Compare Problem Difficulty

Select which problem you think is more difficult to solve

1987 Paper 1 Q6
Rating: 1500.0

Let \(y=\mathrm{f}(x)\), \((0\leqslant x\leqslant a)\), be a continuous curve lying in the first quadrant and passing through the origin. Suppose that, for each non-negative value of \(y\) with \(0\leqslant y\leqslant\mathrm{f}(a)\), there is exactly one value of \(x\) such that \(\mathrm{f}(x)=y\); thus we may write \(x=\mathrm{g}(y)\), for a suitable function \(\mathrm{g}.\) For \(0\leqslant s\leqslant a,\) \(0\leqslant t\leqslant \mathrm{f}(a)\), define \[ \mathrm{F}(s)=\int_{0}^{s}\mathrm{f}(x)\,\mathrm{d}x,\qquad\mathrm{G}(t)=\int_{0}^{t}\mathrm{g}(y)\,\mathrm{d}y. \] By a geometrical argument, show that \[ \mathrm{F}(s)+\mathrm{G}(t)\geqslant st.\tag{*} \] When does equality occur in \((*)\)? Suppose that \(y=\sin x\) and that the ranges of \(x,y,s,t\) are restricted to \(0\leqslant x\leqslant s\leqslant\frac{1}{2}\pi,\) \(0\leqslant y\leqslant t\leqslant1\). By considering \(s\) such that the equality holds in \((*)\), show that \[ \int_{0}^{t}\sin^{-1}y\,\mathrm{d}y=t\sin^{-1}t-\left(1-\cos(\sin^{-1}t)\right). \] Check this result by differentiating both sides with respect to \(t\).

1987 Paper 2 Q1
Rating: 1500.0

Prove that:

  1. if \(a+2b+3c=7x\), then \[ a^{2}+b^{2}+c^{2}=\left(x-a\right)^{2}+\left(2x-b\right)^{2}+\left(3x-c\right)^{2}; \]
  2. if \(2a+3b+3c=11x\), then \[ a^{2}+b^{2}+c^{2}=\left(2x-a\right)^{2}+\left(3x-b\right)^{2}+\left(3x-c\right)^{2}. \]
Give a general result of which \((i) \)and \((ii) \)are special cases.

Pro tip: Use left/right arrow keys to select, spacebar for new pair