}^{\mathrm{i}\pi/3}\) and the group operation is complex multiplication. Prove that \(C_{6}\) is isomorphic with \(Z_{6}.\) Is there any (multiplicative or additive) subgroup of the complex numbers which is isomorphic with \(S_{3}\)? Give a reason for your answer.
Show SolutionThe set \(S\) consists of ordered pairs of complex numbers \((z_1,z_2)\) and a binary operation \(\circ\) on \(S\) is defined by $$ (z_1,z_2)\circ(w_1,w_2)= (z_1w_1-z_2w^*_2, \; z_1w_2+z_2w^*_1). $$ Show that the operation \(\circ\) is associative and determine whether it is commutative. Evaluate \((z,0)\circ(w,0)\), \((z,0)\circ(0,w)\), \((0,z)\circ(w,0)\) and \((0,z)\circ(0,w)\). The set \(S_1\) is the subset of \(S\) consisting of \(A\), \(B\), \(\ldots\,\), \(H\), where \(A=(1,0)\), \(B=(0,1)\), \(C=(i,0)\), \(D=(0,i)\), \(E=(-1,0)\), \(F=(0,-1)\), \(G=(-i,0)\) and \(H=(0,-i)\). Show that \(S_1\) is closed under \(\circ\) and that it has an identity element. Determine the inverse and order of each element of \(S_1\). Show that \(S_1\) is a group under \(\circ\). \hfil\break [You are not required to compute the multiplication table in full.] Show that \(\{A,B,E,F\}\) is a subgroup of \(S_1\) and determine whether it is isomorphic to the group generated by the \(2\times2\) matrix $\begin{pmatrix}0 & 1\\ -1 & 0 \end{pmatrix}$ under matrix multiplication.
Explain what is meant by the order of an element \(g\) of a group \(G\). The set \(S\) consists of all \(2\times2\) matrices whose determinant is \(1\). Find the inverse of the element \(\mathbf{A}\) of \(S\), where \[ \mathbf{A}=\begin{pmatrix}w & x\\ y & z \end{pmatrix}. \] Show that \(S\) is a group under matrix multiplication (you may assume that matrix multiplication is associative). For which elements \(\mathbf{A}\) is \(\mathbf{A}^{-1}=\mathbf{A}\)? Which element or elements have order 2? Show that the element \(\mathbf{A}\) of \(S\) has order 3 if, and only if, \(w+z+1=0.\) Write down one such element.
Show SolutionLet \(G\) be the set of all matrices of the form \[ \begin{pmatrix}a & b\\ 0 & c \end{pmatrix}, \] where \(a,b\) and \(c\) are integers modulo 5, and \(a\neq0\neq c\). Show that \(G\) forms a group under matrix multiplication (which may be assumed to be associative). What is the order of \(G\)? Determine whether or not \(G\) is commutative. Determine whether or not the set consisting of all elements in \(G\) of order \(1\) or \(2\) is a subgroup of \(G\).
Show SolutionThe elements \(a,b,c,d\) belong to the group \(G\) with binary operation \(*.\) Show that
The matrix \(\mathbf{M}\) is given by \[ \mathbf{M}=\begin{pmatrix}\cos(2\pi/m) & -\sin(2\pi/m)\\ \sin(2\pi/m) & \cos(2\pi/m) \end{pmatrix}, \] where \(m\) is an integer greater than \(1.\) Prove that \[ \mathbf{M}^{m-1}+\mathbf{M}^{m-2}+\cdots+\mathbf{M}^{2}+\mathbf{M}+\mathbf{I}=\mathbf{O}, \] where $\mathbf{I}=\begin{pmatrix}1 & 0\\ 0 & 1 \end{pmatrix}\( and \)\mathbf{O}=\begin{pmatrix}0 & 0\\ 0 & 0 \end{pmatrix}.$ The sequence \(\mathbf{X}_{0},\mathbf{X}_{1},\mathbf{X}_{2},\ldots\) is defined by \[ \mathbf{X}_{k+1}=\mathbf{PX}_{k}+\mathbf{Q}, \] where \(\mathbf{P,Q}\) and \(\mathbf{X}_{0}\) are given \(2\times2\) matrices. Suggest a suitable expression for \(\mathbf{X}_{k}\) in terms of \(\mathbf{P},\) \(\mathbf{Q}\) and \(\mathbf{X}_{0},\) and justify it by induction. The binary operation \(*\) is defined as follows: \[ \mathbf{X}_{i}*\mathbf{X}_{j}\mbox{ is the result of substituting \ensuremath{\mathbf{X}_{j}}for \ensuremath{\mathbf{X}_{0}}in the expression for \ensuremath{\mathbf{X}_{i}}. } \] Show that if \(\mathbf{P=M},\) the set \(\{\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\ldots\}\) forms a finite group under the operation \(*\).
Show SolutionLet \(\Omega=\exp(\mathrm{i}\pi/3).\) Prove that \(\Omega^{2}-\Omega+1=0.\) Two transformations, \(R\) and \(T\), of the complex plane are defined by \[ R:z\longmapsto\Omega^{2}z\qquad\mbox{ and }\qquad T:z\longmapsto\dfrac{\Omega z+\Omega^{2}}{2\Omega^{2}z+1}. \] Verify that each of \(R\) and \(T\) permute the four point \(z_{0}=0,\) \(z_{1}=1,\) \(z_{2}=\Omega^{2}\) and \(z_{3}=-\Omega.\) Explain, without explicitly producing a group multiplication table, why the smallest group of transformations which contains elements \(R\) and \(T\) has order at least 12. Are there any permutations of these points which cannot be produced by repeated combinations of \(R\) and \(T\)?
Show SolutionLet \(G\) be a finite group with identity \(e.\) For each element \(g\in G,\) the order of \(g\), \(o(g),\) is defined to be the smallest positive integer \(n\) for which \(g^{n}=e.\)
Give a careful argument to show that, if \(G_{1}\) and \(G_{2}\) are subgroups of a finite group \(G\) such that every element of \(G\) is either in \(G_{1}\) or in \(G_{2},\) then either \(G_{1}=G\) or \(G_{2}=G\). Give an example of a group \(H\) which has three subgroups \(H_{1},H_{2}\) and \(H_{3}\) such that every element of \(H\) is either in \(H_{1},H_{2}\) or \(H_{3}\) and \(H_{1}\neq H,H_{2}\neq H,H_{3}\neq H\).
Show SolutionLet \({\displaystyle I_{m,n}=\int\cos^{m}x\sin nx\,\mathrm{d}x,}\) where \(m\) and \(n\) are non-negative integers. Prove that for \(m,n\geqslant1,\) \[ (m+n)I_{m,n}=-\cos^{m}x\cos nx+mI_{m-1,n-1}. \]
Let \[ \displaystyle I_n= \int_{-\infty}^\infty \frac 1 {(x^2+2ax+b)^n} \, \d x \] where \(a\) and \(b\) are constants with \(b > a^2\), and \(n\) is a positive integer.
For \(n\ge 0\), let \[ I_n = \int_0^1 x^n(1-x)^n\d x\,. \]
Let \(m\) be a positive integer and let \(n\) be a non-negative integer.
For \(n=1\), \(2\), \(3\), \(\ldots\,\), let \[ I_n = \int_0^1 {t^{n-1} \over \l t+1 \r^n} \, \mathrm{d} t \, . \] By considering the greatest value taken by \(\displaystyle {t \over t+1}\) for \(0 \le t \le 1\) show that \(I_{n+1} < {1 \over 2} I_{n}\,\). Show also that \(\; \displaystyle I_{n+1}= - \frac 1{\; n\, 2^n} + I_{n}\,\). Deduce that \(\; \displaystyle I_n < \frac1 {\; n \, 2^{n-1}}\,\). Prove that \[ \ln 2 = \sum_{r=1}^n {1 \over \; r\, 2^r} + I_{n+1} \] and hence show that \({2 \over 3} < \ln 2 < {17 \over 24}\,\).
Show SolutionIf \[ \mathrm{I}_{n}=\int_{0}^{a}x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\,\mathrm{d}x, \] show that \(\mathrm{I}_{0}=\pi a^{2}/8.\) Show that \((2n+4)\mathrm{I}_{n}=(2n+1)a\mathrm{I}_{n-1}\) and hence evaluate \(\mathrm{I}_{n}\).
Show SolutionLet \[ u_{n}=\int_{0}^{\frac{1}{2}\pi}\sin^{n}t\,\mathrm{d}t \] for each integer \(n\geqslant0\). By integrating \[ \int_{0}^{\frac{1}{2}\pi}\sin t\sin^{n-1}t\,\mathrm{d}t \] by parts, or otherwise, obtain a formula connecting \(u_{n}\) and \(u_{n-2}\) when \(n\geqslant2\) and deduce that \[ nu_{n}u_{n-1}=\left(n-1\right)u_{n-1}u_{n-2} \] for all \(n\geqslant2\). Deduce that \[ nu_{n}u_{n-1}=\tfrac{1}{2}\pi. \] Sketch graphs of \(\sin^{n}t\) and \(\sin^{n-1}t\), for \(0\leqslant t\leqslant\frac{1}{2}\pi,\) on the same diagram and explain why \(0 < u_{n} < u_{n-1}.\) By using the result of the previous paragraph show that \[ nu_{n}^{2} < \tfrac{1}{2}\pi < nu_{n-1}^{2} \] for all \(n\geqslant1\). Hence show that \[ \left(\frac{n}{n+1}\right)\tfrac{1}{2}\pi < nu_{n}^{2} < \tfrac{1}{2}\pi \] and deduce that \(nu_{n}^{2}\rightarrow\tfrac{1}{2}\pi\) as \(n\rightarrow\infty\).
Show SolutionCalculate \[ \int_{0}^{x}\mathrm{sech}\, t\,\mathrm{d}t. \] Find the reduction formula involving \(I_{n}\) and \(I_{n-2}\), where \[ I_{n}=\int_{0}^{x}\mathrm{sech}^{n}t\,\mathrm{d}t \] and, hence or otherwise, find \(I_{5}\) and \(I_{6}.\)
Show SolutionGiven that \({\displaystyle I_{n}=\int_{0}^{\pi}\frac{x\sin^{2}(nx)}{\sin^{2}x}\,\mathrm{d}x,}\) where \(n\) is a positive integer, show that \(I_{n}-I_{n-1}=J_{n},\) where \[ J_{n}=\int_{0}^{\pi}\frac{x\sin(2n-1)x}{\sin x}\,\mathrm{d}x. \] Obtain also a reduction formula for \(J_{n}.\) The curve \(C\) is given by the cartesian equation \[ y=\dfrac{x\sin^{2}(nx)}{\sin^{2}x}, \] where \(n\) is a positive integer and \(0\leqslant x\leqslant\pi.\) Show that the area under the curve \(C\) is \(\frac{1}{2}n\pi^{2}.\)
Show SolutionGive a rough sketch of the function \(\tan^{k}\theta\) for \(0\leqslant\theta\leqslant\frac{1}{4}\pi\) in the two cases \(k=1\) and \(k\gg1\) (i.e. \(k\) is much greater than 1). Show that for any positive integer \(n\) \[ \int_{0}^{\frac{1}{4}\pi}\tan^{2n+1}\theta\,\mathrm{d}\theta=(-1)^{n}\left(\tfrac{1}{2}\ln2+\sum_{m=1}^{n}\frac{(-1)^{m}}{2m}\right), \] and deduce that \[ \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m}=\tfrac{1}{2}\ln2. \] Show similarly that \[ \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m-1}=\frac{\pi}{4}. \]
Show Solution