UFM Mechanics

Year 13 course on Further Mechanics

Showing 1-17 of 17 problems
2025 Paper 3 Q10
D: 1500.0 B: 1500.0

A plank \(AB\) of length \(L\) initially lies horizontally at rest along the \(x\)-axis on a flat surface, with \(A\) at the origin. Point \(C\) on the plank is such that \(AC\) has length \(sL\), where \(0 < s < 1\). End \(A\) is then raised vertically along the \(y\)-axis so that its height above the horizontal surface at time \(t\) is \(h(t)\), while end \(B\) remains in contact with the flat surface and on the \(x\)-axis. The function \(h(t)\) satisfies the differential equation $$\frac{d^2h}{dt^2} = -\omega^2 h, \text{ with } h(0) = 0 \text{ and } \frac{dh}{dt} = \omega L \text{ at } t = 0$$ where \(\omega\) is a positive constant. A particle \(P\) of mass \(m\) remains in contact with the plank at point \(C\).

  1. Show that the \(x\)-coordinate of \(P\) is \(sL\cos\omega t\), and find a similar expression for its \(y\)-coordinate.
  2. Find expressions for the \(x\)- and \(y\)-components of the acceleration of the particle.
  3. \(N\) and \(F\) are the upward normal and frictional components, respectively, of the force of the plank on the particle. Show that $$N = mg(1 - k\sin\omega t)\cos\omega t$$ and that $$F = mgsk\frac{\omega^2}{g}\tan\omega t$$ where \(k = \frac{L\omega^2}{g}\).
  4. The coefficient of friction between the particle and the plank is \(\tan\alpha\), where \(\alpha\) is an acute angle. Show that the particle will not slip initially, provided \(sk < \tan\alpha\). Show further that, in this case, the particle will slip
    • while \(N\) is still positive,
    • when the plank makes an angle less than \(\alpha\) to the horizontal.

Show Solution
  1. Since we have \(h'' + \omega^2 h = 0\) we must have that \(h(t) = A \cos \omega t + B \sin \omega t\). The initial conditions tell us that \(A = 0\) and \(B = L\), so \(h(t) = L \sin \omega t\).
    TikZ diagram
    Therefore we can see the angle at \(B\) is \(\omega t\) and so \(P\) has \(y\)-coordinate \((1-s)L \sin \omega t\) and \(x\)-coordinate \(sL \cos \omega t\)
  2. If the position is \(\binom{sL \cos \omega t}{(1-s) L \sin \omega t}\) then the acceleration is \(-\omega^2 \binom{sL \cos \omega t}{(1-s) L \sin \omega t}\)
  3. TikZ diagram
    \begin{align*} \text{N2}(\rightarrow): && - F\cos \omega t + N \sin \omega t &= -m\omega^2 sL \cos \omega t\\ \text{N2}(\uparrow): && -mg + F\sin \omega t + N \cos \omega t &= -m\omega^2 (1-s) L \sin \omega t \\ \Rightarrow && \begin{pmatrix} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{pmatrix} \begin{pmatrix} F \\ N \end{pmatrix} &= \begin{pmatrix} m\omega^2 s L \cos \omega t \\ mg - m\omega^2(1-s)L \sin \omega t \end{pmatrix} \\ \Rightarrow && \begin{pmatrix}F \\ N \end{pmatrix} &= \begin{pmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{pmatrix} \begin{pmatrix} m\omega^2 s L \cos \omega t \\ mg - m\omega^2(1-s)L \sin \omega t \end{pmatrix} \\ \Rightarrow && N &= m \omega^2 s L (-\sin \omega t \cos \omega t) + mg \cos \omega t - m \omega^2 (1-s)L \sin \omega t \cos \omega t \\ &&&=mg \cos \omega t - m \omega^2 L \sin \omega t \cos \omega t \\ &&&= mg \cos \omega t \left (1 - \frac{L \omega^2}{g} \sin \omega t \right) \\ &&&= mg (1 - k \sin \omega t) \cos \omega t \\ \Rightarrow && F &= m \omega^2 s L \cos^2 \omega t + mg \sin \omega t - m \omega^2 (1-s) L \sin ^2 \omega t \\ &&&= m \omega^2 s L + mg \sin \omega t - m \omega^2 L \sin^2 \omega t \\ &&&= mg \frac{\omega^2 L}{g} s + mg(1-\frac{\omega^2 L}{g} \sin \omega t)\sin \omega t \\ &&&= mg sk + mg(1-k \sin \omega t) \cos \omega t \tan \omega t \\ &&&= mgsk + N \tan \omega t \end{align*}
  4. The particle will not slip if \(F < \tan \alpha N\). When \(t = 0\), \(N = mg, F = mgsk\), but clearly \(sk < \tan \alpha \Rightarrow mgsk = F < \tan \alpha mg = \tan \alpha N\). The particle will slip when: \(F > \tan \alpha N\), but we have \(F = mgsk + N \tan \omega t\). Clearly when \(\omega t = \alpha\) we have reached a point where \(F > \tan \alpha N\). Therefore we must slip before we reach this point, ie at a point where the plank makes an angle of less than \(\alpha\) to the horizontal. Notice also that \(N\) changes sign when \(1-k \sin \omega t = 0\), however, to do this \(N\) must become very small, smaller than \(mgsk\), therefore we must slip before this point too. Since we slip before either condition occurs, we must be in a position when \(N\) is positive AND the plank still makes a shallow angle.
2019 Paper 1 Q9
D: 1500.0 B: 1500.0

A box has the shape of a uniform solid cuboid of height \(h\) and with a square base of side \(b\), where \(h > b\). It rests on rough horizontal ground. A light ladder has its foot on the ground and rests against one of the upper horizontal edges of the box, making an acute angle of \(\alpha\) with the ground, where \(h = b \tan \alpha\). The weight of the box is \(W\). There is no friction at the contact between ladder and box. A painter of weight \(kW\) climbs the ladder slowly. Neither the base of the ladder nor the box slips, but the box starts to topple when the painter reaches height \(\lambda h\) above the ground, where \(\lambda < 1\). Show that:

  1. \(R = k\lambda W \cos \alpha\), where \(R\) is the magnitude of the force exerted by the box on the ladder;
  2. \(2k\lambda \cos 2\alpha + 1 = 0\);
  3. \(\mu \geq \frac{\sin 2\alpha}{1 - 3 \cos 2\alpha}\), where \(\mu\) is the coefficient of friction between the box and the ground.

Show Solution
TikZ diagram
At the point we are about to topple, reaction and friction forces will be acting at \(C\)
  1. \(\,\) \begin{align*} \overset{\curvearrowright}{X}:&& kW \cdot \lambda h\cos \alpha - R h &= 0 \\ \Rightarrow && R &= k\lambda W \cos \alpha \\ \end{align*}
  2. \(\,\) \begin{align*} \overset{\curvearrowright}{C}:&& R \sin \alpha \cdot h-R\cos \alpha \cdot b-W\frac{b}{2} &= 0 \\ && k\lambda W \cos \alpha \sin \alpha \cdot b \tan \alpha- k\lambda W \cos \alpha\cos \alpha \cdot h-W\frac{b}{2} &= 0 \\ && k \lambda (\cos^2 \alpha - \sin^2 \alpha) +\frac12 &= 0 \\ \Rightarrow && 2k \lambda \cos 2\alpha + 1 &= 0 \end{align*}
  3. \(\,\) \begin{align*} \text{N2}(\uparrow): && R_b -W-R\cos \alpha &= 0 \\ \Rightarrow && R_b &= W + k\lambda W \cos^2 \alpha\\ \text{N2}(\rightarrow): && R\sin \alpha - F_b &= 0 \\ \Rightarrow && F_b &= R \sin \alpha \\ \\ && F_b &\leq \mu R \\ \Rightarrow && k\lambda W \cos \alpha \sin \alpha &= \mu (W + k\lambda W \cos^2 \alpha) \\ \Rightarrow && \mu &\geq \frac{k\lambda \cos \alpha \sin \alpha}{1 + k\lambda \cos^2 \alpha} \\ &&&= \frac{k\lambda \sin 2\alpha}{2 + 2k\lambda cos^2 \alpha} \\ &&&= \frac{k\lambda \sin 2\alpha}{2 + k\lambda (\cos 2 \alpha+1)} \\ &&&= \frac{k\lambda \sin 2\alpha}{-4k\lambda \cos 2 \alpha + k\lambda (\cos 2 \alpha+1)} \\ &&&= \frac{\sin 2 \alpha}{1 -3 \cos 2\alpha} \end{align*}
1987 Paper 2 Q12
D: 1500.0 B: 1500.0

A long, inextensible string passes through a small fixed ring. One end of the string is attached to a particle of mass \(m,\) which hangs freely. The other end is attached to a bead also of mass \(m\) which is threaded on a smooth rigid wire fixed in the same vertical plane as the ring. The curve of the wire is such that the system can be in static equilibrium for all positions of the bead. The shortest distance between the wire and the ring is \(d(>0).\) Using plane polar coordinates centred on the ring, find the equation of the curve. The bead is set in motion. Assuming that the string remains taut, show that the speed of the bead when it is a distance \(r\) from the ring is \[ \left(\frac{r}{2r-d}\right)^{\frac{1}{2}}v, \] where \(v\) is the speed of the bead when \(r=d.\)

Show Solution
TikZ diagram
Assume the total length of the string is \(l\). Then the total energy of the system (when nothing is moving) for a given \(\theta\) is: \(mg(r-l) + mgr \sin \theta\) Since for a point in static equilibrium, the derivative of this must be \(0\), this must be constant. So: \(r\l \sin \theta + 1\r = C \Rightarrow r = \frac{C}{1+\sin \theta}\) \(r\) will be smallest when \(\sin \theta = 1\), ie in polar coordinates, the equation should be \(r = \frac{2d}{1+\sin \theta}\) Alternatively, by considering forces, the shape must be a parabola with the ring at the focus. Considering the bead, it will have speed of \(r \dot{\theta}\) tangentially, and \(-\dot{r}\). The other particle will have speed \(\dot{r}\). Differentiating wrt to \(t\) \begin{align*} && 0 &= \dot{r}(\sin \theta + 1) + r \dot{\theta} \cos \theta \\ \Rightarrow && \dot{\theta} &= \frac{-\dot{r}(1+\sin \theta)}{r \cos \theta} \\ &&&= \frac{-\dot{r} 2d}{r^2 \sqrt{1-\l \frac{2d}{r}-1\r^2}} \\ &&&= \frac{-2d\dot{r}}{r^2\sqrt{\frac{r^2-(2d-r)^2}{r^2}}} \\ &&&= \frac{-d\dot{r}}{r\sqrt{dr-d^2}} \end{align*} By conservation of energy (since GPE is constant throughout the system, KE must be constant): \begin{align*} && \frac12 m (r^2 \dot{\theta}^2+\dot{r}^2) +\frac12 m \dot{r}^2 &= \frac12mv^2 \\ \Rightarrow && v^2 &= r^2 \dot{\theta}^2 + 2\dot{r}^2 \\ &&&= r^2 \frac{d^2\dot{r}^2}{r^2(dr-d^2)} + 2\dot{r}^2 \\ &&&= \dot{r}^2 \l \frac{d }{r-d} + 2 \r \\ &&&= \dot{r}^2 \l \frac{2r-d}{r-d} \r \\ \Rightarrow && v &= \dot{r} \l \frac{2r-d}{r-d} \r^{\frac12} \\ \Rightarrow && \dot{r} &= \l \frac{r-d}{2r-d} \r^{\frac12} v \\ \Rightarrow && u^2 &= r^2 \dot{\theta}^2+\dot{r}^2\\ &&&= \dot{r}^2 \l \frac{d }{r-d} + 1 \r \\ &&&= \l \frac{r-d}{2r-d} \r \l \frac{r}{r-d} \r v^2 \\ &&&= \l \frac{d}{2r-d} \r v^2 \\ \Rightarrow && u &= \l \frac{d}{2r-d} \r^{\frac12} v \end{align*}
1987 Paper 2 Q11
D: 1500.0 B: 1500.0

A rough ring of radius \(a\) is fixed so that it lies in a plane inclined at an angle \(\alpha\) to the horizontal. A uniform heavy rod of length \(b(>a)\) has one end smoothly pivoted at the centre of the ring, so that the rod is free to move in any direction. It rests on the circumference of the ring, making an angle \(\theta\) with the radius to the highest point on the circumference. Find the relation between \(\alpha,\theta\) and the coefficient of friction, \(\mu,\) which must hold when the rod is in limiting equilibrium.

Show Solution
TikZ diagram
It is important to define clear coordinate axes, so let the \(x\)-axis point up the line of greatest slope of the ring. The \(z\)-axis perpendicular to the ring, and the \(y\)-axis perpendicular to both of these. Our method is going to be to take moments about \(O\) to avoid worrying about the force at the pivot. There are \(3\) forces we need to worry about:
  • The mass of the rod
  • The reaction where it meets the ring
  • The friction at the ring
In our coordinate frame, the reaction will act in the \(z\)-direction, \(\displaystyle \begin{pmatrix} 0 \\ 0 \\ R \end{pmatrix}\), the friction force will act in the \(x-y\) plane: \(\displaystyle \begin{pmatrix} \mu R \sin \theta \\ -\mu R \cos \theta \\ 0 \end{pmatrix}\). We don't know the mass, but we know it will be acting "vertically", so \(\cos \alpha\) of it will act in the \(z\)-axis and \(\sin \alpha\) will act in the \(y\)-axis, ie it will act parallel to \(\displaystyle \begin{pmatrix} \sin \alpha \\ 0 \\ \cos \alpha \end{pmatrix}\). When taking moments, we need to consider \(\mathbf{r}\) the direction of the rod. This will be \(\displaystyle \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix}\). The moment of the weight will all be parallel to \(\mathbf{r} \times \begin{pmatrix} \sin \alpha \\ 0 \\ \cos \alpha \end{pmatrix}\). Similarly the moments of the contact forces will be \(\mathbf{r} \times \begin{pmatrix} \mu R \sin \theta \\ -\mu R \cos \theta \\ R \end{pmatrix}\). Since these moments sum to \(\mathbf{0}\) as we are in equilibrium, these vectors must be parallel. Therefore it is sufficient to check the vector triple product, \begin{align*} && 0 &= \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} \cdot \left ( \begin{pmatrix} \sin \alpha \\ 0 \\ \cos \alpha \end{pmatrix} \times \begin{pmatrix} \mu \sin \theta \\ -\mu \cos \theta \\ 1 \end{pmatrix} \right ) \\ &&&= \cos \theta (\mu \cos \theta \cos \alpha)-\sin \theta (\sin \alpha - \mu \sin \theta \cos \alpha) \\ &&&= \mu((\sin^2 \theta+\cos^2 \theta) \cos \alpha) -\sin \theta \sin \alpha \\ \Rightarrow && \mu &= \tan \alpha \sin \theta \end{align*}
2017 Paper 1 Q11
D: 1516.0 B: 1500.0

A plane makes an acute angle \(\alpha\) with the horizontal. A box in the shape of a cube is fixed onto the plane in such a way that four of its edges are horizontal and two of its sides are vertical. A uniform rod of length \(2L\) and weight \(W\) rests with its lower end at \(A\) on the bottom of the box and its upper end at \(B\) on a side of the box, as shown in the diagram below. The vertical plane containing the rod is parallel to the vertical sides of the box and cuts the lowest edge of the box at \(O\). The rod makes an acute angle~\(\beta\) with the side of the box at \(B\). The coefficients of friction between the rod and the box at the two points of contact are both \(\tan \gamma\), where \(0 < \gamma < \frac12\pi\). %The frictional force on the rod at \(A\) acts toward \(O\), %and the frictional force on the rod at~\(B\) %acts away from \(O\). The rod is in limiting equilibrium, with the end at \(A\) on the point of slipping in the direction away from \(O\) and the end at \(B\) on the point of slipping towards \(O\). Given that \(\alpha < \beta\), show that \(\beta = \alpha + 2\gamma\). [\(Hint\): You may find it helpful to take moments about the midpoint of the rod.]

TikZ diagram

Show Solution
TikZ diagram
Since we're at limiting equilibrium and about to slip \(Fr_B = \mu R_B\) and \(Fr_A = \mu R_A\) \begin{align*} \text{N2}(\parallel OB): && \mu R_B + R_A - W \cos \alpha &= 0 \\ \text{N2}(\parallel OA): && R_B - \mu R_A - W \sin \alpha &= 0 \\ \\ \Rightarrow && \sin\alpha \l \mu R_B + R_A \r - \cos \alpha \l R_B - \mu R_A \r &= 0 \\ \Leftrightarrow && R_A(\sin \alpha + \mu \cos \alpha) - R_B(\cos \alpha - \mu \sin \alpha) &= 0 \\ \Rightarrow && \frac{\tan \alpha + \mu}{1 - \mu \tan \alpha} R_A &= R_B\\ && \tan (\alpha + \gamma) R_A &= R_B \\ \\ \\ \overset{\curvearrowleft}{\text{midpoint}}: && R_A \sin \beta - \mu R_A \cos \beta - R_B \cos \beta - \mu R_B \sin \beta &= 0\\ \Rightarrow && \tan \beta - \mu - \tan (\alpha + \gamma) - \mu \tan (\alpha + \gamma) \tan \beta &= 0\\ \Rightarrow && \tan \beta \l 1 - \mu \tan (\alpha + \gamma) \r - \mu - \tan (\alpha + \gamma) &= 0\\ \Rightarrow && \frac{\mu + \tan (\alpha + \gamma)}{1 - \mu \tan (\alpha + \gamma)} &= \tan \beta \\ \Rightarrow && \tan (\alpha + 2\gamma) &= \tan \beta \end{align*} Since \(\alpha < \beta\) and \(\gamma < \frac{\pi}{4}\) we must have \(\alpha + 2\gamma = \beta\)
2004 Paper 1 Q11
D: 1500.0 B: 1500.0

Two uniform ladders \(AB\) and \(BC\) of equal length are hinged smoothly at \(B\). The weight of \(AB\) is \(W\) and the weight of \(BC\) is \(4W \). The ladders stand on rough horizontal ground with \(\angle ABC=60^\circ\,\). The coefficient of friction between each ladder and the ground is \(\mu\). A decorator of weight \(7W\) begins to climb the ladder \(AB\) slowly. When she has climbed up \(\frac13\) of the ladder, one of the ladders slips. Which ladder slips, and what is the value of \(\mu\)?

Show Solution
TikZ diagram
\begin{align*} \text{N2}(\rightarrow): && F_A - F_C &= 0\\ && F_A &= F_C \\ \text{N2}(\uparrow): && R_A + R_C - 7W - W - 4W &= 0\\ && R_A + R_C &= 12W \\ \overset{\curvearrowright}{A}: && \frac{1}{6}7W + \frac{1}{4}W + \frac{3}{4}4W - R_C &= 0 \\ \Rightarrow && R_C &= \frac{53}{12}W\\ \Rightarrow && R_A = 12W - \frac{53}{12}W &= \frac{91}{12}W \\ \overset{\curvearrowleft}{B}(AB): && \frac{1}{2}W + \frac{2}{3}7W - R_A+\frac{\sqrt{3}}{2}F_A &= 0 \\ \Rightarrow && F_A = \frac{2}{\sqrt{3}} \l \frac{91}{12}-\frac12-\frac{14}3\r W &= \frac{29}{12\sqrt{3}}W \end{align*} We know that the system is about to slip, so equality holds in one of \(F_A \leq \mu R_A\) or \(F_C \leq \mu R_C\). Since \(F_A = F_C\), we know it must occur for whichever of \(\mu R_A\) and \(\mu R_C\) is smaller. Since \(R_C\) is much smaller, this must be the ladder about to slip \(BC\) and \[ \mu = \frac{F_C}{R_C} = \frac{\frac{29}{12\sqrt{3}}W}{\frac{53}{12}W} = \boxed{\frac{29}{53\sqrt{3}}}\]
2000 Paper 3 Q10
D: 1700.0 B: 1500.0

A sphere of radius \(a\) and weight \(W\) rests on horizontal ground. A thin uniform beam of weight \(3\sqrt3\,W\) and length \(2a\) is freely hinged to the ground at \(X\), which is a distance \({\sqrt 3} \, a\) from the point of contact of the sphere with the ground. The beam rests on the sphere, lying in the same vertical plane as the centre of the sphere. The coefficients of friction between the beam and the sphere and between the sphere and the ground are \(\mu_1\) and \(\mu_2\) respectively. Given that the sphere is on the point of slipping at its contacts with both the ground and the beam, find the values of \(\mu_1\) and \(\mu_2\).

Show Solution
TikZ diagram
The first important thing to observe is the angle at \(X\) is \(60^{\circ}\). Now we can start resolving: \begin{align*} \overset{\curvearrowleft}{X}: && 3\sqrt{3} W \cos 60^{\circ} a - R_1\sqrt{3}a &= 0 \tag{\(1\)}\\ \overset{\curvearrowleft}{O}: && \mu_2 R_2 a - \mu_1R_1a &= 0 \tag{\(2\)} \\ \text{N2}(\rightarrow): && \mu_2 R_2 + \mu_1R_1 \cos 60^{\circ} - R_1 \cos 30^{\circ} &= 0 \tag{\(3\)} \\ \text{N2}(\uparrow): && R_2 - W - \mu_1 R_1 \cos 30^{\circ} - R_1 \cos 60^{\circ} &= 0 \tag{\(4\)} \\ \Rightarrow && \frac{3}{2}W &= R_1 \tag{\((5)\) from \((1)\)} \\ && \mu_1 R_1 &= \mu_2 R_2 \tag{\(2\)}\\ && \mu_1 R_1 \l 1 + \frac{1}{2} \r - R_1 \frac{\sqrt{3}}2 &= 0 \tag{\((3)\) and \((2)\)} \\ && \mu_1 &= \frac{1}{\sqrt3} \\ \\ && R_2 - W - \frac{1}{\sqrt3} \frac{3}{2}W \frac{\sqrt3}{2} - \frac{3}2W \frac12 &= 0 \\ \Rightarrow && R_2 &= W \l 1 + \frac{3}{2}\r \tag{\(6\)} \\ \Rightarrow && \mu_2 &= \frac{\mu_1 R_1}{R_2} = \frac{1}{\sqrt{3}} \frac{3}{5} = \frac{\sqrt3}{5} \tag{\((5)\) and \((6)\)} \end{align*}
1997 Paper 2 Q9
D: 1600.0 B: 1475.3

A uniform solid sphere of diameter \(d\) and mass \(m\) is drawn very slowly and without slipping from horizontal ground onto a step of height \(d/4\) by a horizontal force which is always applied to the highest point of the sphere and is always perpendicular to the vertical plane which forms the face of the step. Find the maximum horizontal force throughout the movement, and prove that the coefficient of friction between the sphere and the edge of the step must exceed \(1/\sqrt{3}\).

Show Solution
TikZ diagram
The ball is on the ground when \(\cos \theta = \frac12 \Rightarrow \theta = 60^\circ\) and ball will make it over the step when \(\theta = 0^\circ\). It is also worth emphasising we are moving \emph{very slowly}, so we can treat the system as static at any given point. \begin{align*} \overset{\curvearrowleft}{X}: && mg \frac{d}{2}\sin \theta - F \frac{d}{2} \l 1 + \cos \theta \r &= 0\\ \Rightarrow && \frac{mg \sin \theta}{1 + \cos \theta} &= F& \\ \Rightarrow && mg \tan \frac{\theta}{2} &= F& \\ \end{align*} Therefore \(F\) is maximised when \(\theta = 60^\circ\), ie \(F_{max} = \frac{mg}{\sqrt{3}}\) \begin{align*} \text{N2}(\parallel OX): && mg \cos \theta - R + F \sin \theta &= 0 \\ \Rightarrow && mg \cos \theta - R + \frac{mg\sin \theta}{1 + \cos \theta} \sin \theta &= 0 \\ \Rightarrow && mg &= R \\ \\ \text{N2}(\perp OX): && F_X - mg \sin \theta + F \cos \theta &= 0 \\ \Rightarrow && mg \sin \theta - \frac{mg\sin \theta}{1 + \cos \theta} \cos \theta &= F_X \\ \Rightarrow && \frac{mg\sin \theta}{1 + \cos \theta} &= F_X \tag{We could also see this taking moments about \(O\)}\\ % \text{N2}(\rightarrow): && F + \mu R \cos \theta - R \sin \theta &\geq 0 \\ % \text{N2}(\uparrow): && -mg +\mu R \sin \theta + R \cos \theta &\geq 0 \\ % \Rightarrow && R \l \sin \theta - \mu \cos \theta\r &\leq F \\ % \Rightarrow && R \l \mu \sin \theta + \cos \theta\r &\geq mg \\ % \Rightarrow && \l \frac{\sin \theta - \mu \cos \theta}{\mu \sin \theta + \cos \theta} \r mg & \leq F \\ % \Rightarrow && \l \frac{\tan \theta - \mu }{1+\mu \tan \theta} \r mg & \leq F \\ % \Rightarrow && \tan \l \theta - \alpha \r mg & \leq F \tag{where \(\tan \alpha = \mu\)} \end{align*} Therefore since \(F_X \leq \mu R\), \(\displaystyle \frac{mg\sin \theta}{1 + \cos \theta} \leq \mu mg \Rightarrow \mu \geq \tan \frac{\theta}{2}\) which is maximised at \(\theta = 60^\circ\) and implies \(\mu \geq \frac{1}{\sqrt{3}}\)
1996 Paper 3 Q10
D: 1700.0 B: 1500.0

Two rough solid circular cylinders, of equal radius and length and of uniform density, lie side by side on a rough plane inclined at an angle \(\alpha\) to the horizontal, where \(0<\alpha<\pi/2\). Their axes are horizontal and they touch along their entire length. The weight of the upper cylinder is \(W_1\) and the coefficient of friction between it and the plane is \(\mu_1\). The corresponding quantities for the lower cylinder are \(W_2\) and \(\mu_2\) respectively and the coefficient of friction between the two cylinders is \(\mu\). Show that for equilibrium to be possible:

  1. \(W_1\ge W_2\);
  2. \(\mu\geqslant\dfrac{W_1+W_2}{W_1-W_2}\);
  3. \(\mu_{1}\geqslant\left(\dfrac{2W_{1}\cot\alpha}{W_{1}+W_{2}}-1\right)^{-1}\,.\)
Find the similar inequality to (iii) for \(\mu_2\).

Show Solution
TikZ diagram
  1. \begin{align*} \overset{\curvearrowright}{O_2}: && 0 &= F_2 - F \\ \Rightarrow && F_2 &= F \\ \overset{\curvearrowright}{O_1}: && 0 &= F_1- F \\ \Rightarrow && F_1 &= F \\ \text{N2}(\swarrow, 2): && 0 &= R+W_2\sin\alpha -F \tag{1}\\ \text{N2}(\swarrow, 1): && 0 &= W_1\sin\alpha -F-R\tag{2}\\ \Rightarrow && W_1 \sin \alpha-R &= W_2 \sin \alpha+R \\ \Rightarrow && W_1 &\geq W_2 \end{align*}
  2. \begin{align*} (1)+(2)\Rightarrow && F &= \frac12 \sin \alpha (W_1 + W_2) \\ (1)-(2) \Rightarrow && R &= \frac12 \sin \alpha (W_1-W_2) \\ \Rightarrow && \frac{F}{R} &= \frac{W_1+W_2}{W_1-W_2} \\ \underbrace{\Rightarrow}_{F \leq \mu R} && \mu &\geq \frac{W_1+W_2}{W_1-W_2}\\ \end{align*}
  3. \begin{align*} \text{N2}(\nwarrow, 1): && 0 &= F+R_1-W_1\cos \alpha \\ \Rightarrow && R_1 &= W_1\cos \alpha - F \\ &&&= W_1 \cos \alpha - \frac12 \sin \alpha (W_1 + W_2) \\ \Rightarrow && \frac{R_1}{F_1} &= \frac{R_1}{F} \\ &&&= \frac{W_1 \cos \alpha - \frac12 \sin \alpha (W_1 + W_2)}{\frac12 \sin \alpha (W_1 + W_2) } \\ &&&= \frac{2W_1 \cot \alpha}{W_1+W_2} - 1 \\ \Rightarrow && \mu_1 & \geq \left ( \frac{2W_1 \cot \alpha}{W_1+W_2} - 1 \right)^{-1} \end{align*}
\begin{align*} \text{N2}(\nwarrow, 2): && 0 &= -F+R_2-W_2\cos \alpha \\ \Rightarrow && R_2 &= W_2\cos \alpha + F \\ &&&= W_2 \cos \alpha + \frac12 \sin \alpha (W_1 + W_2) \\ \Rightarrow && \frac{R_2}{F_2} &= \frac{R_2}{F} \\ &&&= \frac{ W_2 \cos \alpha + \frac12 \sin \alpha (W_1 + W_2)}{\frac12 \sin \alpha (W_1 + W_2) } \\ &&&= \frac{2W_2 \cot \alpha}{W_1+W_2} + 1 \\ \Rightarrow && \mu_2 & \geq \left ( \frac{2W_1 \cot \alpha}{W_1+W_2} + 1 \right)^{-1} \end{align*}
1993 Paper 2 Q12
D: 1600.0 B: 1484.0

TikZ diagram
A uniform sphere of mass \(M\) and radius \(r\) rests between a vertical wall \(W_{1}\) and an inclined plane \(W_{2}\) that meets \(W_{1}\) at an angle \(\alpha.\) \(Q_{1}\) and \(Q_{2}\) are the points of contact of the sphere with \(W_{1}\) and \(W_{2}\) resectively, as shown in the diagram. A particle of mass \(m\) is attached to the sphere at \(P\), where \(PQ_{1}\) is a diameter, and the system is released. The sphere is on the point of slipping at \(Q_{1}\) and at \(Q_{2}.\) Show that if the coefficients of friction between the sphere and \(W_{1}\) and \(W_{2}\) are \(\mu_{1}\) and \(\mu_{2}\) respectively, then \[ m=\frac{\mu_{2}+\mu_{1}\cos\alpha-\mu_{1}\mu_{2}\sin\alpha}{(2\mu_{1}\mu_{2}+1)\sin\alpha+(\mu_{2}-2\mu_{1})\cos\alpha-\mu_{2}}M. \] If the sphere is on the point of rolling about \(Q_{2}\) instead of slipping, show that \[ m=\frac{M}{\sec\alpha-1}. \]

Show Solution
TikZ diagram
Since the sphere is on the point of slipping at both \(Q_1\) and \(Q_2\), \(F_{r1} = \mu_1 R_1\) and \(F_{r2} = \mu_2 R_2\) \begin{align*} \text{N2}(\uparrow): && -mg-Mg-\mu_1 R_1 + R_2 \sin \alpha + \mu_2 R_2 \cos \alpha &= 0 \\ \text{N2}(\rightarrow): && -R_1 + R_2 \cos \alpha - \mu_2 R_2 \sin \alpha &= 0 \\ \\ \Rightarrow && R_2 \cos \alpha - \mu_2 R_2 \sin \alpha &= R_1 \\ % && -mg-Mg+\mu_1 (R_2 \cos \alpha - \mu_2 R_2 \sin \alpha) + R_2 \sin \alpha + \mu_2 R_2 \cos \alpha &= 0 \\ % \\ \overset{\curvearrowleft}{O}: && mg - \mu_1 R_1 - \mu_2R_2 &= 0 \\ \Rightarrow && \mu_1 R_2 \l \cos \alpha - \mu_2 \sin \alpha \r - \mu_2 R_2 &= -mg \\ && \mu_1 (R_2 \cos \alpha - \mu_2 R_2 \sin \alpha) + R_2 \sin \alpha + \\ && \quad \quad \mu_2 R_2 \cos \alpha - \mu_1 R_2 \l \cos \alpha - \mu_2 \sin \alpha \r - \mu_2 R_2 &= Mg \\ \Rightarrow && \frac{\mu_2+\mu_1 \l \cos \alpha - \mu_2 \sin \alpha \r }{\mu_1 ( \cos \alpha - \mu_2 \sin \alpha) + \sin \alpha + \mu_2 \cos \alpha - \mu_1 \l \cos \alpha - \mu_2 \sin \alpha \r - \mu_2 } &= \frac{m}{M} \\ && \frac{\mu_2+\mu_1 \cos \alpha - \mu_1\mu_2 \sin \alpha }{\cos \alpha (-2\mu_1+\mu_2) + \sin \alpha (1 +2\mu_1\mu_2) -\mu_2} &= \frac{m}{M} \end{align*} If instead the sphere is about to roll about \(Q_2\), then the forces at \(Q_1\) will be \(0\), we can then take moments about \(Q_2\).
TikZ diagram
Looking at perpendicular distances from \(Q_2\) to \(O\) and \(P\) we have \(r \cos \alpha\) and \(r(1-\cos \alpha)\) \begin{align*} \overset{\curvearrowleft}{Q_2}: && mg (1 - \cos \alpha) - Mg \cos \alpha &= 0 \\ \Rightarrow && \frac{1}{\sec \alpha-1} &= \frac{m}{M} \end{align*}
1992 Paper 1 Q12
D: 1484.0 B: 1471.5

The diagram shows a crude step-ladder constructed by smoothly hinging-together two light ladders \(AB\) and \(AC,\) each of length \(l,\) at \(A\). A uniform rod of wood, of mass \(m\), is pin-jointed to \(X\) on \(AB\) and to \(Y\) on \(AC\), where \(AX=\frac{3}{4}l=AY.\) The angle \(\angle XAY\) is \(2\theta.\) \noindent

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-4.3,-1.22)(4.6,6) \psline(-4,0)(4,0) \psline(-2,0)(0,5) \psline(0,5)(2,0) \psline(-1.21,1.97)(1.21,1.97) \parametricplot{-1.9513027039072617}{-1.190289949682532}{1.2*cos(t)+0|1.2*sin(t)+5} \rput[tl](-0.2,4.26){\(2\theta\)} \rput[tl](-0.1,5.5){\(A\)} \rput[tl](-1.8,2.1){\(X\)} \rput[tl](1.5,2.1){\(Y\)} \rput[tl](-2.36,-0.1){\(B\)} \rput[tl](2.02,-0.1){\(C\)} \end{pspicture*} \par
The rod \(XY\) will break if the tension in it exceeds \(T\). The step-ladder stands on rough horizontal ground (coefficient of friction \(\mu\)). Given that \(\tan\theta>\mu,\) find how large a mass \(M\) can safely be placed at \(A\) and show that if \[ \tan\theta>\frac{6T}{mg}+4\mu \] the step-ladder will fail under its own weight. {[}You may assume that friction is limiting at the moment of collapse.{]}

1991 Paper 3 Q11
D: 1700.0 B: 1484.0

TikZ diagram
A uniform circular cylinder of radius \(2a\) with a groove of radius \(a\) cut in its central cross-section has mass \(M\). It rests, as shown in the diagram, on a rough plane inclined at an acute angle \(\alpha\) to the horizontal. It is supported by a light inextensible string would round the groove and attached to the cylinder at one end. The other end of the string is attached to the plane at \(Q\), the free part of the string, \(PQ,\) making an angle \(2\alpha\) with the inclined plane. The coefficient of friction at the contact between the cylinder and the plane is \(\mu.\) Show that \(\mu\geqslant\frac{1}{3}\tan\alpha.\) The string \(PQ\) is now detached from the plane and the end \(Q\) is fastened to a particle of mass \(3M\) which is placed on the plane, the position of the string remain unchanged. Given that \(\tan\alpha=\frac{1}{2}\) and that the system remains in equilibrium, find the least value of the coefficient of friction between the particle and the plane.

1991 Paper 1 Q12
D: 1484.0 B: 1500.0

\(\ \)\vspace{-1.5cm} \noindent

\psset{xunit=0.8cm,yunit=0.8cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.4,-1.16)(12.46,5.7) \psline(0,0)(6,4) \psline(10,0)(5,5) \rput[tl](5.08,5.53){\(D\)} \rput[tl](5.31,4.3){\(B\)} \rput[tl](3.39,2.99){\(2l\)} \pscustom[fillcolor=black,fillstyle=solid,opacity=0]{\parametricplot{0.0}{0.5880026035475675}{1.23*cos(t)+0|1.23*sin(t)+0}\lineto(0,0)\closepath} \rput[tl](0.67,0.39){\(\alpha\)} \pscustom[fillcolor=black,fillstyle=solid,opacity=0]{\parametricplot{2.356194490192345}{3.141592653589793}{1.23*cos(t)+10|1.23*sin(t)+0}\lineto(10,0)\closepath} \rput[tl](9.09,0.56){\(\beta\)} \psline{->}(8,2)(8,1.3) \rput[tl](7.64,1.31){\(Mg\)} \rput[tl](9.17,1.38){\(x\)} \rput[tl](7.27,3.32){\(x\)} \rput[tl](-0.29,-0.18){\(A\)} \rput[tl](10.15,-0.2){\(C\)} \psline(-2,0)(12,0) \end{pspicture*} \par
The above diagram illustrates a makeshift stepladder, made from two equal light planks \(AB\) and \(CD\), each of length \(2l\). The plank \(AB\) is smoothly hinged to the ground at \(A\) and makes an angle of \(\alpha\) with the horizontal. The other plank \(CD\) has its bottom end \(C\) resting on the same horizontal ground and makes an angle \(\beta\) with the horizontal. It is pivoted smoothly to \(B\) at a point distance \(2x\) from \(C\). The coefficient of friction between \(CD\) and the ground is \(\mu.\) A painter of mass \(M\) stands on \(CD\), half between \(C\) and \(B\). Show that, for equilibrium to be possible, \[ \mu\geqslant\frac{\cot\alpha\cot\beta}{2\cot\alpha+\cot\beta}. \] Suppose now that \(B\) coincides with \(D\). Show that, as \(\alpha\) varies, the maximum distance from \(A\) at which the painter will be standing is \[ l\sqrt{\frac{1+81\mu^{2}}{1+9\mu^{2}}}. \]

1990 Paper 3 Q14
D: 1700.0 B: 1484.0

The edges \(OA,OB,OC\) of a rigid cube are taken as coordinate axes and \(O',A',B',C'\) are the vertices diagonally opposite \(O,A,B,C,\) respectively. The four forces acting on the cube are \[ \begin{pmatrix}\alpha\\ \beta\\ \gamma \end{pmatrix}\mbox{ at }O\ (0,0,0),\ \begin{pmatrix}\lambda\\ 0\\ 1 \end{pmatrix}\mbox{ at }O'\ (a,a,a),\ \begin{pmatrix}-1\\ 0\\ 2 \end{pmatrix}\mbox{ at }B\ (0,a,0),\ \mbox{ and }\begin{pmatrix}1\\ \mu\\ \nu \end{pmatrix}\mbox{ at }B'\ (a,0,a). \] The moment of the system about \(O\) is zero: find \(\lambda,\mu\) and \(\nu\).

  1. Given that \(\alpha=\beta=\gamma=0,\) find the system consisting of a single force at \(B\) together with a couple which is equivalent to the given system.
  2. Given that \(\alpha=2,\beta=3\) and \(\gamma=2,\) find the equation of the locus about each point of which the moment of the system is zero. Find the number of units of work done on the cube when it moves (without rotation) a distance in the direction of this line under the action of the given forces only.

Show Solution
\begin{align*} &&\mathbf{M} &= \begin{pmatrix}\lambda \\ 0\\ 1 \end{pmatrix} \times \begin{pmatrix}a\\ a \\ a \end{pmatrix} + \begin{pmatrix}-1\\ 0\\ 2 \end{pmatrix} \times \begin{pmatrix} 0 \\ a \\ 0 \end{pmatrix} + \begin{pmatrix}1\\ \mu\\ \nu \end{pmatrix} \times \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} \\ &&&= \begin{pmatrix} -a \\ -a(\lambda -1) \\ \lambda a \end{pmatrix} + \begin{pmatrix} -2a \\ 0 \\ -a \end{pmatrix} + \begin{pmatrix} \mu a \\ -a(1-\nu) \\ -a \mu \end{pmatrix} \\ &&&=a \begin{pmatrix} \mu - 3 \\ \nu - \lambda \\ \lambda-1-\mu \end{pmatrix} \\ \Rightarrow && \mu &= 3, \lambda = 4, \nu = 4 \end{align*}
  1. To find the force we add all vectors: \begin{align*} \mathbf{F} &= \begin{pmatrix}\lambda \\ 0\\ 1 \end{pmatrix} + \begin{pmatrix}-1\\ 0\\ 2 \end{pmatrix} + \begin{pmatrix}1\\ \mu\\ \nu \end{pmatrix} \\ &= \begin{pmatrix}4\\ 0\\ 1 \end{pmatrix} + \begin{pmatrix}-1\\ 0\\ 2 \end{pmatrix} + \begin{pmatrix}1\\ 3 \\ 4 \end{pmatrix} \\ &= \begin{pmatrix} 4 \\ 3 \\ 7 \end{pmatrix} \end{align*} Since the moment about \(O\) is \(0\), we have the moment about \(B\) is: \begin{align*} \mathbf{M} &= \begin{pmatrix} 0 \\ a \\ 0 \end{pmatrix} \times \begin{pmatrix} 4 \\ 3 \\ 7\end{pmatrix} \\ &= \begin{pmatrix} 7a \\ 0 \\ -4a\end{pmatrix} \end{align*}
  2. \begin{align*} \mathbf{0} &= \mathbf{r} \times \begin{pmatrix} 4 + 2 \\ 3+3 \\ 7+2 \end{pmatrix} \\ &= \mathbf{r} \times \begin{pmatrix} 6 \\ 6 \\ 9 \end{pmatrix} \\ \end{align*} Therefore \(\mathbf{r} = t\begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}\) (ie a line) \begin{align*} \text{Work done} &= \text{Force} \cdot \text{distance} \end{align*} Since they are parallel, it's just the magnitude of the force, which is \(3\sqrt{2^2+2^2+3^2} = 3\sqrt{17}\)
1990 Paper 1 Q13
D: 1500.0 B: 1484.0

A rough circular cylinder of mass \(M\) and radius \(a\) rests on a rough horizontal plane. The curved surface of the cylinder is in contact with a smooth rail, parallel to the axis of the cylinder, which touches the cylinder at a height \(a/2\) above the plane. Initially the cylinder is held at rest. A particle of mass \(m\) rests in equilibrium on the cylinder, and the normal reaction of the cylinder on the particle makes an angle of \(\theta\) with the upward vertical. The particle is on the same side of the centre of the cylinder as the rail. The coefficient of friction between the cylinder and the particle and between the cylinder and the plane are both \(\mu\). Obtain the condition on \(\theta\) for the particle to rest in equilibrium. Show that, if the cylinder is released, equilibrium of both particle and cylinder is possible provided another inequality involving \(\mu\) and \(\theta\) (which should be found explicitly) is satisfied. Determine the largest possible value of \(\theta\) for equilibrium, if \(m=7M\) and \(\mu=0.75\).

Show Solution
TikZ diagram
\begin{align*} \text{N2}(\nwarrow): && R -mg \cos \theta &= 0 \\ \text{N2}(\rightarrow): && -R \sin \theta + F \cos \theta &= 0 \\ \\ \Rightarrow && F &= \tan \theta R \\ \\ && F & \leq \mu R \\ \Rightarrow && \tan \theta R &\leq \mu R \\ \Rightarrow && \tan \theta &\leq \mu \end{align*} (Notice also \(F = mg \sin \theta\)) Once everything is released, we have the following situation. (Red forces act on the cylinder, blue forces on the particle).
TikZ diagram
\begin{align*} \text{N2}(\uparrow): && 0 &= R_g - Mg - \underbrace{mg}_{R_p \text{ and } F_p} + \frac{1}{\sqrt{2}}R_r \\ \text{N2}(\rightarrow): && 0 &= \frac{1}{\sqrt{2}}R_r - F_g \\ \overset{\curvearrowleft}{O}: && 0 &= aF_p - aF_g \\ \Rightarrow && F_g &= mg \sin \theta \\ \Rightarrow && R_r &= \sqrt{2} mg \sin \theta \\ \Rightarrow && R_g &=(M+m)g + mg \sin \theta \\ \\ && F_g &\leq \mu R_g \\ \Rightarrow && mg \sin \theta &\leq \mu (M+m(1+\sin \theta))g \\ \Rightarrow && \mu &\geq \frac{m \sin \theta}{M+m(1+\sin \theta)} \end{align*} If \(m = 7M\) and \(\mu = \frac34\) we have: \begin{align*} && \tan \theta &\leq \frac34 \\ && 3(M+7M(1 + \sin \theta)) &\geq 4 \cdot 7 M \sin \theta \\ \Rightarrow && 10 + 7 \sin \theta & \geq 28 \sin \theta \\ \Rightarrow && 10 &\geq 21 \sin \theta \\ \Rightarrow && \sin \theta &\leq \frac{10}{21} \end{align*} If \(\tan \theta = \frac{3}{4}, \sin \theta = \frac35 > \frac{10}{21}\), so the critical bound is \(\sin \theta \leq \frac{10}{21}\), ie \( \theta \leq \sin^{-1} \frac{10}{21} \approx 30^{\circ}\)
1989 Paper 1 Q13
D: 1516.0 B: 1540.5

A uniform ladder of mass \(M\) rests with its upper end against a smooth vertical wall, and with its lower end on a rough slope which rises upwards towards the wall and makes an angle of \(\phi\) with the horizontal. The acute angle between the ladder and the wall is \(\theta\). If the ladder is in equilibrium, show that \(N\) and \(F\), the normal reaction and frictional force at the foot of the ladder are given by \[ N=Mg\left(\cos\phi-\frac{\tan\theta\sin\phi}{2}\right), \] \[ F=Mg\left(\sin\phi+\frac{\tan\theta\cos\phi}{2}\right). \] If the coefficient of friction between the ladder and the slope is \(2\), and \(\phi=45^{\circ}\), what is the largest value of \(\theta\) for which the ladder can rest in equilibrium?

Show Solution
\begin{align*} \overset{\curvearrowleft}{X}: && 0&= \frac{l}{2} Mg\sin \theta - l R_1 \cos \theta \\ \Rightarrow && R_1 &= \frac12 \tan \theta Mg \\ \text{N2}(\uparrow): && 0 &= R\cos \phi +F \sin \phi - Mg \\ \text{N2}(\rightarrow):&& 0&=R_1-F \cos \phi + R \sin \phi \\ \Rightarrow && \frac12 \tan \theta Mg &= F \cos \phi- R \sin \phi \\ && Mg &= F \sin \phi +R \cos \phi \\ \Rightarrow && F &= Mg \left ( \sin \phi + \frac12 \tan \theta \cos \phi \right) \\ && N &= Mg \left (\cos \phi - \frac12 \tan \theta \sin \phi \right ) \end{align*} If \(\mu = 2\) and \(\phi = 45^{\circ}\), we must have \(F \leq 2 N\), so: \begin{align*} && Mg \left ( \sin \phi + \frac12 \tan \theta \cos \phi \right) &\leq 2 Mg \left (\cos \phi - \frac12 \tan \theta \sin \phi \right ) \\ \Rightarrow && 1 + \frac12 \tan \theta \leq 2-\tan \theta \\ \Rightarrow && \frac 32 \tan \theta \leq 1 \\ \Rightarrow && \tan \theta \leq \frac23 \\ \Rightarrow && \theta \leq \tan^{-1} \frac23 \end{align*}
1988 Paper 3 Q11
D: 1700.0 B: 1484.0

A uniform ladder of length \(l\) and mass \(m\) rests with one end in contact with a smooth ramp inclined at an angle of \(\pi/6\) to the vertical. The foot of the ladder rests, on horizontal ground, at a distance \(l/\sqrt{3}\) from the foot of the ramp, and the coefficient of friction between the ladder and the ground is \(\mu.\) The ladder is inclined at an angle \(\pi/6\) to the horizontal, in the vertical plane containing a line of greatest slope of the ramp. A labourer of mass \(m\) intends to climb slowly to the top of the ladder.

TikZ diagram
  1. Find the value of \(\mu\) if the ladder slips as soon as the labourer reaches the midpoint.
  2. Find the minimum value of \(\mu\) which will ensure that the labourer can reach the top of the ladder.

Show Solution
TikZ diagram
  1. \begin{align*} \text{N2}(\uparrow): && R_1 + R_2\sin(\frac{\pi}{6})-2mg &= 0 \\ \text{N2}(\rightarrow): && R_2 \cos (\frac{\pi}{6})-F_r &= 0 \\ \overset{\curvearrowleft}{X}: && lmg \cos \tfrac{\pi}{6} - l R_2 \cos \tfrac{\pi}{6} &= 0 \\ \\ \Rightarrow && R_2 &= mg \\ \Rightarrow && R_1 &= 2mg - \frac12mg \\ &&&=\frac32mg \\ \Rightarrow && \frac{\sqrt{3}}2mg - \mu\frac32mg &= 0 \\ \Rightarrow && \mu &= \frac{1}{\sqrt{3}} \end{align*}
  2. \begin{align*} \text{N2}(\uparrow): && R_1 + R_2\sin(\frac{\pi}{6})-2mg &= 0 \\ \overset{\curvearrowleft}{X}: && \frac12 lmg \cos \tfrac{\pi}{6}+xmg \cos \tfrac{\pi}{6} - l R_2 \cos \tfrac{\pi}{6} &= 0 \\ \\ \Rightarrow && R_2 &= mg(\frac{1}2+\frac{x}{l}) \\ \Rightarrow && R_1 &= 2mg - \frac12mg(\frac{1}2+\frac{x}{l}) \\ &&&=(\frac74 - \frac{x}{2l})mg \\ &&&\geq \frac{5}{4}mg\\ \text{N2}(\rightarrow): && R_2 \cos (\frac{\pi}{6})-\mu R_1& \leq 0 \\ \Rightarrow && \frac{\sqrt{3}}2mg - \mu\frac54mg &\leq 0 \\ \Rightarrow && \mu &\geq \frac{2\sqrt{3}}{5} \end{align*}

Showing 1-3 of 3 problems
2018 Paper 1 Q9
D: 1516.0 B: 1500.0

A straight road leading to my house consists of two sections. The first section is inclined downwards at a constant angle \(\alpha\) to the horizontal and ends in traffic lights; the second section is inclined upwards at an angle \(\beta\) to the horizontal and ends at my house. The distance between the traffic lights and my house is \(d\). I have a go-kart which I start from rest, pointing downhill, a distance \(x\) from the traffic lights on the downward-sloping section. The go-kart is not powered in any way, all resistance forces are negligible, and there is no sudden change of speed as I pass the traffic lights. Given that I reach my house, show that \(x \sin \alpha\ge d \sin\beta\,\). Let \(T\) be the total time taken to reach my house. Show that \[ \left(\frac{g\sin\alpha}2 \right)^{\!\frac12} T = (1+k) \sqrt{x} - \sqrt{k^2 x -kd\;} \,, \] where \(k = \dfrac{\sin\alpha}{\sin\beta}\,\). Hence determine, in terms of \(d\) and \(k\), the value of \(x\) which minimises \(T\). [You need not justify the fact that the stationary value is a minimum.]

Show Solution
Applying conservation of energy, since there are no external forces (other than gravity) the condition to reach the house (with any speed) is the initial GPE is larger than the final GPE, ie: \begin{align*} && m g x \sin \alpha &\geq m g d \sin \beta \\ \Rightarrow && x \sin \alpha &\geq d \sin \beta \end{align*} Let \(T_1\) be the time taken on the downward section, and \(T_2\) the time taken on the upward section, then: \begin{align*} && s &= ut + \frac12 a t^2 \\ \Rightarrow && x &= \frac12 g \sin \alpha T_1^2 \\ \Rightarrow && T_1^2 &= \frac{2x}{g \sin \alpha} \\ && v &= u + at \\ \Rightarrow && v &= T_1 g \sin \alpha \\ && mg x \sin \alpha &= mg d \sin \beta + \frac12 m w^2 \\ \Rightarrow && w &= \sqrt{2(x \sin \alpha - d \sin \beta)} \\ && w &= v - g \sin \beta T_2 \\ \Rightarrow && T_2 &= \frac{v - w}{g \sin \beta} \\ \Rightarrow && T &= T_1 + T_2 \\ &&&= \sqrt{\frac{2x}{g \sin \alpha}} + \frac{\sqrt{\frac{2x}{g \sin \alpha}} g \sin \alpha- \sqrt{2(x \sin \alpha - d \sin \beta)}}{g \sin \beta} \\ &&&= \left ( \frac{2}{g \sin \alpha} \right)^{\tfrac12} \left ( \sqrt{x} + \sqrt{x}k - \sqrt{k^2x-kd}\right) \end{align*} Differentiating wrt to \(x\), we obtain: \begin{align*} && \frac{\d T}{\d x} &= C(-(1+k)x^{-1/2}+k^2(k^2 x - kd)^{-1/2}) \\ \text{set to }0: && 0 &= k^2(k^2 x - kd)^{-1/2} - (1+k)x^{-1/2} \\ \Rightarrow && \sqrt{x} k^2 &= \sqrt{k^2x - kd} (1+k) \\ \Rightarrow && x k^4 &= (k^2x-kd)(1+k)^2 \\ \Rightarrow && x(k^4-k^2(1+k)^2) &= -kd(1+k)^2 \\ \Rightarrow && x(2k^2+k) &= d \\ \Rightarrow && x &= \frac{d}{(2k^2+k)} \end{align*}
2004 Paper 2 Q10
D: 1600.0 B: 1500.0

In this question take \(g = 10 ms^{-2}.\) The point \(A\) lies on a fixed rough plane inclined at \(30^{\circ}\) to the horizontal and \(\ell\) is the line of greatest slope through \(A\). A particle \(P\) is projected up \(\ell\) from \(A\) with initial speed \(6\)ms\(^{-1}\). A time \(T\) seconds later, a particle \(Q\) is projected from \(A\) up \(\ell\), also with speed \(6\)ms\(^{-1}\). The coefficient of friction between each particle and the plane is \(1/(5\sqrt{3})\,\) and the mass of each particle is \(4\)kg.

  1. Given that \(T<1+\sqrt{3/2}\), show that the particles collide at a time \((3-\sqrt6)T+1\) seconds after \(P\) is projected.
  2. In the case \(T=1+\sqrt{2/3}\,\), determine the energy lost due to friction from the instant at which \(P\) is projected to the time of the collision.

Show Solution
Since the particles are identical and are projected with the same speed, the only way they can reach the same point \(x\) at the same time, is if \(A\) has reached it's apex and started descending. Considering \(P\), we must have (setting the level of \(A\) to be the \(0\) G.P.E. level), suppose it travels a distance \(x\) before becoming stationary: \begin{align*} \text{N2}(\nwarrow): && R - 4g \cos(30^\circ) &= 0 \\ \Rightarrow && R &= 20\sqrt{3} \\ \Rightarrow && \mu R &= \frac1{5 \sqrt{3}} (20 \sqrt{3}) \\ &&&= 4 \\ \end{align*} Therefore in the two phases of the journey the particle is being accelerated down the slope by either \(6\) or \(4\). \(v^2 = u^2 + 2as \Rightarrow 0 = 36 - 12s \Rightarrow s = 3\). \(v = u + at \Rightarrow t = 1\). Therefore after \(1\) second \(P\) reaches its highest point having travelled \(3\) metres. It will pass back to the start in \(s = ut + \frac12 a t^2 \Rightarrow 3 = \frac12 4 t^2 \Rightarrow t = \sqrt{3/2}\) seconds, ie the constraint is that the particle hasn't already past \(Q\) before the collision. The collision will occur when \(s = 6t - \frac12 6 t^2\) and \(s =3 - \frac12 4 (t+T-1)^2\) coincide, ie: \begin{align*} && 6t - 3t^2 &= 3 - 2(t+T-1)^2 \\ && 0 &= 3 -2(T-1)^2 -(4(T-1)+6)t + t^2 \\ && 0 &= 3 -2(T-1)^2 -(4T+2)t + t^2 \\ \Rightarrow && t &= \frac{4T+2 \pm \sqrt{(4T+2)^2 - 4(3-2(T-1)^2)}}{2} \\ &&&= \frac{4T+2 \pm \sqrt{24T^2}}{2} \\ &&&= 2T + 1 \pm \sqrt{6} T \\ &&&= (2 \pm \sqrt{6})T + 1 \end{align*} we must take the smaller root, ie \((2-\sqrt{6})T + 1\). In the case the collision occurs exactly at the start, the particle \(P\) has traveled \(6\) meters, against a force of \(4\) newtons of friction, ie work done is \(24\) Joules.
1990 Paper 1 Q10
D: 1516.0 B: 1500.0

In a certain race, runners run 5\(\,\)km in a straight line to a fixed point and then turn and run back to the starting point. A steady wind of 3\(\,\text{ms}^{-1}\) is blowing from the start to the turning point. At steady racing pace, a certain runner expends energy at a constant rate of 300\(\,\)W. Two resistive forces act. One is of constant magnitude \(50\,\text{N}\). The other, arising from air resistance, is of magnitude \(2w\,\mathrm{N}\), where \(w\,\text{ms}^{-1}\) is the runner's speed relative to the air. Give a careful argument to derive formulae from which the runner's steady speed in each half of the race may be found. Calculate, to the nearest second, the time the runner will take for the whole race. \textit{Effects due to acceleration and deceleration at the start and turn may be ignored.} The runner may use alternative tactics, expending the same total energy during the race as a whole, but applying different constant powers, \(x_{1}\,\)W in the outward trip, and \(x_{2}\,\)W on the return trip. Prove that, with the wind as above, if the outward and return speeds are \(v_{1}\,\)ms\(^{-1}\) and \(v_{2}\,\)ms\(^{-1}\) respectively, then \(v_{1}+v_{2}\) is independent of the choices for \(x_{1}\) and \(x_{2}\). Hence show that these alternative tactics allow the runner to run the whole race approximately 15 seconds faster.

Show Solution
Note that \(P = Fv\). Since he is running at a steady pace, we can say that \(F\) must be equal to the resistive forces (as net force is \(0\)). Therefore \(F = 50 + 2(v+3)\) on the way out. ie, \(300 = (2v + 56)v \Rightarrow 150 = v^2 + 28v \Rightarrow v = \sqrt{346}-14\) On the way back, \(F = 50 + 2(v-3)\), ie \(300 = (2v+44)v \Rightarrow 150 = v^2 +22v \Rightarrow v = \sqrt{271}-11\) Therefore the total time will be \(\frac{5000}{\sqrt{346}-150} + \frac{5000}{\sqrt{271}-11} \approx 2002\), or 33 minutes, 22 seconds. Very respectable! The total energy in this first run is \(E = Pt = 2002 \cdot 300\). Now suppose we apply two different powers as in the question, then we must have: \begin{align*} && x_1 &= 2v_1^2 + 56v_1 \\ && x_2 &= 2v_2^2 + 44v_2 \\ && E &= x_1 \frac{5000}{v_1} + x_2 \frac{5000}{v_2} \\ &&&= 5000 \left ( \frac{x_1}{v_1} + \frac{x_2}{v_2} \right) \\ \Rightarrow && \frac{x_1}{v_1} &= 2v_1 + 56 \\ && \frac{x_2}{v_2} &= 2v_2 + 44 \\ \Rightarrow && \frac{E}{5000} &= 2(v_1+v_2) + 100 \\ \Rightarrow && v_1+v_2 &\text{ is independent of the choices for }x_i \end{align*} We wish to minimize \begin{align*} && \frac{5000}{v_1} + \frac{5000}{v_2} &\underbrace{\geq}_{AM-HM} 10\,000 \cdot \frac{2}{v_1+v_2} \\ &&&= 10\,000 \cdot \frac{2}{\sqrt{346}-14+\sqrt{271}-11} \\ &&&\approx 1987 \end{align*} ie they can go 15 seconds quicker with better strategy.

Showing 1-25 of 34 problems
2018 Paper 3 Q9
D: 1700.0 B: 1484.0

A particle \(P\) of mass \(m\) is projected with speed \(u_0\) along a smooth horizontal floor directly towards a wall. It collides with a particle \(Q\) of mass \(km\) which is moving directly away from the wall with speed \(v_0\). In the subsequent motion, \(Q\) collides alternately with the wall and with \(P\). The coefficient of restitution between \(Q\) and \(P\) is \(e\), and the coefficient of restitution between \(Q\) and the wall is 1. Let \(u_n\) and \(v_n\) be the velocities of \(P\) and \(Q\), respectively, towards the wall after the \(n\)th collision between \(P\) and \(Q\).

  1. Show that, for \(n\ge2\), \[ (1+k)u_{n} - (1-k)(1+e)u_{n-1} + e(1+k)u_{n-2} =0\,. \tag{\(*\)} \]
  2. You are now given that \(e=\frac12\) and \(k = \frac1{34}\), and that the solution of \((*)\) is of the form \[ \phantom{(n\ge0)} u_n= A\left( \tfrac 7{10}\right)^n + B\left( \tfrac 5{7 }\right)^n \ \ \ \ \ \ (n\ge0) \,, \] where \(A\) and \(B\) are independent of \(n\). Find expressions for \(A\) and \(B\) in terms of \(u_0\) and \(v_0\). Show that, if \(0 < 6u_0 < v_0\), then \(u_n\) will be negative for large \(n\).

Show Solution
  1. Just before collision \(n-1\): Velocity of \(P\) is \(u_{n-2}\) Velocity of \(Q\) is \(-v_{n-2}\) \begin{align*} COM: && mu_{n-2}+km(-v_{n-2}) &= mu_{n-1}+kmv_{n-1} \\ \Rightarrow && u_{n-2}-kv_{n-2} &= u_{n-1}+kv_{n-1} \\ NEL: && v_{n-1}-u_{n-1} &= -e((-v_{n-2})-u_{n-2}) \\ \Rightarrow && v_{n-1}-u_{n-1} &= e(v_{n-2}+u_{n-2}) \end{align*} \begin{align*} &&kv_{n-1} &= u_{n-2} - kv_{n-2}-u_{n-1} \\ &&kv_{n-1}&= ku_{n-1}+kev_{n-2}+keu_{n-2} \\ \Rightarrow && kv_{n-2}(1+e) &= u_{n-2}(1-ke)-u_{n-1}(1+k) \\ \Rightarrow && kv_{n-1}(1+e) &= u_{n-1}(1-ke)-u_{n}(1+k) \\ && k(1+e)v_{n-1}-k(1+e)u_{n-1} &= k(1+e)e(v_{n-2}+u_{n-2}) \\ \Rightarrow && u_{n-1}(1-ke)-u_{n}(1+k)-k(1+e)u_{n-1} &= e(u_{n-2}(1-ke)-u_{n-1}(1+k))+k(1+e)eu_{n-2} \\ \Rightarrow && 0 &= (1+k)u_n + ((ke-1)+k(1+e)-e(1+k))u_{n-1} \\ &&& \quad \quad + (e(1-ke)+k(1+e)e)u_{n-2} \\ \Rightarrow && 0 &= (1+k)u_n- (1-k)(1+e)u_{n-1} +e(1+k)u_{n-2} \end{align*}
  2. \(u_0 = A + B\) \begin{align*} &&& \begin{cases}u_0 - kv_0 &= kv_1 + u_1 \\ \frac12 (u_0+v_0) &= v_1 - u_1 \\ \end{cases} \\ \Rightarrow && (1+k)u_1 &= u_0 - kv_0 - \frac{k}{2}(u_0 + v_0) \\ \Rightarrow && u_1 &= \frac{1}{k+1} \l u_0 (1-\frac{k}{2}) - \frac32 k v_0 \r \\ &&&= \frac{67}{70} u_0 - \frac{3}{70} v_0 \end{align*} Therefore \(A+B = u_0, \frac{49A+50B}{70} = \frac{67}{70} u_0 - \frac{3}{70} v_0\) \begin{align*} && A+B &= u_0 \\ && 49A+50B &= 67u_0 - 3v_0 \\ \Rightarrow && 50u_0 - A &= 67u_0 - 3v_0 \\ \Rightarrow && A &= -17u_0 + 3v_0 \\ && B &= 18u_0 - 3v_0 \end{align*} If \(0 < 6u_0 < v_0\), then \(B < 0\) and as \(n \to \infty\) we will find that \(\l \frac57 \r^n\) dominates \(\l \frac7{10} \r^n\) and so our velocity will be negative and the particle will change direction
2018 Paper 2 Q9
D: 1600.0 B: 1485.5

Two small beads, \(A\) and \(B\), of the same mass, are threaded onto a vertical wire on which they slide without friction, and which is fixed to the ground at \(P\). They are released simultaneously from rest, \(A\) from a height of \(8h\) above \(P\) and \(B\) from a height of \(17h\) above \(P\). When \(A\) reaches the ground for the first time, it is moving with speed \( V\). It then rebounds with coefficient of restitution \(\frac{1}{2}\) and subsequently collides with \(B\) at height \(H\) above \(P\). Show that \(H= \frac{15}8h\) and find, in terms of \(g\) and \(h\), the speeds \(u_A\) and \(u_B\) of the two beads just before the collision. When \(A\) reaches the ground for the second time, it is again moving with speed \( V\). Determine the coefficient of restitution between the two beads.

Show Solution
\begin{align*} && v^2 &= u^2 +2as \\ \Rightarrow && V^2 &= 2 g \cdot (8h)\\ \Rightarrow && V &=4\sqrt{hg}\\ \end{align*} When the first particle collides with the ground, the second particle is at \(9h\) traveling with speed \(V\), the first particle is at \(0\) traveling (upwards) with speed \(\tfrac12 V\). For a collision we need: \begin{align*} && \underbrace{\frac12 V t- \frac12 g t^2}_{\text{position of A}} &= \underbrace{9h - Vt - \frac12 gt^2}_{\text{position of B}} \\ \Rightarrow && \frac32Vt &= 9h \\ \Rightarrow && t &= \frac{6h}{V} \\ \\ && \underbrace{\frac12 V t- \frac12 g t^2}_{\text{position of A}} &= \frac12 V \frac{6h}{V} - \frac12 g t^2 \\ &&&= 3h - \frac12 g\frac{36h^2}{16hg} \\ &&&= 3h - \frac{9}{8}h \\ &&&= \frac{15}{8}h \end{align*} Just before the collision, \(A\) will be moving with velocity (taking upwards as positive) \begin{align*} && u_A &= \frac12 V-gt \\ &&&= 2\sqrt{hg}-g \frac{6h}{V} \\ &&&= 2\sqrt{hg} - g \frac{6h}{4\sqrt{hg}} \\ &&&= 2\sqrt{hg}-\frac32\sqrt{hg} \\ &&&= \frac12 \sqrt{hg} \end{align*} Similarly, for \(B\). \begin{align*} && u_B &= -V -gt \\ &&&= -4\sqrt{hg} - \frac32\sqrt{hg} \\ &&&= -\frac{11}{2}\sqrt{hg} \end{align*} Considering \(A\), to figure out \(v_A\). \begin{align*} && v^2 &= u^2 + 2as \\ && V^2 &= v_A^2 + 2g\frac{15}{8}h \\ && 16hg &= v_A^2 + \frac{15}{4}gh \\ \Rightarrow && v_A^2 &= \frac{49}{4}gh \\ \Rightarrow && v_A &= -\frac{7}{2}\sqrt{gh} \end{align*}
TikZ diagram
To keep things clean, lets use units of \(\sqrt{hg}\) so we don't need to focus on that for now: \begin{align*} \text{COM}: && \frac12 - \frac{11}{2} &= -\frac{7}{2}+v_B \\ \Rightarrow && v_B& =-\frac{3}{2} \\ \text{NEL}: && e &= \frac{2}{6} = \frac13 \end{align*}
2017 Paper 3 Q11
D: 1700.0 B: 1484.0

A railway truck, initially at rest, can move forwards without friction on a long straight \mbox{horizontal} track. On the truck, \(n\) guns are mounted parallel to the track and facing backwards, where \(n>1\). Each of the guns is loaded with a single projectile of mass \(m\). The mass of the truck and guns (but not including the projectiles) is \(M\). When a gun is fired, the projectile leaves its muzzle horizontally with a speed \(v-V\) relative to the ground, where~\(V\) is the speed of the truck immediately before the gun is fired.

  1. All \(n\) guns are fired simultaneously. Find the speed, \(u\), with which the truck moves, and show that the kinetic energy, \(K\), which is gained by the system (truck, guns and projectiles) is given by \[ K= \tfrac{1}{2}nmv^2\left(1 +\frac{nm}{M} \right) . \]
  2. Instead, the guns are fired one at a time. Let \(u_r\) be the speed of the truck when \(r\) guns have been fired, so that \(u_0= 0\). Show that, for \(1\le r \le n\,\), \[ u_r - u_{r-1} = \frac{mv}{M+(n-r)m} \tag{\(*\)} \] and hence that \(u_n < u\,\).
  3. Let \(K_r\) be the total kinetic energy of the system when \(r\) guns have been fired (one at a time), so that \(K_0 = 0\). Using \((*)\), show that, for \(1\le r\le n\,\), \[ K_r -K_{r-1} = \tfrac 12 mv^2 + \tfrac12 mv (u_r-u_{r-1}) \] and hence show that \[ K_n = \tfrac{1}{2}nmv^2 +\tfrac{1}{2}mvu_n \,. \] Deduce that \(K_n

2017 Paper 1 Q10
D: 1500.0 B: 1484.0

Particles \(P_1\), \(P_2\), \(\ldots\) are at rest on the \(x\)-axis, and the \(x\)-coordinate of \(P_n\) is \(n\). The mass of \(P_n\) is \(\lambda^nm\). Particle \(P\), of mass \(m\), is projected from the origin at speed \(u\) towards \(P_1\). A series of collisions takes place, and the coefficient of restitution at each collision is \(e\), where \(0 < e <1\). The speed of \(P_n\) immediately after its first collision is \(u_n\) and the speed of \(P_n\) immediately after its second collision is \(v_n\). No external forces act on the particles.

  1. Show that \(u_1=\dfrac{1+e}{1+\lambda}\, u\) and find expressions for \(u_n\) and \(v_n\) in terms of \(e\), \(\lambda\), \(u\) and \(n\).
  2. Show that, if \(e > \lambda\), then each particle (except \(P\)) is involved in exactly two collisions.
  3. Describe what happens if \(e=\lambda\) and show that, in this case, the fraction of the initial kinetic energy lost approaches \(e\) as the number of collisions increases.
  4. Describe what happens if \(\lambda e=1\). What fraction of the initial kinetic energy is \mbox{eventually} lost in this case?

Show Solution
  1. TikZ diagram
    \begin{align*} \text{COM}: && mu &= mv + \lambda m u_1 \\ \Rightarrow && u &= v + \lambda u_1 \tag{1} \\ \text{NEL}: && e &= \frac{u_1-v}{u} \\ \Rightarrow && eu &= u_1 - v \tag{2} \\ (1)+(2) && (1+e)u &= (1+\lambda) u_1 \\ \Rightarrow && u_1 &= \frac{1+e}{1+\lambda}u \\ && v &= u_1 - eu \\ &&&= \frac{1+e - (1+\lambda)e}{1+\lambda} u \\ &&&= \frac{1-\lambda e}{1+\lambda}u \end{align*} Note that subsequent (first (and second)) are the same as these, therefore: \begin{align*} u_n &= \left ( \frac{1+e}{1+\lambda} \right)^n u \\ v_n &= \frac{1-\lambda e}{1+\lambda } u_n \\ &= \frac{1-\lambda e}{1+\lambda } \left ( \frac{1+e}{1+\lambda} \right)^n u \end{align*}
  2. If \(e > \lambda\) then \((1-\lambda e) > 1-e^2 > 0\) and \begin{align*} \frac{v_{n+1}}{v_n} &= \frac{1+e}{1+\lambda} > 1 \end{align*} So the particles are moving away from each other - hence no more collisions.
  3. If \(e = \lambda\) then \(u_n = u\) and \(v_n = (1-\lambda)u\) so all the particles end up moving at the same speed. \begin{align*} \text{initial k.e.} &= \frac12 m u^2 \\ \text{final k.e.} &= \frac12 m((1-e)u)^2 + \sum_{n = 1}^{\infty} \frac12 \lambda^n m ((1-e)u)^2 \\ &= \frac12mu^2(1-e)^2 \left ( \sum_{n=0}^{\infty} e^n \right) \tag{\(e = \lambda\)} \\ &= \frac12 mu^2(1-e)^2 \frac{1}{1-e} \\ &= \frac12m u^2 (1-e) \\ \text{change in k.e.} &= \frac12 m u^2 - \frac12m u^2 (1-e) \\ &= e\frac12m u^2 \end{align*} Ie the total energy lost approaches a fraction of \(e\).
  4. If \(\lambda e = 1\), after the second collision the particle will be stationary. ie \begin{align*} \text{initial k.e.} &= \frac12 m u^2 \\ \text{k.e. after }n\text{ collisions} &= \frac12 \lambda^n m \left (\left ( \frac{1+e}{1+\lambda} \right)^n u \right)^2\\ &= \frac12 \lambda^n m \left ( \frac{1+\frac1{\lambda}}{1+\lambda} \right)^{2n} u&2\\ &= \frac12 \lambda^n m \left ( \frac{1+\frac1{\lambda}}{1+\lambda} \right)^{2n} u\\ &= \frac12 \lambda^n m \left ( \frac{1}{\lambda} \right)^{2n} u\\ &= \frac12 m \lambda^{-n} u\\ &\to 0 \end{align*} Eventually we lose all the kinetic energy.
2016 Paper 1 Q10
D: 1484.0 B: 1500.0

Four particles \(A\), \(B\), \(C\) and \(D\) are initially at rest on a smooth horizontal table. They lie equally spaced a small distance apart, in the order \(ABCD\), in a straight line. Their masses are \(\lambda m\), \(m\), \(m\) and \(m\), respectively, where \(\lambda>1\). Particles \(A\) and \(D\) are simultaneously projected, both at speed \(u\), so that they collide with \(B\) and \(C\) (respectively). In the following collision between \(B\) and \(C\), particle \(B\) is brought to rest. The coefficient of restitution in each collision is \(e\).

  1. Show that \(e = \dfrac {\lambda-1}{3\lambda+1}\) and deduce that \(e < \frac 13\,\).
  2. Given also that \(C\) and \(D\) move towards each other with the same speed, find the value of \(\lambda\) and of \(e\).

Show Solution
TikZ diagram
Collision between A & B. Since the speed of approach is \(u\) and the coefficient of restitution is \(e\) we must have \(v_B = v_A + eu\). \begin{align*} \text{COM}: && \lambda m u &= \lambda m (v_B - eu) + m v_B \\ \Rightarrow && v_B(\lambda + 1) &=\lambda (1+ e) u \\ \Rightarrow && v_B &= \frac{\lambda(1+ e)}{1+\lambda} u \end{align*}
TikZ diagram
Collision between A & B. Since the speed of approach is \(u\) and the coefficient of restitution is \(e\) we must have \(v_D = v_C + eu\). \begin{align*} \text{COM}: && m(-u) &= mv_C + m(v_C + eu) \\ \Rightarrow && 2v_C &= -(1+e)u \\ \Rightarrow && v_C &= -\frac{1+e}{2} u \end{align*}
  1. TikZ diagram
    \begin{align*} \text{NEL}: && w_C &= e(v_B - v_C) \\ \text{COM}: && mv_B+ mv_C &= m w_C \\ \Rightarrow && w_C &= v_B + v_C\\ \Rightarrow && e(v_B - v_C) &= (v_B + v_C) \\ \Rightarrow && (1-e)v_B &= -(1+e)v_C \\ \Rightarrow && (1-e) \frac{\lambda(1+ e)}{1+\lambda} &= (1+e) \frac{1+e}{2} \\ \Rightarrow && 2\lambda - 2\lambda e &= 1+\lambda + e + \lambda e \\ \Rightarrow && (3\lambda +1)e &= \lambda - 1 \\ \Rightarrow && e &= \frac{\lambda -1}{3\lambda + 1} \\ &&&< \frac{\lambda - 1 + \frac{4}{3}}{3\lambda + 1} \\ &&& = \frac13 \end{align*}
  2. Since they move towards each other at the same speed \(w_C = - v_D\) \begin{align*} && w_C &= - v_D \\ \Rightarrow && v_B + v_C &= -(v_C+eu) \\ \Rightarrow && -eu &= v_B +2v_C \\ &&&= \frac{\lambda(1+ e)}{1+\lambda} u -(1+e)u \\ \Rightarrow && 1 &= \frac{\lambda(1+e)}{1+\lambda} \\ \Rightarrow && 1+\lambda &= \lambda \left ( 1 + \frac{\lambda -1}{3\lambda+1} \right) \\ &&&= \lambda \frac{4\lambda}{3\lambda +1} \\ \Rightarrow && 1+4\lambda + 3\lambda^2 &= 4\lambda^2 \\ \Rightarrow && 0 &= \lambda^2 - 4\lambda - 1 \\ \Rightarrow && \lambda &= \frac{4 \pm \sqrt{20}}{2} \\ &&&= 2\pm \sqrt{5} \\ \Rightarrow && \lambda &= 2 + \sqrt{5} \\ && e &= \frac{1+\sqrt{5}}{7+3\sqrt{5}} \\ &&&=\sqrt{5}-2 \end{align*}
2014 Paper 1 Q10
D: 1500.0 B: 1500.0

  1. A uniform spherical ball of mass \(M\) and radius \(R\) is released from rest with its centre a distance \(H+R\) above horizontal ground. The coefficient of restitution between the ball and the ground is \(e\). Show that, after bouncing, the centre of the ball reaches a height \(R+He^2\) above the ground.
  2. A second uniform spherical ball, of mass \(m\) and radius \(r\), is now released from rest together with the first ball (whose centre is again a distance \(H+R\) above the ground when it is released). The two balls are initially one on top of the other, with the second ball (of mass \(m\)) above the first. The two balls separate slightly during their fall, with their centres remaining in the same vertical line, so that they collide immediately after the first ball has bounced on the ground. The coefficient of restitution between the balls is also \(e\). The centre of the second ball attains a height \(h\) above the ground. Given that \(R=0.2\), \(r=0.05\), \(H=1.8\), \(h=4.5\) and \(e=\frac23\), determine the value of \(M/m\).

Show Solution
  1. The story for first ball (before it collides with the second ball) will be exactly the same, ie it rebounds with speed \(eV\). For the second ball, it will also have fallen a distance \(H\) and will be travelling with the same speed \(V\). Their speed of approach therefore will be \((1+e)V\), and the speed of separating therefore must be \(e(1+e)V\) Given the centre of the second ball reaches a height of \(h\) (from a position of height) \(2R+r\), we must have: \begin{align*} && v^2 &= u^2 + 2as \\ && 0 &= w^2 - 2g(h - 2R-r) \\ \Rightarrow && w^2 &= 2g(h-2R-r) \end{align*} Taking upwards to be positive, then we have:
    TikZ diagram
    \begin{align*} \text{COM}: && MeV + m(-V) &= M(w-e(1+e)V) + mw \\ \Rightarrow && V(Me-m)+e(1+e)MV &= w(M+m) \\ \Rightarrow && w &= \frac{2Me+e^2M-m}{M+m} V \\ \Rightarrow && w^2 &= \left ( \frac{M/m(2e+e^2)-1}{M/m+1}\right)^2 V^2 \\ \Rightarrow && 2g(h-2R-r) &= \left ( \frac{M/m(2e+e^2)-1}{M/m+1}\right)^2 2gH \\ \Rightarrow && \left ( \frac{M/m(2e+e^2)-1}{M/m+1}\right)^2 &= \frac{h-2R-r}{H} \\ &&&= \frac{4.5-0.4-0.05}{1.8} \\ &&&= \frac{9}{4} \\ \Rightarrow && \frac{M/m(\frac43+\frac49)-1}{M/m+1} &= \frac32 \\ \Rightarrow && \frac{16}9M/m-1 &= \frac32 M/m+\frac32 \\ \Rightarrow && \frac{5}{18}M/m &= \frac{5}{2} \\ \Rightarrow && M/m &= 9 \end{align*}
2013 Paper 2 Q11
D: 1600.0 B: 1500.0

Three identical particles lie, not touching one another, in a straight line on a smooth horizontal surface. One particle is projected with speed \(u\) directly towards the other two which are at rest. The coefficient of restitution in all collisions is \(e\), where \(0 < e < 1\,\).

  1. Show that, after the second collision, the speeds of the particles are \(\frac12u(1-e)\), \(\frac14u (1-e^2)\) and \(\frac14u(1+e)^2\). Deduce that there will be a third collision whatever the value of \(e\).
  2. Show that there will be a fourth collision if and only if \(e\) is less than a particular value which you should determine.

Show Solution
  1. First Collision:
    TikZ diagram
    By NEL, \(v_2 = v_1 + eu\), so \begin{align*} \text{COM}: && mu &= mv_1 + m(v_1 + eu) \\ \Rightarrow && 2mv_1 &= mu(1-e) \\ \Rightarrow && v_1 &= \frac12 u(1-e) \\ && v_2 &= \frac12 u(1-e) + eu \\ &&&= \frac12 u(1+e) \end{align*} The second collision is identical to the first except replacing \(u\) with \(\frac12u(1+e)\), therefore after that collision: \begin{align*} && \text{first particle} &= \frac12 u(1-e) \\ && \text{second particle} &= \frac12 \left (\frac12 u(1+e) \right)(1-e) \\ &&&= \frac14 u(1-e^2) \\ && \text{third particle} &= \frac12 \left (\frac12 u(1+e) \right)(1+e) \\ &&&= \frac14 u(1+e)^2 \end{align*} After all these collisions, all particles are moving in the same direction (since they all have positive velocity), but the first particle is now travelling faster than the second particle (as \(\frac12(1-e) < 1\)). Therefore they will collide again.
  2. The third collision:
    TikZ diagram
    The speed of approach will be \(\frac12u(1-e) - \frac14u(1-e^2) = \frac14u(1-e)(2 - (1+e)) = \frac14 u(1-e)^2\), therefore by NEL, \(w_2 = w_1 + \frac14ue(1-e)^2\) \begin{align*} \text{COM}: && m\frac12u(1-e) + m \frac14u(1-e^2) &= mw_1 + m\left (w_1 + \frac14ue(1-e)^2 \right) \\ \Rightarrow && \frac14u(1-e)(2+(1+e)) &= 2w_1 + \frac14ue(1-e)^2 \\ \Rightarrow && 2w_1 &= \frac14u(1-e)(3+e)-\frac14ue(1-e)^2 \\ &&&= \frac14u(1-e)(3+e-e(1-e)) \\ &&&= \frac14u(1-e)(3+e^2) \\ \Rightarrow && w_1 &= \frac18 u(1-e)(3+e^2) \\ && w_2 &= \frac18 u(1-e)(3+e^2) + \frac14ue(1-e)^2 \\ &&&= \frac18u(1-e)(3+e^2+2e(1-e)) \\ &&&= \frac18u(1-e)(3+2e-e^2) \\ &&&= \frac18u(1-e)(1+e)(3-e) \\ \end{align*} A fourth collision is possible, iff \begin{align*} && \frac18u(1-e)(1+e)(3-e)&> \frac14 u(1+e)^2 \\ \Leftrightarrow && (1-e)(3-e)&> 2 (1+e) \\ \Leftrightarrow &&3-4e-e^2&> 2+2e \\ \Leftrightarrow &&1-5e-e^2&>0 \\ \Leftrightarrow && e &< 3-\sqrt{2} \end{align*}
2013 Paper 1 Q10
D: 1500.0 B: 1500.0

Two parallel vertical barriers are fixed a distance \(d\) apart on horizontal ice. A small ice hockey puck moves on the ice backwards and forwards between the barriers, in the direction perpendicular to the barriers, colliding with each in turn. The coefficient of friction between the puck and the ice is \(\mu\) and the coefficient of restitution between the puck and each of the barriers is \(r\). The puck starts at one of the barriers, moving with speed \(v\) towards the other barrier. Show that \[ v_{i+1}^2 - r^2 v_i^2 = - 2 r^2 \mu gd\, \] where \(v_i\) is the speed of the puck just after its \(i\)th collision. The puck comes to rest against one of the barriers after traversing the gap between them \(n\) times. In the case \(r\ne1\), express \(n\) in terms of \(r\) and \(k\), where \(k= \dfrac{v^2}{2\mu g d}\,\). If \(r=\e^{-1}\) (where \(\e\) is the base of natural logarithms) show that \[ n = \tfrac12 \ln\big(1+k(\e^2-1)\big)\,. \] Give an expression for \(n\) in the case \(r=1\).

Show Solution
\begin{align*} \text{W.E.P.}: && \text{change in energy} &= \text{work done on particle} \\ \Rightarrow && \underbrace{\frac12mv^2}_{\text{speed before hitting barrier}} - \underbrace{\frac12mu^2}_{\text{speed leaving first barrier}} &= \underbrace{\left( -\mu mg \right)}_{F} \cdot \underbrace{d}_{d} \\ \Rightarrow && v^2 &= v_i^2-2\mu gd \end{align*} Newton's experimental law tells us that the speed leaving the barrier will be \(r\) times the speed approaching, ie \begin{align*} && v_{i+1} &= rv \\ \Rightarrow && v_{i+1}^2 &= r^2 v^2 \\ &&&= r^2v_i^2 - 2r^2\mu gd \\ \Rightarrow && v_{i+1}^2 - r^2v_i^2 &= - 2r^2\mu gd \end{align*} It must be the case that after \(n+1\) collisions the speed is zero, ie \(v_{n+1}^2 = 0\). Not that we can consider \(w_i = \frac{v_i^2}{2\mu gd}\) and we have the recurrence: \begin{align*} && w_{i+1} &=r^2w_i -r^2 \\ \end{align*} Looking at this we have a linear recurrence with a constant term, so let's try \(w_i = C\), then \begin{align*} && C &= r^2 C - r^2 \\ \Rightarrow && C &= \frac{-r^2}{1-r^2} \\ \end{align*} So \(w_i = Ar^{2i} - \frac{r^2}{1-r^2}\). \(w_0 = k \Rightarrow A = k+\frac{r^2}{1-r^2}\) Therefore \(w_n = \left (k+\frac{r^2}{1-r^2} \right)r^{2n} - \frac{r^2}{1-r^2}\) Suppose \(w_n = 0\) then, \begin{align*} && 0 &= \left (k+\frac{r^2}{1-r^2} \right)r^{2n} - \frac{r^2}{1-r^2} \\ \Rightarrow && r^{2n} &= \frac{r^2}{1-r^2} \frac{1}{k+\frac{r^2}{1-r^2}} \\ &&&= \frac{r^2}{k(1-r^2)+r^2} \\ \Rightarrow && 2n \ln r &= 2\ln r - \ln[k(1-r^2)+r^2] \\ \Rightarrow && n &= 1 - \frac1{2\ln r} \ln[k(1-r^2)+r^2)] \end{align*} If \(r = e^{-1}\) then \(\ln r = -1\) \begin{align*} && n &= 1 + \frac12 \ln [k(1-e^{-2}) + e^{-2}] \\ &&&= 1 + \frac12 \ln [e^{-2}(k(e^2-1)+1)] \\ &&&= 1 + \frac12 \ln e^{-2} + \frac12 \ln [1+k(e^2-1)] \\ &&&= \frac12 \ln [1+k(e^2-1)] \end{align*} If \(r = 1\) the recurrence becomes: \(w_{i+1} = w_i - 1\), so \(w_i = k-n\), so we have \(k\) collisions.
2012 Paper 2 Q11
D: 1600.0 B: 1484.9

A small block of mass \(km\) is initially at rest on a smooth horizontal surface. Particles \(P_1\), \(P_2\), \(P_3\), \(\ldots\) are fired, in order, along the surface from a fixed point towards the block. The mass of the \(i\)th particle is \(im\) (\(i = 1, 2, \ldots\))and the speed at which it is fired is \(u/i\,\). Each particle that collides with the block is embedded in it. Show that, if the \(n\)th particle collides with the block, the speed of the block after the collision is \[ \frac{2nu}{2k +n(n+1)}\,. \] In the case \(2k = N(N+1)\), where \(N\) is a positive integer, determine the number of collisions that occur. Show that the total kinetic energy lost in all the collisions is \[ \tfrac12 mu^2\bigg( \sum_{n=2}^{N+1} \frac 1 n \bigg)\,. \]

Show Solution
\begin{align*} \text{COM}: && \sum_{i=1}^n im \cdot \frac{u}{i} &= \left ( km + \sum_{i=1}^n im \right) v \\ \Rightarrow && nu &= \left ( k + \frac{n(n+1)}{2} \right) v \\ \Rightarrow && v &= \frac{2nu}{2k + n(n+1)} \end{align*} If \(2k = N(N+1)\), there will be no more collisions when \(v_n > \frac{u}{n+1}\), ie \begin{align*} && \frac{u}{n+1} &<\frac{2nu}{2k + n(n+1)} \\ \Leftrightarrow && N(N+1) + n(n+1) &< 2n(n+1) \\ \Leftrightarrow && N(N+1) &< n(n+1) \\ \end{align*} Therefore \(n = N+1\) and there will be \(N+1\) collisions. The loss of kinetic energy is: \begin{align*} && \text{initial k.e.} &= \sum_{k=1}^{N+1} \frac12 im \cdot \frac{u^2}{i^2} \\ &&&= \frac12 m u^2 \left ( \sum_{k=1}^{N+1} \frac{1}{i}\right) \\ && \text{final k.e.} &= \frac12 \left ( k + \frac{(N+1)(N+2)}{2}\right)m \left ( \frac{2(N+1)u}{N(N+1)+(N+1)(N+2)} \right)^2 \\ &&&= \frac12 m u^2 \frac{2(N+1)^2}{(N+1)(2N+2)} \\ &&&= \frac12 mu^2 \\ \Rightarrow && \Delta \text{ k.e.} &= \frac12 m u^2 \left ( \sum_{k=2}^{N+1} \frac{1}{i}\right) \end{align*}
2011 Paper 2 Q9
D: 1600.0 B: 1484.0

Two particles, \(A\) of mass \(2m\) and \(B\) of mass \(m\), are moving towards each other in a straight line on a smooth horizontal plane, with speeds \(2u\) and \(u\) respectively. They collide directly. Given that the coefficient of restitution between the particles is \(e\), where \(0 < e \le 1\), determine the speeds of the particles after the collision. After the collision, \(B\) collides directly with a smooth vertical wall, rebounding and then colliding directly with \(A\) for a second time. The coefficient of restitution between \(B\) and the wall is \(f\), where \(0 < f \le 1\). Show that the velocity of \(B\) after its second collision with \(A\) is \[ \tfrac23 (1-e^2)u - \tfrac13(1-4e^2)fu \] towards the wall and that \(B\) moves towards (not away from) the wall for all values of \(e\) and \(f\).

Show Solution
TikZ diagram
Since the coefficient of restitution is \(e\) and the speed of approach is \(3u\), \(v_B = v_A + 3eu\), \begin{align*} \text{COM}: && 2m\cdot2u + m \cdot (-u) &= 2m v_A + m(v_A + 3eu) \\ \Rightarrow && 3u &= 3v_A + 3eu \\ \Rightarrow && v_A &= (1-e)u \\ \Rightarrow && v_B &= (1+2e)u \end{align*} After rebounding from the wall, the velocity of \(B\) will be \(-fv_B\). So for the second collision (between the particles) we will have:
TikZ diagram
\begin{align*} \text{NEL}: && w_B - w_A &= e((1-e)u+(1+2e)fu) \\ \Rightarrow && w_B - w_A &= (1-e+f+2ef)eu \tag{1} \\ \text{COM}: && 2m w_A + w_B &= 2m(1-e)u -m(1+2e)fu \\ \Rightarrow && 2w_A + w_B &= (2-2e -f-2ef)u \tag{2} \\ (2) + 2\times(1): && 3w_B &= (2-2e -f-2ef)u +2(1-e+f+2ef)eu \\ &&&= (2-2e-f-2ef)u+(2e-2e^2+2ef+4e^2f)u \\ &&&= (2-2e^2-f+4e^2f)u \\ &&&= 2(1-e^2)-f(1-4e^2)u \\ \Rightarrow && w_B &= \frac23 (1-e^2)u-\frac13(1-4e^2)fu \end{align*} Since we've always taken towards the wall as positive, the question is whether or not this is positive for all values of \(e\) and \(f\). The first term is clearly positive, so in order to have a chance of being negative, we must have that \(1-4e^2 > 0\) and \(f\) is as large as possible, so wlog \(f = 1\). \begin{align*} 2-2e^2-1+4e^2 = 1+2e^2 > 0 \end{align*} \end{align*}
2011 Paper 1 Q10
D: 1516.0 B: 1484.0

A particle, \(A\), is dropped from a point \(P\) which is at a height \(h\) above a horizontal plane. A~second particle, \(B\), is dropped from \(P\) and first collides with \(A\) after \(A\) has bounced on the plane and before \(A\) reaches \(P\) again. The bounce and the collision are both perfectly elastic. Explain why the speeds of \(A\) and \(B\) immediately before the first collision are the same. The masses of \(A\) and \(B\) are \(M\) and \(m\), respectively, where \(M>3m\), and the speed of the particles immediately before the first collision is \(u\). Show that both particles move upwards after their first collision and that the maximum height of \(B\) above the plane after the first collision and before the second collision is \[ h+ \frac{4M(M-m)u^2}{(M+m)^2g}\,. \]

2010 Paper 3 Q11
D: 1700.0 B: 1469.5

A bullet of mass \(m\) is fired horizontally with speed \(u\) into a wooden block of mass \(M\) at rest on a horizontal surface. The coefficient of friction between the block and the surface is \(\mu\). While the bullet is moving through the block, it experiences a constant force of resistance to its motion of magnitude \(R\), where \(R>(M+m)\mu g\). The bullet moves horizontally in the block and does not emerge from the other side of the block.

  1. Show that the magnitude, \(a\), of the deceleration of the bullet relative to the block while the bullet is moving through the block is given by \[ a= \frac R m + \frac {R-(M+m)\mu g}{M}\, . \]
  2. Show that the common speed, \(v\), of the block and bullet when the bullet stops moving through the block satisfies \[ av = \frac{Ru-(M+m)\mu gu}M\,. \]
  3. Obtain an expression, in terms of \(u\), \(v\) and \(a\), for the distance moved by the block while the bullet is moving through the block.
  4. Show that the total distance moved by the block is \[ \frac{muv}{2(M+m)\mu g}\,. \]
Describe briefly what happens if \(R< (M+m)\mu g\).

2010 Paper 2 Q10
D: 1600.0 B: 1516.0

  1. In an experiment, a particle \(A\) of mass \(m\) is at rest on a smooth horizontal table. A particle \(B\) of mass \(bm\), where \(b >1\), is projected along the table directly towards \(A\) with speed \(u\). The collision is perfectly elastic. Find an expression for the speed of \(A\) after the collision in terms of \(b\) and \(u\), and show that, irrespective of the relative masses of the particles, \(A\) cannot be made to move at twice the initial speed of \(B\).
  2. In a second experiment, a particle \(B_1\) is projected along the table directly towards \(A\) with speed \(u\). This time, particles \(B_2\), \(B_3\), \(\ldots\,\), \(B_n\) are at rest in order on the line between \(B_1\) and \(A\). The mass of \(B_i\) (\(i=1\), \(2\), \(\ldots\,\), \(n\)) is \(\lambda^{n+1-i}m\), where \(\lambda>1\). All collisions are perfectly elastic. Show that, by choosing \(n\) sufficiently large, there is no upper limit on the speed at which \(A\) can be made to move. In the case \(\lambda=4\), determine the least value of \(n\) for which \(A\) moves at more than \(20u\). You may use the approximation \(\log_{10}2 \approx 0.30103\).

Show Solution
  1. TikZ diagram
    Since the collision is perfectly elastic, the speed of approach and separation are equal, ie \(v_B = v_A - u\) \begin{align*} \text{COM}: && bmu &= bm(v_A - u) + mv_A \\ \Rightarrow && (b+1)v_A &= 2bu \\ \Rightarrow && v_A &= \frac{2b}{b+1} u \end{align*} Since \(0 < \frac{b}{b+1} < 1\), the largest \(0 < v_A < 2u\)
  2. After the first collision with each \(B_i\) we will have \(\displaystyle v_{i+1} = \frac{2\lambda}{\lambda + 1}v_i\), ie \(\displaystyle v_{i+1} = \left (\frac{2\lambda}{\lambda + 1} \right)^i u\) and so \(\displaystyle v_A = \left (\frac{2\lambda}{\lambda + 1} \right)^n u\) which can be arbitrarily large. Suppose \(\lambda = 4\), then \begin{align*} && 20u &< v_A \\ &&&= \left (\frac{8}{5} \right)^n u \\ \Rightarrow && \log_{10} 20 < n \log_{10}(16/10) \\ && \log_{10} 2 + 1 < n 4\log_{10} 2 - n \\ \Rightarrow && n &> \frac{ \log_{10} 2 + 1}{ 4\log_{10} 2 - 1} \\ &&&\approx \frac{0.30103+1}{4 \times 0.30103 -1}\\ &&&= \frac{1.30103}{0.20412} \\ &&&>6 \end{align*} So \(n =7\) is the smallest possible
2009 Paper 1 Q11
D: 1500.0 B: 1500.0

Two particles move on a smooth horizontal table and collide. The masses of the particles are \(m\) and \(M\). Their velocities before the collision are \(u{\bf i}\) and \(v{\bf i}\,\), respectively, where \(\bf i\) is a unit vector and \(u>v\). Their velocities after the collision are \(p{\bf i}\) and \(q{\bf i}\,\), respectively. The coefficient of restitution between the two particles is \(e\), where \(e<1\).

  1. Show that the loss of kinetic energy due to the collision is \[ \tfrac12 m (u-p)(u-v)(1-e)\,, \] and deduce that \(u\ge p\).
  2. Given that each particle loses the same (non-zero) amount of kinetic energy in the collision, show that \[ u+v+p+q=0\,, \] and that, if \(m\ne M\), \[ e= \frac{(M+3m)u + (3M+m)v}{(M-m)(u-v)}\,. \]

Show Solution
  1. \begin{align*} \text{COM}: && mu + Mv &= mp + Mq \\ \Rightarrow && m(u-p) &= M(q-v) \\ \text{NEL}: && q-p &= e(u-v) \\ && q +ev &= p+eu \\ && \Delta \text{ k.e.} &= \frac12 m u^2 + \frac12 M v^2 -\frac12 m p^2 - \frac12 M q^2 \\ &&&= \frac12m (u^2 - p^2)+\frac12M(v^2-q^2) \\ &&&= \frac12m (u^2 - p^2)+\frac12M(v-q)(v+q) \\ &&&= \frac12m(u^2-p^2) - \frac12 m(u-p)(v+q) \\ &&&= \frac12 m(u-p) \left ( u+p-v-q\right) \\ &&&= \frac12 m(u-p) \left (u-v+(p-q)\right) \\ &&&= \frac12 m(u-p) \left (u-v-e(u-v)\right) \\ &&&= \frac12m(u-p)(u-v)(1-e) \end{align*} Since the loss in energy is positive, and \(m\), \(u-v\) and \(1-e\) are all positive, so is \(u-p\), ie \(u \geq p\)
  2. \begin{align*} && \frac12 m u^2 - \frac12mp^2 &= \frac12Mv^2 - \frac12Mq^2 \\ && \frac12 m(u-p)(u+p) &= \frac12 M (v-q)(v+q) \\ && \frac12 m (u-p)(u+p) &= -\frac12 m(u-p)(v+q) \\ \Rightarrow && u+p+v+q &= 0 \end{align*} \begin{align*} && p+q &= -(u+v)\\ &&mp+Mq &= mu+Mv \\ \Rightarrow && (M-m)q &= mu+Mv+mu+mv\\ \Rightarrow && q &= \frac{(M+m)v+2mu}{M-m} \\ \Rightarrow && (m-M)p &= mu+Mv+Mu+Mv \\ \Rightarrow && p &= -\frac{(M+m)u+2Mv}{M-m} \\ \\ && e &= \frac{q-p}{u-v} \\ &&&= \frac{(M+m)v+2mu+(M+m)u+2Mv}{(u-v)(M-m)} \\ &&&= \frac{(3M+m)v+(3m+M)u}{(u-v)(M-m)} \end{align*}
2006 Paper 3 Q11
D: 1700.0 B: 1516.0

A lift of mass \(M\) and its counterweight of mass \(M\) are connected by a light inextensible cable which passes over a fixed frictionless pulley. The lift is constrained to move vertically between smooth guides. The distance between the floor and the ceiling of the lift is \(h\). Initially, the lift is at rest, and the distance between the top of the lift and the pulley is greater than \(h\). A small tile of mass \(m\) becomes detached from the ceiling of the lift and falls to the floor of the lift. Show that the speed of the tile just before the impact is \[ \sqrt{\frac{(2M-m)gh \;}{M}}\;. \] The coefficient of restitution between the tile and the floor of the lift is \(e\). Given that the magnitude of the impulsive force on the lift due to tension in the cable is equal to the magnitude of the impulsive force on the counterweight due to tension in the cable, show that the loss of energy of the system due to the impact is \(mgh(1-e^2)\). Comment on this result.

2006 Paper 2 Q10
D: 1600.0 B: 1500.0

Three particles, \(A\), \(B\) and \(C\), of masses \(m\), \(km\) and \(3m\) respectively, are initially at rest lying in a straight line on a smooth horizontal surface. Then \(A\) is projected towards \(B\) at speed \(u\). After the collision, \(B\) collides with \(C\). The coefficient of restitution between \(A\) and \(B\) is \(\frac12\) and the coefficient of restitution between \(B\) and \(C\) is \(\frac14\).

  1. Find the range of values of \(k\) for which \(A\) and \(B\) collide for a second time.
  2. Given that \(k=1\) and that \(B\) and \(C\) are initially a distance \(d\) apart, show that the time that elapses between the two collisions of \(A\) and \(B\) is \(\dfrac{60d}{13u}\,\).

Show Solution
  1. After the first collision, it takes \(B\), \(\frac{d}{v_B} = \frac{d}{u} \frac{2(k+1)}{3} = \frac{4d}{3u}\) to collide with \(C\). During which time \(B\) and \(A\) have been moving apart with speed \(\frac12u\) and so are a distance \(\frac{2d}{3}\) apart. After the second collision, \(w_B = \frac{3(4\cdot 1 - 3)}{8(1+1)(1+3)}u = \frac{3}{64}u\) and \(v_A = \frac{1}{4}u\) so they are moving together at speed \(\frac{16-3}{64}u = \frac{13}{64}u\). It will take them \(\frac{2d}{3} \div \frac{13}{64}u = \frac{128d}{3 \times 13u}\) to do this for a total time of \(\frac{128d}{3 \times 13u} + \frac{4d}{3u} = \frac{(128+52)d}{3 \times 13 u} = \frac{60d}{13u}\)
2006 Paper 1 Q11
D: 1500.0 B: 1470.9

Particles \(A_1\), \(A_2\), \(A_3\), \(\ldots\), \(A_n\) (where \(n\ge 2\)) lie at rest in that order in a smooth straight horizontal trough. The mass of \(A_{n-1}\) is \(m\) and the mass of \(A_n\) is \(\lambda m\), where \(\lambda>1\). Another particle, \(A_0\), of mass \(m\), slides along the trough with speed \(u\) towards the particles and collides with \(A_1\). Momentum and energy are conserved in all collisions.

  1. Show that it is not possible for there to be exactly one particle moving after all collisions have taken place.
  2. Show that it is not possible for \(A_{n-1}\) and \(A_n\) to be the only particles moving after all collisions have taken place.
  3. Show that it is not possible for \(A_{n-2}\), \(A_{n-1}\) and \(A_n\) to be the only particles moving after all collisions have taken place.
  4. Given that there are exactly two particles moving after all collisions have taken place, find the speeds of these particles in terms of \(u\) and \(\lambda\).

2005 Paper 3 Q9
D: 1700.0 B: 1484.0

Two particles, A and B, move without friction along a horizontal line which is perpendicular to a vertical wall. The coefficient of restitution between the two particles is \(e\) and the coefficient of restitution between particle B and the wall is also \(e\), where \( 0< e < 1\). The mass of particle~A is \(4em\) (with \(m > 0\)), and the mass of particle B is \((1-e)^2m\)\,. Initially, A is moving towards the wall with speed \((1-e)v\) (where \(v > 0\)) and B is moving away from the wall and towards A with speed \(2ev\). The two particles collide at a distance \(d\) from the wall. Find the speeds of A and B after the collision. When B strikes the wall, it rebounds along the same line. Show that a second collision will take place, at a distance \(de\) from the wall. Deduce that further collisions will take place. Find the distance from the wall at which the \(n\)th collision takes place, and show that the times between successive collisions are equal.

2005 Paper 1 Q10
D: 1500.0 B: 1484.0

Three collinear, non-touching particles \(A\), \(B\) and \(C\) have masses \(a\), \(b\) and \(c\), respectively, and are at rest on a smooth horizontal surface. The particle \(A\) is given an initial velocity \(u\) towards~\(B\). These particles collide, giving \(B\) a velocity \(v\) towards \(C\). These two particles then collide, giving \(C\) a velocity \(w\). The coefficient of restitution is \(e\) in both collisions. Determine an expression for \(v\), and show that \[ \displaystyle w = \frac {abu \l 1+e \r^2}{\l a + b \r \l b+c \r}\;. \] Determine the final velocities of each of the three particles in the cases:

  1. \(\displaystyle \frac ab = \frac bc = e\,\);
  2. \(\displaystyle \frac ba = \frac cb = e\,\).

2003 Paper 1 Q11
D: 1516.0 B: 1516.0

A smooth plane is inclined at an angle \(\alpha\) to the horizontal. \(A\) and \(B\) are two points a distance \(d\) apart on a line of greatest slope of the plane, with \(B\) higher than \(A\). A particle is projected up the plane from \(A\) towards \(B\) with initial speed \(u\), and simultaneously another particle is released from rest at \(B\,\). Show that they collide after a time \(\displaystyle {d /u}\,\). The coefficient of restitution between the two particles is \(e\) and both particles have mass \(m\,\). Show that the loss of kinetic energy in the collision is \(\frac14 {m u^2 \big( 1 - e^2 \big) }\,\).

Show Solution
We can `ignore' the fact that they are both accelerating, because the acceleration is the same for both object so it will "cancel" out. Therefore the time taken is the same as if the object has to travel distance \(d\) at speed \(u\), ie \(d/u\). \begin{align*} && u_A &= u - g \frac{d}{u} \\ && u_B &= -g\frac{d}{u} \end{align*}
TikZ diagram
The speed of approach is \(u\), therefore the speed of separation is \(eu\), in particular \(v_B = v_A + eu\) \begin{align*} \text{COM}: && m\left (u-g\frac{d}{u} \right)+m\left (-g\frac{d}{u} \right) &= mv_A + m(v_A + eu) \\ \Rightarrow && 2v_A &= u - 2g\frac{d}{u}-eu \\ \Rightarrow && v_A &= \frac12 (1-e)u - \frac{gd}{u} \\ \Rightarrow && v_B &= \frac12 (1+e)u - \frac{gd}{u} \\ \\ && \text{initial k.e.} &= \frac12 m \left (u-g\frac{d}{u} \right)^2 + \frac12 m \left (-g\frac{d}{u} \right)^2 \\ &&&= \frac12m \left (u^2 -2gd + \frac{2g^2d^2}{u^2} \right) \\ && \text{final k.e.} &= \frac12 m \left ( \frac12 (1-e)u - \frac{gd}{u}\right)^2 + \frac12 m \left ( \frac12 (1+e)u - \frac{gd}{u}\right)^2 \\ &&&= \frac12 m \left (\frac14 \left ( (1-e)^2+(1+e)^2\right)u^2 - gd \left ((1-e)+(1+e) \right) +\frac{2g^2d^2}{u^2}\right) \\ &&&= \frac12 m \left (\frac12(1+e^2)u^2-2gd+ \frac{2g^2d^2}{u^2}\right) \\ \Rightarrow && \text{loss k.e.} &= \frac12m \left ( u^2 - \frac12(1+e^2)u^2\right) \\ &&&= \frac14mu^2(1-e^2) \end{align*}
2002 Paper 1 Q10
D: 1516.0 B: 1470.2

A bicycle pump consists of a cylinder and a piston. The piston is pushed in with steady speed~\(u\). A particle of air moves to and fro between the piston and the end of the cylinder, colliding perfectly elastically with the piston and the end of the cylinder, and always moving parallel with the axis of the cylinder. Initially, the particle is moving towards the piston at speed \(v\). Show that the speed, \(v_n\), of the particle just after the \(n\)th collision with the piston is given by \(v_n=v+2nu\). Let \(d_n\) be the distance between the piston and the end of the cylinder at the \(n\)th collision, and let \(t_n\) be the time between the \(n\)th and \((n+1)\)th collisions. Express \(d_n - d_{n+1}\) in terms of \(u\) and \(t_n\), and show that \[ d_{n+1} = \frac{v+(2n-1)u}{v+(2n+1)u} \, d_n \;. \] Express \(d_n\) in terms of \(d_1\), \(u\), \(v\) and \(n\). In the case \(v=u\), show that \(ut_n = \displaystyle \frac {d_1} {n(n+1)}\). %%%%%Verify that \(\sum\limits_1^\infty t_n = d/u\).

2001 Paper 2 Q10
D: 1600.0 B: 1486.3

Two particles \(A\) and \(B\) of masses \(m\) and \(km\), respectively, are at rest on a smooth horizontal surface. The direction of the line passing through \(A\) and \(B\) is perpendicular to a vertical wall which is on the other side of \(B\) from \(A\). The particle \(A\) is now set in motion towards \(B\) with speed \(u\). The coefficient of restitution between \(A\) and \(B\) is \(e_1\) and between \(B\) and the wall is \(e_2\). Show that there will be a second collision between \(A\) and \(B\) provided $$ k< \frac {1+e_2(1+e_1)} {e_1}\;. $$ Show that, if \(e_1=\frac13\), \(e_2=\frac12\) and \(k<5\), then the kinetic energy of \(A\) and \(B\) immediately after \(B\) rebounds from the wall is greater than \(mu^2/27\).

Show Solution
First collision:
TikZ diagram
Since the \(e = e_1\), the speed of approach is \(u\) the speed of separation will be \(e_1u\) and so \(v_B = v_A + e_1u\). \begin{align*} \text{COM}: && mu &= mv_A + km(v_A + e_1u) \\ \Rightarrow && v_A(1+k) &= u(1-ke_1) \\ \Rightarrow && v_A &= \frac{1-ke_1}{1+k} u \\ && v_B &= \frac{1-ke_1}{1+k} u + e_1 u \\ &&&= \frac{1-ke_1 + e_1+ke_1}{1+k}u \\ &&&= \frac{1+e_1}{1+k}u \end{align*} Once the ball rebounds from the wall it will have velocity (still taking towards the wall as +ve) of \(-\frac{1+e_1}{1+k}e_2u\). There will be another collision if it is travelling faster than \(A\), ie if: \begin{align*} -\frac{1+e_1}{1+k}e_2u &< \frac{1-ke_1}{1+k} u \\ \Leftrightarrow && 0 &< (1-ke_1) + (1+e_1)e_2 \\ \Leftrightarrow && ke_1 &< 1 +e_2 (1+e_1) \\ \Leftrightarrow && k &< \frac{1 +e_2 (1+e_1)}{e_1} \\ \end{align*} If \(e_1 = \frac13, e_2 = \frac12\), then \(v_A = \frac{1-\frac13k}{1+k}u = \frac{3-k}{3(1+k)}u\) and \(v_B = \frac{4}{3(1+k)}u\). Therefore \begin{align*} && \text{total k.e.} &= \underbrace{\frac12 m v_A^2}_{\text{k.e. of }A} + \underbrace{\frac12 (km) (e_2 v_B)^2}_{\text{k.e. of }B} \\ &&&= \frac12 m \frac{(3-k)^2}{9(1+k)^2}u^2 + \frac12 km \frac14 \frac{16}{9(1+k)^2}u^2 \\ &&&= \frac12mu^2 \frac{1}{9(1+k)^2}\left ( (3-k)^2+4k \right) \\ &&&= \frac12mu^2 \frac{1}{9(1+k)^2}\left ( 9-2k+k^2 \right) \\ &&&= \frac{mu^2}{18} \frac{9-2k+k^2}{1+2k+k^2} \end{align*} We wish to minimize this as a function of \(k\). \begin{align*} \frac{\d}{\d k} \left ( \frac{9-2k+k^2}{1+2k+k^2}\right) &= \frac{(1+k)^2(2k-2)-2(1+k)(k^2-2k+9)}{(1+k)^4} \\ &= \frac{2(k^2-1) - 2(k^2-2k+9)}{(1+k)^3} \\ &= \frac{2(2k-10)}{(1+k)^3} \end{align*} Therefore the minimum will be when \(k = 5\) can't be a maximum by considering \(k \to 0\). This value is \(\frac{2}{3}\) and therefore \(\frac{mu^2}{18} \frac{2}{3} = \frac{mu^2}{27}\) is the smallest energy (which isn't quite achievable since \(k < 5\).
2000 Paper 1 Q10
D: 1516.0 B: 1500.0

Three particles \(P_1\), \(P_2\) and \(P_3\) of masses \(m_{1}\), \(m_{2}\) and \(m_{3}\) respectively lie at rest in a straight line on a smooth horizontal table. \(P_1\) is projected with speed \(v\) towards \(P_2\) and brought to rest by the collision. After \(P_2\) collides with \(P_3\), the latter moves forward with speed \(v\). The coefficients of restitution in the first and second collisions are \(e\) and \(e'\), respectively. Show that \[ e'= \frac{m_{2}+m_{3}-m_{1}}{m_{1}}. \] Show that \(2m_1\ge m_2 +m_3\ge m_1\) for such collisions to be possible. If \(m_1\), \(m_3\) and \(v\) are fixed, find, in terms of \(m_1\), \(m_3\) and \(v\), the largest and smallest possible values for the final energy of the system.

1999 Paper 3 Q10
D: 1700.0 B: 1484.0

A chain of mass \(m\) and length \(l\) is composed of \(n\) small smooth links. It is suspended vertically over a horizontal table with its end just touching the table, and released so that it collapses inelastically onto the table. Calculate the change in momentum of the \((k+1)\)th link from the bottom of the chain as it falls onto the table. Write down an expression for the total impulse sustained by the table in this way from the whole chain. By approximating the sum by an integral, show that this total impulse is approximately \[ {\textstyle \frac23} m \surd(2gl) \] when \(n\) is large.

1999 Paper 2 Q10
D: 1600.0 B: 1500.0

\(N\) particles \(P_1\), \(P_2\), \(P_3\), \(\ldots\), \(P_N\) with masses \(m\), \(qm\), \(q^2m\), \(\ldots\) , \({q^{N-1}}m\), respectively, are at rest at distinct points along a straight line in gravity-free space. The particle \(P_1\) is set in motion towards \(P_2\) with velocity \(V\) and in every subsequent impact the coefficient of restitution is \(e\), where \(0 < e < 1\). Show that after the first impact the velocities of \(P_1\) and \(P_2\) are $$ {\left({{1-eq}\over{1+q}}\right)}V \mbox{ \ \ \ and \ \ \ } {\left({{1+e}\over{1+q}}\right)}V, $$ respectively. Show that if \(q \le e\), then there are exactly \(N-1\) impacts and that if \(q=e\), then the total loss of kinetic energy after all impacts have occurred is equal to $$ {1\over 2}{me}{\left(1-e^{N-1}\right)}{V^2}. $$

Showing 1-8 of 8 problems
2018 Paper 2 Q11
D: 1600.0 B: 1500.0

The axles of the wheels of a motorbike of mass \(m\) are a distance \(b\) apart. Its centre of mass is a horizontal distance of \(d\) from the front axle, where \(d < b\), and a vertical distance \(h\) above the road, which is horizontal and straight. The engine is connected to the rear wheel. The coefficient of friction between the ground and the rear wheel is \(\mu\), where \(\mu < b/h\), and the front wheel is smooth. You may assume that the sum of the moments of the forces acting on the motorbike about the centre of mass is zero. By taking moments about the centre of mass show that, as the acceleration of the motorbike increases from zero, the rear wheel will slip before the front wheel loses contact with the road if \[ \mu < \frac {b-d}h\,. \tag{*} \] If the inequality \((*)\) holds and the rear wheel does not slip, show that the maximum acceleration is \[ \frac{ \mu dg}{b-\mu h} \,. \] If the inequality \((*)\) does not hold, find the maximum acceleration given that the front wheel remains in contact with the road.

Show Solution
TikZ diagram
\begin{align*} % \text{N2}(\uparrow): && R_B+ R_F &= mg \\ \overset{\curvearrowright}{G}: && -R_Fd - F_B h + R_B (b-d) &= 0 \\ \Rightarrow && -d R_F - \mu h R_B +R_B(b-d) &= 0 \\ \Rightarrow && R_B(b-d-\mu h) &= d R_F \\ \underbrace{\Rightarrow}_{R_F > 0 \text{ if not leaving ground}} && R_B(b-d-\mu h) & > 0 \\ \Rightarrow && \frac{b-d}{h} > \mu \end{align*} The acceleration is \(\frac{F_B}{m}\), so we wish to maximize \(F_B\) which is the same as maximising \(R_B\). Since the bike will slip before the front wheel lifts, we want the bike to be on the point of slipping, ie $$ \begin{align*} && R_B(b-d-\mu h) &= d R_F \\ \text{N2}(\uparrow): && R_B + R_F &= mg \\ \Rightarrow && R_B(b-d-\mu h) &= d(mg - R_B) \\ \Rightarrow && R_B(b-\mu h) &= dmg \\ \Rightarrow && R_B &= \frac{dmg}{b-\mu h} \\ \Rightarrow && a &= \frac{F_B}{m} \\ &&&= \frac{\mu R_B}{m} \\ &&&= \frac{\mu dg}{b-\mu h} \\ \end{align*} If the inequality doesn't hold, we want to be at the point just before \(R_F = 0\), since that gives us maximum friction at \(F_B\), ie \begin{align*} && R_B &= mg \\ \Rightarrow && a &= \frac{F_B}{m} \\ &&&= \frac{\mu mg}{m} \\ &&&= \mu g \end{align*}
2016 Paper 2 Q10
D: 1600.0 B: 1516.0

A thin uniform wire is bent into the shape of an isosceles triangle \(ABC\), where \(AB\) and \(AC\) are of equal length and the angle at \(A\) is \(2\theta\). The triangle \(ABC\) hangs on a small rough horizontal peg with the side \(BC\) resting on the peg. The coefficient of friction between the wire and the peg is \(\mu\). The plane containing \(ABC\) is vertical. Show that the triangle can rest in equilibrium with the peg in contact with any point on \(BC\) provided \[ \mu \ge 2\tan\theta(1+\sin\theta) \,. \]

Show Solution
TikZ diagram
Clearly the centre of mass will lie on the perpendicular from \(A\). We can also consider each side's wire as equivalent to a point mass at the centre of the side with mass proportional to the length of the side. Recalling that \(b = c\) (the triangle is isoceles we must have (for the \(y\)-coordinate \begin{align*} && a \cdot 0 + b \cdot \frac12 b \cos \theta + c \cdot \frac12 c \cos \theta &= (a+b+c) \overline{y} \\ \Rightarrow && b^2 \cos \theta &= (2b + 2b\sin \theta) \overline{y} \\ \Rightarrow && \overline{y} &= \frac{b \cos \theta}{2(1+\sin \theta)} \end{align*}
TikZ diagram
\begin{align*} \text{N2}(\nearrow): && R - mg \cos \phi &= 0 \\ \text{N2}(\nwarrow): && F -mg \sin \phi &= 0 \\ \Rightarrow && F &\leq \mu R \\ \Rightarrow && \sin \phi &\leq \mu \cos \phi \\ \Rightarrow && \tan \phi &\leq \mu \end{align*} When the peg is at \(C\) \begin{align*} \tan \phi &= \frac{CM}{MG} \\ &= \frac{b\sin \theta}{\frac{b \cos \theta}{2(1+\sin \theta)}} \\ &= 2 \tan \theta(1+\sin \theta) \end{align*} Therefore \(2 \tan \theta(1+\sin \theta) \leq \mu\) as required.
2014 Paper 2 Q9
D: 1600.0 B: 1484.0

A uniform rectangular lamina \(ABCD\) rests in equilibrium in a vertical plane with the \(A\) in contact with a rough vertical wall. The plane of the lamina is perpendicular to the wall. It is supported by a light inextensible string attached to the side \(AB\) at a distance \(d\) from \(A\). The other end of the string is attached to a point on the wall above \(A\) where it makes an acute angle \(\theta\) with the downwards vertical. The side \(AB\) makes an acute angle \(\phi\) with the upwards vertical at \(A\). The sides \(BC\) and \(AB\) have lengths \(2a\) and \(2b\) respectively. The coefficient of friction between the lamina and the wall is \(\mu\).

  1. Show that, when the lamina is in limiting equilibrium with the frictional force acting upwards, \begin{equation} d\sin(\theta +\phi) = (\cos\theta +\mu \sin\theta)(a\cos\phi +b\sin\phi)\,. \tag{\(*\)} \end{equation}
  2. How should \((*)\) be modified if the lamina is in limiting equilibrium with the frictional force acting downwards?
  3. Find a condition on \(d\), in terms of \(a\), \(b\), \(\tan\theta\) and \(\tan\phi\), which is necessary and sufficient for the frictional force to act upwards. Show that this condition cannot be satisfied if \(b(2\tan\theta+ \tan \phi) < a\).

Show Solution
TikZ diagram
  1. \begin{align*} \text{N2}(\uparrow): && T \cos \theta + F -W &= 0 \\ && W &= T\cos \theta + \mu R \tag{1} \\ \text{N2}(\rightarrow): && R-T\sin \theta &= 0 \\ && R &= T \sin \theta \tag{2}\\ \\ (1)+(2): && W&=(\cos \theta + \mu \sin \theta)T \tag{3} \\ \overset{\curvearrowright}{A}: && 0 &= W(b\sin \phi + a \cos \phi) - Td\sin(\phi+\theta) \tag{4} \\ \\ (3)+(4): && 0 &= (\cos \theta + \mu \sin \theta)(b\sin \phi + a \cos \phi)-d\sin(\phi+\theta) \\ \Rightarrow && d\sin(\phi+\theta) &= (\cos \theta + \mu \sin \theta)(b\sin \phi + a \cos \phi) \end{align*} as required.
  2. If \(F\) is operating downwards, it's equivalent to \(-\mu\), ie: \[d\sin(\phi+\theta) = (\cos \theta - \mu \sin \theta)(b\sin \phi + a \cos \phi)\]
  3. For the frictional force to be acting upwards, we need \begin{align*} && d\sin(\phi+\theta) &\geq \cos \theta(b\sin \phi + a \cos \phi) \\ \Rightarrow && d &\geq \frac{\cos \theta(b\sin \phi + a \cos \phi)}{\sin(\phi + \theta)} \\ &&&= \frac{\cos \theta(b\sin \phi + a \cos \phi)}{\sin\phi \cos\theta+\cos\phi\sin \theta)}\\ &&&= \frac{(b\sin \phi + a \cos \phi)}{\sin\phi+\cos \phi \tan \theta)}\\ &&&= \frac{a+b\tan \phi}{\tan\theta+\tan\phi }\\ \end{align*} We know that \(d < 2b\), so \begin{align*} && 2b &>\frac{a+b\tan \phi}{\tan\theta+\tan\phi }\\ \Rightarrow && 2b \tan \theta + 2b \tan \phi &> a + b \tan \phi \\ \Rightarrow &&b(2 \tan \theta + \tan \phi) &> a\\ \end{align*} Therefore we will have problems if the inequality is reversed!
2010 Paper 1 Q9
D: 1500.0 B: 1500.0

TikZ diagram
The diagram shows a uniform rectangular lamina with sides of lengths \(2a\) and \(2b\) leaning against a rough vertical wall, with one corner resting on a rough horizontal plane. The plane of the lamina is vertical and perpendicular to the wall, and one edge makes an angle of \(\alpha\) with the horizontal plane. Show that the centre of mass of the lamina is a distance \(a\cos\alpha + b\sin\alpha\) from the wall. The coefficients of friction at the two points of contact are each \(\mu\) and the friction is limiting at both contacts. Show that \[ a\cos(2\lambda +\alpha) = b\sin\alpha \,, \] where \(\tan\lambda = \mu\). Show also that if the lamina is square, then \(\lambda = \frac{1}{4}\pi -\alpha\).

Show Solution
TikZ diagram
The horizontal distance to \(X\) is \(a\cos \alpha\). The horizontal distance to \(G\) from \(X\) is \(b \sin \alpha\), therefore the centre of mass is a distance \(a \cos \alpha + b \sin \alpha\) from the wall.
TikZ diagram
\begin{align*} \text{lim eq}: && F_W &= \mu R_W \\ && F_G &= \mu R_G\\ \text{N2}(\rightarrow): && \mu R _G &= R_W \\ \text{N2}(\uparrow): && \mu R_W + R_G &= W \\ \Rightarrow && (1+\mu^2)R_G &= W \\ \overset{\curvearrowleft}{Y}: && R_G 2a \cos \alpha - F_G 2a \sin \alpha - W (a \cos \alpha + b \sin \alpha) &= 0 \\ \Leftrightarrow && 2a R_G \cos \alpha -2a \mu R_G \sin \alpha - (1+\mu^2)R_G(a \cos \alpha + b \sin \alpha) &= 0 \\ \Leftrightarrow && a(1-\mu^2)\cos \alpha - (b(1+\mu^2)+2a\mu) \sin \alpha &= 0 \\ \Leftrightarrow && a(1-\tan^2 \lambda )\cos \alpha - (b(1-\tan^2 \lambda)+2a\tan \lambda) \sin \alpha &= 0 \\ \Leftrightarrow&& a(2-\sec^2 \lambda) \cos \alpha - (b\sec^2 \lambda+2a\mu) \sin \alpha &= 0 \\ \Leftrightarrow && a (2\cos \lambda - 1)\cos \alpha - 2a \sin \lambda \cos \lambda \sin \alpha &= b \sin \alpha \\ \Leftrightarrow && a\cos 2 \lambda \cos \alpha - a\sin 2 \lambda \sin \alpha &= b \sin \alpha \\ \Leftrightarrow && a\cos (2 \lambda +\alpha) &= b \sin \alpha \end{align*} as required. If the lamina is a square, \(a = b\), so \begin{align*} && \cos(2\lambda + \alpha) &= \sin \alpha \\ \Rightarrow && 0 &= \cos(2\lambda + \alpha) -\sin \alpha \\ &&&= \sin \left (\frac{\pi}{2} - 2 \lambda - \alpha \right )-\sin \alpha \\ &&&= 2 \cos\left ( \frac{\frac{\pi}{2} - 2 \lambda - \alpha +\alpha}{2} \right) \sin\left ( \frac{\frac{\pi}{2} - 2 \lambda - \alpha -\alpha}{2} \right) \\ &&&= 2 \cos\left ( \frac{\pi}4 -\lambda\right) \sin\left ( \frac{\pi}4 -\lambda-\alpha \right) \\ \Rightarrow && \lambda -\frac{\pi}{4} = -\frac{\pi}{2} & \text{ or } \frac{\pi}{4} - \lambda - \alpha = 0 \\ \Rightarrow && \alpha &= \frac{\pi}{4}-\lambda \end{align*}
2005 Paper 1 Q9
D: 1500.0 B: 1516.0

A non-uniform rod \(AB\) has weight \(W\) and length \(3l\). When the rod is suspended horizontally in equilibrium by vertical strings attached to the ends \(A\) and \(B\), the tension in the string attached to \(A\) is \(T\). When instead the rod is held in equilibrium in a horizontal position by means of a smooth pivot at a distance \(l\) from \(A\) and a vertical string attached to \(B\), the tension in the string is \(T\). Show that \(5T = 2W\). When instead the end \(B\) of the rod rests on rough horizontal ground and the rod is held in equilibrium at an angle \(\theta\) to the horizontal by means of a string that is perpendicular to the rod and attached to \(A\), the tension in the string is \(\frac12 T\). Calculate \(\theta\) and find the smallest value of the coefficient of friction between the rod and the ground that will prevent slipping.

Show Solution
TikZ diagram
Suppose the centre of mass of the rod is \(x\) away from \(A\). \begin{align*} \overset{\curvearrowleft}{B}: && (3l-x)W - 3lT &= 0 \\ \Rightarrow && x &= \frac{3l(W-T)}{W} \tag{1} \end{align*}
TikZ diagram
In the second set up we have: \begin{align*} \overset{\curvearrowleft}{\text{pivot}}: && 2lT - (x-l)W &= 0 \\ \Rightarrow && x &= \frac{2lT + lW}{W} \tag{2} \\ \\ (1) \text{ & } (2): && 3l(W-T) &= l(2T+W) \\ \Rightarrow && 2W &= 5T \end{align*}
TikZ diagram
\begin{align*} && x&= \frac{3l(W-T)}{W}\\ &&&= \frac{3l(W - \frac25 W)}{W} \\ &&&= \frac{9}{5}l\\ \overset{\curvearrowleft}{B}: && -\frac12 T (3l \sin \theta) + W \frac{6}{5}l \cos \theta &= 0 \\ \Rightarrow && \tan \theta &= \frac{4}{5} \frac{W}{T} \\ &&&= \frac45 \frac52 \\ &&&= 2 \\ \Rightarrow && \theta &= \tan^{-1} 2 \\ \\ \text{N2}(\uparrow): && R &= W \\ \text{N2}(\rightarrow): && F &= \frac12 T \\ \Rightarrow && F & \leq \mu R \\ \Rightarrow && \frac12 T &\leq \mu W \\ \Rightarrow && \mu &\geq \frac12 \frac{T}{W} = \frac12 \frac25 = \frac15 \end{align*}
2003 Paper 1 Q10
D: 1500.0 B: 1500.0

\(ABCD\) is a uniform rectangular lamina and \(X\) is a point on \(BC\,\). The lengths of \(AD\), \(AB\) and \(BX\) are \(p\,\), \(q\) and \(r\) respectively. The triangle \(ABX\) is cut off the lamina. Let \((a,b)\) be the position of the centre of gravity of the lamina, where the axes are such that the coordinates of \(A\,\), \(D\) and \(C\) are \((0,0)\,\), \((p,0)\) and \((p,q)\) respectively. Derive equations for \(a\) and \(b\) in terms of \(p\,\), \(q\) and \(r\,\). When the resulting trapezium is freely suspended from the point \(A\,\), the side \(AD\) is inclined at \(45^\circ\) below the horizontal. Show that \(\displaystyle r = q - \sqrt{q^2 - 3pq + 3p^2}\,\). You should justify carefully the choice of sign in front of the square root.

Show Solution
TikZ diagram
\begin{array}{c|c|c|c} & ABX & ABCD & AXCD \\ \hline \text{area} & \frac12 q r & pq & q(p - \frac12 r) \\ \text{com} & \binom{\frac{r}{3}}{\frac{2q}{3}} & \binom{p/2}{q/2} & \binom{a}{b} \end{array} \begin{align*} && q(p-\frac12 r) \binom{a}{b} &= pq\binom{p/2}{q/2} - \frac12 q r \binom{\frac{r}{3}}{\frac{2q}{3}} \\ \Rightarrow && \binom{a}{b} &= \frac{2}{2p-r}\binom{p^2/2-\frac16r^2}{pq/2-\frac13qr} \\ &&&= \binom{\frac{p^2-\frac13 r^2}{2p-r}}{\frac{pq-\frac23qr}{2p-r}} \end{align*}
TikZ diagram
We must have: \begin{align*} && 1 &= \frac{p^2-\frac13r^2}{pq-\frac23qr} \\ \Rightarrow && pq-\frac23qr &= p^2 - \frac13 r^2 \\ \Rightarrow && 0 &=r^2-2q r + 3p(q-p) \\ \Rightarrow && 0 &= (r-q)^2 -q^2+3pq-3p^2 \\ \Rightarrow && r&= q \pm \sqrt{q^2-3pq+3p^2} \end{align*} Suppose \(r > q\), then \(p > q > r\) and we have a shape which looks like this
TikZ diagram
which definitely wouldn't have \(G\) hanging below \(A\).
1993 Paper 1 Q11
D: 1516.0 B: 1472.3

A piece of uniform wire is bent into three sides of a square \(ABCD\) so that the side \(AD\) is missing. Show that if it is first hung up by the point \(A\) and then by the point \(B\) then the angle between the two directions of \(BC\) is \(\tan^{-1}18.\)

Show Solution
TikZ diagram
In the coordinate system where \(A\) is \((0,0)\) and \(AD\) is the \(x\)-axis and \(AB\) the \(y\)-axis and all side lengths are \(2\), we find the centre of mass of each of the sides are: \begin{align*} AB :& (0,1) \\ BC :& (1,2) \\ CD :& (2,1) \\ \\ ABCD:& \l 1, \frac{4}{3} \r \end{align*} When hung from \(A\), the angle \(AB\) makes to the vertical is \(\alpha\) and the angle \(BC\) makes to the vertical will be \(90^{\circ} + \alpha\). When hung from \(B\) the angle \(BC\) makes to the vertical will be \(\beta\). The value we are interested in therefore is \(\beta + 90^{\circ} + \alpha\) \begin{align*} && \tan \alpha &= \frac{1}{\frac{4}{3}} \\ &&& = \frac{4}{3} \\ \\ && \tan \beta &= \frac{\frac{2}{3}}{1} \\ &&&= \frac{2}{3} \\ \\ && \tan \l \beta + (90^{\circ} + \alpha) \r &= \frac{\tan \beta + \tan\l 90^{\circ} + \alpha \r}{1 - \tan \beta \tan\l 90^{\circ} + \alpha \r} \\ &&&= \frac{\frac23 + \frac43}{1- \frac23 \frac43} \\ &&&= \frac{2}{1 - \frac89} \\ &&&= 18 \end{align*}
1990 Paper 2 Q13
D: 1600.0 B: 1484.0

A thin non-uniform rod \(PQ\) of length \(2a\) has its centre of gravity a distance \(a+d\) from \(P\). It hangs (not vertically) in equilibrium suspended from a small smooth peg \(O\) by means of a light inextensible string of length \(2b\) which passes over the peg and is attached at its ends to \(P\) and \(Q\). Express \(OP\) and \(OQ\) in terms of \(a,b\) and \(d\). By considering the angle \(POQ\), or otherwise, show that \(d < a^{2}/b\).

Show Solution
TikZ diagram
Resolving horizontally, it's clear that \(\angle POG = \angle GOQ\), in particular applying the sine rule: \begin{align*} && \sin \angle POG &= \frac{a+d}{2b-x} \sin \angle PGO \\ && \sin \angle GOP &= \frac{a-d}{x} \sin \angle OGQ \\ \Rightarrow && \frac{a+d}{2b-x} &= \frac{a-d}{x} \\ \Rightarrow && x(a+d) &= (2b-x)(a-d) \\ \Rightarrow && 2ax &= 2b(a-d) \\ \Rightarrow && x &= b - \frac{db}{a} \\ \Rightarrow && PO &= b+\frac{db}{a} \\ && OQ &= b - \frac{d}{a} \end{align*} Applying the cosine rule: \begin{align*} && \cos POQ &= \frac{(b + \frac{db}{a})^2 + (b - \frac{db}{a})^2 -4a^2}{2(b^2 - \frac{d^2b^2}{a^2})} \\ &&&= \frac{2b^2 + \frac{2d^2b^2}{a^2}-4a^2}{2(b^2 - \frac{d^2b^2}{a^2})} \\ &&&= \frac{2a^2b^2 + 2d^2b^2-4a^4}{2b^2(a^2 - d^2)} \\ &&&< 1 \\ \Leftrightarrow && 2a^2b^2 + 2d^2b^2-4a^4 &< 2b^2(a^2-d^2) \\ \Leftrightarrow && 2d^2b^2-4a^4 &< -2b^2d^2 \\ \Leftrightarrow && 4d^2b^2&< 4a^4 \\ \Leftrightarrow && d^2&< \frac{a^4}{b^2} \\ \Leftrightarrow && d&< \frac{a^2}{b} \\ \end{align*}

Showing 1-9 of 9 problems
2015 Paper 3 Q11
D: 1700.0 B: 1484.0

  1. A horizontal disc of radius \(r\) rotates about a vertical axis through its centre with angular speed \(\omega\). One end of a light rod is fixed by a smooth hinge to the edge of the disc so that it can rotate freely in a vertical plane through the centre of the disc. A particle \(P\) of mass \(m\) is attached to the rod at a distance \(d\) from the hinge. The rod makes a constant angle \(\alpha\) with the upward vertical, as shown in the diagram, and \(d\sin\alpha < r\).
    TikZ diagram
    By considering moments about the hinge for the (light) rod, show that the force exerted on the rod by \(P\) is parallel to the rod. Show also that \[ r\cot\alpha = a + d \cos\alpha \,, \] where \(a = \dfrac {g \;} {\omega^2}\,\). State clearly the direction of the force exerted by the hinge on the rod, and find an expression for its magnitude in terms of \(m\), \(g\) and \(\alpha\).
  2. The disc and rod rotate as in part (i), but two particles (instead of \(P\)) are attached to the rod. The masses of the particles are \(m_1\) and \(m_2\) and they are attached to the rod at distances \(d_1\) and \(d_2\) from the hinge, respectively. The rod makes a constant angle \(\beta\) with the upward vertical and \(d_1\sin\beta < d_2\sin\beta < r\). Show that \(\beta\) satisfies an equation of the form \[ r\cot\beta = a+ b \cos\beta \,, \] where \(b\) should be expressed in terms of \(d_1\), \(d_2\), \(m_1\) and \(m_2\).

Show Solution
  1. Since the particle is not moving (relative to the hinge) there is no moment about the hinge and in particular the only forces must be directed towards the hinge, ie parallel to the rod.
    TikZ diagram
    \begin{align*} \text{N2}(\uparrow): && R \cos \alpha &= mg \\ \\ \text{N2}(\leftarrow, \text{radially}): && R \sin \alpha &= m (r-d\sin \alpha) \omega^2 \\ \Rightarrow && \cot \alpha &= \frac{g}{(r-d\sin \alpha) \omega^2} \\ \Rightarrow && r\cot \alpha-d \cos \alpha &= a \\ \Rightarrow && r \cot \alpha &= a + d \cos \alpha \end{align*} The force of the hinge is acting in the same direction and magnitude as the rod on the particle (the force \(R\) in the diagram). It has magnitude \(mg \sec \alpha\)
  2. \(\,\)
    TikZ diagram
    \begin{align*} \overset{\curvearrowleft}{\text{hinge}}: && gm_1d_1 \sin \beta+gm_2d_2 \sin \beta &= m_1 (r-d_1 \sin \beta) \omega^2 d_1 \cos \beta + m_2 (r-d_2 \sin \beta) \omega^2 d_2 \cos \beta \\ \Rightarrow && a(m_1d_1+m_2d_2) \tan \beta &= r(m_1d_1+m_2d_2) - (m_1d_1^2+m_2d_2^2) \sin \beta \\ \Rightarrow && r\cot \beta &= a + \frac{m_1d_1^2+m_2d_2^2}{m_1d_1+m_2d_2} \cos \beta \end{align*}
2015 Paper 2 Q11
D: 1600.0 B: 1484.0

Three particles, \(A\), \(B\) and \(C\), each of mass \(m\), lie on a smooth horizontal table. Particles \(A\) and \(C\) are attached to the two ends of a light inextensible string of length \(2a\) and particle~\(B\) is attached to the midpoint of the string. Initially, \(A\), \(B\) and \(C\) are at rest at points \((0,a)\), \((0,0)\) and \((0,-a)\), respectively. An impulse is delivered to \(B\), imparting to it a speed \(u\) in the positive \(x\) direction. The string remains taut throughout the subsequent motion.

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.18,-3.26)(6.26,3.18) \psline[linewidth=2pt](2.,1.5)(3.,0.) \psline[linewidth=2pt](3.,0.)(2.,-1.5) \psline(-2.,0.)(6.,0.) \psline(0.,3.)(0.,-3.) \parametricplot{2.1587989303424644}{3.1415926535897936}{0.7*cos(t)+3.|0.7*sin(t)+0.} \rput[tl](-0.25,2.96){\(y\)} \rput[tl](5.76,-0.1){\(x\)} \rput[tl](2.5,0.38){\(\theta\)} \rput[tl](2.1,1.94){\(A\)} \rput[tl](3.2,0.4){\(B\)} \rput[tl](2.16,-1.46){\(C\)} \begin{scriptsize} \psdots[dotsize=8pt 0,dotstyle=*](2.,1.5) \psdots[dotsize=8pt 0,dotstyle=*](3.,0.) \psdots[dotsize=8pt 0,dotstyle=*](2.,-1.5) \end{scriptsize} \end{pspicture*}
  1. At time \(t\), the angle between the \(x\)-axis and the string joining \(A\) and \(B\) is \(\theta\), as shown in the diagram, and \(B\) is at \((x,0)\). Write down the coordinates of \(A\) in terms of \(x,a\) and \(\theta\). Given that the velocity of \(B\) is \((v,0)\), show that the velocity of \(A\) is \((\dot x + a\sin\theta \,\dot \theta\,,\, a\cos\theta\, \dot\theta)\), where the dot denotes differentiation with respect to time.
  2. Show that, before particles \(A\) and \(C\) first collide, \[ 3\dot x + 2a \dot\theta \sin\theta =v \text{ \ \ \ \ \ \ and \ \ \ \ \ \ } \dot \theta^2 = \frac{v^2}{a^2(3-2\sin^2\theta)} \,. \]
  3. When \(A\) and \(C\) collide, the collision is elastic (no energy is lost). At what value of \(\theta\) does the second collision between particles \(A\) and \(C\) occur? (You should justify your answer.)
  4. When \(v=0\), what are the possible values of \(\theta\)? Is \(v =0\) whenever \(\theta\) takes these values?

2014 Paper 3 Q11
D: 1700.0 B: 1484.0

A particle \(P\) of mass \(m\) is connected by two light inextensible strings to two fixed points \(A\) and \(B\), with \(A\) vertically above \(B\). The string \(AP\) has length \(x\). The particle is rotating about the vertical through \(A\) and \(B\) with angular velocity \(\omega\), and both strings are taut. Angles \(PAB\) and \(PBA\) are \(\alpha\) and \(\beta\), respectively. Find the tensions \(T_A\) and \(T_B\) in the strings \(AP\) and \(BP\) (respectively), and hence show that \(\omega^2 x\cos\alpha \ge g\). Consider now the case that \(\omega^2 x\cos\alpha = g\). Given that \(AB=h\) and \(BP=d\), where \(h>d\), show that \(h\cos\alpha \ge \sqrt{h^2-d^2}\). Show further that \[ mg < T_A \le \frac{mgh}{\sqrt{h^2-d^2}\,}\,. \] Describe the geometry of the strings when \(T_A\) attains its upper bound.

Show Solution
TikZ diagram
\begin{align*} \text{N2}(\uparrow): && T_A \cos \alpha - T_B \cos\alpha - mg &= 0 \\ \Rightarrow && T_A \cos \alpha - T_B \cos\beta &= mg \\ \text{N2}(\leftarrow, \text{radially}): && T_A \sin \alpha + T_B \sin \beta &= m x \sin \alpha \omega^2 \\ \Rightarrow && T_A(\cos \alpha \sin \beta+\sin \alpha \cos \beta) &= mg \sin \beta + mx \sin \alpha \omega^2 \cos \beta \\ \Rightarrow && T_A &=\frac{mg\sin \beta + m x \sin \alpha \omega^2 \cos \beta }{\sin(\alpha + \beta)} \\ \Rightarrow && T_B(\sin \beta \cos \alpha- \cos \beta \sin \alpha)&= mx \sin \alpha \omega^2 \cos \alpha -mg \sin \alpha \\ \Rightarrow && T_B &= \frac{m x \sin \alpha \omega^2 \cos \alpha - mg \sin \alpha}{\sin(\beta - \alpha)} \\ &&&= \frac{m \sin \alpha(\omega^2 \cos\alpha - g)}{\sin (\beta - \alpha)} \end{align*} Since \(T_B \geq 0 \Rightarrow \omega^2 \cos\alpha - g \geq 0\) as required.
TikZ diagram
\(\sqrt{h^2-d^2}\) is the length of the final side on the dashed right angle triangle with hypotenuse \(AB\). \(h \cos \alpha\) will be clearly longer as the angle \(\alpha\) will be smaller and so \(\cos \alpha\) will be larger. When \(\omega^2 x \cos \alpha = g\) we must have \(T_B = 0\). \(T_A\cos \alpha = mg \Rightarrow T_A > mg\) since \(\alpha \neq 0\). \(T_A = \frac{mg}{\cos \alpha} \leq \frac{mgh}{\sqrt{h^2-d^2}}\) \(T_A\) will attain it's upper bound when \(\angle APB\) is a right angle.
2010 Paper 1 Q10
D: 1500.0 B: 1500.0

A particle \(P\) moves so that, at time \(t\), its displacement \( \bf r \) from a fixed origin is given by \[ {\bf r} =\left( \e^{t}\cos t \right) {\bf i}+ \left(\e^t \sin t\right) {\bf j}\,.\] Show that the velocity of the particle always makes an angle of \(\frac{\pi}{4}\) with the particle's displacement, and that the acceleration of the particle is always perpendicular to its displacement. Sketch the path of the particle for \(0\le t \le \pi\). A second particle \(Q\) moves on the same path, passing through each point on the path a fixed time \(T\) after \(P\) does. Show that the distance between \(P\) and \(Q\) is proportional to \(\e^{t}\).

Show Solution
\begin{align*} && {\bf r} &=\left( \e^{t}\cos t \right) {\bf i}+ \left(\e^t \sin t\right) {\bf j} \\ \Rightarrow && \dot{\bf r} &= \left( \e^{t}\cos t -\e^t \sin t\right) {\bf i}+ \left(\e^t \sin t+\e^t \cos t\right) {\bf j} \\ \Rightarrow && \mathbf{r}\cdot\dot{ \mathbf{r}} &= e^{2t}(\cos^2 t - \sin t \cos t) + e^{2t}(\sin^2 t+ \sin t \cos t) \\ &&&= e^{2t} (\cos^2 t + \sin ^2 t)\\ &&&= e^{2t} \\ \\ && | {\bf r}| &= e^{t} \\ && |{\bf \dot{r}}| &= e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2} \\ &&&= e^t \sqrt{2 \cos^2 t + 2 \sin^2 t} \\ &&&= \sqrt{2} e^t \\ \\ \Rightarrow && \frac{\mathbf{r}\cdot\dot{ \mathbf{r}}}{ |{\bf {r}}| |{\bf \dot{r}}|} &= \frac{e^{2t}}{\sqrt{2}e^te^t} \\ &&&= \frac{1}{\sqrt{2}} \end{align*} Therefore the angle between the velocity and displacement is \(\frac{\pi}{4}\). \begin{align*} && \ddot{\bf{r}} &= \left( \e^{t}(\cos t - \sin t) - \e^t (\sin t + \cos t)\right) {\bf i}+ \left(\e^t (\sin t + \cos t) + \e^t(\cos t - \sin t)\right) {\bf j} \\ &&&= \left ( -2\e^{t} \sin t \right) {\bf i}+ \left ( 2\e^{t} \cos t \right) {\bf j} \\ \Rightarrow && {\bf r} \cdot \ddot{\bf{r}} &= 2e^{2t} \left ( -\sin t \cos t + \sin t \cos t \right) \\ &&&= 0 \end{align*} Therefore the acceleration is perpendicular.
TikZ diagram
\(Q\) has position $\mathbf{r}' = \left( \e^{t-T}\cos (t-T) \right) {\bf i}+ \left(\e^{t-T} \sin (t-T)\right) {\bf j}\( for \)t > T$. \begin{align*} && {\bf r' \cdot r} &= e^{2t-T} \left (\cos t \cos (t-T) + \sin t \sin(t - T) \right) \\ &&&= e^{2t-T} \cos (t - (t-T)) \\ &&&= e^{2t-T} \cos T \\ \\ && |{\bf r'}- {\bf r} |^2 &= |{\bf r}|^2 + |{\bf r}'|^2 - 2 {\bf r' \cdot r} \\ &&&= e^{2t} + e^{2(t-T)} - 2e^{2t-T} \cos T \\ &&&= e^{2t} \left (1 - 2e^{-T} \cos T + e^{-2T} \right) \\ \Rightarrow && |{\bf r'}- {\bf r} | &= e^{t} \sqrt{1 - 2e^{-T} \cos T + e^{-2T} } \end{align*} as required
1999 Paper 2 Q11
D: 1600.0 B: 1484.0

An automated mobile dummy target for gunnery practice is moving anti-clockwise around the circumference of a large circle of radius \(R\) in a horizontal plane at a constant angular speed \(\omega\). A shell is fired from \(O\), the centre of this circle, with initial speed \(V\) and angle of elevation \(\alpha\). Show that if \(V^2 < gR\), then no matter what the value of \(\alpha\), or what vertical plane the shell is fired in, the shell cannot hit the target. Assume now that \(V^2 > gR\) and that the shell hits the target, and let \(\beta\) be the angle through which the target rotates between the time at which the shell is fired and the time of impact. Show that \(\beta\) satisfies the equation $$ g^2{{\beta}^4} - 4{{\omega}^2}{V^2}{{\beta}^2} +4{R^2}{{\omega}^4}=0. $$ Deduce that there are exactly two possible values of \(\beta\). Let \(\beta_1\) and \(\beta_2\) be the possible values of \(\beta\) and let \(P_1\) and \(P_2\) be the corresponding points of impact. By considering the quantities \((\beta_1^2 +\beta_2^2) \) and \(\beta_1^2\beta_2^2\,\), or otherwise, show that the linear distance between \(P_1\) and \(P_2\) is \[ 2R \sin\Big( \frac\omega g \sqrt{V^2-Rg}\Big) \;. \]

Show Solution
\begin{align*} && 0 &= V\sin \alpha t-\frac12 gt^2 \\ \Rightarrow && t &= \frac{2V \sin \alpha}{g} \\ && R &= V \cos \alpha \, t \\ &&&= \frac{2V^2 \sin \alpha \cos \alpha}{g} \\ &&&= \frac{V^2 \sin 2 \alpha}{g} \end{align*} Therefore the max distance is \(\frac{V^2}{g}\), therefore we cannot hit the target if \(R > \frac{V^2}{g} \Rightarrow gR > V^2\). We have \(\beta = \omega t \Rightarrow t = \frac{\beta}{\omega}\) \begin{align*} && \sin \alpha &= \frac{gt}{2V} \\ && \cos \alpha &= \frac{R}{Vt} \\ \Rightarrow && 1 &= \left (\frac{gt}{2V} \right)^2 + \left ( \frac{R}{Vt} \right)^2 \\ &&&= \left (\frac{g\beta}{2V \omega} \right)^2 + \left ( \frac{R\omega}{V\beta} \right)^2 \\ &&&= \frac{g^2 \beta^2}{4 V^2 \omega^2} + \frac{R^2 \omega^2}{V^2 \beta ^2} \\ \Rightarrow && 4V^2 \omega^2 \beta^2 &= g^2 \beta^4 + 4R^2 \omega^4 \\ \Rightarrow && 0 &= g^2 \beta^4 - 4\omega^2 V^2 \beta^2+4R^2\omega^4 \end{align*} This (quadratic) equation in terms of \(\beta^2\) has two solution if \(\Delta = 16\omega^4V^4-16g^2R^2\omega^4 =16\omega^4(V^4-g^2R^2) > 0\) since \(V^2 > gR\). Since \(\beta > 0\) there are exactly two solutions, once we have values for \(\beta\). First notice, \begin{align*} && \beta_1^2 + \beta_2^2 &= \frac{4\omega^2V^2}{g^2} \\ && \beta_1^2\beta_2^2 &= \frac{4R^2\omega^4}{g^2} \end{align*} Then notice the positions of \(P_1\) and \(P_2\) are \((R\cos \beta_1 , R\sin \beta_1)\) and \((R\cos \beta_2, R\sin \beta_2)\). \begin{align*} && d^2 &= R^2\left ( \cos \beta_1 - \cos \beta_2 \right)^2 + R^2 \left ( \sin \beta_1 - \sin \beta_2 \right)^2 \\ &&&= 2R^2 - 2R^2(\cos \beta_1 \cos \beta_2 + \sin \beta_1 \sin \beta_2) \\ &&&= 2R^2-2R^2\cos(\beta_1 - \beta_2) \\ &&&= 2R^2 \left (1-\cos(\sqrt{(\beta_1-\beta_2)^2} \right ) \\ &&&= 2R^2 \left (1 - \cos\left ( \sqrt{\frac{4\omega^2 V^2}{g^2} - \frac{4R\omega^2}{g}} \right) \right) \\ &&&= 2R^2 \left (1 - \cos\left (\frac{2\omega}{g} \sqrt{V^2 - Rg} \right) \right) \\ &&&= 4 R^2 \sin^2 \left (\frac{\omega}{g} \sqrt{V^2 - Rg} \right) \end{align*} which gives us the required result.
1999 Paper 1 Q11
D: 1500.0 B: 1486.1

The force of attraction between two stars of masses \(m_{1}\) and \(m_{2}\) a distance \(r\) apart is \(\gamma m_{1}m_{2}/r^{2}\). The Starmakers of Kryton place three stars of equal mass \(m\) at the corners of an equilateral triangle of side \(a\). Show that it is possible for each star to revolve round the centre of mass of the system with angular velocity \((3\gamma m/a^{3})^{1/2}\). Find a corresponding result if the Starmakers place a fourth star, of mass \(\lambda m\), at the centre of mass of the system.

Show Solution
The net force on the planets will always be towards the centre of mass (by symmetry or similar arguments). Therefore it suffices to check whether we can find a speed where the planets follow uniform circular motion, ie \(F = mr \omega^2\). (But clearly this is possible, we just need to find the speed)
TikZ diagram
\begin{align*} && F &= m r \omega^2 \\ && 2\frac{\gamma m^2}{a^2} \cos 30^{\circ} &= m \frac{a}{\sqrt{3}} \omega^2 \\ \Rightarrow && \frac{\sqrt{3}\gamma m^2}{a^2} &= \frac{ma \omega^2}{\sqrt{3}} \\ \Rightarrow && \omega^2 &= \frac{3\gamma m}{a^3} \\ \Rightarrow && \omega &= \left ( \frac{3\gamma m}{a^3}\right)^{1/2} \end{align*}
TikZ diagram
In the second scenario, we are interested in when: \begin{align*} && F &= m r \omega^2 \\ && \underbrace{2\frac{\gamma m^2}{a^2} \cos 30^{\circ}}_{\text{to other symmetric planets}} + \underbrace{\frac{\gamma \lambda m^2}{a^2}}_{\text{central planet}} &= m \frac{a}{\sqrt{3}} \omega^2 \\ \Rightarrow && \frac{(\sqrt{3}+\lambda)\gamma m^2}{a^2} &= \frac{ma \omega^2}{\sqrt{3}} \\ \Rightarrow && \omega^2 &= \frac{(3+\sqrt{3}\lambda)\gamma m}{a^3} \\ \Rightarrow && \omega &= \left ( \frac{(3+\sqrt{3}\lambda)\gamma m}{a^3}\right)^{1/2} \end{align*}
1991 Paper 1 Q13
D: 1516.0 B: 1484.0

\(\ \)\vspace{-1.5cm} \noindent

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-0.08,-2.26)(6.28,6.22) \psline(0,0)(1,4) \psline(1,4)(5,4) \psline(5,4)(6,0) \psline(6,0)(0,0) \psline[linewidth=1.2pt](3,6)(3,4) \psline[linewidth=1.2pt](3,0)(3,-2) \parametricplot[linewidth=2pt]{0.0}{3.141592653589793}{1*2*cos(t)+0*2*sin(t)+3|0*2*cos(t)+1*2*sin(t)+0} \psdot[dotstyle=*](1,-0.8) \psline{->}(1,-0.6)(1,-0.1) \rput[tl](0.84,-1.04){\(m\)} \rput[tl](0.6,0.45){\(A\)} \rput[tl](2.86,2.4){\(B\)} \rput[tl](5.15,0.45){\(C\)} \psline[linewidth=1.2pt,linestyle=dashed,dash=1pt 2pt](3,4)(3,2.42) \psline[linewidth=1.2pt,linestyle=dashed,dash=1pt 2pt](3,0)(3,2) \rput[tl](1.2,-0.26){\(V\)} \end{pspicture*} \par
A heavy smooth lamina of mass \(M\) is free to slide without rotation along a straight line on a fixed smooth horizontal table. A smooth groove \(ABC\) is inscribed in the lamina, as indicated in the above diagram. The tangents to the groove at \(A\) and at \(B\) are parallel to the line. When the lamina is stationary, a particle of mass \(m\) (where \(m < M\)) enters the groove at \(A\). The particle is travelling, with speed \(V\), parallel to the line and in the plane of the lamina and table. Calculate the speeds of the particle and of the lamina, when the particle leaves the groove at \(C\). Suppose now that the lamina is held fixed by a peg attached to the line. Supposing that the groove \(ABC\) is a semicircle of radius \(r\), obtain the value of the average force per unit time exerted on the peg by the lamina between the instant that the particle enters the groove and the instant that it leaves it.

1988 Paper 3 Q14
D: 1700.0 B: 1484.0

A small heavy bead can slide smoothly in a vertical plane on a fixed wire with equation \[ y=x-\frac{x^{2}}{4a}, \] where the \(y\)-axis points vertically upwards and \(a\) is a positive constant. The bead is projected from the origin with initial speed \(V\) along the wire.

  1. Show that for a suitable value of \(V\), to be determined, a motion is possible throughout which the bead exerts no pressure on the wire.
  2. Show that \(\theta,\) the angle between the particle's velocity at time \(t\) and the \(x\)-axis, satisfies \[ \frac{4a^{2}\dot{\theta}^{2}}{\cos^{6}\theta}+2ga(1-\tan^{2}\theta)=V^{2}. \]

Show Solution
  1. The condition that the bead exerts no pressure on the wire is equivalent to the condition that the wire exerts no force on the bead. (Newton's Third Law). This is equivalent to the bead being projected under gravity. Notice that the initial projection is at \(45^{\circ}\) since \(\frac{dy}{dx}|_{x=0} = 1\). The position of the particle (under gravity) at time \(t\) is \(x = \frac{1}{\sqrt{2}}Vt\) and \(y = \frac{1}{\sqrt{2}}Vt - \frac12 gt^2 = x - \frac{1}{2}g \frac{2x^2}{V^2} = x - \frac{g}{V^2}x^2\). Therefore they follow the same trajectory if \(\frac{g}{V^2} = \frac{1}{4a} \Leftrightarrow V = 2\sqrt{ag}\)
  2. First note that the wire does no work as it is perpendicular to the velocity, so it is fine to use conservation of momentum. If we take our \(0\) GPE level to be be \(x = 0\), then we notice the initial energy is \(\frac12mV^2\). Secondly, notice that \(\tan \theta = \frac{\d y}{\d x} = 1- \frac{x}{2a} \Rightarrow x = 2a - 2a \tan \theta\) \begin{align*} y &= 2a(1-\tan \theta) - \frac{4a^2(1-\tan \theta)^2}{4a}\\ &= (1-\tan \theta)(2a-a(1-\tan \theta)) \\ &= a(1-\tan \theta)(1+\tan \theta) \\ &= a(1-\tan^2 \theta) \end{align*} GPE \(mga(1-\tan^2 \theta)\). To calculate the kinetic energy, notice that \(\dot{x} = v \cos \theta \dot{\theta}\) and \(\dot{x} = -2a\sec^2 \theta\dot{\theta} \Rightarrow v = -\frac{2a\dot{\theta} }{\cos^{3} \theta}\). Therefore, energy at time \(t\) is: \begin{align*} && \frac12 m V^2 &= \frac12 m \l - \frac{2a\dot{\theta}}{\cos^3 \theta} \r^2 + mga(1-\tan^2 \theta) \\ \Rightarrow && V^2 &= \frac{4a^2\dot{\theta}^2}{\cos^6 \theta} + 2ag(1-\tan^2 \theta) \end{align*}
1988 Paper 1 Q12
D: 1484.0 B: 1471.5

A skater of mass \(M\) is skating inattentively on a smooth frozen canal. She suddenly realises that she is heading perpendicularly towards the straight canal bank at speed \(V\). She is at a distance \(d\) from the bank and can choose one of two methods of trying to avoid it; either she can apply a force of constant magnitude \(F\), acting at right-angles to her velocity, so that she travels in a circle; or she can apply a force of magnitude \(\frac{1}{2}F(V^{2}+v^{2})/V^{2}\) directly backwards, where \(v\) is her instantaneous speed. Treating the skater as a particle, find the set of values of \(d\) for which she can avoid hitting the bank. Comment briefly on the assumption that the skater is a particle.

Show Solution
Suppose she applies a force of magnitude \(\frac{1}{2}F(V^{2}+v^{2})/V^{2}\) backwards, then \begin{align*} && M v \frac{dv}{dx} &= -\frac{1}{2}F(V^{2}+v^{2})/V^{2} \\ \Rightarrow && M\int_{V}^0 \frac{2v}{V^2+ v^2} \d v &= - \frac{F}{V^2} x \\ \Rightarrow && M \left [ -\log(V^2+v^2) \right]_0^V &= -\frac{Fx}{V^2} \\ \Rightarrow && -M \ln 2&= -\frac{Fx}{V^2} \end{align*} Therefore she will stop quickly enough if \(d > \frac{V^2M \ln 2}{F}\) If she attempts to use the right-angled method, then she will travel a distance at most \(r\) where \(r\) is the radius of her circle: \begin{align*} && F &= M \frac{V^2}{r} \\ \Rightarrow && r &= \frac{MV^2}{F} \end{align*} Therefore she can always avoid the wall if \(d > \frac{MV^2}{F}\). There are two potential issues with being a particle. Firstly we would need to account for any variation in the distance to the wall (which could be accounted for by changing \(d\)). Secondly when she enters circular motion she will rotate and therefore we might need to consider her inertia as well as just her velocity when modelling.

Showing 1-15 of 15 problems
2019 Paper 3 Q10
D: 1500.0 B: 1500.0

Two identical smooth spheres \(P\) and \(Q\) can move on a smooth horizontal table. Initially, \(P\) moves with speed \(u\) and \(Q\) is at rest. Then \(P\) collides with \(Q\). The direction of travel of \(P\) before the collision makes an acute angle \(\alpha\) with the line joining the centres of \(P\) and \(Q\) at the moment of the collision. The coefficient of restitution between \(P\) and \(Q\) is \(e\) where \(e < 1\). As a result of the collision, \(P\) has speed \(v\) and \(Q\) has speed \(w\), and \(P\) is deflected through an angle \(\theta\).

  1. Show that $$u \sin \alpha = v \sin(\alpha + \theta)$$ and find an expression for \(w\) in terms of \(v\), \(\theta\) and \(\alpha\).
  2. Show further that $$\sin \theta = \cos(\theta + \alpha) \sin \alpha + e \sin(\theta + \alpha) \cos \alpha$$ and find an expression for \(\tan \theta\) in terms of \(\tan \alpha\) and \(e\). Find, in terms of \(e\), the maximum value of \(\tan \theta\) as \(\alpha\) varies.

Show Solution
TikZ diagram
  1. Since the impulse is along the line of centres, the velocities are as show in the diagram. Additionally, vertical velocity is unchanged, so: \(v \sin (\theta + \alpha) = u \sin \alpha\) \begin{align*} \text{COM}(\rightarrow): && u \cos\alpha &= v \cos(\alpha + \theta) + w \\ \Rightarrow && w &= u \cos \alpha - v \cos (\alpha + \theta) \end{align*}
  2. Since the approach speed (horizontally) is \(u \cos \alpha\) the speed of separation is \(e u \cos \alpha\), in particular \(w - v \cos(\theta + \alpha) = e u \cos \alpha\) or \(w = v \cos (\theta + \alpha) + e u \cos \alpha\). \begin{align*} && w &= w \\ && v \cos (\theta + \alpha) + e u \cos \alpha &= u \cos \alpha - v \cos (\alpha + \theta) \\ \Rightarrow && \frac{u \sin \alpha}{\sin (\alpha + \theta)} \cos (\theta + \alpha) + e u \cos \alpha &= u \cos \alpha - \frac{u \sin \alpha}{\sin (\alpha + \theta)} \cos (\alpha + \theta) \\ \Rightarrow && \sin \alpha \cos(\theta + \alpha) + e \sin (\alpha+\theta)\cos \alpha &= \sin(\alpha+\theta) \cos \alpha - \cos(\alpha+\theta)\sin \alpha \\ &&&= \sin ((\alpha+\theta)-\alpha) \\ &&&= \sin \theta \end{align*} as required. \begin{align*} && \sin \theta &= \cos(\theta+ \alpha)\sin \alpha + e \sin (\theta + \alpha) \cos \alpha \\ &&&= \cos \theta \cos \alpha \sin \alpha - \sin \theta \sin^2 \alpha + e \sin \theta \cos ^2 \alpha + e \cos \theta \sin \alpha \cos \alpha \\ \Rightarrow && \tan \theta \sec^2 \alpha &= \tan \alpha - \tan \theta \tan^2 \alpha + e \tan \theta + e \tan \alpha \\ \Rightarrow && \tan \theta (1 + \tan^2 \alpha+\tan^2 \alpha-e) &= \tan \alpha + e \tan \alpha \\ \Rightarrow && \tan \theta &= \frac{(1+e)\tan \alpha}{1-e + 2\tan^2 \alpha} \end{align*} We seek to maximise \(y = \frac{x}{c+2x^2}\), \begin{align*} && \frac{\d y}{\d x} &= \frac{c+2x^2-4x^2}{(c+2x^2)^2} \\ &&&= \frac{c-2x^2}{(c+2x^2)^2} \end{align*} Therefore the maximum will occur at \(x = \sqrt{c/2}\), ie \(\tan \alpha = \sqrt{(1-e)/2}\) and theta will be \(\displaystyle \frac{(1+e)\sqrt{(1-e)/2}}{2(1-e)} =\frac{1}{2\sqrt{2}} \frac{1+e}{\sqrt{1-e}}\)
1987 Paper 2 Q13
D: 1500.0 B: 1500.0

Ice snooker is played on a rectangular horizontal table, of length \(L\) and width \(B\), on which a small disc (the puck) slides without friction. The table is bounded by smooth vertical walls (the cushions) and the coefficient of restitution between the puck and any cushion is \(e\). If the puck is hit so that it bounces off two adjacent cushions, show that its final path (after two bounces) is parallel to its original path. The puck rests against the cushion at a point which divides the side of length \(L\) in the ratio \(z:1\). Show that it is possible, whatever \(z\), to hit the puck so that it bounces off the three other cushions in succession clockwise and returns to the spot at which it started. By considering these paths as \(z\) varies, explain briefly why there are two different ways in which, starting at any point away from the cushions, it is possible to perform a shot in which the puck bounces off all four cushions in succession clockwise and returns to its starting point.

Show Solution
TikZ diagram
The puck sets off at some velocity \(\displaystyle \binom{u_x}{u_y}\), after the first bounce off the wall parallel to the \(y\)-axis, it has velocity \(\displaystyle \binom{-eu_x}{u_y}\). After it bounces off the wall parallel to the \(x\)-axis, it has velocity \(\displaystyle \binom{-eu_x}{-eu_y}\) which is clearly parallel to the original velocity.
TikZ diagram
If the puck bounces off 3 walls and returns to the same point the shape formed must be a parallelogram. We need to hit the point on the opposite side which is in a ratio of \(1:z\), but this must be possible if we aim towards the side further away.
TikZ diagram
For a fixed path, as \(z\) increases we generate more parallelograms which cross ours (on two of the legs) twice. As they move the full length it will cover the full leg of the parallogram. Similarly going the other way will cover the other leg of the parallelogram. Therefore from every point there are two circuits round the table
1987 Paper 1 Q12
D: 1500.0 B: 1500.0

\(\,\) \vspace{-1cm}

TikZ diagram
A particle is placed at the edge of the top step of a flight of steps. Each step is of width \(2d\) and height \(h\). The particle is kicked horizontally perpendicular to the edge of the top step. On its first and second bounces it lands exactly in the middle of each of the first and second steps from the top. Find the coefficient of restitution between the particle and the steps. Determine whether it is possible for the particle to continue bouncing down the steps, hitting the middle of each successive step.

Show Solution
Considering the horizontal component, this will be constant as there are no forces acting in that direction. The first step will take the particle \(t = \sqrt{\frac{2h}g}\) to reach. At which point it will be travelling with speed \(v = \sqrt{2gh} \) (by energy considerations, \(mgh = \frac12 mv^2\)). To reach the second step must take twice as long (since the ball has to travel \(2d\) horizontally, rather than \(d\)). Since \(t = 2\sqrt{\frac{2h}g}\) we must have that: \begin{align*} && s &= ut + \frac12 gt^2 \\ \Rightarrow && h &= u 2\sqrt{\frac{2h}g} + \frac12 g \frac{8h}g \\ \Rightarrow && u &= -\frac{3}{2} h\sqrt{\frac{g}{2h}} \\ &&&= -\frac{3}{2\sqrt{2}} \sqrt{gh} \end{align*} Therefore, using Newton's experimental law, we must have that \(e = \frac{\frac{3}{2 \sqrt{2}} \sqrt{gh}}{\sqrt{2} \sqrt{gh}} = \frac{3}{4}\). Again by conservation of energy \(mgh + \frac12 \frac{9}{8} mgh = \frac12 mv^2 \Rightarrow v = \frac{5}{2\sqrt{2}} \sqrt{gh}\) when it lands on the next step. Therefore we would need the coefficient of restitution for the second (and subsequent steps) to be: \(\displaystyle \frac{\frac{3}{2\sqrt{2}} \sqrt{gh}}{\frac{5}{2\sqrt{2}} \sqrt{gh}} = \frac35\)
2010 Paper 1 Q11
D: 1500.0 B: 1484.1

Two particles of masses \(m\) and \(M\), with \(M>m\), lie in a smooth circular groove on a horizontal plane. The coefficient of restitution between the particles is \(e\). The particles are initially projected round the groove with the same speed \(u\) but in opposite directions. Find the speeds of the particles after they collide for the first time and show that they will both change direction if \(2em> M-m\). After a further \(2n\) collisions, the speed of the particle of mass \(m\) is \(v\) and the speed of the particle of mass \(M\) is \(V\). Given that at each collision both particles change their directions of motion, explain why \[ mv-MV = u(M-m), \] and find \(v\) and \(V\) in terms of \(m\), \(M\), \(e\), \(u\) and \(n\).

Show Solution
All the forces in the circular groove will be perpendicular to the direction of motion. Therefore the particles will continue moving with constant speed at all times (aside from collisions). We can consider the collisions to occur as if along a tangent, (since they will be travelling perfectly perpendicular at the collisions).
TikZ diagram
The speed of approach at the first collision will be \(2u\). Therefore \(v_m = v_M + 2eu\) \begin{align*} \text{COM}: && Mu + m (-u) &= Mv_M + m(v_M + 2eu) \\ \Rightarrow && u(M-m - 2em) &= (M+m)v_M \\ \Rightarrow && v_M &= \left ( \frac{M-m-2em}{M+m} \right) u \\ && v_m &= \left ( \frac{M-m-2em}{M+m} \right) u + 2eu \\ &&&= \left ( \frac{M-m+2eM}{M+m} \right) u \end{align*} Both particles will reverse direction if \(v_M < 0\) , ie \(M-m-2em < 0 \Rightarrow 2em > M-m\) Since at each collision the velocity of the particles reverses, they must still be travelling in opposite directions, and so by conservation of momentum \(mv - MV = u(M-m)\). After each collision, the speed of approach (ie \(V+v\)) reduces by a factor of \(e\), therefore \(V+v = 2ue^{2n}\) \begin{align*} && mv - M V &= u (M-m) \\ && v + V &= 2u e^{2n} \\ \Rightarrow && (m+M)v &= u(M-m) + M2ue^{2n} \\ \Rightarrow && v &= \frac{u(M-m) + 2ue^{2n}M}{M+m} \\ \Rightarrow && (m+M)V &= 2ume^{2n} - u(M-m) \\ \Rightarrow && V &= \frac{2um e^{2n} - u(M-m)}{M+m} \end{align*}
2009 Paper 2 Q10
D: 1600.0 B: 1500.0

\(\,\)

\psset{xunit=1.5cm,yunit=1.5cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.73,-2.6)(3.4,1.82) \psline{->}(-2.73,0)(2.5,0) \psline{->}(0,-2.2)(0,1.5) \rput[tl](2.55,0.05){\(x\)} \rput[tl](-0.05,1.75){\(y\)} \rput[tl](-2.09,-0.3){\(P_1\)} \rput[tl](-1.11,-0.3){\(P_2\)} \rput[tl](-0.55,-0.6){\(P_3\)} \rput[tl](-0.55,-1.6){\(P_4\)} \rput[tl](0.07,0.3){\(O\)} \psline{->}(-2.1,0.4)(-1.6,0.4) \psline{->}(0.4,-1.9)(0.4,-1.4) \rput[tl](-1.55,0.45){\(u\)} \rput[tl](0.32,-1.2){\(u\)} \begin{scriptsize} \psdots[dotsize=18pt 0,dotstyle=*](-1,0) \psdots[dotsize=18pt 0,dotstyle=*](-2,0) \psdots[dotsize=18pt 0,dotstyle=*](0,-0.7) \psdots[dotsize=18pt 0,dotstyle=*](0,-1.7) \end{scriptsize} \end{pspicture*}
Four particles \(P_1\), \(P_2\), \(P_3\) and \(P_4\), of masses \(m_1\), \(m_2\), \(m_3\) and \(m_4\), respectively, are arranged on smooth horizontal axes as shown in the diagram. Initially, \(P_2\) and \(P_3\) are stationary, and both \(P_1\) and \(P_4\) are moving towards \(O\) with speed \(u\). Then \(P_1\) and \(P_2\) collide, at the same moment as \(P_4\) and \(P_3\) collide. Subsequently, \(P_2\) and \(P_3\) collide at \(O\), as do \(P_1\) and \(P_4\) some time later. The coefficient of restitution between each pair of particles is~\(e\), and \(e>0\). Show that initially \(P_2\) and \(P_3\) are equidistant from \(O\).

2008 Paper 2 Q10
D: 1600.0 B: 1540.1

The lengths of the sides of a rectangular billiards table \(ABCD\) are given by \(AB = DC = a\) and \(AD=BC = 2b\). There are small pockets at the midpoints \(M\) and \(N\) of the sides \(AD\) and \(BC\), respectively. The sides of the table may be taken as smooth vertical walls. A small ball is projected along the table from the corner \(A\). It strikes the side \(BC\) at \(X\), then the side \(DC\) at \(Y\) and then goes directly into the pocket at \(M\). The angles \(BAX\), \(CXY\) and \(DY\!M\) are \(\alpha\), \(\beta\) and \(\gamma\) respectively. On each stage of its path, the ball moves with constant speed in a straight line, the speeds being \(u\), \(v\) and \(w\) respectively. The coefficient of restitution between the ball and the sides is \(e\), where \(e>0\).

  1. Show that \(\tan\alpha \tan \beta = e\) and find \(\gamma\) in terms of \(\alpha\).
  2. Show that \(\displaystyle \tan\alpha = \frac {(1+2e)b} {(1+e)a}\) and deduce that the shot is possible whatever the value of \(e\).
  3. Find an expression in terms of \(e\) for the fraction of the kinetic energy of the ball that is lost during the motion.

Show Solution
TikZ diagram
  1. The initial velocity is \(u = \binom{u \cos\alpha}{u \sin \alpha}\), therefore \(v = \binom{v_x}{u \sin \alpha}\). Newton's experimental law tells us \(v_x = -e u_x = -eu \cos\alpha\), therefore \(v = \binom{-eu \cos \alpha}{u \sin \alpha} = \binom{-v \sin \beta}{v\cos \beta} \Rightarrow -\tan \beta = -e \cot \alpha \Rightarrow \tan \alpha \tan \beta = e\). There is nothing special about the result here, and so it must also be the case that \(\tan \beta \tan \gamma = e \Rightarrow \tan \gamma = \tan \alpha\)
  2. \(\tan \alpha = \frac{XB}{BA}\) so the point \(X\) is at \((a, \tan \alpha a)\). The point \(Y\) satisfies \(\tan \beta = \frac{CY}{CX} = \frac{CY}{2b - \tan \alpha a}\) so the point \(Y\) is \((a-(2b - a \tan \alpha)\tan \beta,2b) = (a - 2b\tan \beta + ea, 2b) = ((1+e)a-2b\tan \beta, 2b)\). Finally, the point \(M\) is the midpoint, so \(\tan \gamma = \frac{DM}{DY}\) so \(M\) is the point \((0, 2b - ((1+e)a-2b\tan \beta)\tan \gamma) = (0, 2b - (1+e)a \tan \gamma - 2b e) = (0, (2b(1-e) - (1+e)a \tan \gamma)\), but \(M\) is the point \((0, b)\), ie \begin{align*} && b &= 2b(1-e) - (1+e)a \tan \gamma \\ \Rightarrow && b+2eb &= (1+e)a \tan \gamma \\ \Rightarrow && \tan \gamma &= \frac{(1+2e)b}{(1+e)a} \\ \Rightarrow && \tan \alpha &= \frac{(1+2e)b}{(1+e)a} \end{align*} Since \( \frac{(1+2e)b}{(1+e)a} = \frac{b}{a} + \frac{e}{1+e}b\) which is clearly an increasing function of \(e\) on \([0,1]\), so \(\tan \alpha \in \left [\frac{b}{a}, \frac{3b}{2a} \right]\) which are all all angles which place \(X\) in sensible places, therefore we can always hit the middle pocket. (Except \(e = 0\), where we would put the ball in \(N\), but we are given \(e > 0\)).
  3. After the first collision the velocity is \(\binom{-eu \cos \alpha}{u \sin \alpha}\) after the second collision the velocity is \(\binom{-eu \cos \alpha}{-eu \sin \alpha}\). Initial kinetic energy is therefore \(\frac12 m u^2\) and final kinetic energy is \(\frac12 m e^2u^2\) therefore the fraction lost is \(\frac{\frac12 m u^2 - \frac12 m e^2u^2}{\frac12 m u^2} = 1-e^2\)
2002 Paper 3 Q11
D: 1700.0 B: 1484.0

A particle moves on a smooth triangular horizontal surface \(AOB\) with angle \(AOB = 30^\circ\). The surface is bounded by two vertical walls \(OA\) and \(OB\) and the coefficient of restitution between the particle and the walls is \(e\), where \(e < 1\). The particle, which is initially at point \(P\) on the surface and moving with velocity \(u_1\), strikes the wall \(OA\) at \(M_1\), with angle \(PM_1A = \theta\), and rebounds, with velocity \(v_1\), to strike the wall \(OB\) at \(N_1\), with angle \(M_1N_1B = \theta\). Find \(e\) and \(\displaystyle {v_1 \over u_1}\) in terms of \(\theta\). The motion continues, with the particle striking side \(OA\) at \(M_2\), \(M_3\), \( \ldots \) and striking side \(OB\) at \(N_2\), \(N_3\), \(\ldots \). Show that, if \(\theta < 60^\circ\,\), the particle reaches \(O\) in a finite time.

2002 Paper 1 Q11
D: 1500.0 B: 1484.0

\(\,\)

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.62,-2.1)(6.82,1.68) \psline{->}(-1.7,0)(-0.22,0) \psline[linestyle=dashed,dash=1pt 1pt](3,0)(6,0) \psline{->}(4,0)(5.38,0.88) \psline{->}(4,0)(5,-1) \rput[tl](-2.36,0.71){\(P_1\)} \rput[tl](0.54,0.71){\(P_2\)} \rput[tl](-2.51,-0.16){\(m\)} \rput[tl](0.61,-0.16){\(km\)} \rput[tl](4.59,0.34){\(\theta\)} \rput[tl](4.53,-0.08){\(\phi\)} \rput[tl](5.87,1.55){\(P_1\)} \rput[tl](5.33,-1.17){\(P_2\)} \begin{scriptsize} \psdots[dotsize=5pt 0,dotstyle=*](-2,0) \psdots[dotsize=5pt 0,dotstyle=*](0.46,0) \psdots[dotsize=5pt 0,dotstyle=*](5.62,1) \psdots[dotsize=5pt 0,dotstyle=*](5.13,-1.18) \end{scriptsize} \end{pspicture*}
A particle \(P_1\) of mass \(m\) collides with a particle \(P_2\) of mass \(km\) which is at rest. No energy is lost in the collision. The direction of motion of \(P_1\) and \(P_2\) after the collision make non-zero angles of \(\theta\) and \(\phi\), respectively, with the direction of motion of \(P_1\) before the collision, as shown. Show that \[ \sin^2\theta + k\sin^2\phi = k\sin^2(\theta+\phi) \;. \] Show that, if the angle between the particles after the collision is a right angle, then \(k=1\,\).

2000 Paper 3 Q9
D: 1700.0 B: 1500.0

Two small discs of masses \(m\) and \(\mu m\) lie on a smooth horizontal surface. The disc of mass \(\mu m\) is at rest, and the disc of mass \(m\) is projected towards it with velocity \(\mathbf{u}\). After the collision, the disc of mass \(\mu m\) moves in the direction given by unit vector \(\mathbf{n}\). The collision is perfectly elastic.

  1. Show that the speed of the disc of mass \(\mu m\) after the collision is \ \ $ \dfrac {2\mathbf{u} \cdot \mathbf{n}}{1+\mu}. $
  2. Given that the two discs have equal kinetic energy after the collision, find an expression for the cosine of the angle between \(\bf n\) and \(\bf u\) and show that \(3-\sqrt8\le \mu \le 3+\sqrt8\).

Show Solution
  1. In the direction of \(\mathbf{n}\), Conservation of momentum gives: \(m \mathbf{u} \cdot \mathbf{n} = m v_m + \mu m v_{\mu m}\) Newton's experimental law gives: \(\frac{\mathbf{u} \cdot \mathbf{n}}{v_{\mu m} - v_m} = 1\) Therefore \begin{align*} && \mathbf{u} \cdot \mathbf{n} &= v_m + \mu v_{\mu m} \\ && \mathbf{u} \cdot \mathbf{n} &= v_{\mu m} - v_m \\ \Rightarrow && 2 \mathbf{u} \cdot \mathbf{n} &= (1 + \mu)v_{\mu m} \\ \Rightarrow && v_{\mu m} &= \frac{2 \mathbf{u} \cdot \mathbf{n}}{1 + \mu} \\ \end{align*}
  2. Kinetic energy after the collision for the second mass is: \(\frac12 m \mu \frac{4 (\mathbf{u} \cdot \mathbf{n})^2 }{(1 + \mu)^2}\) For the first mass the final speed (in the direction \(\mathbf{n}\) is: \(\mathbf{u} \cdot \mathbf{n}- \frac{2 \mathbf{u} \cdot \mathbf{n}}{1 + \mu} = \frac{(\mu - 1) \mathbf{u} \cdot \mathbf{n}}{1 + \mu}\) It's velocity perpendicular to \(\mathbf{n}\) is unchanged, which is \(\mathbf{u} - (\mathbf{u} \cdot \mathbf{n}) \mathbf{n}\), so it's speed squared is \(\mathbf{u}\cdot \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})^2\) Therefore the total kinetic energy is: \(\frac12 m \frac{(\mu - 1)^2 (\mathbf{u} \cdot \mathbf{n})^2}{(1 + \mu)} + \frac12 m (\mathbf{u}\cdot \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})^2)\) Therefore since the kinetic energies are equal we have: \begin{align*} && \frac12 m \frac{(\mu - 1)^2 (\mathbf{u} \cdot \mathbf{n})^2}{(1 + \mu)} + \frac12 m (\mathbf{u}\cdot \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})^2) &= \frac12 m \mu \frac{4 (\mathbf{u} \cdot \mathbf{n})^2 }{(1 + \mu)^2} \\ \Rightarrow && \frac{(\mu - 1)^2 (\mathbf{u} \cdot \mathbf{n})^2}{(1 + \mu)} + (\mathbf{u}\cdot \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})^2) &= \mu \frac{4 (\mathbf{u} \cdot \mathbf{n})^2 }{(1 + \mu)^2} \\ \Rightarrow && (\mathbf{u} \cdot \mathbf{n})^2 \l 1 + \frac{4\mu}{(1+ \mu)^2} - \frac{(1-\mu)^2}{(1+ \mu)^2} \r &= (\mathbf{u} \cdot \mathbf{u}) \\ \Rightarrow && (\mathbf{u} \cdot \mathbf{n})^2 \l \frac{(1 + \mu)^2 + 4\mu - (1-\mu)^2}{(1+ \mu)^2} \r &= (\mathbf{u} \cdot \mathbf{u}) \\ \Rightarrow && (\mathbf{u} \cdot \mathbf{n})^2 \l \frac{8\mu}{(1+ \mu)^2} \r &= (\mathbf{u} \cdot \mathbf{u}) \\ \Rightarrow && \cos^2 \theta &=\frac{(1 + \mu)^2}{8\mu} \\ \end{align*} We need \begin{align*} && \frac{(1 + \mu)^2}{8\mu} & \leq 1 \\ \Rightarrow && 1 +2 \mu + \mu^2 \leq 8 \mu \\ \Rightarrow && 1 - 6 \mu + \mu^2 \leq 0 \end{align*} This quadratic has roots at \(3 \pm \sqrt{8}\) and therefore our quadratic inequality is satisfied if: \(\boxed{3 - \sqrt{8} \leq \mu \leq 3 + \sqrt{8}}\)
1998 Paper 3 Q10
D: 1700.0 B: 1500.0

Two identical spherical balls, moving on a horizontal, smooth table, collide in such a way that both momentum and kinetic energy are conserved. Let \({\bf v}_1\) and \({\bf v}_2\) be the velocities of the balls before the collision and let \({\bf v}'_1\) and \({\bf v}'_2\) be the velocities of the balls after the collision, where \({\bf v}_1\), \({\bf v}_2\), \({\bf v}'_1\) and \({\bf v}'_2\) are two-dimensional vectors. Write down the equations for conservation of momentum and kinetic energy in terms of these vectors. Hence show that their relative speed is also conserved. Show that, if one ball is initially at rest but after the collision both balls are moving, their final velocities are perpendicular. Now suppose that one ball is initially at rest, and the second is moving with speed \(V\). After a collision in which they lose a proportion \(k\) of their original kinetic energy (\(0\le k\le 1\)), the direction of motion of the second ball has changed by an angle \(\theta\). Find a quadratic equation satisfied by the final speed of the second ball, with coefficients depending on \(k\), \(V\) and \(\theta\). Hence show that \(k\le \frac{1}{2}\).

Show Solution
\begin{align*} \text{COM}: && \mathbf{v}_1+\mathbf{v}_2 &= \mathbf{v}_1'+\mathbf{v}_2' \tag{1}\\ \text{COE}: && \mathbf{v}_1\cdot\mathbf{v}_1+\mathbf{v}_2\cdot\mathbf{v}_2 &= \mathbf{v}_1'\cdot\mathbf{v}_1'+\mathbf{v}_2'\cdot\mathbf{v}_2' \tag{2} \\ \\ (1): && (\mathbf{v}_1+\mathbf{v}_2 )\cdot(\mathbf{v}_1+\mathbf{v}_2 ) &= (\mathbf{v}_1'+\mathbf{v}_2' )\cdot(\mathbf{v}_1'+\mathbf{v}_2' ) \\ \Rightarrow && \mathbf{v}_1 \cdot \mathbf{v}_2 &= \mathbf{v}_1'\cdot \mathbf{v}_2' \\ && \text{Initial relative speed}^2 &= |\mathbf{v}_1 - \mathbf{v}_2|^2 \\ &&&= (\mathbf{v}_1 - \mathbf{v}_2) \cdot (\mathbf{v}_1 - \mathbf{v}_2) \\ &&&= \mathbf{v}_1\cdot \mathbf{v}_1 - 2 \mathbf{v}_1\cdot \mathbf{v}_2 + \mathbf{v}_2\cdot \mathbf{v}_2 \\ &&&= \mathbf{v}_1'\cdot\mathbf{v}_1'+\mathbf{v}_2'\cdot\mathbf{v}_2' -2 \mathbf{v}_1\cdot\mathbf{v}_2\\ &&&= \mathbf{v}_1'\cdot\mathbf{v}_1'+\mathbf{v}_2'\cdot\mathbf{v}_2' -2 \mathbf{v}_1'\cdot\mathbf{v}_2'\\ &&&= | \mathbf{v}_1'-\mathbf{v}_2'|^2 \\ &&&= \text{Final relative speed}^2 \end{align*} Since \(\mathbf{v}_1 \cdot 0 = 0\) we must have \(\mathbf{v}_1'\cdot\mathbf{v}_2' = \mathbf{v}_1\cdot0 = 0\) therefore their final velocities are perpendicular. We now must have \begin{align*} \text{COM}: && \mathbf{v}_1+\mathbf{v}_2 &= \mathbf{v}_1'+\mathbf{v}_2' \tag{3}\\ \Delta\text{E}: && (1-k)(\mathbf{v}_1\cdot\mathbf{v}_1+\mathbf{v}_2\cdot\mathbf{v}_2) &= \mathbf{v}_1'\cdot\mathbf{v}_1'+\mathbf{v}_2'\cdot\mathbf{v}_2' \tag{4} \\ \\ && 0 + \mathbf{v}_2 &= \mathbf{v}_1' + \mathbf{v}_2' \\ \Rightarrow && V^2 &= ( \mathbf{v}_1' + \mathbf{v}_2' ) \cdot ( \mathbf{v}_1' + \mathbf{v}_2' ) \\ &&&= \mathbf{v}_1'\cdot\mathbf{v}_1'+\mathbf{v}_2'\cdot\mathbf{v}_2' +2 \mathbf{v}_1'\cdot \mathbf{v}_2' \\ &&&= (1-k)V^2 + 2 (\mathbf{v}_2-\mathbf{v}_2') \cdot \mathbf{v}_2' \\ &&&= (1-k)V^2 + 2 \mathbf{v}_2 \cdot \mathbf{v}_2'-2\mathbf{v}_2'\cdot \mathbf{v}_2' \\ &&&= (1-k)V^2 + 2Vx \cos \theta - 2x^2 \\ \Rightarrow && 0 &= -kV^2 + 2Vx \cos \theta -2x^2 \\ \Delta \geq 0: && 0 &\leq 4V^2 \cos^2 \theta -8kV^2 \\ \Rightarrow && k &\leq \frac12\cos^2\theta \leq \frac12 \end{align*}
1993 Paper 3 Q14
D: 1700.0 B: 1484.0

A particle rests at a point \(A\) on a horizontal table and is joined to a point \(O\) on the table by a taut inextensible string of length \(c\). The particle is projected vertically upwards at a speed \(64\surd(6gc)\). It next strikes the table at a point \(B\) and rebounds. The coefficient of restitution for any impact between the particle and the table is \({1\over 2}\). After rebounding at \(B\), the particle will rebound alternately at \(A\) and \(B\) until the string becomes slack. Show that when the string becomes slack the particle is at height \(c/2\) above the table. Determine whether the first rebound between \(A\) and \(B\) is nearer to \(A\) or to \(B\).

Show Solution
\begin{align*} \text{N2}(radially): && T + mg \cos \theta &= m\frac{v^2}{r} \\ \Rightarrow && v^2-gc \cos \theta &\geq 0 \\ \text{COE}: && \frac12 m u^2 &= \frac12mv^2 + mgc\cos \theta \\ \Rightarrow && u^2 &= v^2 + 2gc\cos \theta \\ && u^2 &\geq gc \cos \theta+2gc\cos \theta \\ \Rightarrow && u^2 &\geq 3gc\cos \theta \end{align*} Therefore it will complete bounces with the string taught if it leaves the table with \(u^2 \geq 3gc\). After \(6\) bounces it will leave the table with speed \(\sqrt{6gc} > \sqrt{3gc}\) and after \(7\) bounces it will leave the table with speed \(\sqrt{\frac{3}{2} gc} < \sqrt{3 gc}\). When it leaves the table with speed \(\sqrt{\tfrac32 gc}\), the string will go slack when \begin{align*} && \tfrac32 gc &= 3gc \cos \theta \\ \Rightarrow && \cos \theta &= \frac{1}{2} \end{align*} ie at a height \(c\cos \theta = \frac12c\) above the table. Once the string goes slack, the particle travels under circular motion, \begin{align*} && u^2 &= \frac12 gc \\ \Rightarrow && u_\rightarrow &= \sqrt{\tfrac12 gc} \cos \theta \\ && u_{\uparrow} &= \sqrt{\tfrac12 gc} \sin \theta \\ \Rightarrow && s &= ut - \tfrac12 gt^2 \\ \Rightarrow && -\frac{c}{2} &= \sqrt{\tfrac12 gc} \frac{\sqrt{3}}{2} t - \tfrac12 g t^2 \\ \Rightarrow && t &= \sqrt{\frac{c}{g}} \left ( \frac{\sqrt{6}+\sqrt{22}}{4} \right) \\ \Rightarrow && s_{\rightarrow} &= \tfrac12 \sqrt{\tfrac12 gc} \sqrt{\frac{c}{g}} \left ( \frac{\sqrt{6}+\sqrt{22}}{4} \right) - \frac{\sqrt{3}}{2}c \\ &&&= \left ( \frac{\sqrt{11}-3\sqrt{3}}{8} \right)c \\ \end{align*} We need to establish whether this position is positive or negative (ie if we cross the centre line. Clearly \(\sqrt{11} < 3\sqrt{3}\) so we haven't crossed the centre line and we land closer to where we took off. Since it's the 7th take off, this is closer to \(B\).
1991 Paper 3 Q13
D: 1700.0 B: 1500.0

A smooth particle \(P_{1}\) is projected from a point \(O\) on the horizontal floor of a room with has a horizontal ceiling at a height \(h\) above the floor. The speed of projection is \(\sqrt{8gh}\) and the direction of projection makes an acute angle \(\alpha\) with the horizontal. The particle strikes the ceiling and rebounds, the impact being perfectly elastic. Show that for this to happen \(\alpha\) must be at least \(\frac{1}{6}\pi\) and that the range on the floor is then \[ 8h\cos\alpha\left(2\sin\alpha-\sqrt{4\sin^{2}\alpha-1}\right). \] Another particle \(P_{2}\) is projected from \(O\) with the same velocity as \(P_{1}\) but its impact with the ceiling is perfectly inelastic. Find the difference \(D\) between the ranges of \(P_{1}\) and \(P_{2}\) on the floor and show that, as \(\alpha\) varies, \(D\) has a maximum value when \(\alpha=\frac{1}{4}\pi.\)

1990 Paper 2 Q12
D: 1600.0 B: 1484.0

A straight staircase consists of \(N\) smooth horizontal stairs each of height \(h\). A particle slides over the top stair at speed \(U\), with velocity perpendicular to the edge of the stair, and then falls down the staircase, bouncing once on every stair. The coefficient of restitution between the particle and each stair is \(e\), where \(e<1\). Show that the horizontal distance \(d_{n}\) travelled between the \(n\)th and \((n+1)\)th bounces is given by \[ d_{n}=U\left(\frac{2h}{g}\right)^{\frac{1}{2}}\left(e\alpha_{n}+\alpha_{n+1}\right), \] where \({\displaystyle \alpha_{n}=\left(\frac{1-e^{2n}}{1-e^{2}}\right)^{\frac{1}{2}}}\). If \(N\) is very large, show that \(U\) must satisfy \[ U=\left(\frac{L^{2}g}{2h}\right)^{\frac{1}{2}}\left(\frac{1-e}{1+e}\right)^{\frac{1}{2}}, \] where \(L\) is the horizontal distance between the edges of successive stairs.

1989 Paper 3 Q11
D: 1700.0 B: 1499.3

A smooth uniform sphere, with centre \(A\), radius \(2a\) and mass \(3m,\) is suspended from a fixed point \(O\) by means of a light inextensible string, of length \(3a,\) attached to its surface at \(C\). A second smooth unifom sphere, with centre \(B,\) radius \(3a\) and mass \(25m,\) is held with its surface touching \(O\) and with \(OB\) horizontal. The second sphere is released from rest, falls and strikes the first sphere. The coefficient of restitution between the spheres is \(3/4.\) Find the speed \(U\) of \(A\) immediately after the impact in terms of the speed \(V\) of \(B\) immediately before impact. The same system is now set up with a light rigid rod replacing the string and rigidly attached to the sphere so that \(OCA\) is a straight line. The rod can turn freely about \(O\). The sphere with centre \(B\) is dropped as before. Show that the speed of \(A\) immediately after impact is \(125U/127.\)

1988 Paper 3 Q12
D: 1700.0 B: 1484.0

A smooth billiard ball moving on a smooth horizontal table strikes another identical ball which is at rest. The coefficient of restitution between the balls is \(e(<1)\). Show that after the collision the angle between the velocities of the balls is less than \(\frac{1}{2}\pi.\) Show also that the maximum angle of deflection of the first ball is \[ \sin^{-1}\left(\frac{1+e}{3-e}\right). \]

Show Solution
TikZ diagram
Set up the coordinate frame so that the \(x\)-direction is the line of centres of the spheres. Then if the initial velocities are \(\displaystyle \binom{u_x}{u_y}\) and \(\displaystyle \binom{0}{0}\). Then the final velocities must be: \(\displaystyle \binom{v_{x1}}{u_y}\) and \(\displaystyle \binom{v_{x2}}{0}\) where \(mu_x = mv_{x1}+mv_{x2}\) by conservation of energy and \(\frac{v_{x1}-v_{x2}}{u_x} = -e\). \begin{align*} && \begin{cases} v_{x1}+v_{x2} &= u_x \\ v_{x1}-v_{x2} &= -eu_x \\ \end{cases} \\ \Rightarrow && 2v_{x1} &= (1-e)u_x \\ \Rightarrow && v_{x1} &= \frac{(1-e)}{2} u_x \\ && v_{x2} &= \frac{1+e}{2} u_x \end{align*} Notice that since \(0 < e < 1\) we must have \(v_{x1} > 0\) and so the ball on the left is still continuing in the positive direction, therefore the angle will be less than \(\frac12 \pi\). The angle the first ball is deflected through is the angle between: \(\displaystyle \binom{u_x}{u_y}\) and \(\displaystyle \binom{\frac{1-e}{2}u_x}{u_y}\). We can scale the velocities so \(u_y = 1\). So we are interested in the angle between \(\displaystyle \binom{x}{1}\) and \(\displaystyle \binom{\frac{1-e}{2}x}{1}\). To maximise \(\theta\) we can maximise \(\tan \theta\), so: \begin{align*} && \tan \theta &= \frac{\frac{2}{(1-e)x-\frac{1}{x}}}{1+\frac{2}{(1-e)x^2}} \\ &&&= \frac{2x-(1-e)x}{(1-e)x^2+2} \\ &&&= \frac{(1+e)x}{(1-e)x^2+2} \\ \\ \frac{\d}{\d t}: &&&= \frac{(1+e)((1-e)x^2+2)-2(1+e)(1-e)x^2}{\sim} \\ &&&= \frac{2(1+e)-(1+e)(1-e)x^2}{\sim}\\ \frac{\d}{\d t} = 0: &&0 &= 2(1+e)-(1+e)(1-e)x^2 \\ \Rightarrow && x &= \pm \sqrt{\frac{2}{1-e}} \\ \\ \Rightarrow && \tan \theta &= \frac{\pm(1+e)\sqrt{\frac{2}{1-e}}}{2+2} \\ &&&= \pm \frac{\sqrt{2}(1+e)}{4\sqrt{1-e}} \\ \Rightarrow && \cot^2 \theta &= \frac{8(1-e)}{(1+e)^2} \\ \Rightarrow && \cosec^2 \theta &= \frac{8(1-e)}{(1+e)^2} + 1 \\ &&&= \frac{8-8e+1+2e+e^2}{(1+e)^2} \\ &&&= \frac{9-6e+e^2}{(1+e)^2} \\ &&&= \frac{(3-e)^2}{(1+e)^2} \\ \Rightarrow && \theta &= \sin^{-1} \left ( \frac{1+e}{3-e}\right) \end{align*}

Showing 1-25 of 28 problems
2025 Paper 2 Q10
D: 1500.0 B: 1500.0

The lower end of a rigid uniform rod of mass \(m\) and length \(a\) rests at point \(M\) on rough horizontal ground. Each of two elastic strings, of natural length \(\ell\) and modulus of elasticity \(\lambda\), is attached at one end to the top of the rod. Their lower ends are attached to points \(A\) and \(B\) on the ground, which are a distance \(2a\) apart. \(M\) is the midpoint of \(AB\). \(P\) is the point at the top of the rod and lies in the vertical plane through \(AMB\). Suppose that the rod is in equilibrium with angle \(PMB = 2\theta\), where \(\theta < 45°\) and \(\theta\) is such that both strings are in tension.

  1. Show that angle \(APB\) is a right angle. Show that the force exerted on the rod by the elastic strings can be written as the sum of
    • a force of magnitude \(\frac{2a\lambda}{\ell}\) parallel to the rod
    • and a force of magnitude \(\sqrt{2}\lambda\) acting along the bisector of angle \(APB\).
  2. By taking moments about point \(M\), or otherwise, show that \(\cos\theta + \sin\theta = \frac{2\lambda}{mg}\). Deduce that it is necessary that \(\frac{1}{2}mg < \lambda < \frac{1}{2}\sqrt{2}mg\).
  3. \(N\) and \(F\) are the magnitudes of the normal and frictional forces, respectively, exerted on the rod by the ground at \(M\). Show, by taking moments about an appropriate point, or otherwise, that \[N - F\tan 2\theta = \frac{1}{2}mg.\]

Show Solution
TikZ diagram
  1. Notice that \(AM = MB = MP\) in particular \(P\) lies on a semi-circle of radius \(a\) and therefore by Thales' theorem \(\angle APB = 90^{\circ}\). Notice that by angles in a triangle and the angles adding to \(90^{\circ}\), \(\angle APM = \theta\). Therefore, \begin{align*} && |PB| &= 2a \sin \theta \\ && |PA| &= 2a \cos \theta \\ && T_A &= \frac{\lambda}{l} \left (2a \cos \theta -l \right) \\ && T_B &= \frac{\lambda}{l} \left (2a \sin\theta -l \right) \\ \end{align*} Since \(T_A\) and \(T_B\) are perpendicular, we can consider the forces as having vector \(\frac{\lambda}{l}\binom{2a\cos \theta-l}{2a\sin \theta - l}\) in this coordinate system, ie the sum of a vector \(\frac{2\lambda a}{l}\binom{\cos \theta}{\sin \theta}\) and \(\displaystyle -\sqrt{2}\lambda \binom{\frac1{\sqrt{2}}}{\frac1{\sqrt{2}}}\) which are unit vectors parallel to the rod and along the bisector of \(APB\) respectively.
  2. \begin{align*} \overset{\curvearrowright}{M}: && 0 &= \frac{a}{2} \cdot mg \cos 2 \theta - a\cdot \sqrt{2}\lambda \cos (90-(45-\theta))\\ \Rightarrow && \cos 2 \theta &= \frac{\lambda}{mg} 2 \sqrt{2} \cos (45 + \theta) \\ \Rightarrow && \cos^2 \theta - \sin^2 \theta &= \frac{2\lambda}{mg} (\cos \theta - \sin \theta) \\ \underbrace{\Rightarrow}_{\theta < 45^{\circ}} && \cos \theta + \sin \theta &= \frac{2\lambda}{mg} \end{align*} Over \((0, 45^{\circ})\), \(\cos \theta + \sin \theta\) ranges from \(1\) to \(\sqrt{2}\), therefore \(1 < \frac{2 \lambda}{mg} < \sqrt{2} \Rightarrow \frac12 mg < \lambda < \frac12 \sqrt{2} mg\) as required.
  3. \begin{align*} \overset{\curvearrowright}{P}: && 0 &=- \frac{a}{2} \cdot \left ( mg \cos 2\theta \right) - a \cdot F \sin 2 \theta + a \cdot N \cos 2 \theta \\ \Rightarrow && \frac12 mg &= N - F \tan 2 \theta \end{align*} as required.
1987 Paper 1 Q10
D: 1500.0 B: 1500.0

A rubber band band of length \(2\pi\) and modulus of elasticity \(\lambda\) encircles a smooth cylinder of unit radius, whose axis is horizontal. A particle of mass \(m\) is attached to the lowest point of the band, and hangs in equilibrium at a distance \(x\) below the axis of the cylinder. Obtain an expression in terms of \(x\) for the stretched length of the band in equilibrium. What is the value of \(\lambda\) if \(x=2\)?

Show Solution
TikZ diagram
If \(\alpha\) is as labelled then \(\cos \alpha = \frac{1}{x}, \sin \alpha = \frac{\sqrt{x^2-1}}{x}, \tan \alpha = \sqrt{x^2-1}\). We also have the full length of the rubber band is \(2\pi - 2\alpha +2\tan \alpha\) so the extension is \(2 \l \sqrt{x^2-1} - \cos^{-1} \l \frac{1}{x}\r \r\) Therefore \(T = \frac{\l \sqrt{x^2-1} - \cos^{-1} \l \frac{1}{x}\r \r\lambda}{\pi}\). If \(x = 2\), \(T = \frac{\sqrt{3} - \frac{\pi}{3}}{\pi} \lambda, \sin \alpha = \frac{\sqrt{3}}{2}\) \begin{align*} \text{N2}(\uparrow): && 2T\sin \alpha - mg &= 0 \\ \Rightarrow && \frac{\sqrt{3} - \frac{\pi}{3}}{\pi} \lambda \sqrt{3} &= mg \\ \Rightarrow && \lambda &= \frac{\sqrt{3}\pi}{(3\sqrt{3}-\pi)}mg \end{align*}
2017 Paper 3 Q9
D: 1700.0 B: 1500.9

Two particles \(A\) and \(B\) of masses \(m\) and \(2 m\), respectively, are connected by a light spring of natural length \(a\) and modulus of elasticity \(\lambda\). They are placed on a smooth horizontal table with \(AB\) perpendicular to the edge of the table, and \(A\) is held on the edge of the table. Initially the spring is at its natural length. Particle \(A\) is released. At a time \(t\) later, particle \(A\) has dropped a distance \(y\) and particle \( B\) has moved a distance \(x\) from its initial position (where \(x < a\)). Show that \( y + 2x= \frac12 gt^2\). The value of \(\lambda\) is such that particle \(B\) reaches the edge of the table at a time \(T\) given by \(T= \sqrt{6a/g\,}\,\). By considering the total energy of the system (without solving any differential equations), show that the speed of particle \(B\) at this time is \(\sqrt{2ag/3\,}\,\).

2016 Paper 3 Q9
D: 1700.0 B: 1475.6

Three pegs \(P\), \(Q\) and \(R\) are fixed on a smooth horizontal table in such a way that they form the vertices of an equilateral triangle of side \(2a\). A particle \(X\) of mass \(m\) lies on the table. It is attached to the pegs by three springs, \(PX\), \(QX\) and \(RX\), each of modulus of elasticity \(\lambda\) and natural length \(l\), where \(l < \frac{ \ 2 }{\sqrt3}\, a\). Initially the particle is in equilibrium. Show that the extension in each spring is \(\frac{\ 2}{\sqrt3}\,a -l\,\). The particle is then pulled a small distance directly towards \(P\) and released. Show that the tension \(T\) in the spring \(RX\) is given by \[ T= \frac {\lambda} l \left( \sqrt{\frac {4a^2}3 + \frac{2ax}{\sqrt3} +x^2\; }\; -l\right) , \] where \(x\) is the displacement of \(X\) from its equilibrium position. Show further that the particle performs approximate simple harmonic motion with period \[ 2\pi \sqrt{ \frac{4mla}{3 (4a-\sqrt3 \, l)\lambda } \; }\,. \]

2013 Paper 3 Q11
D: 1700.0 B: 1484.0

An equilateral triangle, comprising three light rods each of length \(\sqrt3a\), has a particle of mass \(m\) attached to each of its vertices. The triangle is suspended horizontally from a point vertically above its centre by three identical springs, so that the springs and rods form a tetrahedron. Each spring has natural length \(a\) and modulus of elasticity \(kmg\), and is light. Show that when the springs make an angle \(\theta\) with the horizontal the tension in each spring is \[ \frac{ kmg(1-\cos\theta)}{\cos\theta}\,. \] Given that the triangle is in equilibrium when \(\theta = \frac16 \pi\), show that \(k=4\sqrt3 +6\). The triangle is released from rest from the position at which \(\theta=\frac13\pi\). Show that when it passes through the equilibrium position its speed \(V\) satisfies \[ V^2 = \frac{4ag}3(6+\sqrt3)\,. \]

2012 Paper 3 Q11
D: 1700.0 B: 1500.0

One end of a thin heavy uniform inextensible perfectly flexible rope of length \(2L\) and mass \(2M\) is attached to a fixed point \(P\). A particle of mass \(m\) is attached to the other end. Initially, the particle is held at \(P\) and the rope hangs vertically in a loop below \(P\). The particle is then released so that it and a section of the rope (of decreasing length) fall vertically as shown in the diagram.

\psset{xunit=1.0cm,yunit=0.9cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(0.13,-0.26)(3.26,5.51) \psline(1,5)(3,5) \psline[linewidth=0.1pt,linestyle=dashed,dash=2pt 2pt]{<->}(1.52,0)(1.52,5) \psline[linewidth=0.1pt,linestyle=dashed,dash=2pt 2pt]{<->}(2.53,3.2)(2.53,5) \psline(2.1,3.18)(2.06,0.25) \psline(2,5)(2.02,0.26) \psline(2.02,0.26)(2.03,0) \psline(2.03,0)(2.06,0.25) \rput[tl](1.94,5.45){\(P\)} \rput[tl](2.6,4.25){\(x\)} \rput[tl](0.2,2.85){\(L+\frac{1}{2}x\)} \begin{scriptsize} \psdots[dotsize=4pt 0,dotstyle=*](2.1,3.18) \end{scriptsize} \end{pspicture*}
You may assume that each point on the moving section of the rope falls at the same speed as the particle. Given that energy is conserved, show that, when the particle has fallen a distance \(x\) (where \(x< 2L\)), its speed \(v\) is given by \[ v^2 = \frac { 2g x \big( mL +ML - \frac14 Mx)}{mL +ML - \frac12 Mx}\,. \] Hence show that the acceleration of the particle is \[ g + \frac{ Mgx\big(mL+ML- \frac14 Mx\big)}{2\big(mL +ML -\frac12 Mx\big)^2}\, \,.\] Deduce that the acceleration of the particle after it is released is greater than \(g\).

2011 Paper 3 Q10
D: 1700.0 B: 1486.1

Particles \(P\) and \(Q\), each of mass \(m\), lie initially at rest a distance \(a\) apart on a smooth horizontal plane. They are connected by a light elastic string of natural length \(a\) and modulus of elasticity \(\frac12 m a \omega^2\), where \(\omega\) is a constant. Then \(P\) receives an impulse which gives it a velocity \(u\) directly away from \(Q\). Show that when the string next returns to length \(a\), the particles have travelled a distance \(\frac12 \pi u/\omega\,\), and find the speed of each particle. Find also the total time between the impulse and the subsequent collision of the particles.

2009 Paper 2 Q11
D: 1600.0 B: 1516.0

A train consists of an engine and \(n\) trucks. It is travelling along a straight horizontal section of track. The mass of the engine and of each truck is \(M\). The resistance to motion of the engine and of each truck is \(R\), which is constant. The maximum power at which the engine can work is \(P\). Obtain an expression for the acceleration of the train when its speed is \(v\) and the engine is working at maximum power. The train starts from rest with the engine working at maximum power. Obtain an expression for the time \(T\) taken to reach a given speed \(V\), and show that this speed is only achievable if \[ P>(n+1)RV\,. \]

  1. In the case when \((n+1) RV/P\) is small, use the approximation \(\ln (1-x) \approx -x -\frac12 x^2\) (valid for small \( x \)) to obtain the approximation \[ PT\approx \tfrac 12 (n+1) MV^2\, \] and interpret this result.
  2. In the general case, the distance moved from rest in time \(T\) is \(X\). {\em Write down}, with explanation, an equation relating \(P\), \(T\), \(X\), \(M\), \(V\), \(R\) and \(n\) and hence show that \[ X= \frac{2PT - (n+1)MV^2}{2(n+1)R} \,. \]

2008 Paper 3 Q10
D: 1700.0 B: 1484.0

A long string consists of \(n\) short light strings joined together, each of natural length \(\ell\) and modulus of elasticity \(\lambda\). It hangs vertically at rest, suspended from one end. Each of the short strings has a particle of mass \(m\) attached to its lower end. The short strings are numbered \(1\) to \(n\), the \(n\)th short string being at the top. By considering the tension in the \(r\)th short string, determine the length of the long string. Find also the elastic energy stored in the long string. A uniform heavy rope of mass \(M\) and natural length \(L_0\) has modulus of elasticity \(\lambda\). The rope hangs vertically at rest, suspended from one end. Show that the length, \(L\), of the rope is given by \[ L=L_0\biggl(1+ \frac{Mg}{2\lambda}\biggr), \] and find an expression in terms of \(L\), \(L_0\) and \(\lambda\) for the elastic energy stored in the rope.

2007 Paper 3 Q9
D: 1700.0 B: 1484.0

Two small beads, \(A\) and \(B\), each of mass \(m\), are threaded on a smooth horizontal circular hoop of radius \(a\) and centre \(O\). The angle \(\theta\) is the acute angle determined by \(2\theta = \angle AOB\). The beads are connected by a light straight spring. The energy stored in the spring is \[ mk^2 a^2(\theta - \alpha)^2, \] where \(k\) and \(\alpha\) are constants satisfying \(k>0\) and \(\frac \pi 4< \alpha<\frac\pi2\). The spring is held in compression with \(\theta =\beta\) and then released. Find the period of oscillations in the two cases that arise according to the value of \(\beta\) and state the value of \(\beta\) for which oscillations do not occur.

2006 Paper 3 Q9
D: 1700.0 B: 1484.0

A long, light, inextensible string passes through a small, smooth ring fixed at the point \(O\). One end of the string is attached to a particle \(P\) of mass \(m\) which hangs freely below \(O\). The other end is attached to a bead, \(B\), also of mass \(m\), which is threaded on a smooth rigid wire fixed in the same vertical plane as \(O\). The distance \(OB\) is \(r\), the distance \(OH\) is \(h\) and the height of the bead above the horizontal plane through~\(O\) is \(y\), as shown in the diagram.

\psset{xunit=0.8cm,yunit=0.8cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-3.93,-2.62)(3.97,4.92) \psplot[plotpoints=200]{-3.2}{3.2}{4-0.6*x^(2)} \rput{0}(0,0){\psellipse(0,0)(0.61,0.16)} \psline(0,0)(1.73,2.19) \psline[linestyle=dashed,dash=1pt 1pt](-5,0)(5,0) \rput[tl](0.46,0.58){\(\theta\)} \rput[tl](0.06,-0.27){\(O\)} \rput[tl](0.15,-1.35){\(P\)} \psline[linestyle=dashed,dash=1pt 1pt](1.73,2.19)(1.73,0) \rput[tl](1.85,1){\(y\)} \rput[tl](0.77,1.7){\(r\)} \rput[tl](1.84,2.68){\(B\)} \rput[tl](0.06,4.47){\(H\)} \rput[tl](-0.36,2.3){\(h\)} \psline[linestyle=dashed,dash=1pt 1pt](0,7)(0,0) \psline(0,0)(0,-2) \begin{scriptsize} \psdots[dotsize=5pt 0,dotstyle=*](1.73,2.19) \psdots[dotsize=5pt 0,dotstyle=*](0,-2) \psdots[dotstyle=*,linecolor=darkgray](0,0) \end{scriptsize} \end{pspicture*}
The shape of the wire is such that the system can be in static equilibrium for all positions of the bead. By considering potential energy, show that the equation of the wire is \(y+r =2h\). The bead is initially at \(H\). It is then projected along the wire with initial speed \(V\). Show that, in the subsequent motion, \[ \dot \theta = -\frac {h \dot r }{r \sqrt{rh -h^2}}\, \] where \(\theta\) is given by \(\theta = \arcsin(y/r)\). Hence show that the speed of the particle \(P\) is \(V \Big(\dfrac{r-h}{2r-h}\Big)^{\!\frac12}\,\). \noindent[{\it Note that \(\arcsin \theta\) is another notation for \(\sin^{-1}\theta\).}]

2005 Paper 3 Q10
D: 1700.0 B: 1486.8

Two thin discs, each of radius \(r\) and mass \(m\), are held on a rough horizontal surface with their centres a distance \(6r\) apart. A thin light elastic band, of natural length \(2\pi r\) and modulus \(\dfrac{\pi mg}{12}\), is wrapped once round the discs, its straight sections being parallel. The contact between the elastic band and the discs is smooth. The coefficient of static friction between each disc and the horizontal surface is \(\mu\), and each disc experiences a force due to friction equal to \(\mu mg\) when it is sliding. The discs are released simultaneously. If the discs collide, they rebound and a half of their total kinetic energy is lost in the collision.

  1. Show that the discs start sliding, but come to rest before colliding, if and only if \mbox{\(\frac23 <\mu <1\)}.
  2. Show that, if the discs collide at least once, their total kinetic energy just before the first collision is \(\frac43 mgr(2-3\mu)\).
  3. Show that if \(\frac 4 9 > \mu^2 >\frac{5}{27}\) the discs come to rest exactly once after the first collision.

2001 Paper 1 Q11
D: 1484.0 B: 1469.5

A smooth cylinder with circular cross-section of radius \(a\) is held with its axis horizontal. A~light elastic band of unstretched length \(2\pi a\) and modulus of elasticity \(\lambda\) is wrapped round the circumference of the cylinder, so that it forms a circle in a plane perpendicular to the axis of the cylinder. A particle of mass \(m\) is then attached to the rubber band at its lowest point and released from rest.

  1. Given that the particle falls to a distance \(2a\) below the below the axis of the cylinder, but no further, show that \[ \lambda = \frac{9\pi m g}{(3\sqrt3-\pi)^2} \;. \]
  2. Given instead that the particle reaches its maximum speed at a distance \(2a\) below the axis of the cylinder, find a similar expression for \(\lambda\)\,.

1997 Paper 3 Q9
D: 1700.0 B: 1500.0

A uniform rigid rod \(BC\) is suspended from a fixed point \(A\) by light stretched springs \(AB,AC\). The springs are of different natural lengths but the ratio of tension to extension is the same constant \(\kappa\) for each. The rod is not hanging vertically. Show that the ratio of the lengths of the stretched springs is equal to the ratio of the natural lengths of the unstretched springs.

Show Solution
TikZ diagram
By moments or "centre of mass" or whatever argument you choose, the centre of mass is directly below \(A\). \begin{align*} N2:&& 0 &= \frac{1}{|AC|}\binom{-l\cos \theta}{h-l \sin \theta} T_{AC} + \frac{1}{|AB|} \binom{l \cos \theta}{h+l \sin \theta}T_{AB} + \binom{0}{-1}mg \\ \Rightarrow && \frac{T_{AC}}{AC} &= \frac{T_{AB}}{AB} \\ \Rightarrow && \frac{\kappa(AC-l_{AC})}{AC} &= \frac{\kappa(BC-l_{BC})}{BC} \\ \Rightarrow && \frac{l_{AC}}{AC} &= \frac{l_{BC}}{BC} \\ \Rightarrow && \frac{l_{AC}}{l_{BC}} &= \frac{AC}{BC} \end{align*}
1996 Paper 1 Q9
D: 1500.0 B: 1485.6

A bungee-jumper of mass \(m\) is attached by means of a light rope of natural length \(l\) and modulus of elasticity \(mg/k,\) where \(k\) is a constant, to a bridge over a ravine. She jumps from the bridge and falls vertically towards the ground. If she only just avoids hitting the ground, show that the height \(h\) of the bridge above the floor of the ravine satisfies \[ h^{2}-2hl(k+1)+l^{2}=0, \] and hence find \(h.\) Show that the maximum speed \(v\) which she attains during her fall satisfies \[ v^{2}=(k+2)gl. \]

Show Solution
\begin{align*} && \text{Energy at the top} &= mgh \\ && \text{Energy at the bottom} &= \frac12\frac{\lambda (h-l)^2}{l} \\ \Rightarrow && mgh & = \frac{\frac{mg}{k}(h-l)^2}{2l} \\ \Rightarrow && 2hkl &= (h-l)^2 \\ \Rightarrow && 0 &= h^2-2lh-2hlk+l^2 \\ &&0&= h^2-2hl(k+1)+l^2 \\ \Rightarrow && \frac{h}{l} &= \frac{2(k+1)\pm \sqrt{4(k+1)^2-4}}{2} \\ &&&= (k+1) \pm \sqrt{k^2+2k} \\ \Rightarrow && h &= l \left ( (k+1) \pm \sqrt{k^2+2k} \right) \end{align*} Since the negative root is less than \(1\), she would have not fully extended the cord. Therefore \(h = l \left ( (k+1) + \sqrt{k^2+2k} \right)\) Her maximum speed will be when her acceleration is \(0\), ie \(g = \text{force from cord}\) ie \(mg = \frac{\lambda x}{l}\) or \(x = \frac{mgl}{\lambda} = \frac{mglk}{mg} = kl\). At this point by conservation of energy we will have \begin{align*} && mgh &= mg(h-l-x) + \frac12 m v^2+\frac{1}{2} \frac{mgx^2}{kl} \\ \Rightarrow && mg\left ( l + kl \right) &= \frac12 m v^2 + \frac12 \frac{mgl^2k^2}{kl} \\ \Rightarrow && 2g\left ( l + kl \right) &= v^2 + glk \\ \Rightarrow && v^2 &= gl(2+k) \end{align*}
1995 Paper 1 Q10
D: 1500.0 B: 1500.0

A small ball of mass \(m\) is suspended in equilibrium by a light elastic string of natural length \(l\) and modulus of elasticity \(\lambda.\) Show that the total length of the string in equilibrium is \(l(1+mg/\lambda).\) If the ball is now projected downwards from the equilibrium position with speed \(u_{0},\) show that the speed \(v\) of the ball at distance \(x\) below the equilibrium position is given by \[ v^{2}+\frac{\lambda}{lm}x^{2}=u_{0}^{2}. \] At distance \(h\), where \(\lambda h^{2} < lmu_{0}^{2},\) below the equilibrium position is a horizontal surface on which the ball bounces with a coefficient of restitution \(e\). Show that after one bounce the velocity \(u_{1}\) at \(x=0\) is given by \[ u_{1}^{2}=e^{2}u_{0}^{2}+\frac{\lambda}{lm}h^{2}(1-e^{2}), \] and that after the second bounce the velocity \(u_{2}\) at \(x=0\) is given by \[ u_{2}^{2}=e^{4}u_{0}^{2}+\frac{\lambda}{lm}h^{2}(1-e^{4}). \]

1994 Paper 3 Q11
D: 1700.0 B: 1516.0

A step-ladder has two sections \(AB\) and \(AC,\) each of length \(4a,\) smoothly hinged at \(A\) and connected by a light elastic rope \(DE,\) of natural length \(a/4\) and modulus \(W\), where \(D\) is on \(AB,\) \(E\) is on \(AC\) and \(AD=AE=a.\) The section \(AB,\) which contains the steps, is uniform and of weight \(W\) and the weight of \(AC\) is negligible. The step-ladder rests on a smooth horizontal floor and a man of weight \(4W\) carefully ascends it to stand on a rung distant \(\beta a\) from the end of the ladder resting on the floor. Find the height above the floor of the rung on which the man is standing when \(\beta\) is the maximum value at which equilibrium is possible.

Show Solution
TikZ diagram
\begin{align*} N2(\uparrow): && 0 &= R_B+R_C - 5W \\ \Rightarrow && 5W &= R_B + R_C \\ \\ \overset{\curvearrowright}{A}: && 0 &= (R_B - R_C) \cdot 4a \cdot \cos \theta -W \cdot 2a \cdot \cos \theta - 4W \cdot (4 - \beta)a \cdot \cos \theta \\ \Rightarrow && R_B-R_C &= W \left ( \frac12 + (4-\beta)\right) \\ \Rightarrow && R_B &= \frac{W}2 \left ( 5+\frac12+(4-\beta)\right) = \frac{W}{2}\left(\frac{19}{2} - \beta\right) \\ && R_C &= \frac{W}{2} \left (5 - \frac12 - 4 +\beta \right) = \frac{W}{2} \left (\frac12 + \beta \right) \\ \\ \overset{\curvearrowright}{(A, AC)}: && 0 &= T \cdot a \cdot \sin \theta - R_C \cdot 4a \cdot \cos \theta \\ \Rightarrow && T &=4 \cot \theta \frac{W}{2} \left ( \frac12 + \beta\right) \\ &&&= 20W \cot \theta \\ \text{Hooke's Law}:&& T &= \frac{W(2a \cos \theta - \frac{a}{4})}{\frac{a}{4}} = W(8 \cos \theta - 1) \\ \Rightarrow && 8 \cos \theta -1 &= \cot \theta (2\beta+1)\\ \Rightarrow && 1+2\beta &=8\sin \theta-\tan \theta \\ \Rightarrow && \beta &= 4 \sin \theta - \frac12 \tan \theta - \frac12 \\ \Rightarrow && \frac{\d \beta}{\d \theta} &= 4 \cos \theta - \frac12 \sec^2 \theta \\ &&&= \frac{8\cos^3 \theta - 1}{\cos^2 \theta} \\ \Rightarrow && \cos \theta &= \frac12 \\ \Rightarrow && h &= \beta a \sin \theta \\ &&&= \left (4 \frac{\sqrt{3}}{2}-\frac12 \sqrt{3}-\frac12 \right) a \frac{\sqrt3}{2} \\ &&&= \left ( \frac{9-\sqrt{3}}{4}\right)a \end{align*}
1994 Paper 2 Q10
D: 1600.0 B: 1486.7

A truck is towing a trailer of mass \(m\) across level ground by means of an elastic rope of natural length \(l\) whose modulus of elasticity is \(\lambda.\) At first the rope is slack and the trailer stationary. The truck then accelerates until the rope becomes taut and thereafter the truck travels in a straight line at a constant speed \(u\). Assuming that the effect of friction on the trailer is negligible, show that the trailer will collide with the truck at a time \[ \pi\left(\frac{lm}{\lambda}\right)^{\frac{1}{2}}+\frac{l}{u} \] after the rope first becomes taut.

1994 Paper 1 Q10
D: 1516.0 B: 1484.0

One end \(A\) of a light elastic string of natural length \(l\) and modulus of elasticity \(\lambda\) is fixed and a particle of mass \(m\) is attached to the other end \(B\). The particle moves in a horizontal circle with centre on the vertical through \(A\) with angular velocity \(\omega.\) If \(\theta\) is the angle \(AB\) makes with the downward vertical, find an expression for \(\cos\theta\) in terms of \(m,g,l,\lambda\) and \(\omega.\) Show that the motion described is possible only if \[ \frac{g\lambda}{l(\lambda+mg)}<\omega^{2}<\frac{\lambda}{ml}. \]

1993 Paper 3 Q12
D: 1700.0 B: 1432.3

\(ABCD\) is a horizontal line with \(AB=CD=a\) and \(BC=6a\). There are fixed smooth pegs at \(B\) and \(C\). A uniform string of natural length \(2a\) and modulus of elasticity \(kmg\) is stretched from \(A\) to \(D\), passing over the pegs at \(B\) and \(C\). A particle of mass \(m\) is attached to the midpoint \(P\) of the string. When the system is in equilibrium, \(P\) is a distance \(a/4\) below \(BC\). Evaluate \(k\). The particle is pulled down to a point \(Q\), which is at a distance \(pa\) below the mid-point of \(BC\), and is released from rest. \(P\) rises to a point \(R\), which is at a distance \(3a\) above \(BC\). Show that \(2p^2-p-17=0\). Show also that the tension in the strings is less when the particle is at \(R\) than when the particle is at \(Q\).

1993 Paper 1 Q10
D: 1500.0 B: 1500.0

A small lamp of mass \(m\) is at the end \(A\) of a light rod \(AB\) of length \(2a\) attached at \(B\) to a vertical wall in such a way that the rod can rotate freely about \(B\) in a vertical plane perpendicular to the wall. A spring \(CD\) of natural length \(a\) and modulus of elasticity \(\lambda\) is joined to the rod at its mid-point \(C\) and to the wall at a point \(D\) a distance \(a\) vertically above \(B\). The arrangement is sketched below. \noindent

\psset{xunit=0.8cm,yunit=0.8cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-1.55,-0.7)(4.5,5.27) \psline(0,5)(0,-1.16) \psline(0,0)(3.11,3.89) \pscoil[coilheight=1,coilwidth=0.2,coilarm=0.05](0,2.53)(1.47,1.84) \rput[tl](-0.56,0.41){\(B\)} \rput[tl](1.59,1.89){\(C\)} \rput[tl](3.41,4.28){\(A\)} \rput[tl](-0.56,2.84){\(D\)} \parametricplot{0.7583777142101807}{3.8999703677999737}{1*0.16*cos(t)+0*0.16*sin(t)+3.22|0*0.16*cos(t)+1*0.16*sin(t)+3.77} \psline(3.1,3.66)(3.33,3.88) \begin{scriptsize} \psdots[dotsize=5pt 0](0,0) \psdots[dotstyle=*](3.11,3.89) \psdots[dotstyle=*](0,2.53) \end{scriptsize} \end{pspicture*} \par
Show that if \(\lambda>4mg\) the lamp can hang in equilibrium away from the wall and calculate the angle \(\angle DBA\).

1992 Paper 3 Q13
D: 1700.0 B: 1500.0

\(\,\)

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.8,-2.34)(3.26,4.36) \pspolygon[linewidth=0.4pt](0.22,-0.18)(0.4,0.04)(0.18,0.22)(0,0) \pscircle(0,0){2} \psline(2,0)(2,4) \rput[tl](2.24,2.64){\(\pi b\)} \rput[tl](2.22,0.02){\(C\)} \rput[tl](2.24,4.3){\(A\)} \rput[tl](1.32,2.1){\(Q\)} \rput[tl](-0.42,0.08){\(O\)} \rput[tl](1.6,-1.38){\(P\)} \psline[linestyle=dashed,dash=3pt 3pt](1.27,1.54)(0,0) \psline[linestyle=dashed,dash=3pt 3pt](0,0)(1.54,-1.27) \rput[tl](0.06,1.1){\(2b\)} \begin{scriptsize} \psdots[dotsize=2pt 0,dotstyle=*](2,4) \end{scriptsize} \end{pspicture*}
A uniform circular disc of radius \(2b,\) mass \(m\) and centre \(O\) is free to turn about a fixed horizontal axis through \(O\) perpendicular to the plane of the disc. A light elastic string of modulus \(kmg\), where \(k>4/\pi,\) has one end attached to a fixed point \(A\) and the other end to the rim of the disc at \(P\). The string is in contact with the rim of the disc along the arc \(PC,\) and \(OC\) is horizontal. The natural length of the string and the length of the line \(AC\) are each \(\pi b\) and \(AC\) is vertical. A particle \(Q\) of mass \(m\) is attached to the rim of the disc and \(\angle POQ=90^{\circ}\) as shown in the diagram. The system is released from rest with \(OP\) vertical and \(P\) below \(O\). Show that \(P\) reaches \(C\) and that then the upward vertical component of the reaction on the axis is \(mg(10-\pi k)/3\).

1992 Paper 2 Q12
D: 1600.0 B: 1500.0

In the figure, \(W_{1}\) and \(W_{2}\) are wheels, both of radius \(r\). Their centres \(C_{1}\) and \(C_{2}\) are fixed at the same height, a distance \(d\) apart, and each wheel is free to rotate, without friction, about its centre. Both wheels are in the same vertical plane. Particles of mass \(m\) are suspended from \(W_{1}\) and \(W_{2}\) as shown, by light inextensible strings would round the wheels. A light elastic string of natural length \(d\) and modulus elasticity \(\lambda\) is fixed to the rims of the wheels at the points \(P_{1}\) and \(P_{2}.\) The lines joining \(C_{1}\) to \(P_{1}\) and \(C_{2}\) to \(P_{2}\) both make an angle \(\theta\) with the vertical. The system is in equilibrium. \noindent

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-4.94,-1.8)(5.1,3.96) \psline(-4,1)(4,1) \pscircle(-3,2){1.41} \pscircle(3,2){1.41} \psline(-3,2)(-4,1) \psline(-3,2)(-3,0.59) \psline(3,2)(4,1) \psline(3,2)(3,0.59) \psline(1.59,1.98)(1.58,-1) \psline(-1.59,1.96)(-1.6,-1.06) \parametricplot{-2.356194490192345}{-1.5707963267948966}{0.4*cos(t)+-3|0.4*sin(t)+2} \parametricplot{-1.5707963267948966}{-0.7853981633974483}{0.4*cos(t)+3|0.4*sin(t)+2} \rput[tl](-2.88,2.24){\(C_1\)} \rput[tl](3.22,2.24){\(C_2\)} \rput[tl](-4.58,1.04){\(P_1\)} \rput[tl](4.32,1.02){\(P_2\)} \rput[tl](-1.7,-1.36){\(m\)} \rput[tl](1.44,-1.4){\(m\)} \rput[tl](-3.24,3.88){\(W_1\)} \rput[tl](2.76,3.86){\(W_2\)} \rput[tl](-3.42,1.5){\(\theta\)} \rput[tl](3.14,1.52){\(\theta\)} \begin{scriptsize} \psdots[dotstyle=*](-4,1) \psdots[dotstyle=*](4,1) \psdots[dotstyle=*](1.58,-1) \psdots[dotstyle=*](-1.6,-1.06) \end{scriptsize} \end{pspicture*} \par
\vspace{-0.5cm} Show that \[ \sin2\theta=\frac{mgd}{\lambda r}. \]For what value or values of \(\lambda\) (in terms of \(m,d,r\) and \(g\)) are there
  • sep}{3mm}
  • [\bf (i)] no equilibrium positions,
  • [\bf (ii)] just one equilibrium position,
  • [\bf (iii)] exactly two equilibrium positions,
  • [\bf (iv)] more than two equilibrium positions?

1992 Paper 1 Q11
D: 1500.0 B: 1470.8

Three light elastic strings \(AB,BC\) and \(CD\), each of natural length \(a\) and modulus of elasticity \(\lambda,\) are joined together as shown in the diagram. \noindent

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.46,-1.7)(5.55,2.55) \psline(-2,2)(-2,-1) \psline(-2,-1)(4,-1) \psline(4,-1)(4,2) \psline(4,2)(-2,2) \psline[linestyle=dashed,dash=2pt 2pt](1,2)(1,-1) \psline{<->}(5,2)(5,-1) \rput[tl](5.15,0.77){\(3d\)} \rput[tl](1.08,2.35){\(A\)} \rput[tl](1.14,0.63){\(B\)} \rput[tl](1.17,-0.32){\(C\)} \rput[tl](1.14,-1.1){\(D\)} \begin{scriptsize} \psdots[dotstyle=*](1,2) \psdots[dotstyle=*](1,-1) \psdots[dotstyle=*](1,0.5) \psdots[dotstyle=*](1,-0.37) \end{scriptsize} \end{pspicture*} \par
\(A\) is attached to the ceiling and \(D\) to the floor of a room of height \(3d\) in such a way that \(A,B,C\) and \(D\) are in a vertical line. Particles of mass \(m\) are attached at \(B\) and \(C\). Find the heights of \(B\) and \(C\) above the floor. Find the set of values of \(d\) for which it is possible, by choosing \(m\) suitably, to have \(CD=a\)?

1990 Paper 1 Q12
D: 1516.0 B: 1484.0

\(\,\)

TikZ diagram
In the above diagram, \(ABC\) represents a light spring of natural length \(2l\) and modulus of elasticity \(\lambda,\) which is coiled round a smooth fixed horizontal rod. \(B\) is the midpoint of \(AC.\) The two ends of a light inelastic string of length \(2l\) are attached to the spring at \(A\) and \(C\). A particle of mass \(m\) is fixed to the string at \(D\), the midpoint of the string. The system can be in equilibrium with the angle \(CAD\) equal to \(\pi/6.\) Show that \[ mg=\lambda\left(\frac{2}{\sqrt{3}}-1\right). \] Write the length \(AC\) as \(2xl\), obtain an expression for the potential energy of the system as a function of \(x\). The particle is held at \(B\), and the spring is restored to its natural length \(2l.\) The particle is then released and falls vertically. Obtain an equation satisfied by \(x\) when the particle next comes to rest. Verify numerically that a possible solution for \(x\) is approximately \(0.66.\)

Show Solution
TikZ diagram
\(|AB| = l \cos \tfrac{\pi}{6} = \frac{\sqrt{3}}{2}l\) therefore \(|AC| = \sqrt{3}l\) and the compression is \((2l - \sqrt{3}l)\) and so \(T_2 = \frac{\lambda}{2l} (2l - \sqrt{3}l) = \frac12\lambda(2- \sqrt{3})\) \begin{align*} \text{N2}(\rightarrow, A): && T_1 \cos \tfrac{\pi}{6} - T_2 &= 0 \\ \Rightarrow && T_1 &= \frac12 \frac{2\lambda(2-\sqrt{3})}{\sqrt{3}} \\ &&&= \lambda \left ( \frac{2}{\sqrt{3}} - 1 \right) \\ \\ \text{N2}(\uparrow, D): && 2T_1 \cos \frac{\pi}{3} - mg &= 0 \\ \Rightarrow && mg &= \lambda \left ( \frac{2}{\sqrt{3}} - 1 \right) \end{align*} Suppose \(|AC| = 2xl\), then: \begin{array}{c|c} \text{energy} & \\ \hline \text{GPE} & -mg \sqrt{l^2 - x^2l^2} \\ \text{EPE} & \frac12 \frac{\lambda (2l - 2lx)^2}{2l} \\ \text{KE} & \frac12 m v^2 \end{array} Therefore \[ E = \frac12 mv^2 + \lambda l (1-x)^2-mgl \sqrt{1-x^2}\] Initially, \(E = 0 + 0 + 0 = 0\). When the particle first comes to rest: \begin{align*} \text{COE}: && 0 &= E \\ &&&= \lambda l^2 (1-x)^2 - mgl \sqrt{1-x^2} \\ &&&= \lambda l (1-x)^2 - l \lambda \left ( \frac{2}{\sqrt{3}} - 1 \right) \sqrt{1-x^2} \\ \Rightarrow && (1-x)^2 &= \sqrt{1-x^2} \left ( \frac{2}{\sqrt{3}} - 1 \right) \\ \Rightarrow && (1-x)^2(1-x^2)^{-1/2} &= \left ( \frac{2}{\sqrt{3}} - 1 \right) \\ \Rightarrow && (1-2x+x^2)(1+\frac12 x^2+\cdots) &= \left ( \frac{2}{\sqrt{3}} - 1 \right) \\ \end{align*} If \(x = \frac23\) then \((1-x)^2(1-x^2)^{-1/2} = \frac19 \cdot \left ( \frac{5}{9} \right)^{-1/2} = \frac{\sqrt{5}}{15}\) If \(2\sqrt{3}-3 \approx \frac{\sqrt{5}}5\) we're done.

Showing 1-10 of 10 problems
2025 Paper 3 Q9
D: 1500.0 B: 1500.0

In this question, \(n \geq 2\).

  1. A solid, of uniform density, is formed by rotating through \(360°\) about the \(y\)-axis the region bounded by the part of the curve \(r^{n-1}y = r^n - x^n\) with \(0 \leq x \leq r\), and the \(x\)- and \(y\)-axes. Show that the \(y\)-coordinate of the centre of mass of this solid is \(\frac{nr}{2(n+1)}\).
  2. Show that the normal to the curve \(r^{n-1}y = r^n - x^n\) at the point \((rp, r(1-p^n))\), where \(0 < p < 1\), meets the \(y\)-axis at \((0, Y)\), where \(Y = r\left(1 - p^n - \frac{1}{np^{n-2}}\right)\). In the case \(n = 4\), show that the greatest value of \(Y\) is \(\frac{1}{4}r\).
  3. A solid is formed by rotating through \(360°\) about the \(y\)-axis the region bounded by the curves \(r^3y = r^4 - x^4\) and \(ry = -(r^2 - x^2)\), both for \(0 \leq x \leq r\). \(A\) and \(B\) are the points \((0, -r)\) and \((0, r)\), respectively, on the surface of the solid. Show that the solid can rest in equilibrium on a horizontal surface with the vector \(\overrightarrow{AB}\) at three different, non-zero, angles to the upward vertical. You should not attempt to find these angles.

Show Solution
  1. TikZ diagram
    By symmetry, the centre of mass will lie on the \(y\) axis. Notice that a single slice (when revolved around the \(y\)-axis) has volume \(y \cdot \pi \cdot ((x+ \delta x)^2 - x^2) = 2 \pi x y \delta x\), and COM at height \(\frac12 y\) so we can conclude: \[ \overline{y} \sum_{\delta x} 2 \pi x y \delta x = \sum_{\delta x} \pi xy^2 \delta x\] \begin{align*} && \overline{y} \int_0^r 2xy \d x &= \int_0^r y^2 x \d x \\ \Rightarrow && \overline{y} 2\int_0^r \left (r - \frac{x^n}{r^{n-1}} \right)x \d x &= \int_0^r \left (r - \frac{x^n}{r^{n-1}} \right)^2 x \d x \\ \Rightarrow && \overline{y} \left [r \frac{x^2}{2} - \frac{1}{r^{n-1}} \frac{x^{n+2}}{n+2} \right]_0^r &= \left [r^2 \frac{x^2}{2} - \frac{2}{r^{n-2}} \frac{x^{n+2}}{n+2} + \frac{1}{r^{2n-2}} \frac{x^{2n+2}}{2n+2} \right]_0^r \\ \Rightarrow && 2\overline{y} \left (\frac{r^3}{2} - \frac{r^3}{n+2} \right) &= \left (\frac12 r^4 - \frac{2}{n+2}r^4 + \frac{1}{2n+2}r^4 \right) \\ \Rightarrow && \overline{y}r^3 \frac{n}{(n+2)} &= r^4\frac{(n+1)(n+2)-2\cdot2\cdot(n+1)+(n+2)}{2(n+1)(n+2)} \\ \Rightarrow && \overline{y} \frac{n}{(n+2)} &= r \left ( \frac{n^2}{2(n+1)(n+2)} \right) \\ \Rightarrow && \overline{y} &= \frac{nr}{2(n+1)} \\ &&&= r \left (1 -p^n \right) \end{align*} as required.
  2. \begin{align*} && r^{n-1}y &= r^n - x^n \\ \frac{\d}{\d x}: && r^{n-1} \frac{\d y}{\d x} &= -n x^{n-1} \\ && \frac{\d y}{\d x} &= -np^{n-1} \end{align*} Therefor the normal has the equation: \begin{align*} && \frac{y-r(1-p^n)}{x-rp} &= \frac{1}{np^{n-1}} \\ \Rightarrow && Y &= \frac{-rp}{np^{n-1}} + r(1-p^n) \\ &&&= r \left (1 - p^n - \frac{1}{np^{n-2}} \right) \end{align*} If \(n = 4\) then \begin{align*} && Y &= r\left (1 - p^4 - \frac{1}{4p^{2}} \right) \\ \Rightarrow && \frac{\d Y}{\d p} &= r \left (-4p^3 + \frac{1}{2p^3} \right) \end{align*} Therefore there is a stationary point if \(p^6 = \frac18 \Rightarrow p =2^{-1/2}\). Clearly this will be a maximum (sketch or second derivative) therefore, \(Y = r(1 - \frac14 - \frac{2}{4}) = \frac14 r\)
  3. The centre of mass of this shape can be found using this table: \begin{array}{|c|c|c|} \hline \text{} & \overline{y} & \text{mass} \\ \hline r^3y = r^4 - x^4 & \frac{2r}{5} & \frac{4\pi r^3}{6} = \frac23 \pi r^3\\ ry = -(r^2 - x^2) & -\frac{r}{3}& \frac{2 \pi r^3}{4}=\frac12\pi r^3 \\ \text{combined} & \frac{(\frac25 \cdot \frac23-\frac13 \cdot \frac12)r^4}{\frac76 r^3} = \frac3{35}r & \frac76 \pi r^3\\ \hline \end{array} Normals to the surface through points on the upper surface will meet the \(y\)-axis between \((-\infty, \frac14 r)\), and since \(p = 0 \to -\infty\) and \(p = 1 \to -\frac14 r\), so normals will pass through \((0, \frac3{35}r)\) from two different points. Normals to the surface through points on the lower surface will go through \(-r(1 - p^2 - \frac12) =- r(\frac12 -p^2)\) which ranges monotonically from \(\frac12 r \to -\frac12 r\) so there will be one point where the normal goes through \(\frac3{35}r\). Therefore there are three angles where the vector \(\overrightarrow{AB}\) is not vertical but the normal to the surfaces runs through the centre of mass (ie the the solid can rest in equilibrium)
1987 Paper 3 Q14
D: 1500.0 B: 1500.0

It is given that the gravitational force between a disc, of radius \(a,\) thickness \(\delta x\) and uniform density \(\rho,\) and a particle of mass \(m\) at a distance \(b(\geqslant0)\) from the disc on its axis is \[ 2\pi mk\rho\delta x\left(1-\frac{b}{(a^{2}+b^{2})^{\frac{1}{2}}}\right), \] where \(k\) is a constant. Show that the gravitational force on a particle of mass \(m\) at the surface of a uniform sphere of mass \(M\) and radius \(r\) is \(kmM/r^{2}.\) Deduce that in a spherical cloud of particles of uniform density, which all attract one another gravitationally, the radius \(r\) and inward velocity \(v=-\dfrac{\d r}{\d t}\) of a particle at the surface satisfy the equation \[ v\frac{\mathrm{d}v}{\mathrm{d}r}=-\frac{kM}{r^{2}}, \] where \(M\) is the mass of the cloud. At time \(t=0\), the cloud is instantaneously at rest and has radius \(R\). Show that \(r=R\cos^{2}\alpha\) after a time \[ \left(\frac{R^{3}}{2kM}\right)^{\frac{1}{2}}(\alpha+\tfrac{1}{2}\sin2\alpha). \]

Show Solution
Suppose we divide a sphere of radius \(r\) up into slices of thickness \(\delta x\). Then the force acting on \(P\) will be: \begin{align*} F &= \sum_{\text{slices}} 2\pi mk\rho\delta x\left(1-\frac{b}{(a^{2}+b^{2})^{\frac{1}{2}}}\right) \\ &= \sum_{i=-r/\delta x}^{r/\delta x} 2\pi mk\frac{M}{\frac43 \pi r^3}\delta x\left(1-\frac{i \delta x}{((1-(i\delta x)^2)+(i \delta x)^{2})^{\frac{1}{2}}}\right) \\ &\to \int_{-r}^r \frac{1}{2} \frac{mkM}{r^3}(1-t) \d t \\ &=\frac{mkM}{r^2} \end{align*} We can see that the particle will have a force attracting it towards the centre, with magnitude \(\frac{kmM}{r^2}\), therefore and since \(\frac{\d v}{\d t} = \frac{\d v}{\d r} \frac{\d r}{\d t}\) we must have: \(v \frac{\d v}{\d r}m = - \frac{kmM}{r^2}\) and dividing by \(m\) we get exactly the result we seek. \begin{align*} && v \frac{\d v}{\d r} &= \frac{-kM}{r^2} \\ \Rightarrow && \frac{v^2}{2}+C &= \frac{kM}{r} \\ r = R, v =0: && C &= \frac{kM}{R} \\ \Rightarrow && v^2&= 2kM\left ( \frac1r - \frac1R\right ) \\ \Rightarrow && \frac{\d r}{\d t} &= -\sqrt{2kM\left ( \frac1r - \frac1R\right )} \\ \Rightarrow && -\sqrt{2kM}T &= \int_{r=R}^{r=R\cos^2 \alpha} \frac{1}{\sqrt{\frac1r-\frac1R}} \d r \\ r = R\cos^2 \theta: && -\sqrt{2kM}T &= \int_{\theta = 0}^{\theta = \alpha} \frac{\sqrt{R}}{\sqrt{\sec^2 \theta - 1}} \cdot R \cdot 2 \cdot (-\cos \theta) \cdot \sin \theta \d \theta \\ \Rightarrow && T &= \sqrt{\frac{R^3}{2kM}} \int_0^\alpha \frac{2 \cos \theta \sin \theta}{\sqrt{\sec^2 \theta - 1}} \d \theta \\ &&&= \sqrt{\frac{R^3}{2kM}} \int_0^\alpha \frac{2 \cos \theta \sin \theta}{\tan \theta} \d \theta \\ &&&= \sqrt{\frac{R^3}{2kM}} \int_0^\alpha 2\cos^2 \theta \d \theta \\ &&&= \sqrt{\frac{R^3}{2kM}} \int_0^\alpha 1 + \cos 2 \theta\d \theta \\ &&&= \sqrt{\frac{R^3}{2kM}} \left [1 + \frac12 \sin 2 \theta \right]_0^\alpha \\ &&&= \sqrt{\frac{R^3}{2kM}} \left (\alpha + \frac12 \sin 2 \alpha \right) \\ \end{align*}
2011 Paper 2 Q8
D: 1600.0 B: 1484.7

The end \(A\) of an inextensible string \(AB\) of length \(\pi\) is attached to a point on the circumference of a fixed circle of unit radius and centre \(O\). Initially the string is straight and tangent to the circle. The string is then wrapped round the circle until the end \(B\) comes into contact with the circle. The string remains taut during the motion, so that a section of the string is in contact with the circumference and the remaining section is straight. Taking \(O\) to be the origin of cartesian coordinates with \(A\) at \((-1,0)\) and \(B\) initially at \((-1, \pi)\), show that the curve described by \(B\) is given parametrically by \[ x= \cos t + t\sin t\,, \ \ \ \ \ \ y= \sin t - t\cos t\,, \] where \(t\) is the angle shown in the diagram.

\psset{xunit=0.8cm,yunit=0.8cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-5.4,-1)(7,7) \pspolygon(-1.22,3.03)(-0.87,3.17)(-1.01,3.52)(-1.36,3.38) \parametricplot{-0.17}{3.3}{1*3.64*cos(t)+0*3.64*sin(t)+0|0*3.64*cos(t)+1*3.64*sin(t)+0} \psline(-1.36,3.38)(6.23,6.37) \psline[linestyle=dashed,dash=1pt 1pt](0,0)(-1.36,3.38) \parametricplot{-0.0}{1.9540453733056695}{1.06*cos(t)+0|1.03*sin(t)+0} \rput[tl](-0.45,-0.1){\(O\)} \rput[tl](-4.12,0.46){\(A\)} \rput[tl](6.11,6.8){\(B\)} \rput[tl](0.25,0.6){\(t\)} \psline{->}(-7.22,0)(5.78,0) \psline{->}(0,-1.53)(0,6) \rput[tl](-0.08,6.45){\(y\)} \rput[tl](5.85,0.1){\(x\)} \end{pspicture*}
Find the value, \(t_0\), of \(t\) for which \(x\) takes its maximum value on the curve, and sketch the curve. Use the area integral $\displaystyle \int y \frac{\d x}{\d t} \, \d t\,$ to find the area between the curve and the \(x\) axis for~\hbox{\(\pi \ge t \ge t_0\)}. Find the area swept out by the string (that is, the area between the curve described by \(B\) and the semicircle shown in the diagram).

2009 Paper 2 Q9
D: 1600.0 B: 1484.0

  1. A uniform lamina \(OXYZ\) is in the shape of the trapezium shown in the diagram. It is right-angled at \(O\) and \(Z\), and \(OX\) is parallel to \(YZ\). The lengths of the sides are given by \(OX=9\,\)cm, \(XY=41\,\)cm, \(YZ=18\,\)cm and \(ZO=40\,\)cm. Show that its centre of mass is a distance \(7\,\)cm from the edge \(OZ\).
    TikZ diagram
  2. The diagram shows a tank with no lid made of thin sheet metal. The base \(OXUT\), the back \(OTWZ\) and the front \(XUVY\) are rectangular, and each end is a trapezium as in part (i). The width of the tank is \(d\,\)cm.
    TikZ diagram
    Show that the centre of mass of the tank, when empty, is a distance \[ \frac {3(140+11d)}{5(12+d)}\,\text{cm} \] from the back of the tank. The tank is then filled with a liquid. The mass per unit volume of this liquid is \(k\) times the mass per unit area of the sheet metal. In the case \(d=20\), find an expression for the distance of the centre of mass of the filled tank from the back of the tank.

Show Solution
  1. TikZ diagram
    \begin{array}{c|c|c|c} & OXX'Z & XX'Y & OXYZ \\ \hline \text{Area} & 360 & 180 & 540\\ \text{COM} & \binom{4.5}{20} & \binom{12}{\frac{80}{3}} & \binom{\overline{x}}{\overline{y}} \end{array} \begin{align*} && 2 \binom{3}{20} + \binom{12}{\frac{80}{3}} &= 3 \binom{\overline{x}}{\overline{y}} \\ \Rightarrow && \binom{\overline{x}}{\overline{y}} &= \frac13 \binom{21}{\frac{200}{3}} \\ &&&= \binom{7}{\frac{200}{9}} \end{align*} ie, the centre of mass is \(7\text{ cm}\) from \(OZ\)
  2. \begin{align*} && \underbrace{540 \cdot 7}_{OXYZ} + \underbrace{540 \cdot 7}_{TUVW} + \underbrace{40d\cdot 0}_{OTWZ} + \underbrace{9d\cdot 4.5}_{OXUT} + \underbrace{41d \cdot 13.5}_{XUVY} &= (540+540+40d+9d+41d) \overline{x} \\ \Rightarrow && \overline{x} &= \frac{540\cdot 14 + 50d \cdot 4.5 + 41d \cdot 9}{1080 + 90d} \\ &&&= \frac{90 \cdot 84 + 225d + 369d}{1080+90d} \\ &&&= \frac{90 \cdot 84 + 594d}{1080+90d} \\ &&&= \frac{54(140+11d)}{90(12+d)} \\ &&&= \frac{3(140+11d)}{5(12+d)} \end{align*} The volume of the prizm is \(540d\), it's center of mass is \(7\). For the tank, it COM is \(\frac{3(140+11\cdot20)}{5(12+20)} = \frac{27}4\) and area is \(2880\) Therefore for the combined shape we have: \begin{align*} && 540dk \cdot 7 + 2880 \cdot \frac{27}{4} &= (540 \cdot20 k+2880) \overline{x} \\ \Rightarrow && \overline{x} &= \frac{720(150k+27)}{720(15k + 4)} \\ &&&= \frac{3(50k+9)}{15k+4} \end{align*} \begin{align*} && \end{align*}
2007 Paper 2 Q10
D: 1600.0 B: 1500.0

A solid figure is composed of a uniform solid cylinder of density \(\rho\) and a uniform solid hemisphere of density \(3\rho\). The cylinder has circular cross-section, with radius \(r\), and height \(3r\), and the hemisphere has radius \(r\). The flat face of the hemisphere is joined to one end of the cylinder, so that their centres coincide. The figure is held in equilibrium by a force \(P\) so that one point of its flat base is in contact with a rough horizontal plane and its base is inclined at an angle \(\alpha\) to the horizontal. The force \(P\) is horizontal and acts through the highest point of the base. The coefficient of friction between the solid and the plane is \(\mu\). Show that \[\mu \ge \left\vert \tfrac98 -\tfrac12 \cot\alpha\right\vert\,. \]

2004 Paper 2 Q9
D: 1600.0 B: 1484.0

The base of a non-uniform solid hemisphere, of mass \(M,\) has radius \(r.\) The distance of the centre of gravity, \(G\), of the hemisphere from the base is \(p\) and from the centre of the base is \(\sqrt{p^2 + q^2} \,\). The hemisphere rests in equilibrium with its curved surface on a horizontal plane. A particle of mass \(m,\,\) where \(m\) is small, is attached to \(A\,\), the lowest point of the circumference of the base. In the new position of equilibrium, find the angle, \(\alpha\), that the base makes with the horizontal. The particle is removed and attached to the point \(B\) of the base which is at the other end of the diameter through \(A\,\). In the new position of equilibrium the base makes an angle \({\beta}\) with the horizontal. Show that $$\tan(\alpha-\beta)= \frac{2mMrp} {M^2\left(p^2+q^2\right)-m^2r^2}\;.$$

Show Solution
TikZ diagram
In the coordinate system where \((0,0)\) is the centre base of the hemisphere, \(G\) is at \((p, q)\). Once the mass is attached at \(A\), the new centre of mass will satisfy: \(M \begin{pmatrix} p \\ q \end{pmatrix} + m \begin{pmatrix} r \\ 0 \end{pmatrix} = (M+m)\bar{x} \Rightarrow \bar{x} = \frac{1}{M+m} \begin{pmatrix} Mp+mr \\ Mq \end{pmatrix}\) The angle between the horizontal and \(AB\), \(\alpha\) will satisfy: $$\tan \alpha = \frac{Mp + mr}{Mq}$$ Similarly, when the mass is attached at \(B\), the new centre of mass will satisfy: \(M \begin{pmatrix} p \\ q \end{pmatrix} + m \begin{pmatrix} -r \\ 0 \end{pmatrix} = (M+m)\bar{x} \Rightarrow \bar{x} = \frac{1}{M+m} \begin{pmatrix} Mp-mr \\ Mq \end{pmatrix}\) The angle between the horizontal and \(AB\), \(\beta\) will satisfy: $$\tan \beta = \frac{Mp - mr}{Mq}$$ We are trying to find: \begin{align*} \tan \l \alpha - \beta \r &= \frac{\tan \alpha - \tan \beta}{1+ \tan \alpha \tan \beta} \\ &= \frac{\frac{Mp + mr}{Mq} - \frac{Mp - mr}{Mq}}{1 + \frac{Mp + mr}{Mq} \frac{Mp - mr}{Mq}} \\ &= \frac{(Mp + mr)Mq - (Mp - mr)Mq}{M^2q^2 + (Mp + mr)(Mp - mr)} \\ &= \frac{2Mmrp}{M^2(q^2+p^2) -m^2r^2} \\ \end{align*}
2002 Paper 3 Q9
D: 1700.0 B: 1500.0

A tall container made of light material of negligible thickness has the form of a prism, with a square base of area \(a^2\). It contains a volume \(ka^3\) of fluid of uniform density. The container is held so that it stands on a rough plane, which is inclined at angle \(\theta\) to the horizontal, with two of the edges of the base of the container horizontal. In the case \(k > \frac12 \tan\theta\), show that the centre of mass of the fluid is at a distance \(x\) from the lower side of the container and at a distance \(y\) from the base of the container, where \[ \frac x a = \frac12 - \frac {\tan\theta}{12k}\;, \ \ \ \ \ \ \frac y a = \frac k 2 + \frac{\tan^2\theta}{24k}\;. \] Determine the corresponding coordinates in the case \(k < \frac12 \tan\theta\). The container is now released. Given that \(k < \frac12\), show that the container will topple if \(\theta >45^\circ\).

Show Solution
TikZ diagram
The fluid can be divided into a cuboid parallel to the slope and a right-angled triangle. If the height of the water on the longer side is \(\ell a\), then we have \(ka^3 = (\ell a - a\tan \theta)a^2 + \frac12 a^3\tan \theta \Rightarrow \ell = k + \frac12 \tan \theta\) This is acceptable when \(k > \frac12 \tan \theta\). The centre of mass of the cuboid will be \((\frac{a}{2}, \frac12 (k - \frac12 \tan \theta))\) and of the triangle will be \((\frac13 a, \frac13 \tan \theta + (k - \frac12 \tan \theta) )\) Therefore we have: \begin{align*} && \text{COM} && \text{mass} \\ \text{cuboid} && (\frac{a}{2}, \frac{a}2 (k - \frac12 \tan \theta)) && a^3(k - \frac12 \tan \theta) \\ \text{triangle} && (\frac13 a, \frac{a}3 \tan \theta + a(k - \frac12 \tan \theta) ) && a^3\frac12 \tan \theta \\ \text{whole system} && (x, y) && a^3k \end{align*} Therefore \begin{align*} && a^3k x &= \frac{a}{2} \cdot a^3(k - \frac12 \tan \theta) + \frac13 a \cdot a^3\frac12 \tan \theta \\ &&&= a^4 \frac{k}{2} - \frac{1}{12}a^4 \tan \theta \\ \Rightarrow && \frac{x}{a} &= \frac12 - \frac{\tan \theta}{12 k} \\ \\ && a^3k y &= \frac{a}2 (k - \frac12 \tan \theta) \cdot a^3(k - \frac12 \tan \theta) + \\ &&& \qquad\qquad \cdots + \l \frac{a}3 \tan \theta + a(k - \frac12 \tan \theta) \r \cdot a^3\frac12 \tan \theta \\ &&&= \frac{a^4k^2}{2} -\frac{a^4k \tan \theta}{2} + \frac{a^4 \tan^2 \theta}{8} - \frac{a^4 \tan^2 \theta}{12} + \frac{a^4k \tan \theta}{2} \\ \Rightarrow && \frac{y}{a} &= \frac{k}2 + \frac{\tan^2 \theta}{24k} \end{align*}
TikZ diagram
If the water only fills up a prism, it's sides must be \(b\) and \(b\tan \theta \), therefore the volume is \(\frac12 ab^2 \tan \theta = ka^3 \Rightarrow b = a\sqrt{\frac{2k}{\tan \theta}}\) The centre of mass will be at \(\l \frac13 a\sqrt{\frac{2k}{\tan \theta}}, a\sqrt{2k \tan \theta}\r\) The container will topple if the centre of mass is outside the base, ie if the centre of mass \((x,y)\) lies above the line \(y = \tan (90^\circ- x) = \frac{1}{\tan \theta} x\). If \(\theta > 45^\circ\) then \(\tan \theta > 1\) and so we are in the \(\frac12 \tan \theta > \frac12 > k\) and so we are in the second case. \begin{align*} \frac{y}{x} &= \frac{\frac 13 a\sqrt{2k \tan \theta}}{\frac13 a\sqrt{\frac{2k}{\tan \theta}}} \\ &= \tan \theta \end{align*} \(\tan \theta > \frac{1}{\tan \theta} \Leftrightarrow \tan \theta > 1 \Leftrightarrow \theta > 45^\circ\).
1996 Paper 2 Q9
D: 1600.0 B: 1500.0

A child's toy consists of a solid cone of height \(\lambda a\) and a solid hemisphere of radius \(a\), made out of the same uniform material and fastened together so that their plane faces coincide. (Thus the diameter of the hemisphere is equal to that of the base of the cone.) Show that if \(\lambda < \sqrt{3}\) the toy will always move to an upright position if placed with the surface of the hemisphere on a horizontal table, but that if \(\lambda > \sqrt{3}\) the toy may overbalance. Show, however, that if the toy is placed with the surface of the cone touching the table it will remain there whatever the value of \(\lambda\). [The centre of gravity of a uniform solid cone of height \(h\) is a height \(h/4\) above its base. The centre of gravity of a uniform solid hemisphere of radius \(a\) is at distance \(3a/8\) from the centre of its base.]

Show Solution
TikZ diagram
By symmetry the centre of mass will lie on the main axis. Taking the plane faces as \(x = 0\) we have the following centers of mass: \begin{align*} && \text{COM} && \text{Mass} \\ \text{Hemisphere} && -\frac{3a}{8} && \frac{2\pi a^3}{3} \\ \text{Cone} && \frac{\lambda a}{4} && \frac{\lambda \pi a^3}{3} \\ \text{Toy} && \bar{x} && \frac{(\lambda + 2)\pi a^3}{3} \\ \end{align*} Therefore, \begin{align*} && \frac{(\lambda + 2)\pi a^3}{3} \cdot \bar{x} &= -\frac{3a}{8} \cdot \frac{2\pi a^3}{3} + \frac{\lambda a}{4} \cdot \frac{\lambda \pi a^3}{3} \\ \Rightarrow && (\lambda + 2) \bar{x} &= \frac{(\lambda^2 -3)a}{4} \end{align*} Therefore the centre of mass will be inside the hemisphere (and it will always move to an upright position) iff \(\bar{x} < 0 \Leftrightarrow \lambda < \sqrt{3}\).
TikZ diagram
For the toy to topple from this position, \(\bar{x}\) must be longer than it would need to be to form a right-angled triangle with the vertical at the plane face. The angle at this point will be \(\theta\), so we need: \(\bar{x} > a\tan \theta = a \frac{a}{\lambda a} = \frac{a}{\lambda}\) \begin{align*} && \bar{x} &> \frac{a}{\lambda} \\ \Leftrightarrow && \frac{(3-\lambda^2)a}{4(\lambda + 2)} &> \frac{a}{\lambda} \\ \Leftrightarrow && {(3-\lambda^2)\lambda} &> {4(\lambda + 2)} \\ \Leftrightarrow && -\lambda^3-\lambda -8 &> 0 \\ \end{align*} Contradiction! Therefore it can never topple when laid on its side.
1989 Paper 2 Q12
D: 1600.0 B: 1500.0

A uniform rectangular lamina of sides \(2a\) and \(2b\) rests in a vertical plane. It is supported in equilibrium by two smooth pegs fixed in the same horizontal plane, a distance \(d\) apart, so that one corner of the lamina is below the level of the pegs. Show that if the distance between this (lowest) corner and the peg upon which the side of length \(2a\) rests is less than \(a\), then the distance between this corner and the other peg is less than \(b\). Show also that \[ b\cos\theta-a\sin\theta=d\cos2\theta, \] where \(\theta\) is the acute angle which the sides of length \(2b\) make with the horizontal.

Show Solution
TikZ diagram
We must have \(G\) between the two pegs (vertically), otherwise we will induce a moment. Considering moments about the peg, if the second peg is outside the centre then we must induce a moment and therefore we cannot be in equilibrium. \begin{align*} \text{N2}(\nearrow):&& 0 &= R_1-mg\sin\theta \\ \text{N2}(\nwarrow):&&0&= R_2-mg \cos \theta \\ \Rightarrow && R_1 &= mg \sin\theta \\ && R_2 &= mg \cos\theta \\ \\ \overset{\curvearrowleft}{G}: && 0 &= R_1(a-d\sin\theta) -R_2(b-d \cos\theta) \\ \Rightarrow && 0&= a \sin\theta -d \sin^2\theta - b\cos \theta+d \cos^2 \theta \\ \Rightarrow && b \cos \theta - a \sin \theta &= d \cos 2 \theta \end{align*}
1988 Paper 1 Q11
D: 1484.0 B: 1500.0

Derive a formula for the position of the centre of mass of a uniform circular arc of radius \(r\) which subtends an angle \(2\theta\) at the centre.

TikZ diagram
A plane framework consisting of a rectangle and a semicircle, as in the above diagram, is constructed of uniform thin rods. It can stand in equilibrium if it is placed in a vertical plane with any point of the semicircle in contact with a horizontal floor. Express \(h\) in terms of \(r\).

Show Solution
TikZ diagram
Splitting the arc up into strips of width \(\delta \theta\), then we must have \begin{align*} && \sum r\cos \theta (r \delta \theta) &= \bar{x}\sum (r \delta \theta) \\ \lim_{\delta \theta \to 0}: && \int_{-\theta}^{\theta} r^2 \cos \theta \d \theta &= \bar{x}2 \theta r \\ \Rightarrow && 2r^2 \sin \theta &= \bar{x} 2 \theta r \\ \Rightarrow && \bar{x} &= \frac{r\sin \theta}{\theta} \end{align*}
TikZ diagram
The centre of mass will lie on the line of symmetry. It also must lie at the center of the base of the semi-circle (see diagram). Using a coordinate frame where that point is the origin we must have \begin{align*} && 0 &= -2r \cdot 2h - 4h \cdot h + \pi r \frac{r}{\frac{\pi}{2}} \\ &&&= -4rh-4h^2+2r^2\\ \Rightarrow && 0 &= r^2-2rh-h^2 \\ \Rightarrow && \frac{r}{h} &= 1 \pm \sqrt{3} \\ \Rightarrow && r &= (1+\sqrt{3})h \\ && h & = \frac12 (\sqrt{3}-1) r \end{align*}

Showing 1-25 of 28 problems
2025 Paper 2 Q9
D: 1500.0 B: 1500.0

Points \(A\) and \(B\) are at the same height and a distance \(\sqrt{2}r\) apart. Two small, spherical particles of equal mass, \(P\) and \(Q\), are suspended from \(A\) and \(B\), respectively, by light inextensible strings of length \(r\). Each particle individually may move freely around and inside a circle centred at the point of suspension. The particles are projected simultaneously from points which are a distance \(r\) vertically below their points of suspension, directly towards each other and each with speed \(u\). When the particles collide, the coefficient of restitution in the collision is \(e\).

  1. Show that, immediately after the collision, the horizontal component of each particle's velocity has magnitude \(\frac{1}{2}ev\sqrt{2}\), where \(v^2 = u^2 - gr(2 - \sqrt{2})\) and write down the vertical component in terms of \(v\).
  2. Show that the strings will become taut again at a time \(t\) after the collision, where \(t\) is a non-zero root of the equation \[(r - evt)^2 + \left(-r + vt - \frac{1}{2}\sqrt{2}gt^2\right)^2 = 2r^2.\]
  3. Show that, in terms of the dimensionless variables \[z = \frac{vt}{r} \quad \text{and} \quad c = \frac{\sqrt{2}v^2}{rg}\] this equation becomes \[\left(\frac{z}{c}\right)^3 - 2\left(\frac{z}{c}\right)^2 + \left(\frac{2}{c} + 1 + e^2\right)\left(\frac{z}{c}\right) - \frac{2}{c}(1 + e) = 0.\]
  4. Show that, if this equation has three equal non-zero roots, \(e = \frac{1}{3}\) and \(v^2 = \frac{9}{2}\sqrt{2}rg\). Explain briefly why, in this case, no energy is lost when the string becomes taut.
  5. In the case described in (iv), the particles have speed \(U\) when they again reach the points of their motion vertically below their points of suspension. Find \(U^2\) in terms of \(r\) and \(g\).

Show Solution
TikZ diagram
  1. Assuming the particles have mass \(m\), and speed \(v\) just before collision, then \begin{align*} \text{COE}: && \underbrace{\frac12 m u^2}_{\text{initial kinetic energy}} + \underbrace{0}_{\text{initial GPE}} &= \underbrace{\frac12m v^2}_{\text{kinetic energy just before collision}} + \underbrace{mgr\left(1-\frac1{\sqrt{2}}\right)}_{\text{GPE just before collision}} \\ \Rightarrow && v^2 &= u^2 - gr(2-\sqrt{2}) \end{align*} Therefore the particles has velocity \(\frac{\sqrt{2}}2v \binom{\pm 1}{1}\) before the collision. By symmetry, the impulse between the particles will be horizontal, so the vertical velocities will be unchanged at \(\frac{\sqrt{2}}{2}v\). By conservation of momentum (or symmetry) the particles will have equal but opposite velocities after the collision (say \(w\)) satisfying: \[ e = \frac{2w}{2\frac{\sqrt{2}}{2}v} \] ie \(w = \frac{\sqrt{2}}2 e v\) as required.
  2. Once the particles have rebounded, they will be projectiles whilst the strings are slack. If we consider the left-most point \(A = (0,0)\) then the particles colide at \(\left ( \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)\) and the position at time \(t\) after the collision (before the string goes slack) will be: \begin{align*} \mathbf{x}_t &= \frac{\sqrt{2}}{2}r\binom{1}{-1} + \frac{\sqrt{2}}{2} vt \binom{-e}{1} + \frac12 gt^2 \binom{0}{-1} \end{align*} The string will go taught when \(|\mathbf{x}_t|^2 = r^2\), ie \begin{align*} && r^2 &= \left ( \frac{\sqrt{2}}{2} r - \frac{\sqrt{2}}{2}evt \right)^2 + \left (-\frac{\sqrt{2}}{2} r + \frac{\sqrt{2}}{2}vt -\frac12 gt^2 \right)^2 \\ \Rightarrow && r^2 &= \frac12 \left (r - evt \right)^2 + \frac12 \left (-r+vt - \frac{\sqrt{2}}{2}gt^2 \right)^2 \\ \Rightarrow && 2r^2 &= \left (r - evt \right)^2 + \left (-r+vt - \frac{\sqrt{2}}{2}gt^2 \right)^2 \\ \end{align*} as required.
  3. Suppose \(z = \frac{vt}{r}\), \(c = \frac{\sqrt{2}v^2}{rg}\), then \begin{align*} && 2r^2 &= \left (r - evt \right)^2 + \left (-r+vt - \frac{\sqrt{2}}{2}gt^2 \right)^2 \\ \Leftrightarrow && 2 &= \left (1 - e\frac{vt}{r} \right)^2 + \left (-1 + \frac{vt}{r}- \frac{\sqrt{2}}{2} \frac{gt^2}{r} \right)^2 \\ \Leftrightarrow && 2 &= \left (1 - ez \right)^2 + \left (-1 +z- \frac{v^2t^2}{r^2} \frac{gr}{\sqrt{2}v^2}\right)^2 \\ \Leftrightarrow && 2 &= \left (1 - ez \right)^2 + \left (-1 +z- \frac{z^2}{c} \right)^2 \\ \Leftrightarrow && 2 &= 1-2ez + e^2z^2 + 1 + z^2 +\frac{z^4}{c^2} - 2z-2\frac{z^3}{c}+2\frac{z^2}{c} \\ \Leftrightarrow && 0 &= z(-2e-2) + z^2(e^2+1 + \frac{2}{c}) + z^3(-\frac{2}{c}) + z^4 \frac{1}{c^2} \\ \underbrace{\Leftrightarrow}_{z \neq 0} && 0 &= \left ( \frac{z}{c} \right)^3 - 2\left ( \frac{z}{c} \right)^2 + \left ( \frac{z}{c} \right) (1 + e^2 + \frac{2}{c} ) - \frac{2}{c}(1+e) \end{align*} as required, (where on the last step we divide by \(z/c\)).
  4. If a cubic has \(3\) equal, non-zero roots then it must have the form \((z-a)^3 = z^3 -3az^2 + 3a^2 z -a^3 = 0\), so \(3a = 2\), and so the expansion must be \(\left ( \frac{z}{c} \right)^3 - 2\left ( \frac{z}{c} \right)^2 + \frac{4}{3}\left ( \frac{z}{c} \right) - \frac{8}{27} = 0\) \begin{align*} && \frac{2}{c}(1+e) &= \frac{8}{27} \\ \Rightarrow && \frac{2}{c} &= \frac{8}{27} \frac{1}{1+e} \\ && 1 + e^2 + \frac{2}{c} &= \frac43 \\ \Rightarrow && e^2 + \frac{8}{27(1+e)} &= \frac{1}{3} \\ \Rightarrow && 27(1+e)e^2+8 &= 9(1+e) \\ \Rightarrow && 27e^3 + 27e^2-9e-1 &= 0 \\ \Rightarrow && (3e-1)(9e^2+12e+1) &= 0 \end{align*} The only (positive) root is \(e = \frac13\), therefore \(e = \frac13\). We must also have \begin{align*} && \frac{2}{c} \frac43 &= \frac{8}{27} \\ \Rightarrow && c &= 9 \\ \Rightarrow && \frac{\sqrt{2}v^2}{rg} &= 9 \\ \Rightarrow && v^2 &= \frac{9\sqrt{2}rg}{2} \end{align*} as required. If we consider the path of the particle acting as a projectile, iff the path is tangent to the circle then there will be exactly one solution for \(z/c\) and (importantly) it will be a repeated root. Therefore the particle rejoins the circle at a tangent and the tension is acting perpendicularly to the direction of motion (ie no energy loss).
  5. Since the only energy lost is lost in the collision, we can apply conservation of energy again: \begin{align*} \text{COE:} && \frac12 m U^2 &= \frac12 m \frac12v^2(1+e^2) + mgr\left (1 - \frac1{\sqrt{2}} \right) \\ \Rightarrow && U^2 &= \frac12 \frac{9 \sqrt{2}}{2}gr(1+\frac19) + gr(2 - \sqrt{2}) \\ &&&= \left (\frac{5\sqrt{2}}{2}+2 - \sqrt{2} \right)gr \\ &&&= \left (\frac{4+3\sqrt{2}}{2} \right)gr \end{align*}
2019 Paper 3 Q9
D: 1500.0 B: 1500.0

In this question, \(\mathbf{i}\) and \(\mathbf{j}\) are perpendicular unit vectors and \(\mathbf{j}\) is vertically upwards. A smooth hemisphere of mass \(M\) and radius \(a\) rests on a smooth horizontal table with its plane face in contact with the table. The point \(A\) is at the top of the hemisphere and the point \(O\) is at the centre of its plane face. Initially, a particle \(P\) of mass \(m\) rests at \(A\). It is then given a small displacement in the positive \(\mathbf{i}\) direction. At a later time \(t\), when the particle is still in contact with the hemisphere, the hemisphere has been displaced by \(-s\mathbf{i}\) and \(\angle AOP = \theta\).

  1. Let \(\mathbf{r}\) be the position vector of the particle at time \(t\) with respect to the initial position of \(O\). Write down an expression for \(\mathbf{r}\) in terms of \(a\), \(\theta\) and \(s\) and show that $$\dot{\mathbf{r}} = (a\dot{\theta} \cos \theta - \dot{s})\mathbf{i} - a\dot{\theta} \sin \theta \mathbf{j}.$$ Show also that $$\dot{s} = (1 - k)a\dot{\theta} \cos \theta,$$ where \(k = \frac{M}{m + M}\), and deduce that $$\dot{\mathbf{r}} = a\dot{\theta}(k \cos \theta \mathbf{i} - \sin \theta \mathbf{j}).$$
  2. Show that $$a\dot{\theta}^2 \left(k \cos^2 \theta + \sin^2 \theta\right) = 2g(1 - \cos \theta).$$
  3. At time \(T\), when \(\theta = \alpha\), the particle leaves the hemisphere. By considering the component of \(\ddot{\mathbf{r}}\) parallel to the vector \(\sin \theta \mathbf{i} + k \cos \theta \mathbf{j}\), or otherwise, show that at time \(T\) $$a\dot{\theta}^2 = g \cos \alpha.$$ Find a cubic equation for \(\cos \alpha\) and deduce that \(\cos \alpha > \frac{2}{3}\).

Show Solution
TikZ diagram
  1. \(\mathbf{r} = (a \sin \theta - s) \mathbf{i}+a\cos \theta\mathbf{j}\), so \begin{align*} && \dot{\mathbf{r}} &=(a \dot{\theta} \cos \theta - \dot{s}) \mathbf{i}- a\dot{\theta} \sin \theta \mathbf{j}\\ \\ \text{COM}(\rightarrow): && 0 &= M(-\dot{s}) + m(a \dot{\theta} \cos \theta - \dot{s}) \\ \Rightarrow && \dot{s} &= \frac{ma \dot{\theta} \cos \theta}{m+M} \\ &&&= \left ( 1- \frac{M}{m+M} \right) a\dot{\theta} \cos \theta \\ &&&= (1 - k) a\dot{\theta} \cos \theta \\ \\ \Rightarrow && \dot{\mathbf{r}} &=(a \dot{\theta} \cos \theta - \dot{s}) \mathbf{i}- a\dot{\theta} \sin \theta \mathbf{j} \\ &&&= (a \dot{\theta} \cos \theta - (1 - k) a\dot{\theta} \cos \theta) \mathbf{i}- a\dot{\theta} \sin \theta \mathbf{j} \\ &&&= a\dot{\theta} \left ( k \cos \theta \mathbf{i} - \sin \theta \mathbf{j} \right) \end{align*}
  2. \(\,\) \begin{align*} COE: &&\underbrace{0}_{\text{k.e.}}+ \underbrace{mga}_{\text{GPE}} &= \underbrace{\frac12 m \mathbf{\dot{r}}\cdot\mathbf{\dot{r}}}_{\text{k.e. }P} + \underbrace{mg a\cos \theta}_{\text{GPE}} + \underbrace{\frac12 M \dot{s}^2}_{\text{k.e. hemisphere}} \\ \Rightarrow && 2amg(1-\cos \theta) &= a^2m \dot{\theta}^2(k^2 \cos^2 \theta + \sin^2 \theta)+ M(1 - k)^2 a^2\dot{\theta}^2 \cos^2 \theta \\ \Rightarrow && 2mg(1-\cos \theta) &= a \dot{\theta}^2 \left (m\sin^2 \theta + (mk^2 + M(1-k)^2)\cos^2 \theta \right) \\ &&&= a \dot{\theta}^2 \left (m\sin^2 \theta + mk\cos^2 \theta \right) \\ \Rightarrow && 2g(1-\cos \theta) &= a \dot{\theta}^2 \left (\sin^2 \theta + k\cos^2 \theta \right) \\ \end{align*}
  3. The equation of motion is \(m \ddot{\mathbf{r}} = \mathbf{R} - mg\mathbf{j}\) and the particle will leave the surface when \(\mathbf{R} = 0\). If we take the component in the directions suggested: \begin{align*} && \ddot{\mathbf{r}} &= a\ddot{\theta}(k \cos \theta \mathbf{i}- \sin \theta \mathbf{j}) + a \dot{\theta}(-k\dot{\theta} \sin \theta \mathbf{i}- \dot{\theta} \cos \theta \mathbf{j}) \\ &&&= ak (\ddot{\theta} \cos \theta - \dot{\theta}^2 \sin \theta) \mathbf{i} -a(\ddot{\theta} \sin \theta + \dot{\theta}^2 \cos \theta) \mathbf{j} \\ \Rightarrow && \mathbf{\ddot{r}} \cdot (\sin \theta \mathbf{i} + k \cos \theta \mathbf{j}) &= ak (\ddot{\theta} \cos \theta - \dot{\theta}^2 \sin \theta) \sin \theta -ak(\ddot{\theta} \sin \theta + \dot{\theta}^2 \cos \theta)\cos \theta \\ &&&= - ak \dot{\theta}^2 \\ && (-g\mathbf{j}) \cdot (\sin \theta \mathbf{i} + k \cos \theta \mathbf{j}) &= -gk \cos \theta \\ \mathbf{R} = 0: && gk \cos \theta &= ak \dot{\theta}^2 \\ \Rightarrow && g \cos \theta &= a \dot{\theta}^2 \end{align*}
  4. \(\,\) \begin{align*} && 2g(1-\cos \theta) &= a \dot{\theta}^2(k \cos^2 \theta + \sin^2 \theta) \\ && a \dot{\theta}^2 &= g \cos \alpha \\ \Rightarrow && 2g(1-\cos \alpha) &= g \cos \alpha(k \cos^2 \alpha + (1-\cos^2 \alpha)) \\ \Rightarrow && 0 &= g(k-1)c^3+3gc-2g \\ \Rightarrow && 0 &= (k-1)c^3+3c - 2 \end{align*} When \(c =1, f(c) = k > 0\) when \(c = \frac23, f(c) = k-1 < 0\). Therefore there is a root with \(\cos \alpha > \frac23\)
1987 Paper 3 Q12
D: 1500.0 B: 1482.0

A firework consists of a uniform rod of mass \(M\) and length \(2a\), pivoted smoothly at one end so that it can rotate in a fixed horizontal plane, and a rocket attached to the other end. The rocket is a uniform rod of mass \(m(t)\) and length \(2l(t)\), with \(m(t)=2\alpha l(t)\) and \(\alpha\) constant. It is attached to the rod by its front end and it lies at right angles to the rod in the rod's plane of rotation. The rocket burns fuel in such a way that \(\mathrm{d}m/\mathrm{d}t=-\alpha\beta,\) with \(\beta\) constant. The burnt fuel is ejected from the back of the rocket, with speed \(u\) and directly backwards relative to the rocket. Show that, until the fuel is exhausted, the firework's angular velocity \(\omega\) at time \(t\) satisfies \[ \frac{\mathrm{d}\omega}{\mathrm{d}t}=\frac{3\alpha\beta au}{2[Ma^{2}+2\alpha l(3a^{2}+l^{2})]}. \]

Show Solution
TikZ diagram
The rocket principle states that the thrust generated by the rocket is \(-\frac{\d m}{\d t}u = \alpha \beta u\) This force is acting at a distance \(2a\) from \(O\) and therefore is generating a torque of \(2a \alpha \beta u\) on the system. Let's also consider the moments of inertia about \(O\). The fixed rod will have moment of inertia \(\frac13 M (2a)^2 = \frac43 M a^2\). The rocket will have moment of inertia \(I_{G} + md^2 = \frac1{12}m(t)(2l(t))^2 + m(t) ((2a)^2 + l(t)^2)= \frac43 ml^2+ 4ma^2\). Since our final equation doesn't involve \(m\), lets replace all the \(m\) with \(2al\) to obtain a total \(\displaystyle I = \frac43 Ma^2 + \frac83 \alpha l^3 + 8\alpha la^2\). Since \(\tau\) is constant, we can note that \(I\omega = 2a \alpha \beta u t\) (by integrating) and so \begin{align*} && \dot{\omega} &= \frac{\d }{\d t} \left ( \frac{2a \alpha \beta u t}{ \frac43 Ma^2 + \frac83 \alpha l^3 + 8\alpha la^2} \right) \\ &&&= \frac{\d }{\d t} \left ( \frac{3a \alpha \beta u t}{ 2Ma^2 +4\alpha l^3 + 4 \cdot 3 \cdot \alpha la^2} \right) \\ &&&= \frac{\d }{\d t} \left ( \frac{3a \alpha \beta u t}{ 2[Ma^2 +2\alpha l(l^2 + 3 a^2)]} \right) \\ \end{align*} This is, close, but not quite what they are after since the denominator also has a dependency on \(t\) we wont get exactly what they've asked for
1987 Paper 1 Q11
D: 1500.0 B: 1486.7

A smooth sphere of radius \(r\) stands fixed on a horizontal floor. A particle of mass \(m\) is displaced gently from equilibrium on top of the sphere. Find the angle its velocity makes with the horizontal when it loses contact with the sphere during the subsequent motion. By energy considerations, or otherwise, find the vertical component of the momentum of the particle as it strikes the floor.

Show Solution
TikZ diagram
Whilst the particle is on the surface of the sphere consider the energy. Letting the height of centre of the sphere by our \(0\) GPE level, the initial energy is \(mgr\) (assuming that the initial speed is so close to \(0\) as to make no difference). When it makes an angle \(\theta\) with the horizontal it's energy will be \(mgr \sin \theta + \frac12 m v^2\). By conservation of energy: \(mgr \sin \theta + \frac12 m v^2 = mgr \Rightarrow v^2 = 2gr(1-\sin \theta)\) \begin{align*} \text{N2}(\text{radially}): && mg \sin \theta - R &= m \frac{v^2}{r} \\ \Rightarrow && R &= mg\sin \theta - \frac{m}{r} 2gr(1-\sin \theta) \\ &&&=mg \l 3\sin \theta - 2 \r \end{align*} Since \(R\) must be positive whilst the particle is in contact with the sphere, the angle \(\theta\) makes with the horizontal when it leaves the sphere is \(\sin^{-1} \frac{2}{3}\). At this point \(v^2 = 2gr(1-\sin \theta) = \frac{2}{3}gr\) Again, considering energy, the initial energy is \(mgr\). The final energy is \(-mgr + \frac12mu_x^2 + \frac12mu_y^2\) When the particle leaves the surface it has speed \(v= \frac23 gr\), so the component \(u_x = \sqrt{v}\sin \theta\). By conservation of energy therefore: \begin{align*} && mgr &= -mgr + \frac12mu_x^2 + \frac12mu_y^2 \\ \Rightarrow && \frac12 u_y^2 &= 2gr - \frac12 u_x^2 \\ &&&= 2gr - \frac12 (\sqrt{v} \sin \theta)^2 \\ &&&= 2gr - \frac12 \frac23gr \sin^2 \theta \\ &&&= 2gr - \frac13gr \frac{4}{9} \\ &&&= \frac{50}{27}gr \\ \Rightarrow && u_y &= \frac{10}{3\sqrt{3}}\sqrt{gr} \end{align*} Therefore vertical component of momentum is \(\displaystyle \frac{10}{3\sqrt{3}}\sqrt{gr}m\)
2018 Paper 3 Q11
D: 1700.0 B: 1487.9

A particle is attached to one end of a light inextensible string of length \(b\). The other end of the string is attached to a fixed point \(O\). Initially the particle hangs vertically below \(O\). The particle then receives a horizontal impulse. The particle moves in a circular arc with the string taut until the acute angle between the string and the upward vertical is \(\alpha\), at which time it becomes slack. Express \(V\), the speed of the particle when the string becomes slack, in terms of \( b\), \(g\) and \(\alpha\). Show that the string becomes taut again a time \(T\) later, where \[ gT = 4V \sin\alpha \,,\] and that just before this time the trajectory of the particle makes an angle \(\beta \) with the horizontal where \(\tan\beta = 3\tan \alpha \,\). When the string becomes taut, the momentum of the particle in the direction of the string is destroyed. Show that the particle comes instantaneously to rest at this time if and only if \[ \sin^2\alpha = \dfrac {1+\sqrt3}4 \,. \]

Show Solution
TikZ diagram
\begin{align*} \text{N2}(\swarrow): &&T +mg \cos \alpha &= m \frac{V^2}{b} \\ \end{align*} So the string goes slack when \(bg\cos \alpha = V^2 \Rightarrow V = \sqrt{bg \cos \alpha}\). Once the string goes slack, the particle moves as a projectile. It's initial speed is \(V\binom{-\cos \alpha}{\sin \alpha}\) and it's position is \(\binom{b\sin \alpha}{b\cos \alpha}\): \begin{align*} && \mathbf{s} &= \binom{b\sin \alpha}{b\cos \alpha}+Vt \binom{-\cos \alpha}{\sin \alpha} + \frac12 gt^2 \binom{0}{-1} \\ &&&= \binom{b\sin \alpha - Vt \cos \alpha}{b\cos \alpha + Vt \sin \alpha - \frac12 gt^2} \\ |\mathbf{s}|^2 = b^2 \Rightarrow && b^2 &= \left ( \binom{b\sin \alpha}{b\cos \alpha}+Vt \binom{-\cos \alpha}{\sin \alpha} + \frac12 gt^2 \binom{0}{-1} \right)^2 \\ &&&= b^2 + V^2t^2+\frac14 g^2 t^4 -gb\cos \alpha t^2-V\sin \alpha gt^3 \\ \Rightarrow && 0 &= V^2t^2 + \frac14 g^2 t^4 - V^2 t^2- V \sin \alpha g t^3 \\ &&&= \frac14 g^2 t^4 - V \sin \alpha gt^3 \\ \Rightarrow && gT &= 4V \sin \alpha \end{align*} The particle will have velocity \(\displaystyle \binom{-V \cos \alpha}{V \sin \alpha - 4V \sin \alpha} = \binom{-V \cos \alpha}{-3V \sin \alpha}\) so the angle \(\beta\) will satisfy \(\tan \beta = 3 \tan \alpha\). The particle will come to an instantaneous rest if all the momentum is destroyed, ie if the particle is travelling parallel to the string. \begin{align*} && 3 \tan \alpha &= \frac{b\cos \alpha + Vt \sin \alpha - \frac12 gt^2}{b\sin \alpha - Vt \cos \alpha} \\ &&&= \frac{\frac{V^2}{g}+\frac{4V^2\sin^2\alpha}{g} - \frac{8V^2\sin^2 \alpha}{g}}{\frac{V^2\sin \alpha}{g \cos \alpha} - \frac{4V^2 \sin \alpha \cos \alpha}{g}} \\ &&&= \frac{1 -4\sin^2 \alpha}{\tan \alpha(1 - 4\cos^2 \alpha)} \\ \Leftrightarrow&& 3 \frac{\sin^2 \alpha}{1-\sin^2 \alpha} &= \frac{1- 4 \sin^2 \alpha}{-3+4\sin^2 \alpha} \\ \Leftrightarrow && -9 \sin^2 \alpha + 12 \sin^4 \alpha &= 1 - 5 \sin^2 \alpha + 4 \sin^4 \alpha \\ \Leftrightarrow && 0 &= 1+4 \sin^2 \alpha - 8\sin^4 \alpha \\ \Leftrightarrow && \sin^2 \alpha &= \frac{1 + \sqrt{3}}4 \end{align*} (taking the only positive root)
2016 Paper 3 Q10
D: 1700.0 B: 1484.0

A smooth plane is inclined at an angle \(\alpha\) to the horizontal. A particle \(P\) of mass \(m\) is attached to a fixed point \(A\) above the plane by a light inextensible string of length \(a\). The particle rests in equilibrium on the plane, and the string makes an angle \(\beta\) with the plane. The particle is given a horizontal impulse parallel to the plane so that it has an initial speed of \(u\). Show that the particle will not immediately leave the plane if \(ag\cos(\alpha + \beta)> u^2 \tan\beta\). Show further that a necessary condition for the particle to perform a complete circle whilst in contact with the plane is \(6\tan\alpha \tan \beta < 1\).

2015 Paper 2 Q9
D: 1600.0 B: 1484.0

An equilateral triangle \(ABC\) is made of three light rods each of length \(a\). It is free to rotate in a vertical plane about a horizontal axis through \(A\). Particles of mass \(3m\) and \(5m\) are attached to \(B\) and \(C\) respectively. Initially, the system hangs in equilibrium with \(BC\) below \(A\).

  1. Show that, initially, the angle \(\theta\) that \(BC\) makes with the horizontal is given by \(\sin\theta = \frac17\).
  2. The triangle receives an impulse that imparts a speed \(v\) to the particle \(B\). Find the minimum speed \(v_0\) such that the system will perform complete rotations if \(v>v_0\).

Show Solution
TikZ diagram
  1. The sine rule tells us: \begin{align*} && \frac{\frac58 a}{\sin(30^\circ + \theta)} &= \frac{a}{\sin(90^{\circ}-\theta)} \\ \Rightarrow &&\frac58 \cos \theta &= \frac12 \cos \theta+ \frac{\sqrt{3}}2 \sin \theta \\ \Rightarrow && \frac{1}{4\sqrt{3}} &= \tan \theta \\ \Rightarrow && \sin \theta &= \sqrt{\frac{1}{48+1}} = \frac17 \end{align*}
  2. \(\,\) \begin{align*} && \text{initial energy} &= \frac12(5m)v^2 + \frac12 (3m)v^2 - 3m \cdot g \cdot a \cos(30^{\circ}+\theta) -5m \cdot g \cdot a\cos(30^\circ - \theta) \\ &&&= 4m v^2 - amg(4\sqrt{3} \cos \theta + \sin \theta) \\ &&&= 4mv^2 - 7amg \\ && \text{energy at top} &= \frac12 m v_{top}^2 + 7amg \end{align*} We need this equation to be positive for all values of \(v_{top} \geq 0\), so \(4mv^2 \geq 14amg \Rightarrow v_0 = \sqrt{\frac{7ag}2}\)
2012 Paper 3 Q10
D: 1700.0 B: 1500.0

A small ring of mass \(m\) is free to slide without friction on a hoop of radius \(a\). The hoop is fixed in a vertical plane. The ring is connected by a light elastic string of natural length \(a\) to the highest point of the hoop. The ring is initially at rest at the lowest point of the hoop and is then slightly displaced. In the subsequent motion the angle of the string to the downward vertical is \(\phi\). Given that the ring first comes to rest just as the string becomes slack, find an expression for the modulus of elasticity of the string in terms of \(m\) and \(g\). Show that, throughout the motion, the magnitude \(R\) of the reaction between the ring and the hoop is given by \[ R = ( 12\cos^2\phi -15\cos\phi +5) mg \] and that \(R\) is non-zero throughout the motion.

2011 Paper 3 Q11
D: 1700.0 B: 1484.0

A thin uniform circular disc of radius \(a\) and mass \(m\) is held in equilibrium in a horizontal plane a distance \(b\) below a horizontal ceiling, where \(b>2a\). It is held in this way by \(n\) light inextensible vertical strings, each of length \(b\); one end of each string is attached to the edge of the disc and the other end is attached to a point on the ceiling. The strings are equally spaced around the edge of the disc. One of the strings is attached to the point \(P\) on the disc which has coordinates \((a,0,-b)\) with respect to cartesian axes with origin on the ceiling directly above the centre of the disc. The disc is then rotated through an angle \(\theta\) (where \(\theta<\pi\)) about its vertical axis of symmetry and held at rest by a couple acting in the plane of the disc. Show that the string attached to~\(P\) now makes an angle \(\phi\) with the vertical, where \[ b\sin\phi = 2a \sin\tfrac12 \theta\,. \] Show further that the magnitude of the couple is \[ \frac {mga^2\sin\theta}{\sqrt{b^2-4a^2\sin^2 \frac12\theta \ } \ }\,. \] The disc is now released from rest. Show that its angular speed, \(\omega\), when the strings are vertical is given by \[ \frac{a^2\omega^2}{4g} = b-\sqrt{b^2 - 4a^2\sin^2 \tfrac12\theta \;}\,. \]

2011 Paper 3 Q9
D: 1700.0 B: 1484.0

Particles \(P\) and \(Q\) have masses \(3m\) and \(4m\), respectively. They lie on the outer curved surface of a~smooth circular cylinder of radius~\(a\) which is fixed with its axis horizontal. They are connected by a light inextensible string of length \(\frac12 \pi a\), which passes over the surface of the cylinder. The particles and the string all lie in a vertical plane perpendicular to the axis of the cylinder, and the axis intersects this plane at \(O\). Initially, the particles are in equilibrium. Equilibrium is slightly disturbed and \(Q\) begins to move downwards. Show that while the two particles are still in contact with the cylinder the angle \(\theta\) between \(OQ\) and the vertical satisfies \[ 7a\dot\theta^2 +8g \cos\theta + 6 g\sin\theta = 10g\,. \]

  1. Given that \(Q\) loses contact with the cylinder first, show that it does so when~\(\theta=\beta\), where \(\beta\) satisfies \[ 15\cos\beta +6\sin\beta =10. \]
  2. Show also that while \(P\) and \(Q\) are still in contact with the cylinder the tension in the string is $\frac {12}7 mg(\sin\theta +\cos\theta)\,$.

2010 Paper 3 Q9
D: 1700.0 B: 1468.9

\(\,\)

\newrgbcolor{wwwwww}{0.4 0.4 0.4} \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(1.92,2.15)(7.25,6.21) \pspolygon[linecolor=wwwwww,fillcolor=wwwwww,fillstyle=solid,opacity=0.75](2.27,2.85)(2.27,2.52)(6.48,2.52)(6.48,2.85) \psline[linecolor=wwwwww](2.27,2.85)(2.27,2.52) \psline[linecolor=wwwwww](2.27,2.52)(6.48,2.52) \psline[linecolor=wwwwww](6.48,2.52)(6.48,2.85) \psline[linewidth=1.2pt,linecolor=wwwwww](6.48,2.85)(2.27,2.85) \psline(6.48,2.85)(6.48,5.88) \pscustom[linewidth=0.5pt]{\parametricplot{1.5707963267948966}{3.141592653589793}{1*3.02*cos(t)+0*3.02*sin(t)+6.48|0*3.02*cos(t)+1*3.02*sin(t)+2.85}\lineto(6.48,2.85)\closepath} \parametricplot{1.5450288353258959}{2.629484171074415}{1*3.1*cos(t)+0*3.1*sin(t)+6.48|0*3.1*cos(t)+1*3.1*sin(t)+2.85} \psline(6.56,3.94)(6.56,5.96) \psline[linestyle=dashed,dash=1pt 1pt](3.78,4.37)(6.48,2.85) \rput[tl](5.07,4.02){\(a\)} \rput[tl](5.76,3.17){\(\theta \)} \parametricplot{2.629484171074415}{3.141592653589793}{1*0.87*cos(t)+0*0.87*sin(t)+6.48|0*0.87*cos(t)+1*0.87*sin(t)+2.85} \rput[tl](6.61,3.14){\(O\)} \rput[tl](3.31,4.89){\(P\)} \rput[tl](6.85,4.39){\(Q\)} \begin{scriptsize} \psdots[dotsize=6pt 0,dotstyle=*](3.78,4.37) \psdots[dotsize=6pt 0,dotstyle=*](6.56,3.94) \end{scriptsize} \end{pspicture*}
The diagram shows two particles, \(P\) and \(Q\), connected by a light inextensible string which passes over a smooth block fixed to a horizontal table. The cross-section of the block is a quarter circle with centre \(O\), which is at the edge of the table, and radius \(a\). The angle between \(OP\) and the table is \(\theta\). The masses of \(P\) and \(Q\) are \(m\) and \(M \), respectively, where \(m < M\). Initially, \(P\) is held at rest on the table and in contact with the block, \(Q\) is vertically above \(O\), and the string is taut. Then \(P\) is released. Given that, in the subsequent motion, \(P\) remains in contact with the block as \(\theta\) increases from \(0\) to \(\frac12\pi\), find an expression, in terms of \(m\), \(M\), \(\theta\) and \(g\), for the normal reaction of the block on \(P\) and show that \[ \frac{m}{M} \ge \frac{\pi-1}3\,. \]

2008 Paper 1 Q9
D: 1500.0 B: 1484.0

Two identical particles \(P\) and \(Q\), each of mass \(m\), are attached to the ends of a diameter of a light thin circular hoop of radius \(a\). The hoop rolls without slipping along a straight line on a horizontal table with the plane of the hoop vertical. Initially, \(P\) is in contact with the table. At time \(t\), the hoop has rotated through an angle \(\theta\). Write down the position at time \(t\) of \(P\), relative to its starting point, in cartesian coordinates, and determine its speed in terms of \(a\), \(\theta\) and \(\dot\theta\). Show that the total kinetic energy of the two particles is \(2ma^2\dot\theta^2\). Given that the only external forces on the system are gravity and the vertical reaction of the table on the hoop, show that the hoop rolls with constant speed.

Show Solution
TikZ diagram
We can see that the position of \(O\) is \(\begin{pmatrix} a \theta \\ a \end{pmatrix}\) since the hoop is not slipping. \(P\)'s position relative to \(O\) is \(\begin{pmatrix} -a\sin\theta\\a(1-\cos \theta) \end{pmatrix}\), therefore the position of \(P\) is \(\begin{pmatrix} a(\theta-\sin\theta) \\ a(1-\cos \theta) \end{pmatrix}\). We can now calculate \(\mathbf{v}_P = a \begin{pmatrix} (\dot{\theta}-\dot{\theta}\cos\theta) \\ \dot{\theta}\sin \theta \end{pmatrix} = a \dot{\theta} \begin{pmatrix} (1-\cos\theta) \\ \sin \theta \end{pmatrix}\) We can also see that \begin{align*} && |\mathbf{v}_P|^2 &= a^2\dot{\theta}^2 \l \l 1 - \cos \theta \r^2 + \sin^2 \theta \r \\ && &= a^2\dot{\theta}^2 ( 2 - 2\cos \theta) \\ && &= 2a^2\dot{\theta}^2 ( 1 - \cos \theta) \\ && &= a^2\dot{\theta}^2 4 \sin^2 \frac{\theta}{2} \\ \Rightarrow |\mathbf{v}_P| &= 2a \dot{\theta} \left | \sin \frac{\theta}2 \right | \end{align*} Not that the position of \(Q\) is \(\begin{pmatrix} a(\theta+\sin\theta) \\ a(1+\cos \theta) \end{pmatrix}\) Therefore \begin{align*} && |\mathbf{v}_Q|^2 &= a^2\dot{\theta}^2 \l \l 1 + \sin \theta \r^2 + \l 1 + \cos \theta \r^2 \r \\ && &= a^2\dot{\theta}^2 \l \l 1 + \sin \theta \r^2 + \cos^2 \theta \r \\ && &= 2a^2\dot{\theta}^2 \l 1 + \cos \theta \r \\ \end{align*} Therefore \[ \text{K.E.} = \frac12m|\mathbf{v}_P|^2 + |\mathbf{v}_Q|^2 = \frac12m2a^2 \dot{\theta}^2 (1 - \cos \theta + 1-\cos \theta) = 2ma^2 \dot{\theta}^2\] Since there are no external forces acting conservation of energy tells us that kinetic energy is constant, ie \(4ma^2 \dot{\theta}\ddot{\theta} = 0 \Rightarrow \ddot{\theta} = 0\), ie the hoop is rolling with constant speed.
2007 Paper 3 Q11
D: 1700.0 B: 1500.0

  1. A wheel consists of a thin light circular rim attached by light spokes of length \(a\) to a small hub of mass \(m\). The wheel rolls without slipping on a rough horizontal table directly towards a straight edge of the table. The plane of the wheel is vertical throughout the motion. The speed of the wheel is \(u\), where \(u^2
  2. Two particles, each of mass \(m/2\), are attached to a light circular hoop of radius \(a\), at the ends of a diameter. The hoop rolls without slipping on a rough horizontal table directly towards a straight edge of the table. The plane of the hoop is vertical throughout the motion. When the centre of the hoop is vertically above the edge of the table it has speed \(u\), where \(u^2

2005 Paper 3 Q11
D: 1700.0 B: 1500.0

A horizontal spindle rotates freely in a fixed bearing. Three light rods are each attached by one end to the spindle so that they rotate in a vertical plane. A particle of mass \(m\) is fixed to the other end of each of the three rods. The rods have lengths \(a\), \(b\) and \(c\), with \(a > b > c\,\) and the angle between any pair of rods is \(\frac23 \pi\). The angle between the rod of length \(a\) and the vertical is \(\theta\), as shown in the diagram. \vspace*{-0.1in}

\psset{xunit=0.45cm,yunit=0.45cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-6.49,-3.44)(6.06,9.38) \psline[linestyle=dashed,dash=1pt 1pt](0,9.15)(0,-3.05) \psline(0,2.51)(2.41,8.3) \psline(0,2.51)(3.89,-0.76) \psline(0,2.51)(-4.39,0.87) \parametricplot{-2.7855695569416454}{1.176155335856138}{1*1.77*cos(t)+0*1.77*sin(t)+0|0*1.77*cos(t)+1*1.77*sin(t)+2.51} \parametricplot{1.1701030633139027}{1.5707963267948966}{1*2.47*cos(t)+0*2.47*sin(t)+0|0*2.47*cos(t)+1*2.47*sin(t)+2.54} \rput[tl](0.08,4.53){\(\theta\)} \rput[tl](0.59,3.24){\(\frac{2}{3}\pi\)} \rput[tl](-0.46,2.08){\(\frac{2}{3}\pi\)} \rput[tl](1.56,6.08){\(a\)} \rput[tl](2.57,1.3){\(b\)} \rput[tl](-2.8,2.31){\(c\)} \begin{scriptsize} \psdots[dotsize=6pt 0,dotstyle=*](2.41,8.3) \psdots[dotsize=6pt 0,dotstyle=*](3.89,-0.76) \psdots[dotsize=6pt 0,dotstyle=*](-4.39,0.87) \end{scriptsize} \end{pspicture*}
Find an expression for the energy of the system and show that, if the system is in equilibrium, then \[ \tan \theta = -\frac{(b-c) \sqrt{3}}{2a-b-c}\;. \] Deduce that there are exactly two equilibrium positions and determine which of the two equilibrium positions is stable. Show that, for the system to make complete revolutions, it must pass through its position of stable equilibrium with an angular velocity of at least \[ \sqrt{\frac{4gR}{a^2+b^2+c^2}} \, , \] where \(2R^2 = (a-b)^2+(b-c)^2 +(c-a)^2 \;\).

2004 Paper 3 Q9
D: 1700.0 B: 1455.8

A circular hoop of radius \(a\) is free to rotate about a fixed horizontal axis passing through a point \(P\) on its circumference. The plane of the hoop is perpendicular to this axis. The hoop hangs in equilibrium with its centre, \(O\), vertically below \(P\). The point \(A\) on the hoop is vertically below \(O\), so that \(POA\) is a diameter of the hoop. A mouse \(M\) runs at constant speed \(u\) round the rough inner surface of the lower part of the hoop. Show that the mouse can choose its speed so that the hoop remains in equilibrium with diameter \(POA\) vertical. Describe what happens to the hoop when the mouse passes the point at which angle \(AOM = 2 \arctan \mu\,\), where \(\mu\) is the coefficient of friction between mouse and hoop.

2002 Paper 3 Q10
D: 1700.0 B: 1516.0

A light hollow cylinder of radius \(a\) can rotate freely about its axis of symmetry, which is fixed and horizontal. A particle of mass \(m\) is fixed to the cylinder, and a second particle, also of mass \(m\), moves on the rough inside surface of the cylinder. Initially, the cylinder is at rest, with the fixed particle on the same horizontal level as its axis and the second particle at rest vertically below this axis. The system is then released. Show that, if \(\theta\) is the angle through which the cylinder has rotated, then \[ \ddot{\theta} = {g \over 2a} \l \cos \theta - \sin \theta \r \,, \] provided that the second particle does not slip. Given that the coefficient of friction is \( (3 + \sqrt{3})/6\), show that the second particle starts to slip when the cylinder has rotated through \(60^\circ\).

1997 Paper 1 Q10
D: 1516.0 B: 1484.0

The point \(A\) is vertically above the point \(B\). A light inextensible string, with a smooth ring \(P\) of mass \(m\) threaded onto it, has its ends attached at \(A\) and \(B\). The plane \(APB\) rotates about \(AB\) with constant angular velocity \(\omega\) so that \(P\) describes a horizontal circle of radius \(r\) and the string is taut. The angle \(BAP\) has value \(\theta\) and the angle \(ABP\) has value \(\phi\). Show that \[\tan\frac{\phi-\theta}{2}=\frac{g}{r\omega^{2}}.\] Find the tension in the string in terms of \(m\), \(g\), \(r\), \(\omega\) and \(\sin\frac{1}{2}(\theta+\phi)\). Deduce from your results that if \(r\omega^2\) is small compared with \(g\), then the tension is approximately \(\frac{mg}{2}\)

Show Solution
None \begin{multicols}{2}
TikZ diagram
\columnbreak \begin{align*} N2(\uparrow): && T \cos \theta - T \cos \phi - mg &= 0 \\ N2(\rightarrow): && T \sin \theta + T \sin \phi &= m r \omega^2 \\ \\ && T \cos \theta - T \cos \phi &= mg \tag{\(*\)}\\ && T \sin \theta + T \sin \phi &= m r \omega^2 \tag{{\(**\)}} \end{align*} \end{multicols} Dividing \((*)\) by \((**)\) we obtain: \begin{align*} \frac{g}{r\omega^2} &= \frac{\cos \theta - \cos \phi}{\sin \theta + \sin \phi} \\ &= \frac{2 \sin \left ( \frac{\theta + \phi}2 \right )\sin \left (\frac{\phi - \theta}2 \right )}{2 \sin \left ( \frac{\theta + \phi}2 \right )\cos \left (\frac{\phi - \theta}2 \right )} \\ &= \tan \left ( \frac{\phi - \theta}2 \right ) \end{align*} as required. Squaring and adding \((*)\) and \((**)\) we obtain: \begin{align*} && m^2(g^2 + r^2 \omega^4) &= T^2(2 + \sin \theta \sin \phi - \cos \theta \cos \phi) \\ && &= T^2(2 - 2\cos (\theta + \phi)) \\ && &= T^2(2 - 2(1 - 2 \sin^2 \left ( \frac{\theta + \phi}2 \right ) )) \\ && &= T^2(4 \sin^2 \left ( \frac{\theta + \phi}2 \right )) \\ \Rightarrow && T &= \frac{m\sqrt{g^2 + r^2 \omega^4}}{2 \sin \left ( \frac{\theta + \phi}2 \right )} \\ \Rightarrow && T &= \frac{mg\sqrt{1 + \frac{r^2 \omega^4}{g^2}}}{2 \sin \left ( \frac{\theta + \phi}2 \right )} \end{align*} If \(r \omega^2 \ll g\) then \(\tan \l \frac{\phi - \theta}2 \r\) is very large, so \(\phi - \theta \approx \pi\) and so \(\phi + \theta \approx \pi\). We can then say that \[ T \approx \frac{mg}{2}\]
1996 Paper 3 Q9
D: 1700.0 B: 1516.0

A particle of mass \(m\) is at rest on top of a smooth fixed sphere of radius \(a\). Show that, if the particle is given a small displacement, it reaches the horizontal plane through the centre of the sphere at a distance % at least $$a(5\sqrt5+4\sqrt23)/27$$ from the centre of the sphere. [Air resistance should be neglected.]

1996 Paper 2 Q10
D: 1600.0 B: 1516.0

The plot of `Rhode Island Red and the Henhouse of Doom' calls for the heroine to cling on to the circumference of a fairground wheel of radius \(a\) rotating with constant angular velocity \(\omega\) about its horizontal axis and then let go. Let \(\omega_{0}\) be the largest value of \(\omega\) for which it is not possible for her subsequent path to carry her higher than the top of the wheel. Find \(\omega_{0}\) in terms of \(a\) and \(g\). If \(\omega>\omega_{0}\) show that the greatest height above the top of the wheel to which she can rise is \[\frac{a}{2}\left(\frac{\omega}{\omega_{0}} -\frac{\omega_{0}}{\omega}\right)^{\!\!2}.\]

Show Solution
TikZ diagram
\begin{align*} \uparrow: && v &= u + at \\ \Rightarrow && T &= \frac{a \omega \sin \theta}{g} \\ && s &= ut + \frac12 gt^2 \\ \Rightarrow && s &= a\omega \sin \theta \cdot \frac{a \omega \sin \theta}{g} - \frac12 g \left ( \frac{a \omega \sin \theta}{g} \right) ^2 \\ &&&= \frac1{2g} a^2 \omega^2 \sin^2 \theta \\ s < \text{distance to top}: && \frac1{2g} a^2 \omega^2 \sin^2 \theta &< a(1- \cos \theta) \\ \Rightarrow && \omega^2 &< \frac{2g}{a} \frac{1-\cos \theta}{\sin^2 \theta} \\ &&&= \frac{2g}{a} \frac{2 \sin^2 \tfrac12 \theta}{4 \sin^2 \tfrac12 \theta \cos^2 \tfrac12 \theta} \\ &&&= \frac{g}{a} \sec^2 \tfrac12 \theta \\ &&&\leq \frac{g}{a} \tag{since it holds for all \(\theta\) it holds for min \(\theta\)}\\ \Rightarrow && \omega_0 &= \sqrt{\frac{g}{a}} \\ \\ && \text{max height} &= \frac1{2g} a^2 \omega^2 \sin^2 \theta - a(1-\cos \theta) \\ &&&= \frac1{2g} a^2 \omega^2 (1-\cos^2 \theta) - a(1-\cos \theta) \\ &&&= \frac{a}{2} \left (- \frac{\omega^2}{\omega_0^2} \cos^2 \theta + 2 \cos \theta + \frac{\omega^2}{\omega_0^2}-2 \right) \\ &&&= \frac{a}{2} \left (-\left (\frac{\omega_0}{\omega}- \frac{\omega}{\omega_0} \cos \theta \right)^2 + \frac{\omega^2}{\omega_0^2}-2+\frac{\omega_0^2}{\omega^2} \right) \\ &&&= \frac{a}{2} \left ( \frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)^2 - \frac{a}{2} \left (\frac{\omega_0}{\omega}- \frac{\omega}{\omega_0} \cos \theta \right)^2 \end{align*} If \(\omega > \omega_0\) we can find a \(\theta\) such that the second bracket is \(0\), hence the maximium height is as desired.
1992 Paper 3 Q14
D: 1700.0 B: 1500.0

\(\,\)

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.26,-2.36)(6,5.7) \pscircle(0,0){2} \psline(-1.52,1.3)(1.38,4.08) \psline{->}(0,0)(0,5) \psline{->}(0,0)(5,0) \psline(0,0)(-1.52,1.3) \psline(0,2)(4,2) \parametricplot{0.0}{2.4340509797353143}{0.6*cos(t)+0|0.6*sin(t)+0} \rput[tl](1.58,4.34){\(P\)} \rput[tl](4.22,2.14){\(B\)} \rput[tl](0.44,0.92){\(\theta\)} \rput[tl](-2,1.75){\(Q\)} \rput[tl](-0.26,-0.06){\(O\)} \rput[tl](5.14,0.12){\(x\)} \rput[tl](-0.08,5.4){\(y\)} \begin{scriptsize} \psdots[dotstyle=*](1.38,4.08) \psdots[dotstyle=*](4,2) \end{scriptsize} \end{pspicture*}
A horizontal circular disc of radius \(a\) and centre \(O\) lies on a horizontal table and is fixed to it so that it cannot rotate. A light inextensible string of negligible thickness is wrapped round the disc and attached at its free end to a particle \(P\) of mass \(m\). When the string is all in contact with the disc, \(P\) is at \(A\). The string is unwound so that the part not in contact with the disc is taut and parallel to \(OA\). \(P\) is then at \(B\). The particle is projected along the table from \(B\) with speed \(V\) perpendicular to and away from \(OA\). In the general position, the string is tangential to the disc at \(Q\) and \(\angle AOQ=\theta.\) Show that, in the general position, the \(x\)-coordinate of \(P\) with respect to the axes shown in the figure is \(a\cos\theta+a\theta\sin\theta,\) and find \(y\)-coordinate of \(P\). Hence, or otherwise, show that the acceleration of \(P\) has components \(a\theta\dot{\theta}^{2}\) and \(a\dot{\theta}^{2}+a\theta\ddot{\theta}\) along and perpendicular to \(PQ,\) respectively. The friction force between \(P\) and the table is \(2\lambda mv^{2}/a,\) where \(v\) is the speed of \(P\) and \(\lambda\) is a constant. Show that \[ \frac{\ddot{\theta}}{\dot{\theta}}=-\left(\frac{1}{\theta}+2\lambda\theta\right)\dot{\theta} \] and find \(\dot{\theta}\) in terms of \(\theta,\lambda\) and \(a\). Find also the tension in the string when \(\theta=\pi.\)

1992 Paper 3 Q12
D: 1700.0 B: 1500.0

\(\,\)

TikZ diagram
A smooth hemispherical bowl of mass \(2m\) is rigidly mounted on a light carriage which slides freely on a horizontal table as shown in the diagram. The rim of the bowl is horizontal and has centre \(O\). A particle \(P\) of mass \(m\) is free to slide on the inner surface of the bowl. Initially, \(P\) is in contact with the rim of the bowl and the system is at rest. The system is released and when \(OP\) makes an angle \(\theta\) with the horizontal the velocity of the bowl is \(v\)? Show that \[3v=a\dot{\theta}\sin\theta \] and that \[ v^{2}=\frac{2ga\sin^{3}\theta}{3(3-\sin^{2}\theta)}, \] where \(a\) is the interior radius of the bowl. Find, in terms of \(m,g\) and \(\theta,\) the reaction between the bowl and the particle.

1991 Paper 3 Q14
D: 1700.0 B: 1486.2

TikZ diagram
The end \(O\) of a smooth light rod \(OA\) of length \(2a\) is a fixed point. The rod \(OA\) makes a fixed angle \(\sin^{-1}\frac{3}{5}\) with the downward vertical \(ON,\) but is free to rotate about \(ON.\) A particle of mass \(m\) is attached to the rod at \(A\) and a small ring \(B\) of mass \(m\) is free to slide on the rod but is joined to a spring of natural length \(a\) and modulus of elasticity \(kmg\). The vertical plane containing the rod \(OA\) rotates about \(ON\) with constant angular velocity \(\sqrt{5g/2a}\) and \(B\) is at rest relative to the rod. Show that the length of \(OB\) is \[ \frac{(10k+8)a}{10k-9}. \] Given that the reaction of the rod on the particle at \(A\) makes an angle \(\tan^{-1}\frac{13}{21}\) with the horizontal, find the value of \(k\). Find also the magnitude of the reaction between the rod and the ring \(B\).

1991 Paper 3 Q12
D: 1700.0 B: 1487.9

A smooth tube whose axis is horizontal has an elliptic cross-section in the form of the curve with parametric equations \[ x=a\cos\theta\qquad y=b\sin\theta \] where the \(x\)-axis is horizontal and the \(y\)-axis is vertically upwards. A particle moves freely under gravity on the inside of the tube in the plane of this cross-section. By first finding \(\ddot{x}\) and \(\ddot{y},\) or otherwise, show that the acceleration along the inward normal at the point with parameter \(\theta\) is \[ \frac{ab\dot{\theta}^{2}}{\sqrt{a^{2}\sin^{2}\theta+b^{2}\cos^{2}\theta}}. \] The particle is projected along the surface in the vertical cross-section plane, with speed \(2\sqrt{bg},\) from the lowest point. Given that \(2a=3b,\) show that it will leave the surface at the point with parameter \(\theta\) where \[ 5\sin^{3}\theta+12\sin\theta-8=0. \]

1990 Paper 3 Q13
D: 1700.0 B: 1500.0

A particle \(P\) is projected, from the lowest point, along the smooth inside surface of a fixed sphere with centre \(O\). It leaves the surface when \(OP\) makes an angle \(\theta\) with the upward vertical. Find the smallest angle that must be exceeded by \(\theta\) to ensure that \(P\) will strike the surface below the level of \(O\). You may find it helpful to find the time at which the particle strikes the sphere.

Show Solution
TikZ diagram
\begin{align*} %\text{COE}: && \frac12 m u^2 - mga &= \frac12mv^2 + mga\cos \theta \\ \text{N2}(\swarrow): && R+mg\cos\theta &= \frac{m v^2}{a} \\ R = 0: && v^2 &= ag\cos \theta \\ \end{align*} So the particle will become a projectile moving tangent to the circle with \(v^2 = ag \cos \theta\). Therefore the velocity will be \(\displaystyle \sqrt{ag \cos \theta}\binom{-\cos \theta}{\sin \theta}\). We have: \begin{align*} && \mathbf{s} &= a\binom{\sin \theta}{\cos \theta}+\sqrt{ag \cos \theta}\binom{-\cos \theta}{\sin \theta} t + \frac12 \binom{0}{-g} t^2 \\ \Rightarrow && a^2 &= \mathbf{s} \cdot \mathbf{s} \\ &&&= a^2 + ag\cos \theta t^2 + \frac1{4} g^2t^4 -ag \cos \theta t^2 - \sqrt{ag \cos \theta} \sin \theta g t^3 \\ \Rightarrow && 0 &= \frac14 g t - \sqrt{ag \cos \theta} \sin \theta \\ \Rightarrow && t &= \frac{4\sqrt{a g \cos \theta} \sin \theta}{g} \end{align*} At this time, the vertical position will be: \begin{align*} && s_y &= a \cos \theta + \sqrt{ag \cos \theta} \sin \theta \frac{4\sqrt{a g \cos \theta} \sin \theta}{g} - \frac12 g \left ( \frac{4\sqrt{a g \cos \theta} \sin \theta}{g} \right)^2 \\ &&&= a \cos \theta + 4a\cos \theta \sin^2 \theta - 8a\cos \theta \sin^2 \theta \\ &&&= a \cos \theta - 4 a \cos \theta \sin^2 \theta \\ &&&= a \cos \theta (1-4 \sin^2 \theta) \\ \underbrace{\Rightarrow}_{s_y < 0} && 0 &> 1 - 4 \sin^2 \theta \\ \Rightarrow && \sin\theta &> \frac12 \\ \Rightarrow && \theta & > \frac{\pi}{6} \end{align*}
1989 Paper 3 Q12
D: 1700.0 B: 1500.0

A smooth horizontal plane rotates with constant angular velocity \(\Omega\) about a fixed vertical axis through a fixed point \(O\) of the plane. The point \(A\) is fixed in the plane and \(OA=a.\) A particle \(P\) lies on the plane and is joined to \(A\) by a light rod of length \(b(>a)\) freely pivoted at \(A\). Initially \(OAP\) is a straight line and \(P\) is moving with speed \((a+2\sqrt{ab})\Omega\) perpendicular to \(OP\) in the same sense as \(\Omega.\) At time \(t,\) \(AP\) makes an angle \(\phi\) with \(OA\) produced. Obtain an expression for the component of the acceleration of \(P\) perpendicular to \(AP\) in terms of \(\dfrac{\mathrm{d}^{2}\phi}{\mathrm{d}t^{2}},\phi,a,b\) and \(\Omega.\) Hence find \(\dfrac{\mathrm{d}\phi}{\mathrm{d}t}\), in terms of \(\phi,a,b\) and \(\Omega,\) and show that \(P\) never crosses \(OA.\)

Show Solution
Set up coordinate axes so that at time \(t\) \(OA\) is the \(x\)-axis, and all rotations are counter-clockwise. Then if \(OA = \mathbf{a}\), \(AP = \mathbf{x}\) and \(OP = \mathbf{p}\) we have: \begin{align*} \mathbf{a} &= \binom{a}{0} \\ \dot{\mathbf{a}} &= \binom{0}{-a \Omega} \\ \ddot{\mathbf{a}} &= \binom{-a \Omega^2}{0} \\ \\ \mathbf{x} &= \binom{b \cos \phi }{b \sin \phi } \\ \dot{\mathbf{x}} &= b \dot{\phi} \binom{-\sin \phi}{\cos \phi} \\ \ddot{\mathbf{x}} &= \binom{-b \ddot{\phi} \sin \phi-b \dot{\phi}^2 \cos \phi }{b \ddot{\phi} \cos \phi-b \dot{\phi}^2 \sin \phi} \\ \\ \ddot{\mathbf{p}} &= \binom{-a \Omega^2 +-b \ddot{\phi} \sin \phi-b \dot{\phi}^2 \cos \phi }{b \ddot{\phi} \cos \phi-b \dot{\phi}^2 \sin \phi} \end{align*} We can take a dot product with \(\mathbf{n} = \binom{-\sin \phi}{\cos \phi}\) to obtain the component perpendicular to \(AP\), which is: \begin{align*} && \binom{-\sin \phi}{\cos \phi} \cdot \ddot{x} &= a \Omega^2 \sin \phi + b \ddot{\phi} \end{align*} Noticing that this component must be \(0\) (since the only force acting on \(P\) is the rod), this must be equal to zero. \begin{align*} && 0 &= a \Omega^2 \sin \phi + b \ddot{\phi} \\ \Rightarrow && 0 &= a \Omega^2 \dot{\phi} \sin \phi + b\dot{\phi} \ddot{\phi} \\ \Rightarrow && C &= -a \Omega^2 \cos \phi + \tfrac12 b \dot{\phi}^2 \end{align*} Noticing that the initial conditions are \(\phi = 0\) and \(\dot{\phi} = 2\sqrt{\frac{a}{b}} \Omega\), so \begin{align*} && C &= -a \Omega^2+ \tfrac12 b \left ( 2\sqrt{\frac{a}{b}} \Omega \right)^2 \\ &&&= -a \Omega^2 + 2a \Omega^2 \\ &&&= a \Omega^2\\ \Rightarrow && \dot{\phi} &=\sqrt{\frac{2}{b} \left ( a \Omega^2 + a \Omega^2 \cos \phi \right)} \\ &&&= \Omega \sqrt{\frac{2a}{b}} \sqrt{1+ \cos \phi} \\ &&& = \Omega \sqrt{\frac{2a}{b}}\sqrt{2} \cos \tfrac{\phi}{2} \\ \Rightarrow && \int \sec \tfrac{\phi}{2} \d \phi &= 2 \Omega \sqrt{\frac{a}{b}}t \\ \Rightarrow && \tfrac12 \ln | \sec \tfrac{\phi}{2}+\tan \tfrac{\phi}{2} | &= 2 \Omega \sqrt{\frac{a}{b}}t + C \\ t = 0, \phi = 0: && C = 0 \\ \Rightarrow && \sec \tfrac{\phi}{2}+\tan \tfrac{\phi}{2} &= e^{4 \Omega \sqrt{\frac{a}{b}}t} \end{align*} Since when \(t > 0\) this is positive and larger than \(1\) we cannot have \(\phi = 0\) and since it remains below infinite \(\phi\) cannot reach \(\pi\). Therefore it cannot cross \(OA\)

No problems in this section yet.

Showing 1-23 of 23 problems
1987 Paper 1 Q13
D: 1500.0 B: 1500.0

A particle of mass \(m\) moves along the \(x\)-axis. At time \(t=0\) it passes through \(x=0\) with velocity \(v_{0} > 0\). The particle is acted on by a force \(\mathrm{F}(x)\), directed along the \(x\)-axis and measured in the direction of positive \(x\), which is given by \[ \mathrm{F}(x)=\begin{cases} -m\mu^{2}x & \qquad(x\geqslant0),\\ -m\kappa\dfrac{\mathrm{d}x}{\mathrm{d}t} & \qquad(x < 0), \end{cases} \] where \(\mu\) and \(\kappa\) are positive constants. Obtain the particle's subsequent position as a function of time, and give a rough sketch of the \(x\)-\(t\) graph.

Show Solution
Using Newton's second law in the form, \(\F(x) = m \ddot{x}\). Our two different differential equations can be solved as follows: When \(x \geq 0\) \(-\mu^2x = \ddot{x} \Rightarrow x = A\sin \mu t + B \cos \mu t\) when \(x \geq 0\). And when \(x < 0\) \(-\kappa \dot{x} = \ddot{x} \Rightarrow \dot{x} = Ce^{-\kappa t} \Rightarrow x = De^{-\kappa t} + E\) when \(x < 0\) Following the trajectory of the particle: At \(t = 0, x = 0, \dot{x} = v_0 > 0\), so \(x = \frac{v_0}{\mu} \sin \mu t\) until \(t = \frac{\pi}{\mu}\). When \(t = \frac{\pi}{\mu}\) the particle will head into the negative \(x\)-axis with velocity \(-v_0\). At which point our initial conditions for our differential equations give us that \(De^{-\frac{\pi\kappa}{\mu}} + E = 0, -\kappa De^{-\frac{\pi\kappa}{\mu}} = -v_0 \Rightarrow De^{-\frac{\pi\kappa}{\mu}} = \frac{v_0}{\kappa}, E = -\frac{v_0}{\kappa}\). To summarise: \[ x(t) = \begin{cases} \frac{v_0}{\mu} \sin \mu t & 0 \leq t \leq \frac{\pi}{\mu} \\ -\frac{v_0}{\kappa} \l 1-e^{-\kappa(t-\frac{\pi}{\mu})}\r & t > \frac{\pi}{\mu}\end{cases}\]
TikZ diagram
2018 Paper 2 Q10
D: 1600.0 B: 1500.0

A uniform elastic string lies on a smooth horizontal table. One end of the string is attached to a fixed peg, and the other end is pulled at constant speed \(u\). At time \(t=0\), the string is taut and its length is \(a\). Obtain an expression for the speed, at time \(t\), of the point on the string which is a distance \(x\) from the peg at time~\(t\). An ant walks along the string starting at \(t=0\) at the peg. The ant walks at constant speed~\(v\) along the string (so that its speed relative to the peg is the sum of \(v\) and the speed of the point on the string beneath the ant). At time \(t\), the ant is a distance \(x\) from the peg. Write down a first order differential equation for \(x\), and verify that \[ \frac{\d }{\d t} \left( \frac x {a+ut}\right) = \frac v {a+ut} \,. \] Show that the time \(T\) taken for the ant to reach the end of the string is given by \[uT = a(\e^k-1)\,,\] where \(k=u/v\). On reaching the end of the string, the ant turns round and walks back to the peg. Find in terms of \(T\) and \(k\) the time taken for the journey back.

2017 Paper 2 Q10
D: 1600.0 B: 1500.0

A car of mass \(m\) makes a journey of distance \(2d\) in a straight line. It experiences air resistance and rolling resistance so that the total resistance to motion when it is moving with speed \(v\) is \(Av^2 +R\), where \(A\) and \(R\) are constants. The car starts from rest and moves with constant acceleration \(a\) for a distance \(d\). Show that the work done by the engine for this half of the journey is \[ \int_0^d (ma+R+Av^2) \, \d x \] and that it can be written in the form \[ \int_0^w \frac {(ma+R+Av^2)v}a\; \d v \,, \] where \(w =\sqrt {2ad\,}\,\). For the second half of the journey, the acceleration of the car is \(-a\).

  1. In the case \(R>ma\), show that the work done by the engine for the whole journey~is \[ 2Aad^2 + 2Rd \,. \]
  2. In the case \(ma-2Aad< R< ma\), show that at a certain speed the driving force required to maintain the constant acceleration falls to zero. Thereafter, the engine does no work (and the driver applies the brakes to maintain the constant acceleration). Show that the work done by the engine for the whole journey~is \[ 2Aad^2 + 2 Rd + \frac{(ma-R)^2}{4Aa} \, .\]

2016 Paper 3 Q11
D: 1700.0 B: 1484.0

A car of mass \(m\) travels along a straight horizontal road with its engine working at a constant rate \(P\). The resistance to its motion is such that the acceleration of the car is zero when it is moving with speed \(4U\).

  1. Given that the resistance is proportional to the car's speed, show that the distance~\(X_1\) travelled by the car while it accelerates from speed \(U\) to speed \(2U\), is given by \[ \lambda X_1 = 2\ln \tfrac 9 5 - 1 \,, \] where \(\lambda= P/(16mU^3)\).
  2. Given instead that the resistance is proportional to the square of the car's speed, show that the distance \(X_2\) travelled by the car while it accelerates from speed \(U\) to speed \(2U\) is given by \[ \lambda X_2 = \tfrac43 \ln \tfrac 98 \,. \]
  3. Given that \(3.17<\ln 24 < 3.18\) and \(1.60<\ln 5 < 1.61\), determine which is the larger of \(X_1\) and \(X_2\).

2015 Paper 3 Q10
D: 1700.0 B: 1500.0

A light rod of length \(2a\) has a particle of mass \(m\) attached to each end and it moves in a vertical plane. The midpoint of the rod has coordinates \((x,y)\), where the \(x\)-axis is horizontal (within the plane of motion) and \(y\) is the height above a horizontal table. Initially, the rod is vertical, and at time \(t\) later it is inclined at an angle \(\theta\) to the vertical. Show that the velocity of one particle can be written in the form \[ \begin{pmatrix} \dot x + a \dot\theta \cos\theta \\ \dot y - a \dot\theta \sin\theta \end{pmatrix} \] and that \[ m\begin{pmatrix} \ddot x + a\ddot\theta \cos\theta - a \dot\theta^2 \sin\theta \\ \ddot y- a\ddot\theta \sin\theta - a \dot\theta^2 \cos\theta \end{pmatrix} =-T\begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix} -mg \begin{pmatrix} 0 \\ 1 \end{pmatrix} \] where the dots denote differentiation with respect to time \(t\) and \(T\) is the tension in the rod. Obtain the corresponding equations for the other particle. Deduce that \(\ddot x =0\), \(\ddot y = -g\) and \(\ddot\theta =0\). Initially, the midpoint of the rod is a height \(h\) above the table, the velocity of the higher particle is \(\Big(\begin{matrix} \, u \, \\ v \end{matrix}\Big)\), and the velocity of the lower particle is \(\Big(\begin{matrix}\, 0 \, \\ v\end{matrix}\Big)\). Given that the two particles hit the table for the first time simultaneously, when the rod has rotated by \(\frac12\pi\), show that \[ 2hu^2 = \pi^2a^2 g - 2\pi uva \,. \]

2015 Paper 3 Q9
D: 1700.0 B: 1541.9

A particle \(P\) of mass \(m\) moves on a smooth fixed straight horizontal rail and is attached to a fixed peg \(Q\) by a light elastic string of natural length \(a\) and modulus \(\lambda\). The peg \(Q\) is a distance \(a\) from the rail. Initially \(P\) is at rest with \(PQ=a\). An impulse imparts to \(P\) a speed \(v\) along the rail. Let \(x\) be the displacement at time \(t\) of \(P\) from its initial position. Obtain the equation \[ \dot x^2 = v^2 - k^2 \left( \sqrt{x^2+a^2} -a\right)^{\!2} \] where \( k^2 = \lambda/(ma)\), \(k>0\) and the dot denotes differentiation with respect to \(t\). Find, in terms of \(k\), \(a\) and \(v\), the greatest value, \(x_0\), attained by \(x\). Find also the acceleration of \(P\) at \(x=x_0\). Obtain, in the form of an integral, an expression for the period of the motion. Show that in the case \(v\ll ka\) (that is, \(v\) is much less than \(ka\)), this is approximately \[ \sqrt {\frac {32a}{kv}} \int_0^1 \frac 1 {\sqrt{1-u^4}} \, \d u \, . \]

2014 Paper 3 Q9
D: 1700.0 B: 1500.0

A particle of mass \(m\) is projected with velocity \(\+ u\). It is acted upon by the force \(m\+g\) due to gravity and by a resistive force \(-mk \+v\), where \(\+v\) is its velocity and \(k\) is a positive constant. Given that, at time \(t\) after projection, its position \(\+r\) relative to the point of projection is given by \[ \+r = \frac{kt -1 +\.e^{-kt}} {k^2} \, \+g + \frac{ 1-\.e^{-kt}}{k} \, \+u \,, \] find an expression for \(\+v\) in terms of \(k\), \(t\), \(\+g\) and \(\+u\). Verify that the equation of motion and the initial conditions are satisfied. Let \(\+u = u\cos\alpha \, \+i + u \sin\alpha \, \+j\) and $\+g = -g\, \+j\(, where \)0<\alpha<90^\circ\(, and let \)T$ be the time after projection at which \(\+r \,.\, \+j =0\). Show that \[ uk \sin\alpha = \left(\frac{kT}{1-\.e^{-kT}} -1\right)g\,. \] Let \(\beta\) be the acute angle between \(\+v\) and \(\+i\) at time \(T\). Show that \[ \tan\beta = \frac{(\.e^{kT}-1)g}{uk\cos\alpha}-\tan\alpha \,. \] Show further that \(\tan\beta >\tan\alpha\) (you may assume that \(\sinh kT >kT\)) and deduce that~\(\beta >\alpha\).

2009 Paper 3 Q11
D: 1700.0 B: 1500.1

A comet in deep space picks up mass as it travels through a large stationary dust cloud. It is subject to a gravitational force of magnitude \(M\!f\) acting in the direction of its motion. When it entered the cloud, the comet had mass \(M\) and speed \(V\). After a time \(t\), it has travelled a distance \(x\) through the cloud, its mass is \(M(1+bx)\), where~\(b\) is a positive constant, and its speed is \(v\).

  1. In the case when \(f=0\), write down an equation relating \(V\), \(x\), \(v\) and \(b\). Hence find an expression for \(x\) in terms of \(b\), \(V\) and \(t\).
  2. In the case when \(f\) is a non-zero constant, use Newton's second law in the form \[ \text{force} = \text{rate of change of momentum} \] to show that \[ v = \frac{ft+V}{1+bx}\,. \] Hence find an expression for \(x\) in terms of \(b\), \(V\), \(f\) and \(t\). Show that it is possible, if \(b\), \(V\) and \(f\) are suitably chosen, for the comet to move with constant speed. Show also that, if the comet does not move with constant speed, its speed tends to a constant as \(t\to\infty\).

2008 Paper 3 Q9
D: 1700.0 B: 1484.0

A particle of mass \(m\) is initially at rest on a rough horizontal surface. The particle experiences a force \(mg\sin \pi t\), where \(t\) is time, acting in a fixed horizontal direction. The coefficient of friction between the particle and the surface is \(\mu\). Given that the particle starts to move first at \(t=T_0\), state the relation between \(T_0\) and \(\mu\).

  1. For \(\mu = \mu_0\), the particle comes to rest for the first time at \(t=1\). Sketch the acceleration-time graph for \(0\le t \le 1\). Show that \[ 1+\left(1-\mu_0^2\right)^{\frac12} -\mu_0\pi +\mu_0 \arcsin \mu_0 =0\,. \]
  2. For \(\mu=\mu_0\) sketch the acceleration-time graph for \(0\le t\le 3\). Describe the motion of the particle in this case and in the case \(\mu=0\).
\noindent[{\bf Note:} \(\arcsin x\) is another notation for \(\sin^{-1}x\).\ ]

2004 Paper 3 Q11
D: 1700.0 B: 1500.0

Particles \(P\), of mass \(2\), and \(Q\), of mass \(1\), move along a line. Their distances from a fixed point are \(x_1\) and \(x_2\), respectively where \(x_2>x_1\,\). Each particle is subject to a repulsive force from the other of magnitude \(\displaystyle {2 \over z^3}\), where \(z = x_2-x_1 \,\). Initially, \(x_1=0\), \(x_2 = 1\), \(Q\) is at rest and \(P\) moves towards \(Q\) with speed 1. Show that \(z\) obeys the equation \(\displaystyle {\mathrm{d}^2 z \over \mathrm{d}t^2} = {3 \over z^3}\). By first writing \(\displaystyle {\mathrm{d}^2 z \over \mathrm{d}t^2} = v {\mathrm{d}v \over \mathrm{d}z} \,\), where \(\displaystyle v={\mathrm{d}z \over \mathrm{d}t}\,\), show that \(z=\sqrt{4t^2-2t+1}\,\). By considering the equation satisfied by \(2x_1+x_2\,\), find \(x_1\) and \(x_2\) in terms of \(t \,\).

Show Solution
\begin{align*} \text{N2}: && 2\ddot{x}_1 &= -\frac{2}{(x_2-x_1)^3}\\ \text{N2}: && \ddot{x}_2 &= \frac{2}{(x_2-x_1)^3}\\ \Rightarrow && \ddot{x}_2 - \ddot{x}_1 &= \frac{3}{(x_1-x_2)^3} \\ \Rightarrow && \frac{\d^2 z}{\d t^2} &= \frac{3}{z^3} \\ \Rightarrow && v \frac{\d v}{\d z} &= \frac{3}{z^3} \\ \Rightarrow && \int v \d v &= \int \frac{3}{z^3} \d z \\ \Rightarrow && \frac{v^2}{2} &= -\frac{3}{2}z^{-2} + C \\ \Rightarrow && v^2 &= -3 z^{-2} + C' \\ t=0,z=1,v=-1: && 1 &= -3+C \Rightarrow C = 4 \\ \Rightarrow && \frac{\d z}{\d t} &= -\sqrt{4-3z^{-2}} \\ \Rightarrow && \int \d t &= -\int \frac{1}{\sqrt{4-3z^{-2}}} \d z \\ \Rightarrow && t &= \int \frac{z}{\sqrt{4z^2-3}} \d z \\ \Rightarrow && t &= -\frac14\sqrt{4z^2-3} + C \\ t=0, z = 1: && 0 &= -\frac14+C \\ \Rightarrow && C &= \frac14\\ \Rightarrow && 4t -1 &= -\sqrt{4z^2-3} \\ \Rightarrow && 16t^2+1-8t &= 4z^2-3 \\ \Rightarrow && z &= \sqrt{4t^2-2t+1} \end{align*} \begin{align*} && 2\ddot{x}_1 + \ddot{x}_2 &= 0 \\ \Rightarrow && 2x_1+x_2 &= At + B \\ t = 0, v = -1: && 2x_1+x_2 &= -t+1 \\ \\ \Rightarrow && x_2-x_1 &= \sqrt{4t^2-2t+1}\\ && 2x_1+x_2 &= 1-t \\ \Rightarrow && x_1 &= \frac13 \left (1-t-\sqrt{4t^2-2t+1} \right) \\ && x_2 &= \frac13(1-t + \sqrt{4t^2-2t+1}) \end{align*} This method of considering the relative position and considering the motion of the centre of mass is extremely common for solving systems of particles problems.
2004 Paper 2 Q11
D: 1600.0 B: 1500.0

The maximum power that can be developed by the engine of train \(A\), of mass \(m\), when travelling at speed \(v\) is \(Pv^{3/2}\,\), where \(P\) is a constant. The maximum power that can be developed by the engine of train \(B\), of mass \(2m\), when travelling at speed \(v\) is \(2Pv^{3/2}.\) For both \(A\) and \(B\) resistance to motion is equal to \(kv\), where \(k\) is a constant. For \(t\le0\), the engines are crawling along at very low equal speeds. At \(t = 0\,\), both drivers switch on full power and at time \(t\) the speeds of \(A\) and \(B\) are \(v_{\vphantom{\dot A}\!A}\) and \(v_{\vphantom{\dot B}\hspace{-1pt}B},\) respectively.

  1. Show that \[ v_{\vphantom{\dot A}\!A} = \frac{P^2 \left(1-\e^{-kt/2m}\right)^2}{k^2} \] and write down the corresponding result for \(v_{\vphantom{\dot B}B}\).
  2. Find \(v_{\vphantom{\dot B}A}\) and \(v_{\vphantom{\dot B}B}\) when \(9 v_{\vphantom{\dot B}A} =4v_{\vphantom{\dot B}B}\;\). %Show that %\(1 < v_{\vphantom{\dot B}\hspace{-1pt}B} /v_{\vphantom{\dot A}\!A} < 4\) for \(t>0\,\).
  3. Both engines are switched off when \(9 v_{\vphantom{\dot B}A} =4v_{\vphantom{\dot B}B}\,\). Show that thereafter \(k^2 v_{\vphantom{\dot B}B}^2 = 4 P^2 v_{\vphantom{\dot B}A}\,\).

2003 Paper 3 Q10
D: 1700.0 B: 1500.0

A particle moves along the \(x\)-axis in such a way that its acceleration is \(kx \dot{x}\,\) where \(k\) is a positive constant. When \(t = 0\), \(x = d\) (where \(d>0\)) and \(\dot{x} =U\,\).

  1. Find \(x\) as a function of \(t\) in the case \(U = kd^2\) and show that \(x\) tends to infinity as \(t\) tends to \(\displaystyle \frac{\pi }{2 dk}\,\).
  2. If \(U < 0\), find \(x\) as a function of \(t\) and show that it tends to a limit, which you should state in terms of \(d\) and \(U\,\), as \(t\) tends to infinity.

Show Solution
  1. \(\,\) \begin{align*} && \ddot{x} &= kx \dot{x} \\ \Rightarrow && \frac{\d v}{\d x} \dot{x} &= k x \dot{x} \\ \Rightarrow && \int \d v &= \int k x \d x \\ \Rightarrow && v &= \frac12kx^2 + C \\ t=0, x = d, \dot{x} = kd^2: && kd^2 &= \frac12kd^2 + C \\ \Rightarrow && \dot{x} &= \frac12k(x^2+d^2) \\ \Rightarrow && \frac{\d x}{\d t} &= \frac12k(x^2+d^2) \\ \Rightarrow && \int \d t &= \int \frac{1}{\frac12k(x^2+d^2)} \d x \\ &&&= \frac{2}{kd}\tan^{-1} \frac{x}{d} \\ \Rightarrow && t &= \frac{2}{kd}\tan^{-1} \frac{x}{d} + C' \\ t = 0, x = d: && 0 &= \frac{\pi}{2kd} + C' \\ \Rightarrow && t &= \frac{2}{kd}\tan^{-1} \frac{x}{d}-\frac{\pi}{2kd} \end{align*} As \(x \to \infty\), \(t \to \frac{2}{kd} \frac{\pi}{2} - \frac{\pi}{2kd} = \frac{\pi}{2kd} \)
  2. \(\,\) \begin{align*} && v &= \frac12kx^2 + C \\ t=0, x = d, \dot{x} = U && U &= \frac12kd^2 + C \\ \Rightarrow && \dot{x} &= \frac12k(x^2-d^2)+U \\ \Rightarrow && \frac{\d x}{\d t} &=\frac12k(x^2-d^2)+U \\ \Rightarrow && \int \d t &= \int \frac{1}{\frac12k(x^2-d^2)+U} \d x \\ && &=\frac{2}{k} \int \frac{1}{x^2-d^2+\frac{2U}k} \d x \\ &&&= \frac2{k} \frac{1}{2\sqrt{d^2-\frac{2U}k}} \ln \frac{ \sqrt{d^2-\frac{2U}k}-x}{x+\sqrt{d^2-\frac{2U}k}} \\ \Rightarrow && t &= \frac2{k} \frac{1}{2\sqrt{d^2-\frac{2U}k}} \ln \frac{ \sqrt{d^2-\frac{2U}k}-x}{x+\sqrt{d^2-\frac{2U}k}} + C'' \\ t = 0, \dot{x} = d: && 0 &= \frac2{k} \frac{1}{2\sqrt{d^2-\frac{2U}k}} \ln \frac{ \sqrt{d^2-\frac{2U}k}-d}{d+\sqrt{d^2-\frac{2U}k}} + C'' \\ \Rightarrow && t &= \frac2{k} \frac{1}{2\sqrt{d^2-\frac{2U}k}} \ln \left ( \frac{ \sqrt{d^2-\frac{2U}k}-x}{x+\sqrt{d^2-\frac{2U}k}} \frac{d+\sqrt{d^2-\frac{2U}k}}{ \sqrt{d^2-\frac{2U}k}-d} \right ) \end{align*} as \(t \to \infty\) the denominator needs to head to \(0\), ie \(x \to -\sqrt{d^2-\frac{2U}k}\)
2001 Paper 2 Q9
D: 1600.0 B: 1484.0

A particle of unit mass is projected vertically upwards with speed \(u\). At height \(x\), while the particle is moving upwards, it is found to experience a total force \(F\), due to gravity and air resistance, given by \(F=\alpha \e^{-\beta x}\), where \(\alpha\) and \(\beta\) are positive constants. Calculate the energy expended in reaching this height. Show that \[ F= {\textstyle \frac12} \beta v^2+ \alpha - {\textstyle \frac12} \beta u^2 \;, \] where \(v\) is the speed of the particle, and explain why \( \alpha = \frac12 \beta u^2 +g\), where \(g\) is the acceleration due to gravity. Determine an expression, in terms of \(y\), \(g\) and \(\beta\), for the air resistance experienced by the particle on its downward journey when it is at a distance \(y\) below its highest point.

Show Solution
Considering the energy of the particle, we have initial kinetic energy of \(\frac12 u^2\) and final energy is \(\frac12 v^2\), the change in energy is the work done by the force, \begin{align*} &&\text{Work done against resistance} &= \text{loss in kinetic energy} \\ &&\int F \, \d x &= \int \alpha e^{-\beta x} \, \d x \\ &&&= \frac{\alpha}{\beta} \l 1 - e^{-\beta x} \r \\ &&&= \frac{1}{\beta} \l \alpha - F\r \\ &&&= \frac12 u^2 - \frac12 v^2 \\ \Rightarrow && F &= \frac12 \beta v^2 + \alpha - \frac12 \beta u^2 \end{align*} When \(v = 0\) there is no air resistance, ie \(F = g\), but \(g = 0 + \alpha - \frac12 \beta u^2 \Rightarrow \alpha = g + \frac12 \beta u^2\) \(F = \frac12 \beta v^2 + g\), ie air resistance is \(\frac12 \beta v^2\) Looking at forces acting on the particle when it's descending, \begin{align*} && v \frac{dv}{dx} &= g - \frac12 \beta v^2 \\ \Rightarrow && \frac{v}{g - \frac12 \beta v^2} \frac{dv}{dx} &= 1 \\ \Rightarrow && \int \frac{v}{g - \frac12 \beta v^2} \, dv &= \int dx \\ \Rightarrow && \frac1{\beta}\l\ln(g - \frac12\beta v^2) - \ln(g)\r &= y\\ \Rightarrow && \ln \l 1 - \frac12 \frac{\beta}{g}v^2 \r &= \beta y \\ \Rightarrow && \frac{g}{\beta} \l 1-e^{-\beta y} \r = \frac12 v^2 \end{align*} Since force is the rate of change of work, we can say that the force is \(ge^{-\beta y}\) and the air resistance is \(g \l 1-e^{-\beta y} \r\)
2000 Paper 2 Q9
D: 1600.0 B: 1500.0

In an aerobatics display, Jane and Karen jump from a great height and go through a period of free fall before opening their parachutes. While in free fall at speed \(v\), Jane experiences air resistance \(kv\) per unit mass but Karen, who spread-eagles, experiences air resistance \mbox{\(kv + (2k^2/g)v^2\)} per unit mass. Show that Jane's speed can never reach \(g/k\). Obtain the corresponding result for Karen. Jane opens her parachute when her speed is \(g/(3{k})\). Show that she has then been in free fall for time \(k^{-1}\ln (3/2)\). Karen also opens her parachute when her speed is \(g/(3{k})\). Find the time she has then been in free fall.

Show Solution
Looking at the forces on Jane, \(kv < g \Rightarrow v < \frac{g}{k}\). For Karen we have \begin{align*} kv + (2k^2/g)v^2 &< g\\ -g^2 + gkv + (2k^2)v^2 &< 0 \\ (2kv-g)(kv+g) &< 0\\ \Rightarrow v &< \frac{g}{2k} \end{align*} \begin{align*} && \dot{v} &= g - kv \\ \Rightarrow && \frac{\dot{v}}{g - kv} &= 1 \\ \Rightarrow && T &= \int_0^{g/(3k)} \frac{1}{g - kv} dv \\ && &= \int_0^{g/(3k)} \frac{1}{g - kv} dv\\ && &= \int_0^{g/(3k)} \frac{1}{g - kv} dv \\ && &= \left [-\frac{1}{k} \ln \l g - kv \r \right ]_0^{g/(3k)} \\ && &= \frac{1}{k} \ln \l g \r - \frac{1}{k} \ln \l \frac{2}{3}g \r\\ &&&= \frac{1}{k} \ln \l \frac{3}{2} \r \end{align*} \begin{align*} && \dot{v} &= g - kv - (2k^2/g)v^2 \\ \Rightarrow && \frac{\dot{v}}{g - kv - (2k^2/g)v^2} &= 1 \\ \Rightarrow && T &= \int_0^{g/(3k)} \frac{1}{g - kv - (2k^2/g)v^2} dv \\ && &= \int_0^{g/(3k)} \frac{g}{(g-2kv)(kv+g)} dv\\ && &= \int_0^{g/(3k)} \l \frac{2}{3(g-2kv)} + \frac{1}{3(kv+g)} \r dv\\ && &= \left [ \l -\frac{1}{3k} \ln (g-2kv) + \frac{1}{3k}\ln(kv+g) \r \right ]_0^{g/(3k)} \\ && &= \left [ \l -\frac{1}{3k}\ln \l \frac{g}{3} \r + \frac{1}{3k}\ln \l \frac{4g}{3} \r \r \right ] - \left [- \frac1{3k} \ln(g) + \frac{1}{3k} \ln (g) \right ] \\ && &= \frac{1}{3k} \ln \l 4 \r \end{align*} NB: \(\sqrt[3]{4} \approx 1.58 > \frac{3}{2}\) so Karen has been in free-fall for longer, but not \emph{much} longer than Jane.
1999 Paper 2 Q9
D: 1600.0 B: 1500.0

In the \(Z\)--universe, a star of mass \(M\) suddenly blows up, and the fragments, with various initial speeds, start to move away from the centre of mass \(G\) which may be regarded as a fixed point. In the subsequent motion the acceleration of each fragment is directed towards \(G\). Moreover, in accordance with the laws of physics of the \(Z\)--universe, there are positive constants \(k_1\), \(k_2\) and \(R\) such that when a fragment is at a distance \(x\) from \(G\), the magnitude of its acceleration is \(k_1x^3\) if \(x < R\) and is \(k_2x^{-4}\) if \(x \ge R\). The initial speed of a fragment is denoted by \(u\).

  1. For \(x < R\), write down a differential equation for the speed \(v\), and hence determine \(v\) in terms of \(u\), \(k_1\) and \(x\) for \( x < R\).
  2. Show that if \(u < a\), where \(2a^2=k_1 R^4\), then the fragment does not reach a distance \(R\) from \(G\).
  3. Show that if \(u \ge b\), where $ 6b^2= 3k_1R^4 + 4k_2 /R^3, $ then from the moment of the explosion the fragment is always moving away from \(G\).
  4. If \(a < u < b\), determine in terms of \(k_2\), \(b\) and \(u\) the maximum distance from \(G\) attained by the fragment.

1997 Paper 1 Q11
D: 1484.0 B: 1500.0

A particle of unit mass is projected vertically upwards in a medium whose resistance is \(k\) times the square of the velocity of the particle. If the initial velocity is \(u\), prove that the velocity \(v\) after rising through a distance \(s\) satisfies \begin{equation*} v^{2}=u^{2}\e^{-2ks}+\frac{g}{k}(\e^{-2ks}-1). \tag{\ensuremath{*}} \end{equation*} Find an expression for the maximum height of the particle above the point of projection. Does equation \((*)\) still hold on the downward path? Justify your answer.

1995 Paper 2 Q11
D: 1600.0 B: 1500.0

Two identical particles of unit mass move under gravity in a medium for which the magnitude of the retarding force on a particle is \(k\) times its speed. The first particle is allowed to fall from rest at a point \(A\) whilst, at the same time, the second is projected upwards with speed \(u\) from a point \(B\) a positive distance \(d\) vertically above \(A\). Find their distance apart after a time \(t\) and show that this distance tends to the value \[ d+\frac{u}{k} \] as \(t\rightarrow\infty.\)

Show Solution
Both particles have equations of motion, \(\ddot{x} = -g-k\dot{x}\), so we can note that the distance between them has the equation of motion: \(\ddot{x} = -k \ddot{x} \Rightarrow x = Ae^{-kt} + B\) \begin{align*} && x(0) &= d \\ \Rightarrow && A+B &= d \\ && x'(0) &= u \\ \Rightarrow && -kA &= u \\ \Rightarrow && A &= -\frac{u}{k} \\ \Rightarrow && B &= d+\frac{u}{k} \\ \Rightarrow && x(t) &= -\frac{u}{k}e^{-kt} + d + \frac{u}{k} \to d + \frac{u}{k} \end{align*} as required.
1993 Paper 2 Q11
D: 1600.0 B: 1484.0

In this question, take the value of \(g\) to be \(10\ \mathrm{ms^{-2}.\)} A body of mass \(m\) kg is dropped vertically into a deep pool of liquid. Once in the liquid, it is subject to gravity, an upward buoyancy force of \(\frac{6}{5}\) times its weight, and a resistive force of \(2mv^{2}\mathrm{N}\) opposite to its direction of travel when it is travelling at speed \(v\) \(\mathrm{ms}^{-1}.\) Show that the body stops sinking less than \(\frac{1}{4}\pi\) seconds after it enters the pool. Suppose now that the body enters the liquid with speed \(1\ \mathrm{ms}^{-1}.\) Show that the body descends to a depth of \(\frac{1}{4}\ln2\) metres and that it returns to the surface with speed \(\frac{1}{\sqrt{2}}\ \mathrm{ms}^{-1},\) at a time \[ \frac{\pi}{8}+\frac{1}{4}\ln\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \] seconds after entering the pool.

Show Solution
While descending, the body experiences the force \(-\frac15mg - 2mv^2\). \begin{align*} \text{N2:} && m \dot{v} &= -\frac15 mg - 2mv^2 \\ \Rightarrow && \frac{\dot{v}}{\frac15g + 2v^2} &= -1 \\ \Rightarrow && \frac{1}{2}\tan^{-1} v_1 - \frac{1}{2}\tan^{-1} {v_0} &= -T \end{align*} We care about when \(v_1 = 0\), ie \(\displaystyle T = \frac{1}{2}\tan^{-1} {v_0} < \frac12 \frac{\pi}2 = \frac{\pi}4\) seconds. If the body enters at speed \(1\ \mathrm{ms}^{-1}.\) then for the first part of it's journey it will experience forces \(-\frac15mg - 2mv^2\) and so: \begin{align*} \text{N2:} && m v \frac{\d v}{\d x} &= -\frac15 mg - 2mv^2 \\ \Rightarrow && \int \frac{v}{2(1 + v^2)} \d v &= \int -1 \d x \\ \Rightarrow && \frac14 \ln (1 + v^2) &= -x \end{align*} Therefore the depth is \(\frac14 \ln 2\) metres. When the body is rising, it experiences forces of: \(\frac15mg - 2mv^2\) and so: \begin{align*} \text{N2:} && m v \frac{\d v}{\d x} &= \frac15mg - 2mv^2 \\ \Rightarrow && \int \frac{v}{2(1 - v^2)} \d v &= \int -1 \d x \\ \Rightarrow && -\frac14 \ln (1 - v^2) &= \frac14 \ln 2 \\ \Rightarrow && 1-v^2 &= \frac12 \\ \Rightarrow && v &= \frac{1}{\sqrt{2}} \ \mathrm{ms}^{-1} \end{align*} This will take \begin{align*} \text{N2:} && m \dot{v} &= \frac15mg - 2mv^2 \\ \Rightarrow && \frac{\dot{v}}{2(1-v^2)} &= -1 \\ \Rightarrow && \dot{v} \frac{1}{4}\l \frac{1}{1 - v} + \frac{1}{1+v} \r &= -1 \\ \Rightarrow && \frac{1}{4} \l -\ln(1 - v) + \ln(1 + v)\r &= -T \end{align*} Since \(v = \frac{1}{\sqrt{2}}\) \begin{align*} T &= \frac{1}{4} \ln \l \frac{1+ \frac1{\sqrt{2}}}{1 - \frac1{\sqrt{2}}}\r \\ &= \frac14 \ln \l \frac{\sqrt{2} + 1}{\sqrt{2}-1} \r \end{align*} and therefore the total time will be: \begin{align*} & \frac12 \tan^{-1} 1 + \frac14 \ln \l \frac{\sqrt{2} + 1}{\sqrt{2}-1} \r \\ =& \frac{\pi}{8} + \frac14 \ln \l \frac{\sqrt{2} + 1}{\sqrt{2}-1} \r \end{align*}
1993 Paper 1 Q13
D: 1516.0 B: 1470.3

A train starts from a station. The tractive force exerted by the engine is at first constant and equal to \(F\). However, after the speed attains the value \(u\), the engine works at constant rate \(P,\) where \(P=Fu.\) The mass of the engine and the train together is \(M.\) Forces opposing motion may be neglected. Show that the engine will attain a speed \(v\), with \(v\geqslant u,\) after a time \[ t=\frac{M}{2P}\left(u^{2}+v^{2}\right). \] Show also that it will have travelled a distance \[ \frac{M}{6P}(2v^{3}+u^{3}) \] in this time.

Show Solution
While the force is constant, the train is accelerating at \(\frac{F}{M}\), and since \(u = \frac{F}{M} t_1 \Rightarrow t_1 = \frac{Mu^2}{Fu} = \frac{Mu^2}{P}\). Once the train is being driven at a constant rate, we can observe that change in energy will be power times time, ie \(Pt_2 = \frac{1}{2}M(v^2 - u^2) \Rightarrow t_2 = \frac{M}{2P} ( v^2 - u^2)\). Therefore the total time will be \(t_1 + t_2 = \frac{M}{2P} ( u^2 + v^2)\). During the first period, the distance will be: \(s_1 = \frac12 \frac{F}{M} t_1^2 = \frac12 \frac{F}{M} \frac{M^2u^2}{F^2} = \frac{Mu^3}{2P}\) In the second period, \(P = Fu\) and so \(\text{Force} = \frac{P}{v} \Rightarrow M v \frac{\d v}{\d x} = \frac{P}{v} \Rightarrow M \l \frac{v^3}{3} - \frac{u^3}{3}\r = Ps_2\) and therefore total distance will be: \(\frac{M}{6P}(2v^{3}+u^{3})\)
1992 Paper 1 Q13
D: 1500.0 B: 1484.0

A comet, which may be regarded as a particle of mass \(m\), moving in the sun's gravitational field, at a distance \(x\) from the sun, experiences a force \(Gm/x^{2}\) (where \(G\) is a constant) directly towards the sun. Show that if, at some time, \(x=h\) and the comet is travelling directly away from the sun with speed \(V\), then \(x\) cannot become arbitrarily large unless \(V^{2}\geqslant2G/h\). A comet is initially motionless at a great distance from the sun. If, at some later time, it is at a distance \(h\) from the sun, how long after that will it take to fall into the sun?

Show Solution
Consider \(E = \frac12 m \dot{x}^2 - \frac{Gm}{x}\), notice that \begin{align*} && \dot{E} &= m \dot{x} \ddot{x} + \frac{Gm}{x^2} \dot{x} \\ &&&= \dot{x} \underbrace{\left (m\ddot{x} + \frac{Gm}{x^2} \right)}_{=0 \text{ by N2}} \end{align*} Therefore \(E\) is conserved. Therefore if \(x \to \infty\) \(\frac12 m V^2 - \frac{Gm}{h} = \frac12 m u^2 - 0 \geq 0\) so \(V^2 \geqslant 2G/h\) Since \(E \approx 0\) we want to solve \begin{align*} && \dot{x} &= -\sqrt{\frac{2G}{x}} \\ \Rightarrow && -\int_h^0 \sqrt{x} \d x &= \int_0^T \sqrt{2G} \d t \\ \Rightarrow && \frac{2h^{3/2}}{3} &= \sqrt{2G}T \\ \Rightarrow && T &= \frac{\sqrt{2}h^{3/2}}{3\sqrt{G}} = \frac13 \sqrt{\frac{2h^3}{G}} \end{align*}
1991 Paper 2 Q14
D: 1600.0 B: 1500.0

The current in a straight river of constant width \(h\) flows at uniform speed \(\alpha v\) parallel to the river banks, where \(0<\alpha<1\). A boat has to cross from a point \(A\) on one bank to a point \(B\) on the other bank directly opposite to \(A\). The boat moves at constant speed \(v\) relative to the water. When the position of the boat is \((x,y)\), where \(x\) is the perpendicular distance from the opposite bank and \(y\) is the distance downstream from \(AB\), the boat is pointing in a direction which makes an angle \(\theta\) with \(AB\). Determine the velocity vector of the boat in terms of \(v,\theta\) and \(\alpha.\) The pilot of the boat steers in such a way that the boat always points exactly towards \(B\). Show that the velocity vector of the boat is \[ \begin{pmatrix}\dfrac{\mathrm{d}x}{\mathrm{d}t}\\ \tan\theta\dfrac{\mathrm{d}x}{\mathrm{d}t}+x\sec^{2}\theta\dfrac{\mathrm{d}\theta}{\mathrm{d}t} \end{pmatrix}. \] By comparing this with your previous expression deduce that \[ \alpha\frac{\mathrm{d}x}{\mathrm{d}\theta}=-x\sec\theta \] and hence show that \[ (x/h)^{\alpha}=(\sec\theta+\tan\theta)^{-1}. \] Let \(s(t)\) be a new variable defined by \(\tan\theta=\sinh(\alpha s).\) Show that \(x=h\mathrm{e}^{-s},\) and that \[ h\mathrm{e}^{-s}\cosh(\alpha s)\frac{\mathrm{d}s}{\mathrm{d}t}=v. \] Hence show that the time of crossing is \(hv^{-1}(1-\alpha^{2})^{-1}.\)

1989 Paper 1 Q10
D: 1516.0 B: 1484.0

A spaceship of mass \(M\) is travelling at constant speed \(V\) in a straight line when it enters a force field which applies a resistive force acting directly backwards and of magnitude \(M\omega(v^{2}+V^{2})/v\), where \(v\) is the instantaneous speed of the spaceship, and \(\omega\) is a positive constant. No other forces act on the spaceship. Find the distance travelled from the edge of the force field until the speed is reduced to \(\frac{1}{2}V\). As soon as the spaceship has travelled this distance within the force field, the field is altered to a constant resistive force, acting directly backwards, whose magnitude is within 10% of that of the force acting on the spaceship immediately before the change. If \(z\) is the extra distance travelled by the spaceship before coming instantaneously to rest, determine limits between which \(z\) must lie.

Show Solution
Using Newton's second law, we have: \begin{align*} && -M\omega(v^2+V^2)/v &= M v \frac{\d v}{\d x} \\ \Rightarrow && \frac{v^2}{v^2+V^2} \frac{\d v}{\d x} &= -\omega \\ \Rightarrow && \omega X &= \int_{V/2}^V \frac{v^2}{v^2+V^2} \d v \\ &&&= \int_{V/2}^V \l 1 - \frac{V^2}{v^2+V^2} \r \d v \\ &&&= \left [v - V\tan^{-1} \frac{v}{V} \right]_{V/2}^V \\ &&&= V \l \frac12 - \tan^{-1} 1 + \tan^{-1} \frac12 \r \\ \Rightarrow X &= \frac{V}{\omega} \l \tan^{-1} \frac12 + \frac12 - \frac{\pi}{4} \r \end{align*}. The resistive force just before the field changes is \(M \omega (\frac{V^2}{4} + V^2)/\frac{V}{2} = \frac52MV\omega\). Therefor the constant resistive force is between \(\frac{11}4MV\omega\) and \(\frac{9}{4}MV \omega\) and acceleration is \(\frac{11}{4}V\omega, \frac{9}{4}V\omega\). Since \(v^2 = u^2 + 2as \Rightarrow s = \frac{v^2-u^2}{2a} = \frac{\frac{V^2}{4}}{2kV\omega} = \frac{V}{8k\omega}\) therefore \(z \in \left [ \frac{V}{22\omega},\frac{V}{18 \omega} \right]\)
1988 Paper 3 Q13
D: 1700.0 B: 1503.7

A goalkeeper stands on the goal-line and kicks the football directly into the wind, at an angle \(\alpha\) to the horizontal. The ball has mass \(m\) and is kicked with velocity \(\mathbf{v}_{0}.\) The wind blows horizontally with constant velocity \(\mathbf{w}\) and the air resistance on the ball is \(mk\) times its velocity relative to the wind velocity, where \(k\) is a positive constant. Show that the equation of motion of the ball can be written in the form \[ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}+k\mathbf{v}=\mathbf{g}+k\mathbf{w}, \] where \(\mathbf{v}\) is the ball's velocity relative to the ground, and \(\mathbf{g}\) is the acceleration due to gravity. By writing down horizontal and vertical equations of motion for the ball, or otherwise, find its position at time \(t\) after it was kicked. On the assumption that the goalkeeper moves out of the way, show that if \(\tan\alpha=\left|\mathbf{g}\right|/(k\left|\mathbf{w}\right|),\) then the goalkeeper scores an own goal.

Show Solution
Applying \(\mathbf{F} = m\mathbf{a} = m \frac{\d \mathbf{v}}{dt}\) we have: \begin{align*} && m \frac{\d \mathbf{v}}{d t} &= m\mathbf{g} - mk(\mathbf{v} - \mathbf{w}) \\ \Rightarrow && \frac{\d \mathbf{v}}{d t} +k \mathbf{v} &= \mathbf{g} + k \mathbf{w} \\ \\ \Rightarrow && e^{k t} \l \frac{\d \mathbf{v}}{d t} +k \mathbf{v} \r &= e^{kt} ( \mathbf{g} + k \mathbf{w}) \\ \Rightarrow && \frac{\d}{\d t} \l e^{kt} \mathbf{v} \r &= e^{kt}( \mathbf{g} + k \mathbf{w}) \\ \Rightarrow && e^{kt} \mathbf{v} &= \frac{1}ke^{kt}( \mathbf{g} + k \mathbf{w}) + c \\ \Rightarrow && \mathbf{v}_0 &= \frac{1}{k} ( \mathbf{g} + k \mathbf{w})+c \\ \Rightarrow && \mathbf{v} &= e^{-kt} \l \mathbf{v_0} - \frac{1}{k}\mathbf{g} - \mathbf{w} \r + \frac{1}{k} \mathbf{g} + \mathbf{w} \\ \Rightarrow && \mathbf{x} &= -\frac{1}{k}e^{-kt} \l \mathbf{v_0} - \frac{1}{k}\mathbf{g} - \mathbf{w} \r + \frac{1}{k} \mathbf{g}t + \mathbf{w}t+C \\ \Rightarrow && \mathbf{0} &= -\frac{1}{k} \l \mathbf{v_0} - \frac{1}{k}\mathbf{g} - \mathbf{w} \r + C \\ \Rightarrow && \mathbf{x} &= \frac1{k}\l 1- e^{-kt} \r\l \mathbf{v_0} - \frac{1}{k}\mathbf{g} - \mathbf{w} \r + \frac{1}{k} \mathbf{g}t + \mathbf{w}t \end{align*} Position at time \(t\) is: \begin{align*} && x_x &= \frac1{k} ( 1-e^{-kt})(u_x - w)+wt \\ && x_y &= \frac1{k} ( 1-e^{-kt})(u_x \frac{g}{kw} - \frac{g}{k})+\frac{1}{k}gt \\ &&&= \frac{g}{kw} \left ( ( 1-e^{-kt})(u_x - w)+wt \right) \\ &&&= \frac{g}{kw} x_x \end{align*} Therefore if \(x_x\) is ever \(0\) then \(x_y\) will also be zero. But the ball must eventually hit the ground, and when it does, it will be in the process of scoring an own goal.

Showing 1-14 of 14 problems
1987 Paper 2 Q14
D: 1500.0 B: 1500.0

A thin uniform elastic band of mass \(m,\) length \(l\) and modulus of elasticity \(\lambda\) is pushed on to a smooth circular cone of vertex angle \(2\alpha,\) in such a way that all elements of the band are the same distance from the vertex. It is then released from rest. Let \(x(t)\) be the length of the band at time \(t\) after release, and let \(t_{0}\) be the time at which the band becomes slack. Assuming that a small element of the band which subtends an angle \(\delta\theta\) at the axis of the cone experiences a force, due to the tension \(T\) in the band, of magnitude \(T\delta\theta\) directed towards the axis, and ignoring the effects of gravity, show that \[ \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}+\frac{4\pi^{2}\lambda}{ml}(x-l)\sin^{2}\alpha=0,\qquad(0< t< t_{0}). \] Find the value of \(t_{0}.\)

Show Solution
TikZ diagram
\begin{align*} \text{N2}(\nwarrow): && T\delta \theta \sin \alpha &= -m\frac{\delta \theta}{2\pi} \ddot{d} \end{align*} Notice that \(r = d \sin \alpha\) and \(x = 2 \pi r\), so \(x = 2\pi d \sin \alpha\) and \(\ddot{x} = 2\pi \sin \alpha \ddot{d} \Rightarrow \ddot{d} = \ddot{x} \frac{1}{2 \pi \sin \alpha}\) Notice also that \(T = \frac{\lambda}{l}(x-l)\) so. \begin{align*} && \frac{m}{4 \pi^2 \sin\alpha} \ddot{x} &= -\frac{\lambda}{l}(x-l) \sin\alpha \\ \Rightarrow && \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}+\frac{4\pi^{2}\lambda}{ml}(x-l)\sin^{2}\alpha&=0 \end{align*} The solution to the differential equation we have is: \begin{align*} && x(t) &= A \sin \left (\sqrt{\frac{4 \pi^2 \lambda}{ml}\sin^2 \alpha} \cdot t \right) + B \sin \left (\sqrt{\frac{4 \pi^2 \lambda}{ml}\sin^2 \alpha} \cdot t \right) + l \\ &&&= A \sin \left (2 \pi \sin \alpha\sqrt{\frac{ \lambda}{ml}} \cdot t \right) +B \sin \left (2 \pi \sin \alpha\sqrt{\frac{ \lambda}{ml}} \cdot t \right) + l\\ && \dot{x}(0) = 0 \\ \Rightarrow && B &= 0 \\ && x(t) &= (x(0)-l) \sin \left (2 \pi \sin \alpha\sqrt{\frac{ \lambda}{ml}} \cdot t \right) + l \\ && x(t_0) &= l \\ \Rightarrow && t_0 &= \frac{1}{4\sin \alpha} \sqrt{\frac{ml}{\lambda}} \end{align*}
2004 Paper 3 Q10
D: 1700.0 B: 1484.0

A particle \(P\) of mass \(m\) is attached to points \(A\) and \(B\), where \(A\) is a distance \(9a\) vertically above \(B\), by elastic strings, each of which has modulus of elasticity \(6mg\). The string \(AP\) has natural length \(6a\) and the string \(BP\) has natural length \(2a\). Let \(x\) be the distance \(AP\). The system is released from rest with \(P\) on the vertical line \(AB\) and \(x = 6a\). Show that the acceleration \(\ddot{x}\) of \(P\) is \(\ds{4g \over a}(7a - x)\) for \(6a < x < 7a\) and \(\ds{g \over a}(7a - x)\) for \(7a < x < 9a\,\). Find the time taken for the particle to reach \(B\).

2003 Paper 3 Q9
D: 1700.0 B: 1503.8

A particle \(P\) of mass \(m\) is constrained to move on a vertical circle of smooth wire with centre~\(O\) and of radius \(a\). \(L\) is the lowest point of the circle and \(H\) the highest and \(\angle LOP = \theta\,\). The particle is attached to \(H\) by an elastic string of natural length \(a\) and modulus of elasticity~\(\alpha mg\,\), where \(\alpha > 1\,\). Show that, if \(\alpha>2\,\), there is an equilibrium position with \(0<\theta<\pi\,\). Given that \(\alpha =2+\sqrt 2\,\), and that \(\displaystyle \theta = \tfrac{1}{2}\pi + \phi\,\), show that \[ \ddot{\phi} \approx -\frac{g (\sqrt2+1)}{2a }\, \phi \] when \(\phi\) is small. For this value of \(\alpha\), explain briefly what happens to the particle if it is given a small displacement when \( \theta = \frac{1}{2}\pi\).

2001 Paper 3 Q9
D: 1700.0 B: 1484.1

\(B_1\) and \(B_2\) are parallel, thin, horizontal fixed beams. \(B_1\) is a vertical distance \(d \sin \alpha \) above \(B_2\), and a horizontal distance \(d\cos\alpha \) from \(B_2\,\), where \(0<\alpha<\pi/2\,\). A long heavy plank is held so that it rests on the two beams, perpendicular to each, with its centre of gravity at \(B_1\,\). The coefficients of friction between the plank and \(B_1\) and \(B_2\) are \(\mu_1\) and \(\mu_2\,\), respectively, where \(\mu_1<\mu_2\) and \(\mu_1+\mu_2=2\tan\alpha\,\). The plank is released and slips over the beams experiencing a force of resistance from each beam equal to the limiting frictional force (i.e. the product of the appropriate coefficient of friction and the normal reaction). Show that it will come to rest with its centre of gravity over \(B_2\) in a time \[ \pi \left(\frac{d}{g(\mu_2-\mu_1)\cos\alpha }\right)^{\!\frac12}\;. \]

Show Solution
TikZ diagram
\begin{align*} \overset{\curvearrowright}{B_2} : && mgx\cos \alpha - R_1d &= 0 \\ && \frac{mgx \cos \alpha}{d} &= R_1 \\ \overset{\curvearrowright}{B_1} : && -mg(d-x)\cos \alpha + R_2d &= 0 \\ && \frac{mg(d-x) \cos \alpha}{d} &= R_2 \\ % \text{N2}(\perp B_1B_2): && R_1 + R_2 - mg\cos \alpha &=0 \\ \text{N2}(\parallel B_1B_2): && mg\sin \alpha - \mu_1R_1 - \mu_2R_2 &= m\ddot{x} \\ && mg \sin \alpha - \mu_1 \frac{mgx \cos \alpha}{d} - \mu_2\frac{mg(d-x) \cos \alpha}{d} &= m \ddot{x} \\ && gd \sin \alpha - \mu_2 gd \cos \alpha - (\mu_1 - \mu_2) x g \cos \alpha &= d \ddot{x} \\ && gd \frac12 \l \mu_1 + \mu_2 \r \cos \alpha - \mu_2 gd \cos \alpha - (\mu_1 - \mu_2) x g \cos \alpha &= d \ddot{x} \\ && gd \frac12 \l \mu_1 - \mu_2 \r \cos \alpha - (\mu_1 - \mu_2) x g \cos \alpha &= d \ddot{x} \\ && \frac12 d C &= d \ddot{x} + Cx \\ && \Big ( C &= g(\mu_1 - \mu_2) \cos \alpha \Big ) \\ \end{align*} We can recognise this differential equation from SHM as having the solution: \[x = A\sin \l \l \frac{d}{C} \r^{\frac12} t \r + B\cos \l \l \frac{d}{C} \r^{\frac12} t \r + \frac12 d\] Since when \(t = 0, x = d, \dot{x} = 0, A = 0, B = \frac{1}{2}d\). We will reach \(B_2, (x = 0)\) when \(\cos \l \l \frac{d}{C} \r^{\frac12} T \r = -1\) (at which point the speed will be zero) and \begin{align*} && \l \frac{d}{C} \r^{\frac12} T &= \pi \\ \Rightarrow && T&= \pi \l \frac{d}{g(\mu_1 - \mu_2) \cos \alpha} \r^{\frac12} \end{align*}
2000 Paper 2 Q11
D: 1600.0 B: 1484.0

The string \(AP\) has a natural length of \(1\!\cdot5\!\) metres and modulus of elasticity equal to \(5g\) newtons. The end \(A\) is attached to the ceiling of a room of height \(2\!\cdot\!5\) metres and a particle of mass \mbox{\(0\!\cdot\!5\) kg} is attached to the end \(P\). The end \(P\) is released from rest at a point \(0\!\cdot\!5\) metres above the floor and vertically below \(A\). Show that the string becomes slack, but that \(P\) does not reach the ceiling. Show also that while the string is in tension, \(P\) executes simple harmonic motion, and that the time in seconds that elapses from the instant when \(P\) is released to the instant when \(P\) first returns to its original position is $$ \left(\frac8{3g}\right)^{\!\frac12}+ \left(\frac3 {5g}\right)^{\!\frac12} {\Big(\pi - \arccos (3/7)\Big)}. $$ \noindent [Note that \(\arccos x\) is another notation for \(\cos^{-1} x\).]

1999 Paper 1 Q10
D: 1500.0 B: 1500.0

A particle is attached to a point \(P\) of an unstretched light uniform spring \(AB\) of modulus of elasticity \(\lambda\) in such a way that \(AP\) has length \(a\) and \(PB\) has length \(b\). The ends \(A\) and \(B\) of the spring are now fixed to points in a vertical line a distance \(l\) apart, The particle oscillates along this line. Show that the motion is simple harmonic. Show also that the period is the same whatever the value of \(l\) and whichever end of the string is uppermost.

1998 Paper 3 Q11
D: 1700.0 B: 1500.0

Consider a simple pendulum of length \(l\) and angular displacement \(\theta\), which is {\bf not} assumed to be small. Show that $$ {1\over 2}l \left({\d\theta\over \d t}\right)^2 = g(\cos\theta -\cos\gamma)\,, $$ where \(\gamma\) is the maximum value of \(\theta\). Show also that the period \(P\) is given by $$ P= 2 \sqrt{l\over g} \int_0^\gamma \left( \sin^2(\gamma/2)-\sin^2(\theta/2) \right)^{-{1\over 2}} \,\d\theta \,. $$ By using the substitution \(\sin(\theta/2)=\sin(\gamma/2) \sin\phi\), and then finding an approximate expression for the integrand using the binomial expansion, show that for small values of \(\gamma\) the period is approximately $$ 2\pi \sqrt{l\over g} \left(1+{\gamma^2\over 16}\right) \,. $$

1998 Paper 1 Q9
D: 1500.0 B: 1484.0

Two small spheres \(A\) and \(B\) of equal mass \(m\) are suspended in contact by two light inextensible strings of equal length so that the strings are vertical and the line of centres is horizontal. The coefficient of restitution between the spheres is \(e\). The sphere \(A\) is drawn aside through a very small distance in the plane of the strings and allowed to fall back and collide with the other sphere \(B\), its speed on impact being \(u\). Explain briefly why the succeeding collisions will all occur at the lowest point. (Hint: Consider the periods of the two pendulums involved.) Show that the speed of sphere \(A\) immediately after the second impact is \(\frac{1}{2}u(1+e^{2})\) and find the speed, then, of sphere \(B\).

1996 Paper 3 Q11
D: 1700.0 B: 1484.0

A smooth circular wire of radius \(a\) is held fixed in a vertical plane with light elastic strings of natural length \(a\) and modulus \(\lambda\) attached to the upper and lower extremities, \(A\) and \(C\) respectively, of the vertical diameter. The other ends of the two strings are attached to a small ring \(B\) which is free to slide on the wire. Show that, while both strings remain taut, the equation for the motion of the ring is $$2ma \ddot\theta=\lambda(\cos\theta-\sin\theta)-mg\sin\theta,$$ where \(\theta\) is the angle \( \angle{CAB}\). Initially the system is at rest in equilibrium with \(\sin\theta=\frac{3}{5}\). Deduce that \(5\lambda=24mg\). The ring is now displaced slightly. Show that, in the ensuing motion, it will oscillate with period approximately $$10\pi\sqrt{a\over91g}\,.$$

1996 Paper 2 Q11
D: 1600.0 B: 1484.0

A particle hangs in equilibrium from the ceiling of a stationary lift, to which it is attached by an elastic string of natural length \(l\) extended to a length \(l+a\). The lift now descends with constant acceleration \(f\) such that \(0 < f < g/2\). Show that the extension \(y\) of the string from its equilibrium length satisfies the differential equation $$ {{\rm d}^2 y \over {\rm d} t^2} +{g \over a}\, y = g-f. $$ Hence show that the string never becomes slack and the amplitude of the oscillation of the particle is \(af/g\). After a time \(T\) the lift stops accelerating and moves with constant velocity. Show that the string never becomes slack and the amplitude of the oscillation is now \[\frac{2af}{g}|\sin {\textstyle \frac{1}{2}}\omega T|,\] where \(\omega^{2}=g/a\).

1994 Paper 3 Q9
D: 1700.0 B: 1500.0

A smooth, axially symmetric bowl has its vertical cross-sections determined by \(s=2\sqrt{ky},\) where \(s\) is the arc-length measured from its lowest point \(V\), and \(y\) is the height above \(V\). A particle is released from rest at a point on the surface at a height \(h\) above \(V\). Explain why \[ \left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)^{2}+2gy \] is constant. Show that the time for the particle to reach \(V\) is \[ \pi\sqrt{\frac{k}{2g}}. \] Two elastic particles of mass \(m\) and \(\alpha m,\) where \(\alpha<1,\) are released simultaneously from opposite sides of the bowl at heights \(\alpha^{2}h\) and \(h\) respectively. If the coefficient of restitution between the particles is \(\alpha,\) describe the subsequent motion.

1993 Paper 2 Q13
D: 1600.0 B: 1500.0

The force \(F\) of repulsion between two particles with positive charges \(Q\) and \(Q'\) is given by \(F=kQQ'/r^{2},\) where \(k\) is a positive constant and \(r\) is the distance between the particles. Two small beads \(P_{1}\) and \(P_{2}\) are fixed to a straight horizontal smooth wire, a distance \(d\) apart. A third bead \(P_{3}\) of mass \(m\) is free to move along the wire between \(P_{1}\) and \(P_{3}.\) The beads carry positive electrical charges \(Q_{1},Q_{2}\) and \(Q_{3}.\) If \(P_{3}\) is in equilibrium at a distance \(a\) from \(P_{1},\) show that \[ a=\frac{d\sqrt{Q_{1}}}{\sqrt{Q_{1}}+\sqrt{Q_{2}}}. \] Suppose that \(P_{3}\) is displaced slightly from its equilibrium position and released from rest. Show that it performs approximate simple harmonic motion with period \[ \frac{\pi d}{(\sqrt{Q_{1}}+\sqrt{Q_{2}})^{2}}\sqrt{\frac{2md\sqrt{Q_{1}Q_{2}}}{kQ_{3}}.} \] {[}You may use the fact that \(\dfrac{1}{(a+y)^{2}}\approx\dfrac{1}{a^{2}}-\dfrac{2y}{a^{3}}\) for small \(y.\){]}

1991 Paper 2 Q12
D: 1600.0 B: 1500.0

A particle is attached to one end \(B\) of a light elastic string of unstretched length \(a\). Initially the other end \(A\) is at rest and the particle hangs at rest at a distance \(a+c\) vertically below \(A\). At time \(t=0\), the end \(A\) is forced to oscillate vertically, its downwards displacement at time \(t\) being \(b\sin pt\). Let \(x(t)\) be the downwards displacement of the particle at time \(t\) from its initial equilibrium position. Show that, while the string remains taut, \(x(t)\) satisfies \[ \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}=-n^{2}(x-b\sin pt), \] where \(n^{2}=g/c\), and that if \(0 < p < n\), \(x(t)\) is given by \[ x(t)=\frac{bn}{n^{2}-p^{2}}(n\sin pt-p\sin nt). \] Write down a necessary and sufficient condition that the string remains taut throughout the subsequent motion, and show that it is satisfied if \(pb < (n-p)c.\)

1989 Paper 3 Q13
D: 1700.0 B: 1500.0

The points \(A,B,C,D\) and \(E\) lie on a thin smooth horizontal table and are equally spaced on a circle with centre \(O\) and radius \(a\). At each of these points there is a small smooth hole in the table. Five elastic strings are threaded through the holes, one end of each beging attached at \(O\) under the table and the other end of each being attached to a particle \(P\) of mass \(m\) on top of the table. Each of the string has natural length \(a\) and modulus of elasticity \(\lambda.\) If \(P\) is displaced from \(O\) to any point \(F\) on the table and released from rest, show that \(P\) moves with simple harmonic motion of period \(T\), where \[ T=2\pi\sqrt{\frac{am}{5\lambda}}. \] The string \(PAO\) is replaced by one of natural length \(a\) and modulus \(k\lambda.\) \(P\) is displaced along \(OA\) from its equilibrium position and released. Show that \(P\) still moves in a straight line with simple harmonic motion, and, given that the period is \(T/2,\) find \(k\).

Show Solution
TikZ diagram
The extension of \(OAP\) is \(|AP|\) and so the tension \(T_a = \frac{\lambda}{a} |AP|\). To simplify calculations, let \(A = a, B = a \omega, C = a \omega^2, \cdots\) where \(\omega = e^{2 \pi i/5}\) and let \(P = z\). then we can calculate the force as: \begin{align*} &&\sum_{p}T_p \mathbf{n}_{z \to p} &= \sum_{p} \frac{\lambda}{a} |z-p| \frac{p-z}{|p-z|} \\ &&&= \frac{\lambda}{a} \sum_{p} ( p - z) \\ &&&= -\frac{5\lambda}{a}z \end{align*} Therefore the force has magnitude \(\frac{5 \lambda}{a} |OP|\) directly towards the origin. Therefore if we set up our coordinate axis such that \(OP\) is the \(x\) axis, the particle will remain on the \(x\) axis and will move under the equation: \[ m \ddot{x} + \frac{5 \lambda}{a} x = 0 \] But then we can say that \(P\) moves under SHM with period \(\displaystyle 2 \pi \sqrt{\frac{am}{5 \lambda}}\) as required. Now suppose that \(PAO\) has been replaced with the string of modulus \(k \lambda\) but that \(P\) is along \(OA\). \begin{align*} F &= \frac{\lambda}{a}\left ( (a \omega - z) + (a \omega^2 - z)+ (a \omega^3 -z)+ (a \omega^4 - z) + k(a -z) \right) \\ &= \frac{\lambda}{a}(-a - 4z+ka -kz) \\ &= \frac{\lambda}{a}((k-1)a-(k+4)z) \end{align*} Notice that if \(z\) is real, this expression is also real, so all forces are acting along \(OA\). Therefore the particle will remain on the line \(OA\). We can also notice that the particle will move under the differential equation \[ m \ddot{x} + \frac{(k+4) \lambda}{a}x = \lambda(k-1) \] Therefore it will move with SHM about a point slightly displaced from the origin. The period will be: \(\displaystyle 2 \pi \sqrt{\frac{ma}{(k+4)\lambda}}\) which is equal to \(T/2\) if \((k+4) = 20 \Rightarrow k = 16\)