Year 12 course on pure mathematics
Let \(f(x)\) be defined and positive for \(x > 0\). Let \(a\) and \(b\) be real numbers with \(0 < a < b\) and define the points \(A = (a, f(a))\) and \(B = (b, -f(b))\). Let \(X = (m,0)\) be the point of intersection of line \(AB\) with the \(x\)-axis.
A circle \(C\) is said to be {\em bisected} by a curve \(X\) if \(X\) meets \(C\) in exactly two points and these points are diametrically opposite each other on \(C\).
The line passing through the point \((a,0)\) with gradient \(b\) intersects the circle of unit radius centred at the origin at \(P\) and \(Q\), and \(M\) is the midpoint of the chord \(PQ\). Find the coordinates of \(M\) in terms of \(a\) and \(b\).
The angle \(A\) of triangle \(ABC\) is a right angle and the sides \(BC\), \(CA\) and \(AB\) are of lengths \(a\), \(b\) and \(c\), respectively. Each side of the triangle is tangent to the circle \(S_1\) which is of radius \(r\). Show that \(2r = b+c-a\). Each vertex of the triangle lies on the circle~\(S_2\). The ratio of the area of the region between~\(S_1\) and the triangle to the area of \(S_2\) is denoted by \(R\,\). Show that $$ \pi R = -(\pi-1)q^2 + 2\pi q -(\pi+1) \;, $$ where \(q=\dfrac{b+c}a\,\). Deduce that $$ R\le \frac1 {\pi( \pi - 1)} \;. $$
The three points \(A\), \(B\) and \(C\) have coordinates \(\l p_1 \, , \; q_1 \r\), \(\l p_2 \, , \; q_2 \r\) and \(\l p_3 \, , \; q_3 \r\,\), respectively. Find the point of intersection of the line joining \(A\) to the midpoint of \(BC\), and the line joining~\(B\) to the midpoint of \(AC\). Verify that this point lies on the line joining \(C\) to the midpoint of~\(AB\). The point \(H\) has coordinates \(\l p_1 + p_2 + p_3 \, , \; q_1 + q_2 + q_3 \r\,\). Show that if the line \(AH\) intersects the line \(BC\) at right angles, then \(p_2^2 + q_2^2 = p_3^2 + q_3^2\,\), and write down a similar result if the line \(BH\) intersects the line \(AC\) at right angles. Deduce that if \(AH\) is perpendicular to \(BC\) and also \(BH\) is perpendicular to \(AC\), then \(CH\) is perpendicular to \(AB\).
The line \(y=d\,\), where \(d>0\,\), intersects the circle \(x^2+y^2=R^2\) at \(G\) and \(H\). Show that the area of the minor segment \(GH\) is equal to \begin{equation} R^2\arccos \left({d \over R}\right) -d\sqrt{R^2 - d^2}\;. \tag {\(*\)} \end{equation} In the following cases, the given line intersects the given circle. Determine how, in each case, the expression \((*)\) should be modified to give the area of the minor segment.
A pyramid stands on horizontal ground. Its base is an equilateral triangle with sides of length~\(a\), the other three sides of the pyramid are of length \(b\) and its volume is \(V\). Given that the formula for the volume of any pyramid is $ \textstyle \frac13 \times \mbox{area of base} \times \mbox {height} \,, $ show that \[ V= \frac1{12} {a^2(3b^2-a^2)}^{\frac12}\;. \] The pyramid is then placed so that a non-equilateral face lies on the ground. Show that the new height, \(h\), of the pyramid is given by \[ h^2 = \frac{a^2(3b^2-a^2)}{4b^2-a^2}\;. \] Find, in terms of \(a\) and \(b\,\), the angle between the equilateral triangle and the horizontal.
Show that the equation of any circle passing through the points of intersection of the ellipse \((x+2)^2 +2y^2 =18\) and the ellipse \(9(x-1)^2 +16y^2 = 25\) can be written in the form \[ x^2-2ax +y^2 =5-4a\;. \]
Show SolutionThe points \(A\), \(B\) and \(C\) lie on the sides of a square of side 1 cm and no two points lie on the same side. Show that the length of at least one side of the triangle \(ABC\) must be less than or equal to \((\sqrt6 -\sqrt2)\) cm.
Sketch on the same axes the two curves \(C_1\) and \(C_2\), given by
A point moves in the \(x\)-\(y\) plane so that the sum of the squares of its distances from the three fixed points \((x_{1},y_{1})\), \((x_{2},y_{2})\), and \((x_{3},y_{3})\) is always \(a^{2}\). Find the equation of the locus of the point and interpret it geometrically. Explain why \(a^2\) cannot be less than the sum of the squares of the distances of the three points from their centroid. [The centroid has coordinates \((\bar x, \bar y)\) where \(3\bar x = x_1+x_2+x_3,\) $3\bar y =y_1+y_2+y_3. $]
Show SolutionConsider a fixed square \(ABCD\) and a variable point \(P\) in the plane of the square. We write the perpendicular distance from \(P\) to \(AB\) as \(p\), from \(P\) to \(BC\) as \(q\), from \(P\) to \(CD\) as \(r\) and from \(P\) to \(DA\) as \(s\). (Remember that distance is never negative, so \(p,q,r,s\geqslant 0\).) If \(pr=qs\), show that the only possible positions of \(P\) lie on two straight lines and a circle and that every point on these two lines and a circle is indeed a possible position of \(P\).
The diagram shows a circle, of radius \(r\) and centre \(I\), touching the three sides of a triangle \(ABC\). We write \(a\) for the length of \(BC\) and \(\alpha\) for the angle \(\angle BAC\) and so on. Let \(s=\frac{1}{2}\left(a+b+c\right)\) and let \(\triangle\) be the area of the triangle.
The famous film star Birkhoff Maclane is sunning herself by the side of her enormous circular swimming pool (with centre \(O\)) at a point \(A\) on its circumference. She wants a drink from a small jug of iced tea placed at the diametrically opposite point \(B\). She has three choices:
Show that the equation \[ ax^{2}+ay^{2}+2gx+2fy+c=0 \] where \(a>0\) and \(f^{2}+g^{2}>ac\) represents a circle in Cartesian coordinates and find its centre. The smooth and level parade ground of the First Ruritanian Infantry Division is ornamented by two tall vertical flagpoles of heights \(h_{1}\) and \(h_{2}\) a distance \(d\) apart. As part of an initiative test a soldier has to march in such a way that he keeps the angles of elevation of the tops of the two flagpoles equal to one another. Show that if the two flagpoles are of different heights he will march in a circle. What happens if the two flagpoles have the same height? To celebrate the King's birthday a third flagpole is added. Soldiers are then assigned to each of the three different pairs of flagpoles and are told to march in such a way that they always keep the tops of their two assigned flagpoles at equal angles of elevation to one another. Show that, if the three flagpoles have different heights \(h_{1},h_{2}\) and \(h_{3}\) and the circles in which the soldiers march have centres of \((x_{ij},y_{ij})\) (for the flagpoles of height \(h_{i}\) and \(h_{j}\)) relative to Cartesian coordinates fixed in the parade ground, then the \(x_{ij}\) satisfy \[ h_{3}^{2}\left(h_{1}^{2}-h_{2}^{2}\right)x_{12}+h_{1}^{2}\left(h_{2}^{2}-h_{3}^{2}\right)x_{23}+h_{2}^{2}\left(h_{3}^{2}-h_{1}^{2}\right)x_{31}=0, \] and the same equation connects the \(y_{ij}\). Deduce that the three centres lie in a straight line.
My house has an attic consisting of a horizontal rectangular base of length \(2q\) and breadth \(2p\) (where \(p < q\)) and four plane roof sections each at angle \(\theta\) to the horizontal. Show that the length of the roof ridge is independent of \(\theta\) and find the volume of the attic and the surface area of the roof.
Show SolutionProve that the area of the zone of the surface of a sphere between two parallel planes cutting the sphere is given by \[ 2\pi\times(\mbox{radius of sphere})\times(\mbox{perpendicular distance between the planes}). \] A tangent from the origin \(O\) to the curve with cartesian equation \[ (x-c)^{2}+y^{2}=a^{2}, \] where \(a\) and \(c\) are positive constants with \(c>a,\) touches the curve at \(P\). The \(x\)-axis cuts the curve at \(Q\) and \(R\), the points lying in the order \(OQR\) on the axis. The line \(OP\) and the arc \(PR\) are rotated through \(2\pi\) radians about the line \(OQR\) to form a surface. Find the area of this surface.
Show SolutionTwo points \(P\) and \(Q\) lie within, or on the boundary of, a square of side 1cm, one corner of which is the point \(O\). Show that the length of at least one of the lines \(OP,PQ\) and \(QO\) must be less than or equal to \((\sqrt{6}-\sqrt{2})\) cm.
Show SolutionIt is given that the two curves \[ y=4-x^2 \text{ and } m x = k-y^2\,, \] where \(m > 0\), touch exactly once.
Given that \[ 5x^{2}+2y^{2}-6xy+4x-4y\equiv a\left(x-y+2\right)^{2} +b\left(cx+y\right)^{2}+d\,, \] find the values of the constants \(a\), \(b\), \(c\) and \(d\). Solve the simultaneous equations \begin{align*} 5x^{2}+2y^{2}-6xy+4x-4y&=9\,, \\ 6x^{2}+3y^{2}-8xy+8x-8y&=14\,. \end{align*}
Show SolutionTwo curves have equations \(\; x^4+y^4=u\;\) and \(\; xy = v\;\), where \(u\) and \(v\) are positive constants. State the equations of the lines of symmetry of each curve. The curves intersect at the distinct points \(A\), \(B\), \(C\) and \(D\) (taken anticlockwise from \(A\)). The coordinates of \(A\) are \((\alpha,\beta)\), where \(\alpha > \beta > 0\). Write down, in terms of \(\alpha\) and \(\beta\), the coordinates of \(B\), \(C\) and \(D\). Show that the quadrilateral \(ABCD\) is a rectangle and find its area in terms of \(u\) and \(v\) only. Verify that, for the case \(u=81\) and \(v=4\), the area is \(14\).
Show SolutionA transformation \(T\) of the real numbers is defined by \[ y=T(x)=\frac{ax-b}{cx-d}\,, \] where \(a,b,c\), \(d\) are real numbers such that \(ad\neq bc\). Find all numbers \(x\) such that \(T(x)=x.\) Show that the inverse operation, \(x=T^{-1}(y)\) expressing \(x\) in terms of \(y\) is of the same form as \(T\) and find corresponding numbers \(a',b',c'\),\(d'\). Let \(S_{r}\) denote the set of all real numbers excluding \(r\). Show that, if \(c\neq0,\) there is a value of \(r\) such that \(T\) is defined for all \(x\in S_{r}\) and find the image \(T(S_{r}).\) What is the corresponding result if \(c=0\)? If \(T_{1},\) given by numbers \(a_{1},b_{1},c_{1},d_{1},\) and \(T_{2},\) given by numbers \(a_{2},b_{2},c_{2},d_{2}\) are two such transformations, show that their composition \(T_{3},\) defined by \(T_{3}(x)=T_{2}(T_{1}(x)),\) is of the same form. Find necessary and sufficient conditions on the numbers \(a,b,c,d\) for \(T^{2}\), the composition of \(T\) with itself, to be the identity. Hence, or otherwise, find transformations \(T_{1},T_{2}\) and their composition \(T_{3}\) such that \(T_{1}^{2}\) and \(T_{2}^{2}\) are each the identity but \(T_{3}^{2}\) is not.
It is given that \(x,y\) and \(z\) are distinct and non-zero, and that they satisfy \[ x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}. \] Show that \(x^{2}y^{2}z^{2}=1\) and that the value of \(x+\dfrac{1}{y}\) is either \(+1\) or \(-1\).
Show SolutionLet \(\mathrm{h}(x)=ax^{2}+bx+c,\) where \(a,b\) and \(c\) are constants, and \(a\neq0\). Give a condition which \(a,b\) and \(c\) must satisfy in order that \(\mathrm{h}(x)\) can be written in the form \[ a(x+k)^{2},\tag{*} \] where \(k\) is a constant. If \(\mathrm{f}(x)=3x^{2}+4x\) and \(\mathrm{g}(x)=x^{2}-2\), find the two constant values of \(\lambda\) such that \(\mathrm{f}(x)+\lambda\mathrm{g}(x)\) can be written in the form \((*)\). Hence, or otherwise, find constants \(A,B,C,D,m\) and \(n\) such that \begin{alignat*}{1} \mathrm{f}(x) & =A(x+m)^{2}+B(x+n)^{2}\\ \mathrm{g}(x) & =C(x+m)^{2}+D(x+n)^{2}. \end{alignat*} If \(\mathrm{f}(x)=3x^{2}+4x\) and \(\mathrm{g}(x)=x^{2}+\alpha\) and it is given by that there is only one value of \(\lambda\) for which \(\mathrm{f}(x)+\lambda\mathrm{g}(x)\) can be written in the form \((*)\), find \(\alpha\).
Show SolutionThe numbers \(x,y\) and \(z\) are non-zero, and satisfy \[ 2a-3y=\frac{\left(z-x\right)^{2}}{y}\quad\mbox{ and }\quad2a-3z=\frac{\left(x-y\right)^{2}}{z}, \] for some number \(a\). If \(y\neq z\), prove that \[ x+y+z=a, \] and that \[ 2a-3x=\frac{\left(y-z\right)^{2}}{x}. \] Determine whether this last equation holds only if \(y\neq z\).
Show SolutionIf we split a set \(S\) of integers into two subsets \(A\) and \(B\) whose intersection is empty and whose union is the whole of \(S\), and such that
The sequence \(u_0, u_1, \ldots\) is said to be a constant sequence if \(u_n = u_{n+1}\) for \(n = 0, 1, 2, \ldots\). The sequence is said to be a sequence of period 2 if \(u_n = u_{n+2}\) for \(n = 0, 1, 2, \ldots\) and the sequence is not constant.
Consider the following steps in a proof that \(\sqrt{2} + \sqrt{3}\) is irrational.
Find the set of positive integers \(n\) for which \(n\) does not divide \((n-1)!.\) Justify your answer. [Note that small values of \(n\) may require special consideration.]
Show SolutionThe sequence of numbers \(x_0\), \(x_1\), \(x_2\), \(\ldots\) satisfies \[ x_{n+1} = \frac{ax_n-1}{x_n+b} \,. \] (You may assume that \(a\), \(b\) and \(x_0\) are such that \(x_n+b\ne0\,\).) Find an expression for \(x_{n+2}\) in terms of \(a\), \(b\) and \(x_n\).
The set \(S\) % = \{1, 5, 9, 13, \,\ldots \}$ consists of all the positive integers that leave a remainder of 1 upon division by 4. The set \(T\) % = \{1, 5, 9, 13, \,\ldots \}$ consists of all the positive integers that leave a remainder of 3 upon division by 4.
An operator \(\rm D\) is defined, for any function \(\f\), by \[ {\rm D}\f(x) = x\frac{\d\f(x)}{\d x} .\] The notation \({\rm D}^n\) means that \(\rm D\) is applied \(n\) times; for example \[ \displaystyle {\rm D}^2\f(x) = x\frac{\d\ }{\d x}\left( x\frac{\d\f(x)}{\d x} \right) \,. \] Show that, for any constant \(a\), \({\rm D}^2 x^a = a^2 x^a\,\).
If \(s_1\), \(s_2\), \(s_3\), \(\ldots\) and \(t_1\), \(t_2\), \(t_3\), \(\ldots\) are sequences of positive numbers, we write \[ (s_n)\le (t_n) \] to mean
Show that:
All numbers referred to in this question are non-negative integers.
In this question, you may assume that, if \(a\), \(b\) and \(c\) are positive integers such that \(a\) and \(b\) are coprime and \(a\) divides \(bc\), then \(a\) divides \(c\). (Two positive integers are said to be coprime if their highest common factor is 1.)
Write down the cubes of the integers \(1, 2, \ldots , 10\). The positive integers \(x\), \(y\) and \(z\), where \(x < y\), satisfy \[ x^3+y^3 = kz^3\,, \tag{\(*\)} \] where \(k\) is a given positive integer.
The vertices \(A\), \(B\), \(C\) and \(D\) of a square have coordinates \((0,0)\), \((a,0)\), \((a,a)\) and \((0,a)\), respectively. The points \(P\) and \(Q\) have coordinates \((an,0)\) and \((0,am)\) respectively, where \(0 < m < n < 1\). The line \(CP\) produced meets \(DA\) produced at \(R\) and the line \(CQ\) produced meets \(BA\) produced at \(S\). The line \(PQ\) produced meets the line \(RS\) produced at \(T\). Show that \(TA\) is perpendicular to \(AC\). Explain how, given a square of area \(a^2\), a square of area \(2a^2\) may be constructed using only a straight-edge. [{\bf Note}: a straight-edge is a ruler with no markings on it; no measurements (and no use of compasses) are allowed in the construction.]
A {\em proper factor} of an integer \(N\) is a positive integer, not \(1\) or \(N\), that divides \(N\).
A sequence of points \((x_1,y_1)\), \((x_2,y_2)\), \(\ldots\) in the cartesian plane is generated by first choosing \((x_1,y_1)\) then applying the rule, for \(n=1\), \(2\), \(\ldots\), \[ (x_{n+1}, y_{n+1}) = (x_n^2-y_n^2 +a, \; 2x_ny_n+b+2)\,, \] where \(a\) and \(b\) are given real constants.
The polynomial \(\p(x)\) is given by \[ \ds \p(x)= x^n +\sum\limits_{r=0}^{n-1}a_rx^r\,, \] where \(a_0\), \(a_1\), \(\ldots\) , \(a_{n-1}\) are fixed real numbers and \(n\ge1\). Let \(M\) be the greatest value of \(\big\vert \p(x) \big\vert\) for $\vert x \vert\le 1\(. Then Chebyshev's theorem states that \)M\ge 2^{1-n}$.
Prove that, if \(c\ge a\) and \(d\ge b\), then \[ ab+cd\ge bc+ad\,. \tag{\(*\)} \]
What does it mean to say that a number \(x\) is irrational? Prove by contradiction statements A and B below, where \(p\) and \(q\) are real numbers.
Let \(\lfloor x \rfloor\) denote the largest integer that satisfies \(\lfloor x \rfloor \leq x\). For example, if \(x = -4.2\), then \(\lfloor x \rfloor = -5\).
The Bernoulli polynomials \(P_{n}(x)\), where \(n\) is a non-negative integer, are defined by \(P_{0}(x)=1\) and, for \(n\geqslant1\), \[ \frac{\mathrm{d}P_{n}}{\mathrm{d}x}=nP_{n-1}(x),\qquad\int_{0}^{1}P_{n}(x)\,\mathrm{d}x=0 \] Show by induction or otherwise, that \[ P_{n}(x+1)-P_{n}(x)=nx^{n-1},\quad\mbox{ for }n\geqslant1. \] Deduce that \[ n\sum_{m=0}^{k}m^{n-1}=P_{n}(k+1)-P_{n}(0) \] Hence show that \({\displaystyle \sum_{m=0}^{1000}m^{3}=(500500)^{2}}\)
Show SolutionLet \[ S_n = \sum_{r=1}^n \frac 1 {\sqrt r \ } \,, \] where \(n\) is a positive integer.
Two sequences are defined by \(a_1 = 1\) and \(b_1 = 2\) and, for \(n \ge 1\), \begin{equation*} \begin{split} a_{n+1} & = a_n+ 2b_n \,, \\ b_{n+1} & = 2a_n + 5b_n \,. \end{split} \end{equation*} Prove by induction that, for all \(n \ge 1\), \[ a_n^2+2a_nb_n - b_n^2 = 1 \,. \tag{\(*\)}\]
Let \[ T _n = \left( \sqrt{a+1} + \sqrt a\right)^n\,, \] where \(n\) is a positive integer and \(a\) is any given positive integer.
The functions \({\rm T}_n(x)\), for \(n=0\), 1, 2, \(\ldots\,\), satisfy the recurrence relation \[ {\rm T}_{n+1}(x) -2x {\rm T}_n(x) + {\rm T}_{n-1}(x) =0\, \ \ \ \ \ \ \ (n\ge1). \tag{\(*\)} \] Show by induction that \[ \left({\rm T}_n(x)\right)^2 - {\rm T}_{n-1}(x) {\rm T}_{n+1}(x) = \f(x)\,, \] where \(\f(x) = \left({\rm T}_1(x)\right)^2 - {\rm T}_0(x){\rm T}_2(x)\,\). In the case \(\f(x)\equiv 0\), determine (with proof) an expression for \({\rm T}_n(x)\) in terms of \({\rm T}_0(x)\) (assumed to be non-zero) and \({\rm r}(x)\), where \({\rm r}(x) = {\rm T}_1(x)/ {\rm T}_0(x)\). Find the two possible expressions for \({\rm r}(x)\) in terms of \(x\). %Conjecture (without proof) the general form of the solution of \((*)\).
A sequence of numbers, \(F_1\), \(F_2\), \(\ldots\), is defined by $ F_1=1\(, \)F_2=1$, and \[ F_n=F_{n-1}+F_{n-2}\, \text{ \ \ \ for \(n\ge 3\)}. \]
It is given that \(\sum\limits_{r=-1}^ {n} r^2\) can be written in the form \(pn^3 +qn^2+rn+s\,\), where \(p\,\), \(q\,\), \(r\,\) and \(s\) are numbers. By setting \(n=-1\), \(0\), \(1\) and \(2\), obtain four equations that must be satisfied by \(p\,\), \(q\,\), \(r\,\) and \(s\) and hence show that \[ { \sum\limits_{r=0} ^n} r^2= {\textstyle \frac16} n(n+1)(2n+1)\;. \] Given that \(\sum\limits_{r=-2}^ nr^3\) can be written in the form \(an^4 +bn^3+cn^2+dn +e\,\), show similarly that \[ { \sum\limits_{r=0} ^n} r^3= {\textstyle \frac14} n^2(n+1)^2\;. \]
Show SolutionThe \(n\)th Fermat number, \(F_n\), is defined by \[ F_n = 2^{2^n} +1\, , \ \ \ \ \ \ \ n=0, \ 1, \ 2, \ \ldots \ , \] where \(\ds 2^{2^n}\) means \(2\) raised to the power \(2^n\,\). Calculate \(F_0\), \(F_1\), \(F_2\) and \(F_3\,\). Show that, for \(k=1\), \(k=2\) and \(k=3\,\), $$ F_0F_1 \ldots F_{k-1} = F_k-2 \;. \tag{*} $$ Prove, by induction, or otherwise, that \((*)\) holds for all \(k\ge1\). Deduce that no two Fermat numbers have a common factor greater than \(1\). Hence show that there are infinitely many prime numbers.
Show SolutionLet $$ {\rm S}_n(x)=\mathrm{e}^{x^3}{{\d^n}\over{\d x^n}}{(\mathrm{e}^{-x^3})}. $$ Show that \({\rm S}_2(x)=9x^4-6x\) and find \({\rm S}_3(x)\). Prove by induction on \(n\) that \({\rm S}_n(x)\) is a polynomial. By means of your induction argument, determine the order of this polynomial and the coefficient of the highest power of~\(x\). Show also that if \ \(\displaystyle \frac{\d S_n}{\d x}=0\) \ for some value \(a\) of \(x\), then \( \ S_n(a)S_{n+1}(a)\le0\).
Suppose that $$3=\frac{2}{ x_1}=x_1+\frac{2}{ x_2} =x_2+\frac{2}{ x_3}=x_3+\frac{2}{ x_4}=\cdots.$$ Guess an expression, in terms of \(n\), for \(x_n\). Then, by induction or otherwise, prove the correctness of your guess.
Show SolutionThe Fibonacci numbers \(F_{n}\) are defined by the conditions \(F_{0}=0\), \(F_{1}=1\) and \[F_{n+1}=F_{n}+F_{n-1}\] for all \(n\geqslant 1\). Show that \(F_{2}=1\), \(F_{3}=2\), \(F_{4}=3\) and compute \(F_{5}\), \(F_{6}\) and~\(F_{7}\). Compute \(F_{n+1}F_{n-1}-F_{n}^{2}\) for a few values of \(n\); guess a general formula and prove it by induction, or otherwise. By induction on \(k\), or otherwise, show that \[F_{n+k}=F_{k}F_{n+1}+F_{k-1}F_{n}\] for all positive integers \(n\) and \(k\).
I have \(n\) fence posts placed in a line and, as part of my spouse's birthday celebrations, I wish to paint them using three different colours red, white and blue in such a way that no adjacent fence posts have the same colours. (This allows the possibility of using fewer than three colours as well as exactly three.) Let \(r_{n}\) be the number of ways (possibly zero) that I can paint them if I paint the first and the last post red and let \(s_{n}\) be the number of ways that I can paint them if I paint the first post red but the last post either of the other two colours. Explain why \(r_{n+1}=s_{n}\) and find \(r_{n}+s_{n}.\) Hence find the value of \(r_{n+1}+r_{n}\) for all \(n\geqslant1.\) Prove, by induction, that \[ r_{n}=\frac{2^{n-1}+2(-1)^{n-1}}{3}. \] Find the number of ways of painting \(n\) fence posts (where \(n\geqslant3\)) placed in a circle using three different colours in such a way that no adjacent fence posts have the same colours.
Suppose that \(a_{i}>0\) for all \(i>0\). Show that \[ a_{1}a_{2}\leqslant\left(\frac{a_{1}+a_{2}}{2}\right)^{2}. \] Prove by induction that for all positive integers \(m\) \[ a_{1}\cdots a_{2^{m}}\leqslant\left(\frac{a_{1}+\cdots+a_{2^{m}}}{2^{m}}\right)^{2^{m}}.\tag{\ensuremath{*}} \] If \(n<2^{m}\), put \(b_{1}=a_{2},\) \(b_{2}=a_{2},\cdots,b_{n}=a_{n}\) and \(b_{n+1}=\cdots=b_{2^{m}}=A\), where \[ A=\frac{a_{1}+\cdots+a_{n}}{n}. \] By applying \((*)\) to the \(b_{i},\) show that \[ a_{1}\cdots a_{n}A^{(2^{m}-n)}\leqslant A^{2^{m}} \] (notice that \(b_{1}+\cdots+b_{n}=nA).\) Deduce the (arithmetic mean)/(geometric mean) inequality \[ \left(a_{1}\cdots a_{n}\right)^{1/n}\leqslant\frac{a_{1}+\cdots+a_{n}}{n}. \]
Let \(\mathrm{g}(x)=ax+b.\) Show that, if \(\mathrm{g}(0)\) and \(\mathrm{g}(1)\) are integers, then \(\mathrm{g}(n)\) is an integer for all integers \(n\). Let \(\mathrm{f}(x)=Ax^{2}+Bx+C.\) Show that, if \(\mathrm{f}(-1),\mathrm{f}(0)\) and \(\mathrm{f}(1)\) are integers, then \(\mathrm{f}(n)\) is an integer for all integers \(n\). Show also that, if \(\alpha\) is any real number and \(\mathrm{f}(\alpha-1),\) \(\mathrm{f}(\alpha)\) and \(\mathrm{f}(\alpha+1)\) are integers, then \(\mathrm{f}(\alpha+n)\) is an integer for all integers \(n\).
Show SolutionA plane contains \(n\) distinct given lines, no two of which are parallel, and no three of which intersect at a point. By first considering the cases \(n=1,2,3\) and \(4\), provide and justify, by induction or otherwise, a formula for the number of line segments (including the infinite segments). Prove also that the plane is divided into \(\frac{1}{2}(n^{2}+n+2)\) regions (including those extending to infinity).
Show SolutionSine and cosine rule, graphs of trig functions, solving trig equations
In both parts of this question, \(x\) is real and \(0 < \theta < \pi\).
The triangle \(ABC\) has side lengths \(\left| BC \right| = a\), \(\left| CA \right| = b\) and \(\left| AB \right| = c\). Equilateral triangles \(BXC\), \; \(CY\!A\) \hspace{0.0mm} and \(AZB\) are erected on the sides of the triangle \(ABC\), with~\(X\) on the other side of \(BC\) from \(A\), and similarly for \(Y\) and \(Z\). Points \(L\), \(M\) and \(N\) are the centres of rotational symmetry of triangles \(BXC\), \(CY\!A\) and \(AZB\) respectively.
In the triangle \(ABC\), angle \(BAC = \alpha\) and angle \(CBA= 2\alpha\), where \(2\alpha\) is acute, and \(BC= x\). Show that \(AB = (3-4 \sin^2\alpha)x\). The point \(D\) is the midpoint of \(AB\) and the point \(E\) is the foot of the perpendicular from \(C\) to \(AB\). Find an expression for \(DE\) in terms of \(x\). The point \(F\) lies on the perpendicular bisector of \(AB\) and is a distance \(x\) from \(C\). The points \(F\) and \(B\) lie on the same side of the line through \(A\) and \(C\). Show that the line \(FC\) trisects the angle \(ACB\).
A prison consists of a square courtyard of side \(b\) bounded by a perimeter wall and a square building of side \(a\) placed centrally within the courtyard. The sides of the building are parallel to the perimeter walls. Guards can stand either at the middle of a perimeter wall or in a corner of the courtyard. If the guards wish to see as great a length of the perimeter wall as possible, determine which of these positions is preferable. You should consider separately the cases \(b<3a\) and \(b>3a\,\).
In the triangle \(ABC\), the base \(AB\) is of length 1 unit and the angles at~\(A\) and~\(B\) are \(\alpha\) and~\(\beta\) respectively, where \(0<\alpha\le\beta\). The points \(P\) and~\(Q\) lie on the sides \(AC\) and \(BC\) respectively, with \(AP=PQ=QB=x\). The line \(PQ\) makes an angle of~\(\theta\) with the line through~\(P\) parallel to~\(AB\).
A cyclic quadrilateral \(ABCD\) has sides \(AB\), \(BC\), \(CD\) and \(DA\) of lengths \(a\), \(b\), \(c\) and \(d\), respectively. The area of the quadrilateral is \(Q\), and angle \(DAB\) is \(\theta\). Find an expression for \(\cos\theta\) in terms of \(a\), \(b\), \(c\) and \(d\), and an expression for \(\sin\theta\) in terms of \(a\), \(b\), \(c\), \(d\) and \(Q\). Hence show that \[ 16Q^2 = 4(ad+bc)^2 - (a^2+d^2-b^2-c^2)^2 \,, \] and deduce that \[ Q^2 = (s-a)(s-b)(s-c)(s-d)\,, \] where \(s= \frac12(a+b+c+d)\). Deduce a formula for the area of a triangle with sides of length \(a\), \(b\) and \(c\).
Show SolutionEach edge of the tetrahedron \(ABCD\) has unit length. The face \(ABC\) is horizontal, and \(P\) is the point in \(ABC\) that is vertically below \(D\).
Prove that \[ \tan \left ( \tfrac14 \pi -\tfrac12 x \right)\equiv \sec x -\tan x\,. \tag{\(*\)} \]
The sides of a triangle have lengths \(p-q\), \(p\) and \(p+q\), where \(p>q> 0\,\). The largest and smallest angles of the triangle are \(\alpha\) and \(\beta\), respectively. Show by means of the cosine rule that \[ 4(1-\cos\alpha)(1-\cos\beta) = \cos\alpha + \cos\beta \,. \] In the case \(\alpha = 2\beta\), show that \(\cos\beta=\frac34\) and hence find the ratio of the lengths of the sides of the triangle.
Show Solution{\it Note that the volume of a tetrahedron is equal to \(\frac1 3\) \(\times\) the area of the base \(\times\) the height.} The points \(O\), \(A\), \(B\) and \(C\) have coordinates \((0,0,0)\), \((a,0,0)\), \((0,b,0)\) and \((0,0,c)\), respectively, where \(a\), \(b\) and \(c\) are positive.
Given that \(\alpha\) and \(\beta\) are acute angles, show that \(\alpha + \beta = \tfrac{1}{2}\pi\) if and only if \(\cos^2 \alpha + \cos^2 \beta = 1\). In the \(x\)--\(y\) plane, the point \(A\) has coordinates \((0,s)\) and the point \(C\) has coordinates \((s,0)\), where \(s>0\). The point \(B\) lies in the first quadrant (\(x>0\), \(y>0\)). The lengths of \(AB\), \(OB\) and \(CB\) are respectively \(a\), \(b\) and \(c\). Show that \[ (s^2 +b^2 - a^2)^2 + (s^2 +b^2 -c^2)^2 = 4s^2b^2 \] and hence that \[ (2s^2 -a^2-c^2)^2 + (2b^2 -a^2-c^2)^2 =4a^2c^2\;. \] Deduce that $$ \l a - c \r^2 \le 2b^2 \le \l a + c \r^2\;. $$ %Show, %by considering the case \(a=1+\surd2\,\), \(b=c=1\,\), % that the condition \(\l \ast \r\,\) %is not sufficient to ensure that \(B\) lies in the first quadrant.
Arthur and Bertha stand at a point \(O\) on an inclined plane. The steepest line in the plane through \(O\) makes an angle \(\theta\) with the horizontal. Arthur walks uphill at a steady pace in a straight line which makes an angle \(\alpha\) with the steepest line. Bertha walks uphill at the same speed in a straight line which makes an angle \(\beta\) with the steepest line (and is on the same side of the steepest line as Arthur). Show that, when Arthur has walked a distance \(d\), the distance between Arthur and Bertha is \(2d \vert\sin\frac12(\alpha-\beta)\vert\). Show also that, if \(\alpha\ne\beta\), the line joining Arthur and Bertha makes an angle \(\phi\) with the vertical, where \[ \cos\phi = \sin\theta \sin \frac12(\alpha+\beta). \]
Let \(f(x) = 7 - 2|x|\). A sequence \(u_0, u_1, u_2, \ldots\) is defined by \(u_0 = a\) and \(u_n = f(u_{n-1})\) for \(n > 0\).
Sketch the following subsets of the \(x\)-\(y\) plane:
Find all the solutions of the equation \[|x+1|-|x|+3|x-1|-2|x-2|=x+2.\]
The function \(\mathrm{f}\) is defined for \(x<2\) by \[ \mathrm{f}(x)=2| x^{2}-x|+|x^{2}-1|-2|x^{2}+x|. \] Find the maximum and minimum points and the points of inflection of the graph of \(\mathrm{f}\) and sketch this graph. Is \(\mathrm{f}\) continuous everywhere? Is \(\mathrm{f}\) differentiable everywhere? Find the inverse of the function \(\mathrm{f}\), i.e. expressions for \(\mathrm{f}^{-1}(x),\) defined in the various appropriate intervals.
Show SolutionThe domain of the function f is the set of all \(2 \times 2\) matrices and its range is the set of real numbers. Thus, if \(M\) is a \(2 \times 2\) matrix, then \(f(M) \in \mathbb{R}\). The function f has the property that \(f(MN) = f(M)f(N)\) for any \(2 \times 2\) matrices \(M\) and \(N\).
For any square matrix \(\mathbf{A}\) such that \(\mathbf{I-A}\) is non-singular (where \(\mathbf{I}\) is the unit matrix), the matrix \(\mathbf{B}\) is defined by \[ \mathbf{B}=(\mathbf{I+A})(\mathbf{I-A})^{-1}. \] Prove that \(\mathbf{B}^{\mathrm{T}}\mathbf{B}=\mathbf{I}\) if and only if \(\mathbf{A+A}^{\mathrm{T}}=\mathbf{O}\) (where \(\mathbf{O}\) is the zero matrix), explaining clearly each step of your proof. {[}You may quote standard results about matrices without proof.{]}
Show SolutionFor any two points \(X\) and \(Y\), with position vectors \(\bf x\) and \(\bf y\) respectively, \(X*Y\) is defined to be the point with position vector \(\lambda {\bf x}+ (1-\lambda){\bf y}\), where \(\lambda\) is a fixed number.
Verify that if \[ \mathbf{P}=\begin{pmatrix}1 & 2\\ 2 & -1 \end{pmatrix}\qquad\mbox{ and }\qquad\mathbf{A}=\begin{pmatrix}-1 & 8\\ 8 & 11 \end{pmatrix} \] then \(\mathbf{PAP}\) is a diagonal matrix. Put $\mathbf{x}=\begin{pmatrix}x\\ y \end{pmatrix}\( and \)\mathbf{x}_{1}=\begin{pmatrix}x_{1}\\ y_{1} \end{pmatrix}.$ By writing \[ \mathbf{x}=\mathbf{P}\mathbf{x}_{1}+\mathbf{a} \] for a suitable vector \(\mathbf{a},\) show that the equation \[ \mathbf{x}^{\mathrm{T}}\mathbf{Ax}+\mathbf{b}^{\mathrm{T}}\mathbf{x}-11=0, \] where $\mathbf{b}=\begin{pmatrix}18\\ 6 \end{pmatrix}\( and \) \mathbf{x}^{\mathrm{T}} \( is the transpose of \)\mathbf{x},$ becomes \[ 3x_{1}^{2}-y_{1}^{2}=c \] for some constant \(c\) (which you should find).
Show SolutionIn this question, \(\mathbf{A,\mathbf{B\) }}and \(\mathbf{X\) are non-zero \(2\times2\) real matrices.} Are the following assertions true or false? You must provide a proof or a counterexample in each case.
The matrices \(\mathbf{I}\) and \(\mathbf{J}\) are \[ \mathbf{I}=\begin{pmatrix}1 & 0\\ 0 & 1 \end{pmatrix}\quad\mbox{ and }\quad\mathbf{J}=\begin{pmatrix}1 & 1\\ 1 & 1 \end{pmatrix} \] respectively and \(\mathbf{A}=\mathbf{I}+a\mathbf{J},\) where \(a\) is a non-zero real constant. Prove that \[ \mathbf{A}^{2}=\mathbf{I}+\tfrac{1}{2}[(1+2a)^{2}-1]\mathbf{J}\quad\mbox{ and }\quad\mathbf{A}^{3}=\mathbf{I}+\tfrac{1}{2}[(1+2a)^{3}-1]\mathbf{J} \] and obtain a similar form for \(\mathbf{A}^{4}.\) If \(\mathbf{A}^{k}=\mathbf{I}+p_{k}\mathbf{J},\) suggest a suitable form for \(p_{k}\) and prove that it is correct by induction, or otherwise.
Show SolutionTwo square matrices \(\mathbf{A}\) and \(\mathbf{B}\) satisfies \(\mathbf{AB=0}.\) Show that either \(\det\mathbf{A}=0\) or \(\det\mathbf{B}=0\) or \(\det\mathbf{A}=\det\mathbf{B}=0\). If \(\det\mathbf{B}\neq0\), what must \(\mathbf{A}\) be? Give an example to show that the condition \(\det\mathbf{A}=\det\mathbf{B}=0\) is not sufficient for the equation \(\mathbf{AB=0}\) to hold. Find real numbers \(p,q\) and \(r\) such that \[ \mathbf{M}^{3}+2\mathbf{M}^{2}-5\mathbf{M}-6\mathbf{I}=(\mathbf{M}+p\mathbf{I})(\mathbf{M}+q\mathbf{I})(\mathbf{M}+r\mathbf{I}), \] where \(\mathbf{M}\) is any square matrix and \(\mathbf{I}\) is the appropriate identity matrix. Hence, or otherwise, find all matrices \(\mathbf{M}\) of the form $\begin{pmatrix}a & c\\ 0 & b \end{pmatrix}$ which satisfy the equation \[ \mathbf{M}^{3}+2\mathbf{M}^{2}-5\mathbf{M}-6\mathbf{I}=\mathbf{0}. \]
Show SolutionIn a crude model of population dynamics of a community of aardvarks and buffaloes, it is assumed that, if the numbers of aardvarks and buffaloes in any year are \(A\) and \(B\) respectively, then the numbers in the following year at \(\frac{1}{4}A+\frac{3}{4}B\) and \(\frac{3}{2}B-\frac{1}{2}A\) respectively. It does not matter if the model predicts fractions of animals, but a non-positive number of buffaloes means that the species has become extinct, and the model ceases to apply. Using matrices or otherwise, show that the ratio of the number of aardvarks to the number of buffaloes can remain the same each year, provided it takes one of two possible values. Let these two possible values be \(x\) and \(y\), and let the numbers of aardvarks and buffaloes in a given year be \(a\) and \(b\) respectively. By writing the vector \((a,b)\) as a linear combination of the vectors \((x,1)\) and \((y,1),\) or otherwise, show how the numbers of aardvarks and buffaloes in subsequent years may be found. On a sketch of the \(a\)-\(b\) plane, mark the regions which correspond to the following situations
The matrix A is given by $$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$
Show that, if the lengths of the diagonals of a parallelogram are specified, then the parallogram has maximum area when the diagonals are perpendicular. Show also that the area of a parallelogram is less than or equal to half the square of the length of its longer diagonal. The set \(A\) of points \((x,y)\) is given by \begin{alignat*}{1} \left|a_{1}x+b_{1}y-c_{1}\right| & \leqslant\delta,\\ \left|a_{2}x+b_{2}y-c_{2}\right| & \leqslant\delta, \end{alignat*} with \(a_{1}b_{2}\neq a_{2}b_{1}.\) Sketch this set and show that it is possible to find \((x_{1},y_{1}),(x_{2},y_{2})\in A\) with \[ (x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}\geqslant\frac{8\delta^{2}}{\left|a_{1}b_{2}-a_{2}b_{1}\right|}. \]
Show SolutionLet \(R_{\alpha}\) be the \(2\times2\) matrix that represents a rotation through the angle \(\alpha\) and let $$A=\begin{pmatrix}a&b\\b&c\end{pmatrix}.$$
The transformation \(T\) of the point \(P\) in the \(x\),\(y\) plane to the point \(P'\) is constructed as follows: \hfil\break Lines are drawn through \(P\) parallel to the lines \(y=mx\) and \(y=-mx\) to cut the line \(y=kx\) at \(Q\) and \(R\) respectively, \(m\) and \(k\) being given constants. \(P'\) is the fourth vertex of the parallelogram \(PQP'R\). Show that if \(P\) is \((x_1,y_1)\) then \(Q\) is $$ \left( {mx_1-y_1 \over m-k}, {k(mx_1-y_1)\over m-k}\right). $$ Obtain the coordinates of \(P'\) in terms of \(x_1\), \(y_1\), \(m\) and \(k\), and express \(T\) as a matrix transformation. Show that areas are transformed under \(T\) into areas of the same magnitude.
The transformation \(T\) from \(\begin{pmatrix} x \\ y \end{pmatrix}\) to \(\begin{pmatrix} X \\ Y \end{pmatrix}\) is given by \[ \begin{pmatrix}X\\ Y \end{pmatrix}=\frac{2}{5}\begin{pmatrix}9 & -2\\ -2 & 6 \end{pmatrix}\begin{pmatrix}x\\ y \end{pmatrix}. \] Show that \(T\) leaves the vector \(\begin{pmatrix} 1\\ 2 \end{pmatrix}\) unchanged in direction but multiplied by a scalar, and that \(\begin{pmatrix} 2\\ -1 \end{pmatrix}\) is similarly transformed. The circle \(C\) whose equation is \(x^{2}+y^{2}=1\) transforms under \(T\) to a curve \(E\). Show that \(E\) has equation \[ 8X^{2}+12XY+17Y^{2}=80, \] and state the area of the region bounded by \(E\). Show also that the greatest value of \(X\) on \(E\) is \(2\sqrt{17/5}.\) Find the equation of the tangent to \(E\) at the point which corresponds to the point \(\frac{1}{5}(3,4)\) on \(C\).
Show SolutionThe linear transformation \(\mathrm{T}\) is a shear which transforms a point \(P\) to the point \(P'\) defined by
No problems in this section yet.
Reciprocal trig, addition formulae, double angle formula, product to sum, sum to product formulae, harmonic formulae, inverse functions
A pyramid has a horizontal rectangular base \(ABCD\) and its vertex \(V\) is vertically above the centre of the base. The acute angle between the face \(AVB\) and the base is \(\alpha\), the acute angle between the face \(BVC\) and the base is \(\beta\) and the obtuse angle between the faces \(AVB\) and \(BVC\) is \(\pi - \theta\).
You are not required to consider issues of convergence in this question. For any sequence of numbers \(a_1, a_2, \ldots, a_m, \ldots, a_n\), the notation \(\prod_{i=m}^{n} a_i\) denotes the product \(a_m a_{m+1} \cdots a_n\).
Show that if at least one of the four angles \(A\pm B\pm C\) is a multiple of \(\pi\), then \begin{alignat*}{1} \sin^{4}A+\sin^{4}B+\sin^{4}C & -2\sin^{2}B\sin^{2}C-2\sin^{2}C\sin^{2}A\\ & -2\sin^{2}A\sin^{2}B+4\sin^{2}A\sin^{2}B\sin^{2}C=0. \end{alignat*}
In this question, you may use the following identity without proof: \[ \cos A + \cos B = 2\cos\tfrac12(A+B) \, \cos \tfrac12(A-B) \;. \]
A function \(\f(x)\) is said to be {\em concave} for
\(a< x < b\)
if
\[
\ t\,\f(x_1) +(1-t)\,\f(x_2)
\le
\f\big(tx_1+ (1-t)x_2\big)
\,
,\]
for \(a< x_1 < b\,\), \
\(a< x_2< b\) and \(0\le t \le 1\,\).
Illustrate this definition by means of
a sketch,
showing the chord joining the points
\(\big(x_1, \f(x_1)\big) \)
and
\(\big(x_2, \f(x_2)\big) \), in the case \(x_1
Use the identity \[ 2 \sin P\,\sin Q = \cos(Q-P)-\cos(Q+P)\, \] to show that \[ 2\sin\theta \,\big (\sin\theta + \sin 3\theta + \cdots + \sin (2n-1)\theta\,\big ) = 1-\cos 2n\theta \,. \]
The points \(R\) and \(S\) have coordinates \((-a,\, 0)\) and \((2a,\, 0)\), respectively, where \(a > 0\,\). The point \(P\) has coordinates \((x,\, y)\) where \(y > 0\) and \(x < 2a\). Let \(\angle PRS = \alpha \) and \(\angle PSR = \beta\,\).
In this question, the \(\mathrm{arctan}\) function satisfies \(0\le \arctan x <\frac12 \pi\) for \(x\ge0\,\).
A thin circular path with diameter \(AB\) is laid on horizontal ground. A vertical flagpole is erected with its base at a point \(D\) on the diameter \(AB\). The angles of elevation of the top of the flagpole from \(A\) and \(B\) are \(\alpha\) and \(\beta\) respectively (both are acute). The point \(C\) lies on the circular path with \(DC\) perpendicular to \(AB\) and the angle of elevation of the top of the flagpole from \(C\) is \(\phi\). Show that \(\cot\alpha\cot \beta = \cot^2\phi\). Show that, for any \(p\) and \(q\), \[ \cos p \cos q \sin^2\tfrac12(p+q) - \sin p\sin q \cos^2 \tfrac12 (p+q) = \tfrac12 \cos(p+q) -\tfrac12 \cos(p+q)\cos(p-q) .\] Deduce that, if \(p\) and \(q\) are positive and \( p+q \le \tfrac12 \pi\), then \[ \cot p\cot q\, \ge \cot^2 \tfrac12(p+q) \, \] and hence show that \(\phi \le \tfrac12(\alpha+\beta)\) when \( \alpha +\beta \le \tfrac12 \pi\,\).
Show SolutionProve the identity \[ 4\sin\theta \sin(\tfrac13\pi-\theta) \sin (\tfrac13\pi+\theta)= \sin 3\theta\, . \tag{\(*\)}\]
The points \(P\), \(Q\) and \(R\) lie on a sphere of unit radius centred at the origin, \(O\), which is fixed. Initially, \(P\) is at \(P_0(1, 0, 0)\), \(Q\) is at \(Q_0(0, 1, 0)\) and \(R\) is at \(R_0(0, 0, 1)\).
Show that \[ \sin(x+y) -\sin(x-y) = 2 \cos x \, \sin y \] and deduce that \[ \sin A - \sin B = 2 \cos \tfrac12 (A+B) \, \sin\tfrac12 (A-B) \,. \] Show also that \[ \cos A - \cos B = -2 \sin \tfrac12(A+B) \, \sin\tfrac12(A-B)\,. \] The points \(P\), \(Q\), \(R\) and \(S\) have coordinates \(\left(a\cos p,b\sin p\right)\), \(\left(a\cos q,b\sin q\right)\), \(\left(a\cos r,b\sin r\right)\) and \(\left(a\cos s,b\sin s\right)\) respectively, where \(0\le p < q < r < s <2\pi\), and \(a\) and \(b\) are positive. Given that neither of the lines \(PQ\) and \(SR\) is vertical, show that these lines are parallel if and only if \[ r+s-p-q = 2\pi\,. \]
A curve has the equation \(y=\f(x)\), where \[ \f(x) = \cos \Big( 2x+ \frac \pi 3\Big) + \sin \Big ( \frac{3x}2 - \frac \pi 4\Big). \]
The point \(P\) has coordinates \((x,y)\) with respect to the origin \(O\). By writing \(x=r\cos\theta\) and \(y=r\sin\theta\), or otherwise, show that, if the line \(OP\) is rotated by \(60^\circ\) clockwise about \(O\), the new \(y\)-coordinate of \(P\) is \(\frac12(y-\sqrt3\,x)\). What is the new \(y\)-coordinate in the case of an anti-clockwise rotation by \(60^\circ\,\)? An equilateral triangle \(OBC\) has vertices at \(O\), \((1,0)\) and \((\frac12,\frac12 \sqrt3)\), respectively. The point \(P\) has coordinates \((x,y)\). The perpendicular distance from \(P\) to the line through \(C\) and \(O\) is \(h_1\); the perpendicular distance from \(P\) to the line through \(O\) and \(B\) is \(h_2\); and the perpendicular distance from \(P\) to the line through \(B\) and \(C\) is \(h_3\). Show that \(h_1=\frac12 \big\vert y-\sqrt3\,x\big\vert\) and find expressions for \(h_2\) and \(h_3\). Show that \(h_1+h_2+h_3=\frac12 \sqrt3\) if and only if \(P\) lies on or in the triangle \(OBC\).
In this question, \(\f^2(x)\) denotes \(\f(\f(x))\), \(\f^3(x)\) denotes \(\f( \f (\f(x)))\,\), and so on.
Given that \(\cos A\), \(\cos B\) and \(\beta\) are non-zero, show that the equation \[ \alpha \sin(A-B) + \beta \cos(A+B) = \gamma \sin(A+B) \] reduces to the form \[ (\tan A-m)(\tan B-n)=0\,, \] where \(m\) and \(n\) are independent of \(A\) and \(B\), if and only if \(\alpha^2=\beta^2+\gamma^2\). Determine all values of \(x\), in the range \(0\le x <2\pi\), for which:
Show that \(\sin A = \cos B\) if and only if \(A = (4n+1)\frac{\pi}{2}\pm B\) for some integer \(n\). Show also that \(\big\vert\sin x \pm \cos x \big\vert \le \sqrt{2}\) for all values of \(x\) and deduce that there are no solutions to the equation \(\sin\left( \sin x \right) = \cos \left( \cos x \right)\). Sketch, on the same axes, the graphs of \(y= \sin \left( \sin x \right)\) and \(y = \cos \left( \cos x \right)\). Sketch, not on the previous axes, the graph of \(y= \sin \left(2 \sin x \right)\).
Show SolutionThe positive numbers \(a\), \(b\) and \(c\) satisfy \(bc=a^2+1\). Prove that $$ \arctan\left(\frac1 {a+b}\right)+ \arctan\left(\frac1 {a+c}\right)= \arctan\left(\frac1 a \right). $$ The positive numbers \(p\), \(q\), \(r\), \(s\), \(t\), \(u\) and \(v\) satisfy $$ st = (p+q)^2 + 1 \;, \ \ \ \ \ \ uv=(p+r)^2 + 1 \;, \ \ \ \ \ \ qr = p^2+1\;. $$ Prove that $$ \arctan \! \!\left(\!\frac1 {p+q+s}\!\right) + \arctan \! \!\left(\!\frac 1{p+q+t}\!\right) + \arctan \! \!\left(\!\frac 1 {p+r+u}\!\right) + \arctan \! \!\left(\!\frac1 {p+r+v}\!\right) =\arctan \! \!\left( \! \frac1 p \! \right) . $$ Hence show that $$ \arctan\left(\frac1 {13}\right) +\arctan\left(\frac1 {21}\right) +\arctan\left(\frac1 {82}\right) +\arctan\left(\frac1 {187}\right) =\arctan\left(\frac1 {7}\right). $$ [\,Note that \(\arctan x\) is another notation for \( \tan^{-1}x \,.\,\)]
The notation \(\displaystyle \prod^n_{r=1} \f (r)\) denotes the product $\f (1) \times \f (2) \times \f(3) \times \cdots \times \f(n)$. %For example, \(\displaystyle \prod_{r=1}^4 r = 24\). %Simplify \(\displaystyle \prod^n_{r=1} \frac{\g (r) }{ \g (r-1) }\). %You may assume that \(\g (r) \neq 0\) for any integer \(0 \le r \le n \). Simplify the following products as far as possible:
The curve \(C\) has equation \[ y= a^{\sin (\pi \e^ x)}\,, \] where \(a>1\).
The lengths of the sides \(BC\), \(CA\), \(AB\) of the triangle \(ABC\) are denoted by \(a\), \(b\), \(c\), respectively. Given that $$ b = 8+{\epsilon}_1, \, c=3+{\epsilon}_2,\, A=\tfrac{1}{3}\pi + {\epsilon}_3, $$ where \({\epsilon}_1\), \({\epsilon}_2\), and \( {\epsilon}_3\) are small, show that \(a \approx 7 + {\eta}\), where ${\eta}= {\left(13 \, {{\epsilon}_1}-2\,{\epsilon}_2 + 24{\sqrt 3} \;{{\epsilon}_3}\right)}/14$. Given now that $$ {\vert {\epsilon}_1} \vert \le 2 \times 10^{-3}, \ \ \ {\vert {\epsilon}_2} \vert \le 4\cdot 9\times 10^{-2}, \ \ \ {\vert {\epsilon}_3} \vert \le \sqrt3 \times 10^{-3}, $$ find the range of possible values of \({\eta}\).
Show SolutionFor this question, you may use the following approximations, valid if \(\theta \) is small: \ \(\sin\theta \approx \theta\) and \(\cos\theta \approx 1-\theta^2/2\,\). A satellite \(X\) is directly above the point \(Y\) on the Earth's surface and can just be seen (on the horizon) from another point \(Z\) on the Earth's surface. The radius of the Earth is \(R\) and the height of the satellite above the Earth is \(h\).
Find the limit, as \(n\rightarrow\infty,\) of each of the following. You should explain your reasoning briefly. \begin{alignat*}{4} \mathbf{(i)\ \ } & \dfrac{n}{n+1}, & \qquad & \mathbf{(ii)\ \ } & \dfrac{5n+1}{n^{2}-3n+4}, & \qquad & \mathbf{(iii)\ \ } & \dfrac{\sin n}{n},\\ \\ \mathbf{(iv)\ \ } & \dfrac{\sin(1/n)}{(1/n)}, & & \mathbf{(v)}\ \ & (\arctan n)^{-1}, & & \mathbf{(vi)\ \ } & \dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n}}. \end{alignat*}
Show SolutionExplain briefly, by means of a diagram, or otherwise, why \[ \mathrm{f}(\theta+\delta\theta)\approx\mathrm{f}(\theta)+\mathrm{f}'(\theta)\delta\theta, \] when \(\delta\theta\) is small. Two powerful telescopes are placed at points \(A\) and \(B\) which are a distance \(a\) apart. A very distant point \(C\) is such that \(AC\) makes an angle \(\theta\) with \(AB\) and \(BC\) makes an angle \(\theta+\phi\) with \(AB\) produced. (A sketch of the arrangement is given in the diagram.) \noindent
By considering the graphs of \(y=kx\) and \(y=\sin x,\) show that the equation \(kx=\sin x,\) where \(k>0,\) may have \(0,1,2\) or \(3\) roots in the interval \((4n+1)\frac{\pi}{2} < x < (4n+5)\frac{\pi}{2},\) where \(n\) is a positive integer. For a certain given value of \(n\), the equation has exactly one root in this interval. Show that \(k\) lies in an interval which may be written \(\sin\delta < k < \dfrac{2}{(4n+1)\pi},\) where \(0 < \delta < \frac{1}{2}\pi\) and \[ \cos\delta=\left((4n+5)\frac{\pi}{2}-\delta\right)\sin\delta. \] Show that, if \(n\) is large, then \(\delta\approx\dfrac{2}{(4n+5)\pi}\) and obtain a second, improved, approximation.
Show SolutionShow that \[ \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{4}\right)=\frac{\sin\alpha}{4\sin\left(\dfrac{\alpha}{4}\right)}\,, \] where \(\alpha\neq k\pi\), \(k\) is an integer. Prove that, for such \(\alpha\), \[ \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{4}\right)\cdots\cos\left(\frac{\alpha}{2^{n}}\right)=\frac{\sin\alpha}{2^{n}\sin\left(\dfrac{\alpha}{2^{n}}\right)}\,, \] where \(n\) is a positive integer. Deduce that \[ \alpha=\frac{\sin\alpha}{\cos\left(\dfrac{\alpha}{2}\right)\cos\left(\dfrac{\alpha}{4}\right)\cos\left(\dfrac{\alpha}{8}\right)\cdots}\,, \] and hence that \[ \frac{\pi}{2}=\frac{1}{\sqrt{\frac{1}{2}}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}}\cdots}\,. \]
Show SolutionProduct rule, quotient rule, chain rule, differentiating trig, exponentials, logarithm,
The function f satisfies \(f(0) = 0\) and \(f'(t) > 0\) for \(t > 0\). Show by means of a sketch that, for \(x > 0\), $$\int_0^x f(t) \, dt + \int_0^{f(x)} f^{-1}(y) \, dy = xf(x).$$
A straight line passes through the fixed point \((1 , k)\) and has gradient \(- \tan \theta\), where \(k > 0\) and \(0 < \theta < \frac{1}{2}\pi\). Find, in terms of \(\theta\) and \(k\), the coordinates of the points \(X\) and \(Y\) where the line meets the \(x\)-axis and the \(y\)-axis respectively.
A woman stands in a field at a distance of \(a\,\mathrm{m}\) from the straight bank of a river which flows with negligible speed. She sees her frightened child clinging to a tree stump standing in the river \(b\,\mathrm{m}\) downstream from where she stands and \(c\,\mathrm{m}\) from the bank. She runs at a speed of \(u\,\mathrm{ms}^{-1}\) and swims at \(v\,\mathrm{ms}^{-1}\) in straight lines. Find an equation to be satisfied by \(x,\) where \(x\,\mathrm{m}\) is the distance upstream from the stump at which she should enter the river if she is to reach the child in the shortest possible time. Suppose now that the river flows with speed \(v\) ms\(^{-1}\) and the stump remains fixed. Show that, in this case, \(x\) must satisfy the equation \[ 2vx^{2}(b-x)=u(x^{2}-c^{2})[a^{2}+(b-x)^{2}]^{\frac{1}{2}}. \] For this second case, draw sketches of the woman's path for the three possibilities \(b>c,\) \(b=c\) and \(b< c\).
Show SolutionFind the stationary points of the function \(\mathrm{f}\) given by \[ \mathrm{f}(x)=\mathrm{e}^{ax}\cos bx,\mbox{ }(a>0,b>0). \] Show that the values of \(\mathrm{f}\) at the stationary points with \(x>0\) form a geometric progression with common ratio \(-\mathrm{e}^{a\pi/b}\). Give a rough sketch of the graph of \(\mathrm{f}\).
Show SolutionThe sequence of functions \(y_0\), \(y_1\), \(y_2\), \(\ldots\,\) is defined by \(y_0=1\) and, for \(n\ge1\,\), \[ y_n = (-1)^n \frac {1}{z} \, \frac{\d^{n} z}{\d x^n} \,, \] where \(z= \e^{-x^2}\!\).
%In this question, %the definition of \(a^b\) (for \(a>0\)) is %$ %a^b = \e^{b \ln a} \,. %$ %\\ The functions \(\f\) and \(\g\) are defined, for \(x>0\), by \[ \f(x) = x^x\,, \ \ \ \ \ \g(x) = x^{\f(x)}\,. \]
A circle of radius \(a\) is centred at the origin \(O\). A rectangle \(PQRS\) lies in the minor sector \(OMN\) of this circle where \(M\) is \((a,0)\) and \(N\) is \((a \cos \beta, a \sin \beta)\), and \(\beta\) is a constant with \(0 < \beta < \frac{\pi}{2}\,\). Vertex \(P\) lies on the positive \(x\)-axis at \((x,0)\); vertex \(Q\) lies on \(ON\); vertex \(R\) lies on the arc of the circle between \(M\) and \(N\); and vertex \(S\) lies on the positive \(x\)-axis at \((s,0)\). Show that the area \(A\) of the rectangle can be written in the form \[ A= x(s-x)\tan\beta \,. \] Obtain an expression for \(s\) in terms of \(a\), \(x\) and \(\beta\), and use it to show that \[ \frac{\d A}{\d x} = (s-2x) \tan \beta - \frac {x^2} s \tan^3\beta \,. \] Deduce that the greatest possible area of rectangle \(PQRS\) occurs when \(s= x(1+\sec\beta)\) and show that this greatest area is \(\tfrac12 a^2 \tan \frac12 \beta\,\). Show also that this greatest area occurs when \(\angle ROS = \frac12\beta\,\).
For each non-negative integer \(n\), the polynomial \(\f_n\) is defined by \[ \f_n(x) = 1 + x + \frac{x^2}{2!} + \frac {x^3}{3!} + \cdots + \frac{x^n}{n!} \]
Differentiate, with respect to \(x\), \[ (ax^2+bx+c)\,\ln \big( x+\sqrt{1+x^2}\big) +\big(dx+e\big)\sqrt{1+x^2} \,, \] where \(a\), \(b\), \(c\), \(d\) and \(e\) are constants. You should simplify your answer as far as possible. Hence integrate:
By simplifying \(\sin(r+\frac12)x - \sin(r-\frac12)x\) or otherwise show that, for \(\sin\frac12 x \ne0\), \[ \cos x + \cos 2x +\cdots + \cos nx = \frac{\sin(n+\frac12)x - \sin\frac12 x}{2\sin\frac12x}\,. \] The functions \(\.S_n\), for \(n=1\), \(2\), \dots, are defined by \[ \.S_n(x) = \sum_{r=1}^n \frac 1 r \sin rx \qquad (0\le x \le \pi). \]
An accurate clock has an hour hand of length \(a\) and a minute hand of length \(b\) (where \(b>a\)), both measured from the pivot at the centre of the clock face. Let \(x\) be the distance between the ends of the hands when the angle between the hands is \(\theta\), where \(0\le\theta < \pi\). Show that the rate of increase of \(x\) is greatest when \(x=(b^2-a^2)^\frac12\). In the case when \(b=2a\) and the clock starts at mid-day (with both hands pointing vertically upwards), show that this occurs for the first time a little less than 11 minutes later.
Show SolutionThe line \(L\) has equation \(y=c-mx\), with \(m>0\) and \(c>0\). It passes through the point \(R(a,b)\) and cuts the axes at the points \(P(p,0)\) and \(Q(0,q)\), where \(a\), \(b\), \(p\) and \(q\) are all positive. Find \(p\) and \(q\) in terms of \(a\), \(b\) and \(m\). As \(L\) varies with \(R\) remaining fixed, show that the minimum value of the sum of the distances of \(P\) and \(Q\) from the origin is \((a^{\frac12} + b^{\frac12})^2\), and find in a similar form the minimum distance between \(P\) and \(Q\). (You may assume that any stationary values of these distances are minima.)
Show SolutionIn this question, you may assume without proof that any function \(\f\) for which \(\f'(x)\ge 0\) is increasing; that is, \(\f(x_2)\ge \f(x_1)\) if \(x_2\ge x_1\,\).
The number \(E\) is defined by $\displaystyle E= \int_0^1 \frac{\e^x}{1+x} \, \d x\,.$ Show that \[ \int_0^1 \frac{x \e^x}{1+x} \, \d x = \e -1 -E\, ,\] and evaluate \(\ds \int_0^1 \frac{x^2\e^x}{1+x} \, \d x\) in terms of \(\e\) and \(E\). Evaluate also, in terms of \(E\) and \(\rm e\) as appropriate:
Let \(P\) be a given point on a given curve \(C\). The {\em osculating circle} to \(C\) at \(P\) is defined to be the circle that satisfies the following two conditions at \(P\): it touches \(C\); and the rate of change of its gradient is equal to the rate of change of the gradient of \(C\). Find the centre and radius of the osculating circle to the curve \(y=1-x+\tan x\) at the point on the curve with \(x\)-coordinate \(\frac14 \pi\).
The curve \(\displaystyle y=\Bigl(\frac{x-a}{x-b}\Bigr)\e^{x}\), where \(a\) and \(b\) are constants, has two stationary points. Show that \[ a-b<0 \ \ \ \text{or} \ \ \ a-b>4 \,. \]
A function \(\f(x)\) is said to be convex in the interval \(a < x < b\) if \(\f''(x)\ge0\) for all \(x\) in this interval.
Using the series \[ \e^x = 1 + x +\frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}+\cdots\,, \] show that \(\e>\frac83\). Show that \(n!>2^n\) for \(n\ge4\) and hence show that \(\e<\frac {67}{24}\). Show that the curve with equation \[ y= 3\e^{2x} +14 \ln (\tfrac43-x)\,, \qquad {x<\tfrac43} \] has a minimum turning point between \(x=\frac12\) and \(x=1\) and give a sketch to show the shape of the curve.
Show SolutionBy sketching on the same axes the graphs of \(y=\sin x\) and \(y=x\), show that, for \(x>0\):
Find the three values of \(x\) for which the derivative of \(x^2 \e^{-x^2}\) is zero. Given that \(a\) and \(b\) are distinct positive numbers, find a polynomial \(\P(x)\) such that the derivative of \(\P(x)\e^{-x^2}\) is zero for \(x=0\), \(x=\pm a\) and \(x=\pm b\,\), but for no other values of \(x\).
Show SolutionYou need not consider the convergence of the improper integrals in this question. For \(p, q > 0\), define $$b(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1} \, dx$$
You need not consider the convergence of the improper integrals in this question.
By first multiplying the numerator and the denominator of the integrand by \((1 - \sin x)\), evaluate $$\int_0^{\frac{1}{4}\pi} \frac{1}{1 + \sin x} dx.$$ Evaluate also: $$\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} \frac{1}{1 + \sec x} dx \quad \text{and} \quad \int_0^{\frac{1}{3}\pi} \frac{1}{(1 + \sin x)^2} dx.$$
Show SolutionThe function \(f\) is defined, for \(x > 1\), by $$f(x) = \int_1^x \sqrt{\frac{t-1}{t+1}} dt.$$ Do not attempt to evaluate this integral.
A definite integral can be evaluated approximately by means of the Trapezium rule: \[ \int_{x_{0}}^{x_{N}}\mathrm{f}(x)\,\mathrm{d}x\approx\tfrac{1}{2}h\left\{ \mathrm{f}\left(x_{0}\right)+2\mathrm{f}\left(x_{1}\right)+\ldots+2\mathrm{f}\left(x_{N-1}\right)+\mathrm{f}\left(x_{N}\right)\right\} , \] where the interval length \(h\) is given by \(Nh=x_{N}-x_{0}\), and \(x_{r}=x_{0}+rh\). Justify briefly this approximation. Use the Trapezium rule with intervals of unit length to evaluate approximately the integral \[ \int_{1}^{n}\ln x\,\mathrm{d}x, \] where \(n(>2)\) is an integer. Deduce that \(n!\approx\mathrm{g}(n)\), where \[ \mathrm{g}(n)=n^{n+\frac{1}{2}}\mathrm{e}^{1-n}, \] and show by means of a sketch, or otherwise, that \[ n!<\mathrm{g}(n). \] By using the Trapezium rule on the above integral with intervals of width \(k^{-1}\), where \(k\) is a positive integer, show that \[ \left(kn\right)!\approx k!n^{kn+\frac{1}{2}}\left(\frac{\mathrm{e}}{k}\right)^{k\left(1-n\right)}. \] Determine whether this approximation or \(\mathrm{g}(kn)\) is closer to \(\left(kn\right)!\).
Show SolutionLet \[ I=\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi}\frac{\cos^{2}\theta}{1-\sin\theta\sin2\alpha}\,\mathrm{d}\theta\, , \] where \(0<\alpha<\frac{1}{4}\pi\). Show that \[ I=\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi}\frac{\cos^{2}\theta}{1+\sin\theta\sin2\alpha}\,\mathrm{d}\theta\, , \] and hence that \[ I=\frac{\pi}{\sin^{2}2\alpha}-\cot^{2}2\alpha\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi}\frac{\sec^{2}\theta}{1+\cos^{2}2\alpha\tan^{2}\theta}\,\mathrm{d}\theta. \] Show that \(I=\frac{1}{2}\pi\sec^{2}\alpha\), and state the value of \(I\) if \(\frac{1}{4}\pi<\alpha<\frac{1}{2}\pi\).
Show SolutionExplain why the use of the substitution \(x=\dfrac{1}{t}\) does not demonstrate that the integrals \[ \int_{-1}^{1}\frac{1}{(1+x^{2})^{2}}\,\mathrm{d}x\quad\mbox{ and }\quad\int_{-1}^{1}\frac{-t^{2}}{(1+t^{2})^{2}}\,\mathrm{d}t \] are equal. Evaluate both integrals correctly.
Show SolutionLet \(y=\mathrm{f}(x)\), \((0\leqslant x\leqslant a)\), be a continuous curve lying in the first quadrant and passing through the origin. Suppose that, for each non-negative value of \(y\) with \(0\leqslant y\leqslant\mathrm{f}(a)\), there is exactly one value of \(x\) such that \(\mathrm{f}(x)=y\); thus we may write \(x=\mathrm{g}(y)\), for a suitable function \(\mathrm{g}.\) For \(0\leqslant s\leqslant a,\) \(0\leqslant t\leqslant \mathrm{f}(a)\), define \[ \mathrm{F}(s)=\int_{0}^{s}\mathrm{f}(x)\,\mathrm{d}x,\qquad\mathrm{G}(t)=\int_{0}^{t}\mathrm{g}(y)\,\mathrm{d}y. \] By a geometrical argument, show that \[ \mathrm{F}(s)+\mathrm{G}(t)\geqslant st.\tag{*} \] When does equality occur in \((*)\)? Suppose that \(y=\sin x\) and that the ranges of \(x,y,s,t\) are restricted to \(0\leqslant x\leqslant s\leqslant\frac{1}{2}\pi,\) \(0\leqslant y\leqslant t\leqslant1\). By considering \(s\) such that the equality holds in \((*)\), show that \[ \int_{0}^{t}\sin^{-1}y\,\mathrm{d}y=t\sin^{-1}t-\left(1-\cos(\sin^{-1}t)\right). \] Check this result by differentiating both sides with respect to \(t\).
Show SolutionUsing the substitution \(x=\alpha\cos^{2}\theta+\beta\sin^{2}\theta,\) show that, if \(\alpha<\beta\), \[ \int_{\alpha}^{\beta}\frac{1}{\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x=\pi. \] What is the value of the above integral if \(\alpha>\beta\)? Show also that, if \(0<\alpha<\beta\), \[ \int_{\alpha}^{\beta}\frac{1}{x\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x=\frac{\pi}{\sqrt{\alpha\beta}}. \]
Show SolutionThe functions \(\s\) and \(\c\) satisfy \(\s(0)= 0\,\), \(\c(0)=1\,\) and \[ \s'(x) = \c(x)^2 ,\] \[ \c'(x)=-\s(x)^2. \] You may assume that \(\s\) and \(\c\) are uniquely defined by these conditions.
The function \(\f\) is defined by \[ \phantom{\ \ \ \ \ \ \ \ \ \ \ \ (x>0, \ \ x\ne1)} \f(x) = \frac{1}{x\ln x} \left(1 - (\ln x)^2 \right)^2 \ \ \ \ \ \ \ \ \ \ \ \ (x>0, \ \ x\ne1) \,.\] Show that,\, when \(( \ln x )^2 = 1\,\),\, both \(\f(x)=0\) and \(\f'(x)=0\,\). The function \(F\) is defined by \begin{align*} F(x) = \begin{cases} \displaystyle \int_{ 1/\text{e}}^x \f(t) \; \mathrm{d}t & \text{ for } 0 < x < 1\,, \\[7mm] \displaystyle \int_{\text{e}}^x \f(t) \; \mathrm{d}t & \text{ for } x > 1\,. \\ \end{cases} \end{align*}
In this question, you are not permitted to use any properties of trigonometric functions or inverse trigonometric functions. The function \(\T\) is defined for \(x>0\) by \[ \T(x) = \int_0^x \! \frac 1 {1+u^2} \, \d u\,, \] and $\displaystyle T_\infty = \int_0^\infty \!\! \frac 1 {1+u^2} \, \d u\,$ (which has a finite value).
For any function \(\f\) satisfying \(\f(x) > 0\), we define the {\em geometric mean}, F, by \[ \F(y) \; = \mbox{ \fontsize{12}{15.6}\selectfont \(\e\)} \mbox{ \fontsize{14}{15.6}\selectfont $ ^{\! \raisemath {3pt} {\frac{1}{y} \! \int_{\raisemath{-1pt}{0}}^{\raisemath{1pt}{y}} \ln \f(x) \, \d x} } $ } \ \ \ \ \ \ (y>0)\,. \]
The Schwarz inequality is \[ \left( \int_a^b \f(x)\, \g(x)\,\d x\right)^{\!\!2} \le \left( \int_a^b \big( \f(x)\big)^2 \d x \right) \left( \int_a^b \big( \g(x)\big)^2 \d x \right) . \tag{\(*\)} \]
Note: In this question you may use without proof the result \( \dfrac{\d \ }{\d x}\big(\!\arctan x \big) = \dfrac 1 {1+x^2}\,\). Let \[ I_n = \int_0^1 x^n \arctan x \, \d x \;, \] where \(n=0\), 1, 2, 3, \(\ldots\) .
Show that \[ \int_0^a \f(x) \d x= \int _0^a \f(a-x) \d x\,, \tag{\(*\)} \] where f is any function for which the integrals exist.
The curve \(C\) is given parametrically by the equations \(x = 3t^2\), \(y = 2t^3\). Show that the equation of the tangent to \(C\) at the point \((3p^2 , 2p^3)\) is \(y = px - p^3\). Find the point of intersection of the tangents to \(C\) at the distinct points \((3p^2 , 2p^3)\) and \((3q^2 , 2q^3)\). Hence show that, if these two tangents are perpendicular, their point of intersection is \((u^2 + 1 , -u)\), where \(u = p + q\). The curve \(\tilde{C}\) is given parametrically by the equations \(x = u^2 + 1\), \(y = -u\). Find the coordinates of the points that lie on both \(C\) and \(\tilde{C}\). Sketch \(C\) and \(\tilde{C}\) on the same axes.
Show SolutionA right circular cone has base radius \(r\), height \(h\) and slant length \(\ell\). Its volume \(V\), and the area~\(A\) of its curved surface, are given by \[ V= \tfrac13 \pi r^2 h \,, \ \ \ \ \ \ \ A = \pi r\ell\,. \] \vspace*{-1cm}
A curve has the equation \[ y^3 = x^3 +a^3+b^3\,, \] where \(a\) and \(b\) are positive constants. Show that the tangent to the curve at the point \((-a,b)\) is \[ b^2y-a^2x = a^3+b^3\,. \] In the case \(a=1\) and \(b=2\), show that the \(x\)-coordinates of the points where the tangent meets the curve satisfy \[ 7x^3 -3x^2 -27x-17 =0\,. \] Hence find positive integers \(p\), \(q\), \(r\) and \(s\) such that \[ p^3 = q^3 +r^3 +s^3\,. \]
Show SolutionA curve is given by \[x^2+y^2 +2axy = 1,\] where \(a\) is a constant satisfying \(0 < a < 1\). Show that the gradient of the curve at the point~\(P\) with coordinates \((x,y)\) is \[\displaystyle - \frac {x+ay}{ax+y}\,,\] provided \(ax+y \ne0\). Show that \(\theta\), the acute angle between \(OP\) and the normal to the curve at \(P\), satisfies \[ \tan\theta = a\vert y^2-x^2\vert\;. \] Show further that, if \(\ \displaystyle \frac{\d \theta}{\d x}=0\) at \(P\), then:
The variables \(t\) and \(x\) are related by \(t=x+ \sqrt{x^2+2bx+c\;} \,\), where \(b\) and \(c\) are constants and \(b^2 < c\). Show that \[ \frac{\d x}{\d t} = \frac{t-x}{t+b}\;, \] and hence integrate \(\displaystyle \frac1 {\sqrt{x^2+2bx+c}}\,\). Verify by direct integration that your result holds also in the case \(b^2=c\) if \(x+b > 0\) but that your result does not hold in the case \(b^2=c\) if \(x+b < 0\,\).
Show SolutionThe function \(\mathrm{g}\) satisfies, for all positive \(x\) and \(y\), \[ \mathrm{g}(x)+\mathrm{g}(y)=\mathrm{g}(z),\tag{\ensuremath{*}} \] where \(z=xy/(x+y+1).\) By treating \(y\) as a constant, show that \[ \mathrm{g}'(x)=\frac{y^{2}+y}{(x+y+1)^{2}}\mathrm{g}'(z)=\frac{z(z+1)}{x(x+1)}\mathrm{g}'(z), \] and deduce that \(2\mathrm{g}'(1)=(u^{2}+u)\mathrm{g}'(u)\) for all \(u\) satisfying \(0 < u < 1.\) Now by treating \(u\) as a variable, show that \[ \mathrm{g}(u)=A\ln\left(\frac{u}{u+1}\right)+B, \] where \(A\) and \(B\) are constants. Verify that \(\mathrm{g}\) satisfies \((*)\) for a suitable value of \(B\). Can \(A\) be determined from \((*)\)? The function \(\mathrm{f}\) satisfies, for all positive \(x\) and \(y\), \[ \mathrm{f}(x)+\mathrm{f}(y)=\mathrm{f}(z) \] where \(z=xy.\) Show that \(\mathrm{f}(x)=C\ln x\) where \(C\) is a constant.
The equation of a hyperbola (with respect to axes which are displaced and rotated with respect to the standard axes) is \[ 3y^{2}-10xy+3x^{2}+16y-16x+15=0.\tag{\(\dagger\)} \] By differentiating \((\dagger)\), or otherwise, show that the equation of the tangent through the point \((s,t)\) on the curve is \[ y=\left(\frac{5t-3s+8}{3t-5s+8}\right)x-\left(\frac{8t-8s+15}{3t-5s+8}\right). \] Show that the equations of the asymptote (the limiting tangents as \(s\rightarrow\infty\)) are \[ y=3x-4\qquad\mbox{ and }\qquad3y=x-4. \] {[}Hint: You will need to find a relationship between \(s\) and \(t\) which is valid in the limit as \(s\rightarrow\infty.\){]} Show that the angle between one asymptote and the \(x\)-axis is the same as the angle between the other asymptote and the \(y\)-axis. Deduce the slopes of the lines that bisect the angles between the asymptotes and find the equations of the axes of the hyperbola.
Show SolutionSketch the curve \(y^{2}=1-\left|x\right|\). A rectangle, with sides parallel to the axes, is inscribed within this curve. Show that the largest possible area of the rectangle is \(8/\sqrt{27}\). Find the maximum area of a rectangle similarly inscribed within the curve given by \(y^{2m}=\left(1-\left|x\right|\right)^{n}\), where \(m\) and \(n\) are positive integers, with \(n\) odd.
Show SolutionNote: You may assume that if the functions \(y_1(x)\) and \(y_2(x)\) both satisfy one of the differential equations in this question, then the curves \(y = y_1(x)\) and \(y = y_2(x)\) do not intersect.
This question concerns solutions of the differential equation \[ (1-x^2) \left(\frac{\d y}{\d x}\right)^2 + k^2 y^2 = k^2\, \tag{\(*\)} \] where \(k\) is a positive integer. For each value of \(k\), let \(y_k(x)\) be the solution of \((*)\) that satisfies \(y_k(1)=1\); you may assume that there is only one such solution for each value of \(k\).
In this question, you may assume that \(\ln (1+x) \approx x -\frac12 x^2\) when \(\vert x \vert \) is small. The height of the water in a tank at time \(t\) is \(h\). The initial height of the water is \(H\) and water flows into the tank at a constant rate. The cross-sectional area of the tank is constant.
Given that \({\rm P} (x) = {\rm Q} (x){\rm R}'(x) - {\rm Q}'(x){\rm R}(x)\), write down an expression for \[ \int \frac{{\rm P} ( x)}{ \big( {\rm Q} ( x)\big )^ 2}\, \d x\, . \]
Find the general solution of the differential equation \(\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{xy}{x^2+a^2}\;\), where \(a\ne0\,\), and show that it can be written in the form \(\displaystyle y^2(x^2+a^2)= c^2\,\), where \(c\) is an arbitrary constant. Sketch this curve. Find an expression for \(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x} (x^2+y^2)\) and show that \[ \frac{\mathrm{d^2}}{\mathrm{d}x^2} (x^2+y^2) = 2\left(1 -\frac {c^2}{(x^2+a^2)^2} \right) + \frac{8c^2x^2}{(x^2+a^2)^3}\;. \]
For \(x \ge 0\) the curve \(C\) is defined by $$ {\frac{\d y} {\d x}} = \frac{x^3y^2}{(1 + x^2)^{5/2}} $$ with \(y = 1\) when \(x=0\,\). Show that \[ \frac 1 y = \frac {2+3x^2}{3(1+x^2)^{3/2}} +\frac13 \] and hence that for large positive \(x\) $$ y \approx 3 - \frac 9 x\;. $$ Draw a sketch of \(C\). On a separate diagram, draw a sketch of the two curves defined for \(x \ge 0\) by $$ \frac {\d z} {\d x} = \frac{x^3z^3}{2(1 + x^2)^{5/2}} $$ with \(z = 1\) at \(x=0\) on one curve, and \(z = -1\) at \(x=0\) on the other.
Show SolutionShow that, if \(y^2 = x^k \f(x)\), then $\displaystyle 2xy \frac{\mathrm{d}y }{ \mathrm{d}x} = ky^2 + x^{k+1} \frac{\mathrm{d}\f }{ \mathrm{d}x}$\,.
Let \(x\) satisfy the differential equation $$ \frac {\d x}{\d t} = {\big( 1-x^n\big)\vphantom{\Big)}}^{\!1/n} $$ and the condition \(x=0\) when \(t=0 \,\).
Evaluate \(\int_0^{{\pi}} x \sin x\,\d x\) and \(\int_0^{{\pi}} x \cos x\,\d x\;\). The function \(\f\) satisfies the equation \begin{equation} \f(t)=t + \int_0^{{\pi}} \f(x)\sin(x+t)\,\d x\;. \tag{\(*\)} \end{equation} Show that \[ \f(t)=t + A\sin t + B\cos t\;, \] where \(A= \int_0^{{\pi}}\,\f(x)\cos x\,\d x\;\) and \(B= \int_0^{{\pi}}\,\f(x)\sin x\,\d x\;\). Find \(A\) and \(B\) by substituting for \(\f(t)\) and \(\f(x)\) in \((*)\) and equating coefficients of \(\sin t\) and \(\cos t\,\).
It is given that \(y\) satisfies $$ {{\d y} \over { \d t}} + k\left({{t^2-3t+2} \over {t+1}}\right)y = 0\;, $$ where \(k\) is a constant, and \(y=A \) when \(t=0\,\), where \(A\) is a positive constant. Find \(y\) in terms of \(t\,\), \(k\) and \(A\,\). Show that \(y\) has two stationary values whose ratio is \((3/2)^{6k}\e^{-5{k}/2}.\) Describe the behaviour of \(y\) as \(t \to +\infty\) for the case where \(k> 0\) and for the case where \(k<0\,.\) In separate diagrams, sketch the graph of \(y\) for \(t>0\) for each of these cases.
Show SolutionA liquid of fixed volume \(V\) is made up of two chemicals \(A\) and \(B\,\). A reaction takes place in which \(A\) converts to \(B\,\). The volume of \(A\) at time \(t\) is \(xV\) and the volume of \(B\) at time \(t\) is \(yV\) where \(x\) and \(y\) depend on \(t\) and \(x+y=1\,\). The rate at which \(A\) converts into \(B\) is given by \(kVxy\,\), where \(k\) is a positive constant. Show that if both \(x\) and \(y\) are strictly positive at the start, then at time \(t\) \[ y= \frac {D\e^{kt}}{1+D \e^{kt}} \;, \] where \(D\) is a constant. Does \(A\) ever completely convert to \(B\,\)? Justify your answer.
Find all the solution curves of the differential equation \[ y^4 \l {\mathrm{d}y \over \mathrm{d}x }\r^{\! \! 4} = \l y^2 - 1 \r^2 \] that pass through either of the points
Find \(y\) in terms of \(x\), given that: \begin{eqnarray*} \mbox{for \(x < 0\,\)}, && \frac{\d y}{\d x} = -y \mbox{ \ \ and \ \ } y = a \mbox{ when } x = -1\;; \\ \mbox{for \(x > 0\,\)}, && \frac{\d y}{\d x} = y \mbox{ \ \ \ \ and \ \ } y = b \ \mbox{ when } x = 1\;. \end{eqnarray*} Sketch a solution curve. Determine the condition on \(a\) and \(b\) for the solution curve to be continuous (that is, for there to be no `jump' in the value of \(y\)) at \(x = 0\). Solve the differential equation \[ \frac{\d y}{\d x} = \left\vert \e^x-1\right\vert y \] given that \(y=\e^{\e}\) when \(x=1\) and that \(y\) is continuous at \(x=0\,\). Write down the following limits: \ \[ \text{(i)} \ \ \lim_ {x \to +\infty} y\exp(-\e^x)\;; \ \ \ \ \ \ \ \ \ \text{(ii)} \ \ \lim_{x \to -\infty}y \e^{-x}\,. \]
Sketch the graph of the function \(\ln x - {1 \over 2} x^2\). Show that the differential equation \[ {\mathrm{d} y \over \mathrm{d} x} = {2xy \over x^2 - 1} \] describes a family of parabolas each of which passes through the points \((1,0)\) and \((-1,0)\) and has its vertex on the \(y\)-axis. Hence find the equation of the curve that passes through the point \((1,1)\) and intersects each of the above parabolas orthogonally. Sketch this curve. [Two curves intersect orthogonally if their tangents at the point of intersection are perpendicular.]
Show SolutionThe function \(\f\) satisfies \(\f(x+1)= \f(x)\) and \(\f(x)>0\) for all \(x\).
The curve \(C_1\) passes through the origin in the \(x\)--\(y\) plane and its gradient is given by $$ \frac{\d y}{\d x} =x(1-x^2)\e^{-x^2}. $$ Show that \(C_1\) has a minimum point at the origin and a maximum point at \(\left(1,{\frac12\, \e^{-1}} \right)\). Find the coordinates of the other stationary point. Give a rough sketch of \(C_1\). The curve \(C_2\) passes through the origin and its gradient is given by $$ \frac{\d y}{\d x}= x(1-x^2)\e^{-x^3}. $$ Show that \(C_2\) has a minimum point at the origin and a maximum point at \((1,k)\), where \phantom{} \(k > \frac12 \,\e^{-1}.\) (You need not find \(k\).)
In a cosmological model, the radius \(\rm R\) of the universe is a function of the age \(t\) of the universe. The function \(\rm R\) satisfies the three conditions: $$ \mbox{\({\rm R}(0)=0\)}, \ \ \ \ \ \ \ \ \ \mbox{\({\rm R'}(t)>0\) for \(t>0\)}, \ \ \ \ \ \ \ \ \ \ \mbox{\({\rm R''}(t)<0\) for \(t>0\)}, \tag{*} $$ where \({\rm R''}\) denotes the second derivative of \(\rm R\). The function \({\rm H}\) is defined by \[ {\rm H} (t)= \frac{{\rm R}'(t)}{{\rm R}( t)}\;. \]
Fluid flows steadily under a constant pressure gradient along a straight tube of circular cross-section of radius \(a\). The velocity \(v\) of a particle of the fluid is parallel to the axis of the tube and depends only on the distance \(r\) from the axis. The equation satisfied by \(v\) is \[\frac{1}{r}\frac{{\mathrm d}\ }{{\mathrm d}r} \left(r\frac{{\mathrm d}v}{{\mathrm d}r}\right) =-k,\] where \(k\) is constant. Find the general solution for \(v\). Show that \(|v|\rightarrow\infty\) as \(r\rightarrow 0\) unless one of the constants in your solution is chosen to be~\(0\). Suppose that this constant is, in fact, \(0\) and that \(v=0\) when \(r=a\). Find \(v\) in terms of \(k\), \(a\) and \(r\). The volume \(F\) flowing through the tube per unit time is given by \[F=2\pi\int_{0}^{a}rv\,{\mathrm d}r. \] Find \(F\).
Find the two solutions of the differential equation \[ \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}=4y \] which pass through the point \((a,b^{2}),\) where \(b\neq0.\) Find two distinct points \((a_{1},1)\) and \((a_{2},1)\) such that one of the solutions through each of them also passes through the origin. Show that the graphs of these two solutions coincide and sketch their common graph, together with the other solutions through \((a_{1},1)\) and \((a_{2},1)\). Now sketch sufficient members of the family of solutions (for varying \(a\) and \(b\)) to indicate the general behaviour. Use your sketch to identify a common tangent, and comment briefly on its relevance to the differential equation.
The vectors \({\bf a}\) and \({\bf b}\) lie in the plane \(\Pi\,\). Given that \(\vert {\bf a} \vert= 1\) and \({\bf a}.{\bf b} = 3,\) find, in terms of \({\bf a}\) and \({\bf b}\,\), a vector \({\bf p}\) parallel to \({\bf a}\) and a vector \({\bf q}\) perpendicular to \({\bf a}\,\), both lying in the plane \(\Pi\,\), such that $${\bf p}+{\bf q}={\bf a}+{\bf b}\;.$$ The vector \({\bf c}\) is not parallel to the plane \(\Pi\) and is such that \({\bf a}.{\bf c} = -2\) and \({\bf b}.{\bf c} = 2\,\). Given that \(\vert {\bf b} \vert = 5\,\), find, in terms of \({\bf a}, {\bf b}\) and \({\bf c},\) vectors \({\bf P}\), \({\bf Q}\) and \({\bf R}\) such that \({\bf P}\) and \({\bf Q}\) are parallel to \({\bf p}\) and \({\bf q},\) respectively, \({\bf R}\) is perpendicular to the plane \(\Pi\) and $${\bf P} + {\bf Q} + {\bf R} = {\bf a}+{\bf b}+{\bf c}\;.$$
The position vectors of the points \(A\,\), \(B\,\) and \(P\) with respect to an origin \(O\) are \(a{\bf i}\,\), \(b{\bf j}\,\) and \(l{\bf i}+m{\bf j}+n{\bf k}\,\), respectively, where \(a\), \(b\), and \(n\) are all non-zero. The points \(E\), \(F\), \(G\) and~\(H\) are the midpoints of \(OA\), \(BP\), \(OB\) and \(AP\), respectively. Show that the lines \(EF\) and \(GH\) intersect. Let \(D\) be the point with position vector \(d{\bf k}\), where \(d\) is non-zero, and let \(S\) be the point of intersection of \(EF\) and \(GH.\) The point \(T\) is such that the mid-point of \(DT\) is \(S\). Find the position vector of \(T\) and hence find \(d\) in terms of \(n\) if \(T\) lies in the plane \(OAB\).
Consider the equations \begin{alignat*}{2} ax-&y- \ z && =3 \;,\\ 2ax -&y -3z && = 7 \;,\\ 3ax-&y-5z && =b \;, \end{alignat*} where \(a\) and \(b\) are given constants.
For all values of \(a\) and \(b,\) either solve the simultaneous equations \begin{alignat*}{1} x+y+az & =2\\ x+ay+z & =2\\ 2x+y+z & =2b \end{alignat*} or prove that they have no solution.
Show SolutionConsider the system of equations \begin{alignat*}{1} 2yz+zx-5xy & =2\\ yz-zx+2xy & =1\\ yz-2zx+6xy & =3 \end{alignat*} Show that \[xyz=\pm 6\] and find the possible values of \(x\), \(y\) and \(z\).
Show SolutionFind the simultaneous solutions of the three linear equations \begin{alignat*}{1} a^{2}x+ay+z & =a^{2}\\ ax+y+bz & =1\\ a^{2}bx+y+bz & =b \end{alignat*} for all possible real values of \(a\) and \(b\).
Show SolutionThe matrices \(\mathbf{A},\mathbf{B}\) and \(\mathbf{M}\) are given by \[ \mathbf{A}=\begin{pmatrix}a & 0 & 0\\ b & c & 0\\ d & e & f \end{pmatrix},\quad\mathbf{B}=\begin{pmatrix}1 & p & q\\ 0 & 1 & r\\ 0 & 0 & 1 \end{pmatrix},\quad\mathbf{M}=\begin{pmatrix}1 & 3 & 2\\ 4 & 13 & 5\\ 3 & 8 & 7 \end{pmatrix}, \] where \(a,b,\ldots,r\) are real numbers. Given that \(\mathbf{M=AB},\) show that \(a=1,b=4,c=1,d=3,e=1,f=-2,p=3,q=2\) and \(r=-3\) gives the unique solution for \(\mathbf{A}\) and \(\mathbf{B}.\) Evaluate \(\mathbf{A}^{-1}\) and \(\mathbf{B}^{-1},\) Hence, or otherwise, solve the simultaneous equations \begin{alignat*}{1} x+3y+2z & =7\\ 4x+13y+5z & =18\\ 3x+8y+7z & =25. \end{alignat*}
Show SolutionThe point \(P\) moves on a straight line in three-dimensional space. The position of \(P\) is observed from the points \(O_{1}(0,0,0)\) and \(O_{2}(8a,0,0).\) At times \(t=t_{1}\) and \(t=t_{1}'\), the lines of sight from \(O_{1}\) are along the lines \[ \frac{x}{2}=\frac{z}{3},y=0\quad\mbox{ and }\quad x=0,\frac{y}{3}=\frac{z}{4} \] respectively. At times \(t=t_{2}\) and \(t=t_{2}'\), the lines of sight from \(O_{2}\) are \[ \frac{x-8a}{-3}=\frac{y}{1}=\frac{z}{3}\quad\mbox{ and }\quad\frac{x-8a}{-4}=\frac{y}{2}=\frac{z}{5} \] respectively. Find an equation or equations for the path of \(P\).
The distinct points \(P_{1},P_{2},P_{3},Q_{1},Q_{2}\) and \(Q_{3}\) in the Argand diagram are represented by the complex numbers \(z_{1},z_{2},z_{3},w_{1},w_{2}\) and \(w_{3}\) respectively. Show that the triangles \(P_{1}P_{2}P_{3}\) and \(Q_{1}Q_{2}Q_{3}\) are similar, with \(P_{i}\) corresponding to \(Q_{i}\) (\(i=1,2,3\)) and the rotation from \(1\) to \(2\) to \(3\) being in the same sense for both triangles, if and only if \[ \frac{z_{1}-z_{2}}{z_{2}-z_{3}}=\frac{w_{1}-w_{2}}{w_{1}-w_{3}}. \] Verify that this condition may be written \[ \det\begin{pmatrix}z_{1} & z_{2} & z_{3}\\ w_{1} & w_{2} & w_{3}\\ 1 & 1 & 1 \end{pmatrix}=0. \]
State carefully the conditions which the fixed vectors \(\mathbf{a,b,u}\) and \(\mathbf{v}\) must satisfy in order to ensure that the line \(\mathbf{r=a+}\lambda\mathbf{u}\) intersects the line \(\mathbf{r=b+\mu}\mathbf{v}\) in exactly one point. Find the two values of the fixed scalar \(b\) for which the planes with equations \[ \left.\begin{array}{c} x+y+bz=b+2\\ bx+by+z=2b+1 \end{array}\right\} \tag{*} \] do not intersect in a line. For other values of \(b\), express the line of intersection of the two planes in the form \(\mathbf{r=a}+\lambda\mathbf{u},\) where \(\mathbf{a\cdot u}=0\). Find the conditions which \(b\) and the fixed scalars \(c\) and \(d\) must satisfy to ensure that there is exactly one point on the line \[ \mathbf{r=}\left(\begin{array}{c} 0\\ 0\\ c \end{array}\right)+\mu\left(\begin{array}{c} 1\\ d\\ 0 \end{array}\right) \] whose coordinates satisfy both equations \((*)\).
Show Solution