Method of differences (telescoping)
Prove that \[ \tan^{-1}t=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\cdots+\frac{(-1)^{n}t^{2n+1}}{2n+1}+(-1)^{n+1}\int_{0}^{t}\frac{x^{2n+2}}{1+x^{2}}\,\mathrm{d}x. \] Hence show that, if \(0\leqslant t\leqslant1,\) then \[ \frac{t^{2n+3}}{2(2n+3)}\leqslant\left|\tan^{-1}t-\sum_{r=0}^{n}\frac{(-1)^{r}t^{2r+1}}{2r+1}\right|\leqslant\frac{t^{2n+3}}{2n+3}. \] Show that, as \(n\rightarrow\infty,\) \[ 4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)}\rightarrow\pi, \] but that the error in approximating \(\pi\) by \({\displaystyle 4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)}}\) is at least \(10^{-2}\) if \(n\) is less than or equal to \(98\).
Show SolutionIf \(y=\mathrm{f}(x)\), then the inverse of \(\mathrm{f}\) (when it exists) can be obtained from Lagrange's identity. This identity, which you may use without proof, is \[ \mathrm{f}^{-1}(y)=y+\sum_{n=1}^{\infty}\frac{1}{n!}\frac{\mathrm{d}^{n-1}}{\mathrm{d}y^{n-1}}\left[y-\mathrm{f}\left(y\right)\right]^{n}, \] provided the series converges.
Show that the sum of the infinite series \[ \log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots \] is \[ \frac{1}{\ln(2\sqrt{2})}. \] {[}\(\log_{a}b=c\) is equivalent to \(a^{c}=b\).{]}
Show SolutionProve that, for any numbers \(a_1\), \(a_2\), \(\ldots\)\,, and \(b_1\), \(b_2\), \(\ldots\)\,, and for \(n\ge1\), \[ \sum_{m=1}^n a_m(b_{m+1} -b_m) = a_{n+1}b_{n+1} -a_1b_1 -\sum_{m=1}^n b_{m+1}(a_{m+1} -a_m) \,. \]
Evaluate the integral
\[
\hphantom{ \ \ \ \ \ \ \ \ \
(m> \tfrac12)\,.}
\int_{m-\frac12} ^\infty \frac 1{x^2}\, \d x
{ \ \ \ \ \ \ \ \ \
(m> \tfrac12)\,.}
\]
Show by means
of a sketch that
\[
\sum_{r=m}^n \frac 1 {r^2}
\approx \int_{m-\frac12}^{n+\frac12} \frac1 {x^2} \, \d x
\,,
\tag{\(*\)}
\]
where \(m\) and \(n\) are positive integers with \(m
The numbers \(\.f(r)\) satisfy \(\.f(r)>\.f(r+1)\) for \(r=1\), \(2\), \dots. Show that, for any non-negative integer \(n\), \[ k^n(k-1) \, \.f(k^{n+1}) \le \sum_{r=k^n}^{k^{n+1}-1}\.f(r) \le k^n(k-1)\, \.f(k^n)\, \] where \(k\) is an integer greater than 1.
In this question, the following theorem may be used.\newline {\sl Let \(u_1\), \(u_2\), \(\ldots\) be a sequence of (real) numbers. If the sequence is bounded above (that is, \(u_n\le b\) for all \(n\), where \(b\) is some fixed number) and increasing (that is, \(u_n\ge u_{n-1}\) for all \(n\)), then the sequence tends to a limit (that is, converges).} The sequence \(u_1\), \(u_2\), \(\ldots\) is defined by \(u_1=1\) and \[ u_{n+1} = 1+\frac 1{u_n} \ \ \ \ \ \ \ \ \ \ (n\ge1)\,. \tag{\(*\)} \]
The sequence \(F_0\), \(F_1\), \(F_2\), \(\ldots\,\) is defined by \(F_0=0\), \(F_1=1\) and, for \(n\ge0\), \[ F_{n+2} = F_{n+1} + F_n \,. \]
In this question, \(\vert x \vert <1\) and you may ignore issues of convergence.
The positive numbers \(\alpha\), \(\beta\) and \(q\) satisfy \(\beta-\alpha >q\). Show that \[ \frac{\alpha^2+\beta^2 -q^2}{\alpha\beta}-2> 0\,. \] The sequence \(u_0\), \(u_1\), \(\ldots\) is defined by \(u_0=\alpha\), \(u_1=\beta\) and \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u_{n+1} = \frac {u_{n}^2 -q^2}{u_{n-1}} \ \ \ \ \ \ \ \ \ \ \ (n\ge1), \] where \(\alpha\), \(\beta\) and \(q\) are given positive numbers (and \(\alpha\) and \(\beta\) are such that no term in the sequence is zero). Prove that \(u_n(u_n+u_{n+2}) = u_{n+1}(u_{n-1}+u_{n+1})\,\). Prove also that \[ u_{n+1} -pu_n + u_{n-1}=0 \] for some number \(p\) which you should express in terms of \(\alpha\), \(\beta\) and \(q\). Hence, or otherwise, show that if \(\beta> \alpha+q\), the sequence is strictly increasing (that is, \(u_{n+1}-u_n > 0\) for all \(n\)). Comment on the case \(\beta =\alpha +q\).
Show SolutionA sequence of numbers \(t_0\), \(t_1\), \(t_2\), \(\ldots\,\) satisfies \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ t_{n+2} = p t_{n+1}+qt_{n} \ \ \ \ \ \ \ \ \ \ (n\ge0), \] where \(p\) and \(q\) are real. Throughout this question, \(x\), \(y\) and \(z\) are non-zero real numbers.
Given that \(y = \cos(m \arcsin x)\), for \(\vert x \vert <1\), prove that \[ (1-x^2) \frac {\d^2 y}{\d x^2} -x \frac {\d y}{\d x} +m^2y=0\,. \] Obtain a similar equation relating \(\dfrac{\d^3y}{\d x^3}\,\),\; \(\dfrac{\d^2y}{\d x^2}\, \) and \(\, \dfrac{\d y}{\d x}\,\), and a similar equation relating \(\dfrac{\d^4y}{\d x^4}\,\),~~\(\dfrac{\d^3y}{\d x^3}\,\) and \(\,\dfrac{\d^2 y}{\d x^2}\,\). Conjecture and prove a relation between \(\dfrac{\d^{n+2}y}{\d x^{n+2}}\,\), \ \(\dfrac{\d^{n+1}y}{\d x^{n+1}}\;\) and \(\;\dfrac{\d^n y}{\d x^n}\,\). Obtain the first three non-zero terms of the Maclaurin series for \(y\). Show that, if \(m\) is an even integer, \(\cos m\theta\) may be written as a polynomial in \(\sin\theta\) beginning \[ 1 - \frac{m^2\sin^2\theta}{2!}+ \frac{m^2(m^2-2^2)\sin^4\theta}{4!} -\cdots \,. \, \tag{\(\vert\theta\vert < \tfrac12 \pi\)} \] State the degree of the polynomial.
Let \(S_k(n) \equiv \sum\limits_{r=0}^n r^k\,\), where \(k\) is a positive integer, so that \[ S_1(n) \equiv \tfrac12 n(n+1) \text{ and } S_2(n) \equiv \tfrac16 n(n+1)(2n+1)\,. \]
The sequence of real numbers \(u_1\), \(u_2\), \(u_3\), \(\ldots\) is defined by \begin{equation*} u_1=2 \,, \qquad\text{and} \qquad u_{n+1} = k - \frac{36}{u_n} \quad \text{for } n\ge1, \tag{\(*\)} \end{equation*} where \(k\) is a constant.
The sequence \(u_n\) (\(n= 1, 2, \ldots\)) satisfies the recurrence relation \[ u_{n+2}= \frac{u_{n+1}}{u_n}(ku_n-u_{n+1}) \] where \(k\) is a constant. If \(u_1=a\) and \(u_2=b\,\), where \(a\) and \(b\) are non-zero and \(b \ne ka\,\), prove by induction that \[ u_{2n}=\Big(\frac b a \Big) u_{2n-1} \] \[ u_{2n+1}= c u_{2n} \] for \(n \ge 1\), where \(c\) is a constant to be found in terms of \(k\), \(a\) and \(b\). Hence express \(u_{2n}\) and \(u_{2n-1}\) in terms of \(a\), \(b\), \(c\) and \(n\). Find conditions on \(a\), \(b\) and \(k\) in the three cases:
Given a sequence \(w_0\), \(w_1\), \(w_2\), \(\ldots\,\), the sequence \(F_1\), \(F_2\), \(\ldots\) is defined by $$F_n = w_n^2 + w_{n-1}^2 - 4w_nw_{n-1} \,.$$ Show that $\; F_{n}-F_{n-1} = \l w_n-w_{n-2} \r \l w_n+w_{n-2}-4w_{n-1} \r \; \( for \)n \ge 2\,$.
Given that \(\f''(x) > 0\) when \(a \le x \le b\,\), explain with the aid of a sketch why \[ (b-a) \, \f \Big( {a+b \over 2} \Big) < \int^b_a \f(x) \, \mathrm{d}x < (b-a) \, \displaystyle \frac{\f(a) + \f(b)}{2} \;. \] By choosing suitable \(a\), \(b\) and \(\f(x)\,\), show that \[ {4 \over (2n-1)^2} < {1 \over n-1} - {1 \over n} < {1 \over 2} \l {1 \over n^2} + {1 \over (n-1)^2}\r \,, \] where \(n\) is an integer greater than 1. Deduce that \[ 4 \l {1 \over 3^2} +{1 \over 5^2} + {1 \over 7^2} + \cdots \r < 1 < {1 \over 2} + \left( {1 \over 2^2} +{1 \over 3^2} + {1 \over 4^2} + \cdots \right)\,. \] Show that \[ {1 \over 2} \l {1 \over 3^2} + {1 \over 4^2} + {1 \over 5^2} + \frac 1 {6^2} + \cdots \r < {1 \over 3^2} +{1 \over 5^2} + {1 \over 7^2} + \cdots \] and hence show that \[ {3 \over 2} \displaystyle < \sum_{n=1}^\infty {1 \over n^2} <{7 \over 4}\;. \]
A sequence \(t_0\), \(t_1\), \(t_2\), \(...\) is said to be {\sl strictly increasing} if \(t_{n+1} > t_n\) for all \(n\ge{0}\,\).
Show that \[ 2\sin \frac12 \theta \, \cos r\theta = \sin\big(r+\frac12\big)\theta - \sin\big(r-\frac12\big)\theta \;. \] Hence, or otherwise, find all solutions of the equation \[ \cos a\theta + \cos (a + 1) \theta + \dots + \cos(b-2)\theta+\cos (b - 1 ) \theta = 0 \;, \] where \(a\) and \(b\) are positive integers with \(a < b-1\,\).
Show SolutionShow that, if \(n>0\,\), then $$ \int_{e^{1/n}}^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x = {2 \over {n^2\e}}\;. $$ You may assume that \(\ds \frac{\ln x} x \to 0\;\) as \(x\to\infty\,\). Explain why, if \(1 < a < b\,\), then $$ \int_b^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x < \int_a^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x\;. $$ Deduce that $$ \sum_{n=1}^{N}{1 \over n^2} < {\e \over 2}\int_{\e^{1/N}}^{\infty} \left({1-x^{-N}} \over {x^2-x}\right) \ln x\,\d x\;, $$ where \(N\,\) is any integer greater than \(1\).
Given that $$\e = 1 + {1 \over 1 !} + {1 \over 2 !} + {1 \over 3 !} + \cdots + {1 \over r !} + \cdots \; ,$$ use the binomial theorem to show that $$ {\left( 1 + {1 \over n} \right)}^{\!n} < \e $$ for any positive integer \(n\). The product \({\rm P }( n )\) is defined, for any positive integer \(n\), by $$ {\rm P} ( n ) = {3 \over 2} \cdot {5 \over 4} \cdot {9 \over 8} \cdot \ldots \cdot {2^n + 1 \over 2^n} . $$ Use the arithmetic-geometric mean inequality, $$ {a_1 + a_2 + \cdots + a_n \over n} \ge \ {\left( a_1 \cdot a_2 \cdot \ldots \cdot a_n \right)}^{1 \over n}\,, $$ to show that \({\rm P }( n ) < \e\) for all \(n\) . Explain briefly why \({\rm P} ( n )\) tends to a limit as \(n\to\infty\). Show that this limit, \(L\), satisfies \(2 < L\le\e\).
The sequence \(u_0\), \(u_1\), \(u_2\), ... is defined by $$ u_0=1,\hspace{0.2in} u_1=1, \quad u_{n+1}=u_n+u_{n-1} \hspace{0.2in}{\rm for}\hspace{0.1in}n \ge 1\,. $$ Prove that $$ u^2_{n+2} + u^2_{n-1} = 2( u^2_{n+1} + u^2_n ) \,. $$ Using induction, or otherwise, prove the following result: \[ u_{2n} = u^2_n + u^2_{n-1} \quad \mbox{ and }\quad u_{2n+1} = u^2_{n+1} - u^2_{n-1} \] for any positive integer \(n\).
Show SolutionJustify, by means of a sketch, the formula $$ \lim_{n\rightarrow\infty}\left\{{1\over n}\sum_{m=1}^n \f(1+m/n)\right\} = \int_1^2 \f(x)\,\d x \,. $$ Show that $$ \lim_{n\rightarrow\infty}\left\{{1\over n+1} + {1\over n+2} + \cdots + {1\over n+n}\right\} = \ln 2 \,. $$ Evaluate $$ \lim_{n\rightarrow\infty}\left\{{n\over n^2+1} + {n\over n^2+4} + \cdots + {n\over n^2+n^2}\right\}\,. $$
Show SolutionThe \(n\)th degree polynomial P\((x)\) is said to be reflexive if:
Let \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\) be the roots of the quartic equation \[ x^4 +px^3 +qx^2 +r x +s =0 \,. \] You are given that, for any such equation, \(\,\alpha \beta + \gamma\delta\,\), \(\alpha\gamma+\beta\delta\,\) and \(\,\alpha \delta + \beta\gamma\,\) satisfy a cubic equation of the form \[ y^3+Ay^2+ (pr-4s)y+ (4qs-p^2s -r^2) =0 \,. \] Determine \(A\). Now consider the quartic equation given by \(p=0\,\), \(q= 3\,\), \(r=-6\,\) and \(s=10\,\).
Let \(a\), \(b\) and \(c\) be real numbers such that \(a+b+c=0\) and let \[(1+ax)(1+bx)(1+cx) = 1+qx^2 +rx^3\,\] for all real \(x\). Show that \(q = bc+ca+ab\) and \(r= abc\).
The numbers \(x\), \(y\) and \(z\) satisfy \begin{align*} x+y+z&= 1\\ x^2+y^2+z^2&=2\\ x^3+y^3+z^3&=3\,. \end{align*} Show that \[ yz+zx+xy=-\frac12 \,.\] Show also that \(x^2y+x^2z+y^2z+y^2x+z^2x+z^2y=-1\,\), and hence that \[ xyz=\frac16 \,.\] Let \(S_n=x^n+y^n+z^n\,\). Use the above results to find numbers \(a\), \(b\) and \(c\) such that the relation \[ S_{n+1}=aS_{n}+bS_{n-1}+cS_{n-2}\,, \] holds for all \(n\).
Show SolutionFind all values of \(a\), \(b\), \(x\) and \(y\) that satisfy the simultaneous equations \begin{alignat*}{3} a&+b & &=1 &\\ ax&+by & &= \tfrac13& \\ ax^2&+by^2& &=\tfrac15& \\ ax^3 &+by^3& &=\tfrac17\,.& \end{alignat*} \noindent{\bf [} {\bf Hint}: you may wish to start by multiplying the second equation by \(x+y\). {\bf ]}
Show SolutionIn this question, do not consider the special cases in which the denominators of any of your expressions are zero. Express \(\tan(\theta_1+\theta_2+\theta_3+\theta_4)\) in terms of \(t_i\), where \(t_1=\tan\theta_1\,\), etc. Given that \(\tan\theta_1\), \(\tan\theta_2\), \(\tan\theta_3\) and \(\tan\theta_4\) are the four roots of the equation \[at^4+bt^3+ct^2+dt+e=0 \] (where \(a\ne0\)), find an expression in terms of \(a\), \(b\), \(c\), \(d\) and \(e\) for \(\tan(\theta_1+\theta_2+\theta_3+\theta_4)\). The four real numbers \(\theta_1\), \(\theta_2\), \(\theta_3\) and \(\theta_4\) lie in the range \(0\le \theta_i<2\pi\) and satisfy the equation \[ p\cos2\theta+\cos(\theta-\alpha)+p=0\,,\] where \(p\) and \(\alpha\) are independent of \(\theta\). Show that \(\theta_1+\theta_2+\theta_3+\theta_4=n\pi\) for some integer \(n\).
Show SolutionIn this question, you may assume that if \(k_1,\dots,k_n\) are distinct positive real numbers, then \[\frac1n\sum_{r=1}^nk_r>\left({\prod\limits_{r=1}^n} k_r\right )^{\!\! \frac1n},\] i.e. their arithmetic mean is greater than their geometric mean. Suppose that \(a\), \(b\), \(c\) and \(d\) are positive real numbers such that the polynomial \[{\rm f}(x)=x^4-4ax^3+6b^2x^2-4c^3x+d^4\] has four distinct positive roots.
The cubic equation \[ x^{3}-px^{2}+qx-r=0 \] has roots \(a,b\) and \(c\). Express \(p,q\) and \(r\) in terms of \(a,b\) and \(c\).
The equation \[ x^{n}-qx^{n-1}+r=0, \] where \(n\geqslant5\) and \(q\) and \(r\) are real constants, has roots \(\alpha_{1},\alpha_{2},\ldots,\alpha_{n}.\) The sum of the products of \(m\) distinct roots is denoted by \(\Sigma_{m}\) (so that, for example, \(\Sigma_{3}=\sum\alpha_{i}\alpha_{j}\alpha_{k}\) where the sum runs over the values of \(i,j\) and \(k\) with \(n\geqslant i>j>k\geqslant1\)). The sum of \(m\)th powers of the roots is denoted by \(S_{m}\) (so that, for example, \(S_{3}=\sum\limits_{i=1}^{n}\alpha_{i}^{3}\)). Prove that \(S_{p}=q^{p}\) for \(1\leqslant p\leqslant n-1.\) You may assume that for any \(n\)th degree equation and \(1\leqslant p\leqslant n\) \[ S_{p}-S_{p-1}\Sigma_{1}+S_{p-2}\Sigma_{2}-\cdots+(-1)^{p-1}S_{1}\Sigma_{p-1}+(-1)^{p}p\Sigma_{p}=0.] \] Find expressions for \(S_{n},\) \(S_{n+1}\) and \(S_{n+2}\) in terms of \(q,r\) and \(n\). Suggest an expression for \(S_{n+m},\) where \(m < n\), and prove its validity by induction.
Show SolutionThe point \(P(a\sec \theta, b\tan \theta )\) lies on the hyperbola \[ \dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1\,, \] where \(a>b>0\,\). Show that the equation of the tangent to the hyperbola at \(P\) can be written as \[ bx- ay \sin\theta = ab \cos\theta \,. \]
The point with cartesian coordinates \((x,y)\) lies on a curve with polar equation \(r=\f(\theta)\,\). Find an expression for \(\dfrac{\d y}{\d x}\) in terms of \(\f(\theta)\), \(\f'(\theta)\) and \(\tan\theta\,\). Two curves, with polar equations \(r=\f(\theta)\) and \(r=\g(\theta)\), meet at right angles. Show that where they meet \[ \f'(\theta) \g'(\theta) +\f(\theta)\g(\theta) = 0 \,. \] The curve \(C\) has polar equation \(r=\f(\theta)\) and passes through the point given by \(r=4\), \(\theta = - \frac12\pi\). For each positive value of \(a\), the curve with polar equation \(r= a(1+\sin\theta)\) meets~\(C\) at right angles. Find \(\f(\theta)\,\). Sketch on a single diagram the three curves with polar equations \(r= 1+\sin\theta\,\), \ \(r= 4(1+\sin\theta)\) and \(r=\f(\theta)\,\).
Show SolutionIn this question, \(r\) and \(\theta\) are polar coordinates with \(r \ge0\) and \(- \pi < \theta\le \pi\), and \(a\) and \(b\) are positive constants. Let \(L\) be a fixed line and let \(A\) be a fixed point not lying on \(L\). Then the locus of points that are a fixed distance (call it \(d\)) from \(L\) measured along lines through \(A\) is called a conchoid of Nicomedes.
A movable point \(P\) has cartesian coordinates \((x,y)\), where \(x\) and \(y\) are functions of \(t\). The polar coordinates of \(P\) with respect to the origin \(O\) are \(r\) and \(\theta\). Starting with the expression \[ \tfrac12 \int r^2 \, \d \theta \] for the area swept out by \(OP\), obtain the equivalent expression \[ \tfrac12 \int \left( x\frac{\d y}{\d t} - y \frac{\d x}{\d t}\right)\d t \,. \tag{\(*\)} \] The ends of a thin straight rod \(AB\) lie on a closed convex curve \(\cal C\). The point \(P\) on the rod is a fixed distance \(a\) from \(A\) and a fixed distance \(b\) from \(B\). The angle between \(AB\) and the positive \(x\) direction is \(t\). As \(A\) and \(B\) move anticlockwise round \(\cal C\), the angle \(t\) increases from \(0\) to \(2\pi\) and \(P\) traces a closed convex curve \(\cal D\) inside \(\cal C\), with the origin \(O\) lying inside \(\cal D\), as shown in the diagram.
Show that in polar coordinates the gradient of any curve at the point \((r,\theta)\) is \[ \frac{ \ \ \dfrac{\d r }{\d\theta} \tan\theta + r \ \ } { \dfrac{\d r }{\d\theta} -r\tan\theta}\,. \] \noindent
Show that the equation (in plane polar coordinates) \(r=\cos\theta\), for $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$, represents a circle. Sketch the curve \(r=\cos2\theta\) for \(0\le\theta\le 2\pi\), and describe the curves \(r=\cos2n\theta\), where \(n\) is an integer. Show that the area enclosed by such a curve is independent of \(n\). Sketch also the curve \(r=\cos3\theta\) for \(0\le\theta\le 2\pi\).
The curve \(C\) has the equation \(x^3+y^3 = 3xy\).
\noindent
Sketch the curve \(C\) whose polar equation is \[ r=4a\cos2\theta\qquad\mbox{ for }-\tfrac{1}{4}\pi<\theta<\tfrac{1}{4}\pi. \] The ellipse \(E\) has parametric equations \[ x=2a\cos\phi,\qquad y=a\sin\phi. \] Show, without evaluating the integrals, that the perimeters of \(C\) and \(E\) are equal. Show also that the areas of the regions enclosed by \(C\) and \(E\) are equal.
Show SolutionThe parametric equations \(E_{1}\) and \(E_{2}\) define the same ellipse, in terms of the parameters \(\theta_{1}\) and \(\theta_{2}\), (though not referred to the same coordinate axes). \begin{alignat*}{2} E_{1}:\qquad & x=a\cos\theta_{1}, & \quad & y=b\sin\theta_{1},\\ E_{2}:\qquad & x=\dfrac{k\cos\theta_{2}}{1+e\cos\theta_{2}}, & \quad & y=\dfrac{k\sin\theta_{2}}{1+e\cos\theta_{2}}, \end{alignat*} where \(0< b< a,\) \(0< e< 1\) and \(0< k\). Find the position of the axes for \(E_{2}\) relative to the axes for \(E_{1}\) and show that \(k=a(1-e^{2})\) and \(b^{2}=a^{2}(1-e^{2}).\) {[}The standard polar equation of an ellipse is \(r=\dfrac{\ell}{1+e\cos\theta}.]\) By considering expressions for the length of the perimeter of the ellipse, or otherwise, prove that \[ \int_{0}^{\pi}\sqrt{1-e^{2}\cos^{2}\theta}\,\mathrm{d}\theta=\int_{0}^{\pi}\frac{1-e^{2}}{(1+e\cos\theta)^{2}}\sqrt{1+e^{2}+2e\cos\theta}\,\mathrm{d}\theta. \] Given that \(e\) is so small that \(e^{6}\) may be neglected, show that the value of either integral is \[ \tfrac{1}{64}\pi(64-16e^{2}-3e^{4}). \]
The curve \(C\) has the differential equation in polar coordinates \[ \frac{\mathrm{d}^{2}r}{\mathrm{d}\theta^{2}}+4r=5\sin3\theta,\qquad\text{for }\quad\frac{\pi}{5}\leqslant\theta\leqslant\frac{3\pi}{5}, \] and, when \(\theta=\dfrac{\pi}{2},\) \(r=1\) and \(\dfrac{\mathrm{d}r}{\mathrm{d}\theta}=-2.\) Show that \(C\) forms a closed loop and that the area of the region enclosed by \(C\) is \[ \frac{\pi}{5}+\frac{25}{48}\left[\sin\left(\frac{\pi}{5}\right)-\sin\left(\frac{2\pi}{5}\right)\right]. \]
Show SolutionShow by means of a sketch that the parabola \(r(1+\cos\theta)=1\) cuts the interior of the cardioid \(r=4(1+\cos\theta)\) into two parts. Show that the total length of the boundary of the part that includes the point \(r=1,\theta=0\) is \(18\sqrt{3}+\ln(2+\sqrt{3}).\)
Show SolutionShow that, for a given constant \(\gamma\) \((\sin\gamma\neq0)\) and with suitable choice of the constants \(A\) and \(B\), the line with cartesian equation \(lx+my=1\) has polar equations \[ \frac{1}{r}=A\cos\theta+B\cos(\theta-\gamma). \] The distinct points \(P\) and \(Q\) on the conic with polar equations \[ \frac{a}{r}=1+e\cos\theta \] correspond to \(\theta=\gamma-\delta\) and \(\theta=\gamma+\delta\) respectively, and \(\cos\delta\neq0.\) Obtain the polar equation of the chord \(PQ.\) Hence, or otherwise, obtain the equation of the tangent at the point where \(\theta=\gamma.\) The tangents at \(L\) and \(M\) to a conic with focus \(S\) meet at \(T.\) Show that \(ST\) bisects the angle \(LSM\) and find the position of the intersection of \(ST\) and \(LM\) in terms of your chosen parameters for \(L\) and \(M.\)
Show SolutionThe distinct points \(P(ap^2 , 2ap)\), \(Q(aq^2 , 2aq)\) and \(R(ar^2,2ar)\) lie on the parabola \(y^2 = 4ax\), where \(a>0\). The points are such that the normal to the parabola at \(Q\) and the normal to the parabola at \(R\) both pass through \(P\).
The point \(P(a\cos\theta\,,\, b\sin\theta)\), where \(a>b>0\), lies on the ellipse \[\dfrac {x^2}{a^2} + \dfrac {y^2}{b^2}=1\,.\] The point \(S(-ea\,,\,0)\), where \(b^2=a^2(1-e^2)\,\), is a focus of the ellipse. The point \(N\) is the foot of the perpendicular from the origin, \(O\), to the tangent to the ellipse at \(P\). The lines \(SP\) and \(ON\) intersect at \(T\). Show that the \(y\)-coordinate of \(T\) is \[\dfrac{b\sin\theta}{1+e\cos\theta}\,.\] Show that \(T\) lies on the circle with centre \(S\) and radius \(a\).
Show SolutionLet \(P\) be the point on the curve \(y=ax^2+bx+c\) (where \(a\) is non-zero) at which the gradient is \(m\). Show that the equation of the tangent at \(P\) is \[ y-mx=c-\frac{(m-b)^2}{4a}\;. \] Show that the curves \(y=a_1 x^2+b_1 x+c_1\) and \(y=a_2 x^2+b_2 x+c_2\) (where \(a_1\) and \(a_2\) are non-zero) have a common tangent with gradient \(m\) if and only if \[ (a_2 -a_1 )m^2 + 2(a_1 b_2-a_2 b_1)m + 4a_1 a_2(c_2-c_1)+ a_2 b_1^2-a_1 b_2 ^2=0\;. \] Show that, in the case \(a_1 \ne a_2 \,\), the two curves have exactly one common tangent if and only if they touch each other. In the case \(a_1 =a_2\,\), find a necessary and sufficient condition for the two curves to have exactly one common tangent.
Show SolutionIn the \(x\)--\(y\) plane, the point \(A\) has coordinates \((a\,,0)\) and the point \(B\) has coordinates \((0\,,b)\,\), where \(a\) and \(b\) are positive. The point \(P\,\), which is distinct from \(A\) and \(B\), has coordinates~\((s,t)\,\). \(X\) and \(Y\) are the feet of the perpendiculars from \(P\) to the \(x\)--axis and \(y\)--axis respectively, and \(N\) is the foot of the perpendicular from \(P\) to the line \(AB\,\). Show that the coordinates \((x\,,y)\) of \(N\) are given by \[ x= \frac {ab^2 -a(bt-as)}{a^2+b^2} \;, \ \ \ y = \frac{a^2b +b(bt-as)}{a^2+b^2} \;. \] Show that, if $\ds \ \left( \frac{t-b} s\right)\left( \frac t {s-a}\right) = -1\;\(, then \)N$ lies on the line \(XY\,\). Give a geometrical interpretation of this result.
A parabola has the equation \(y=x^{2}.\) The points \(P\) and \(Q\) with coordinates \((p,p^{2})\) and \((q,q^{2})\) respectively move on the parabola in such a way that \(\angle POQ\) is always a right angle.
The straight line \(OSA,\) where \(O\) is the origin, bisects the angle between the positive \(x\) and \(y\) axes. The ellipse \(E\) has \(S\) as focus. In polar coordinates with \(S\) as pole and \(SA\) as the initial line, \(E\) has equation \(\ell=r(1+e\cos\theta).\) Show that, at the point on \(E\) given by \(\theta=\alpha,\) the gradient of the tangent to the ellipse is given by \[ \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\sin\alpha-\cos\alpha-e}{\sin\alpha+\cos\alpha+e}. \] The points on \(E\) given by \(\theta=\alpha\) and \(\theta=\beta\) are the ends of a diameter of \(E\). Show that \[ \tan(\alpha/2)\tan(\beta/2)=-\frac{1+e}{1-e}. \] [Hint. A diameter of an ellipse is a chord through its centre.]
Show SolutionFind the equations of the tangent and normal to the parabola \(y^{2}=4ax\) at the point \((at^{2},2at).\) For \(i=1,2,\) and 3, let \(P_{i}\) be the point \((at_{i}^{2},2at_{i}),\) where \(t_{1},t_{2}\) and \(t_{3}\) are all distinct. Let \(A_{1}\) be the area of the triangle formed by the tangents at \(P_{1},P_{2}\) and \(P_{3},\) and let \(A_{2}\) be the area of the triangle formed by the normals at \(P_{1},P_{2}\) and \(P_{3}.\) Using the fact that the area of the triangle with vertices at \((x_{1},y_{1}),(x_{2},y_{2})\) and \((x_{3},y_{3})\) is the absolute value of \[ \tfrac{1}{2}\det\begin{pmatrix}x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{pmatrix}, \] show that \(A_{3}=(t_{1}+t_{2}+t_{3})^{2}A_{1}.\) Deduce a necessary and sufficient condition in terms of \(t_{1},t_{2}\) and \(t_{3}\) for the normals at \(P_{1},P_{2}\) and \(P_{3}\) to be concurrent.
Show SolutionIn this question, you should ignore issues of convergence.
In this question, you should ignore issues of convergence.
In this question, you may ignore questions of convergence. Let \(y= \dfrac {\arcsin x}{\sqrt{1-x^2}}\,\). Show that \[ (1-x^2)\frac {\d y}{\d x} -xy -1 =0 \] and prove that, for any positive integer \(n\), \[ (1-x^2) \frac{\d^{n+2}y}{\d x^{n+2}} - (2n+3)x \frac{\d ^{n+1}y}{\d x ^{n+1}} -(n+1)^2 \frac{\d^ny}{\d x^n}=0\, . \] Hence obtain the Maclaurin series for \( \dfrac {\arcsin x}{\sqrt{1-x^2}}\,\), giving the general term for odd and for even powers of \(x\). Evaluate the infinite sum \[ 1 + \frac 1 {3!} + \frac{2^2}{5!} + \frac {2^2\times 3^2}{7!}+\cdots + \frac {2^2\times 3^2\times \cdots \times n^2}{(2n+1)!} + \cdots\,. \]
Show SolutionIn this question, you may assume that the infinite series \[ \ln(1+x) = x-\frac{x^2}2 + \frac{x^3}{3} -\frac {x^4}4 +\cdots + (-1)^{n+1} \frac {x^n}{n} + \cdots \] is valid for \(\vert x \vert <1\).
The function \(\f(t)\) is defined, for \(t\ne0\), by \[ \f(t) = \frac t {\e^t-1}\,. \] \begin{questionparts} \item By expanding \(\e^t\), show that \(\displaystyle \lim _{t\to0} \f(t) = 1\,\). Find \(\f'(t)\) and evaluate \(\displaystyle \lim _{t\to0} \f'(t)\,\). \item Show that \(\f(t) +\frac12 t\) is an even function. [{\bf Note:} A function \(\g(t)\) is said to be {\em even} if \(\g(t) \equiv \g(-t)\).] \item Show with the aid of a sketch that \( \e^t( 1-t)\le 1\,\) and deduce that \(\f'(t)\ne 0\) for \(t\ne0\). \end{questionpart} Sketch the graph of \(\f(t)\).
Show SolutionThe function \(f\) satisfies the identity \begin{equation} f(x) +f(y) \equiv f(x+y) \tag{\(*\)} \end{equation} for all \(x\) and \(y\). Show that \(2\f(x)\equiv \f(2x)\) and deduce that \(f''(0)=0\). By considering the Maclaurin series for \(\f(x)\), find the most general function that satisfies \((*)\). [{\it Do not consider issues of existence or convergence of Maclaurin series in this question.}]
Given that \(y = \ln ( x + \sqrt{x^2 + 1})\), show that \( \displaystyle \frac{\d y}{\d x} = \frac1 {\sqrt{x^2 + 1} }\;\). Prove by induction that, for \(n \ge 0\,\), \[ \l x^2 + 1 \r y^{\l n + 2 \r} + \l 2n + 1 \r x y^{\l n + 1 \r} + n^2 y^{\l n \r} = 0\;, \] where \(\displaystyle y^{(n)} = \frac{\d^n y}{\d x^n}\) and \(y^{(0)} =y\,\). Using this result in the case \(x = 0\,\), or otherwise, show that the Maclaurin series for \(y\) begins \[ x - {x^3 \over 6} +{3 x^5 \over 40} \] and find the next non-zero term.
Show SolutionSketch the graph of \({\rm f}(s)={ \e}^s(s-3)+3\) for \(0\le s < \infty\). Taking \({\e\approx 2.7}\), find the smallest positive integer, \(m\), such that \({\rm f}(m) > 0\). Now let $$ {\rm b}(x) = {x^3 \over \e^{x/T} -1} \, $$ where \(T\) is a positive constant. Show that \({\rm b}(x)\) has a single turning point in \(0 < x < \infty\). By considering the behaviour for small \(x\) and for large \(x\), sketch \({\rm b}(x)\) for \(0\le x < \infty\). Let $$ \int_0^\infty {\rm b}(x)\,\d x =B, $$ which may be assumed to be finite. Show that \(B = K T^n\) where \(K\) is a constant, and \(n\) is an integer which you should determine. Given that \(\displaystyle{B \approx 2 \int_0^{Tm} {\rm b}(x) {\,\rm d }x}\), use your graph of \({\rm b}(x)\) to find a rough estimate for \(K\).
The exponential of a square matrix \({\bf A}\) is defined to be $$ \exp ({\bf A}) = \sum_{r=0}^\infty {1\over r!} {\bf A}^r \,, $$ where \({\bf A}^0={\bf I}\) and \(\bf I\) is the identity matrix. Let $$ {\bf M}=\left(\begin{array}{cc} 0 & -1 \\ 1 & \phantom{-} 0 \end{array} \right) \,. $$ Show that \({\bf M}^2=-{\bf I}\) and hence express \(\exp({\theta {\bf M}})\) as a single \(2\times 2\) matrix, where \(\theta\) is a real number. Explain the geometrical significance of \(\exp({\theta {\bf M}})\). Let $$ {\bf N}=\left(\begin{array}{rr} 0 & 1 \\ 0 & 0 \end{array}\right) \,. $$ Express similarly \(\exp({s{\bf N}})\), where \(s\) is a real number, and explain the geometrical significance of \(\exp({s{\bf N}})\). For which values of \(\theta\) does $$ \exp({s{\bf N}})\; \exp({\theta {\bf M}})\, = \, \exp({\theta {\bf M}})\;\exp({s{\bf N}}) $$ for all \(s\)? Interpret this fact geometrically.
Show SolutionThe function \(\mathrm{f}\) is given by \(\mathrm{f}(x)=\sin^{-1}x\) for \(-1 < x < 1.\) Prove that \[ (1-x^{2})\mathrm{f}''(x)-x\mathrm{f}'(x)=0. \] Prove also that \[ (1-x^{2})\mathrm{f}^{(n+2)}(x)-(2n+1)x\mathrm{f}^{(n+1)}(x)-n^{2}\mathrm{f}^{(n)}(x)=0, \] for all \(n>0\), where \(\mathrm{f}^{(n)}\) denotes the \(n\)th derivative of \(\mathrm{f}\). Hence express \(\mathrm{f}(x)\) as a Maclaurin series. The function \(\mathrm{g}\) is given by \[ \mathrm{g}(x)=\ln\sqrt{\frac{1+x}{1-x}}, \] for \(-1 < x < 1.\) Write down a power series expression for \(\mathrm{g}(x),\) and show that the coefficient of \(x^{2n+1}\) is greater than that in the expansion of \(\mathrm{f},\) for each \(n > 0\).
The points \(P\,(0,a),\) \(Q\,(a,0)\) and \(R\,(a,-a)\) lie on the curve \(C\) with cartesian equation \[ xy^{2}+x^{3}+a^{2}y-a^{3}=0,\qquad\mbox{ where }a>0. \] At each of \(P,Q\) and \(R\), express \(y\) as a Taylor series in \(h\), where \(h\) is a small increment in \(x\), as far as the term in \(h^{2}.\) Hence, or otherwise, sketch the shape of \(C\) near each of these points. Show that, if \((x,y)\) lies on \(C\), then \[ 4x^{4}-4a^{3}x-a^{4}\leqslant0. \] Sketch the graph of \(y=4x^{4}-4a^{3}x-a^{4}.\) Given that the \(y\)-axis is an asymptote to \(C\), sketch the curve \(C\).
Show SolutionLet \begin{alignat*}{2} \tan x & =\ \ \, \quad{\displaystyle \sum_{n=0}^{\infty}a_{n}x^{n}} & & \text{ for small }x,\\ x\cot x & =1+\sum_{n=1}^{\infty}b_{n}x^{n}\quad & & \text{ for small }x\text{ and not zero}. \end{alignat*} Using the relation \[ \cot x-\tan x=2\cot2x,\tag{*} \] or otherwise, prove that \(a_{n-1}=(1-2^{n})b_{n}\), for \(n\geqslant1\). Let \[ x\mathrm{cosec}x=1+{\displaystyle \sum_{n=1}^{\infty}c_{n}x^{n}\quad\text{ for small }x\neq0. \qquad \qquad \, } \] Using a relation similar to \((*)\) involving \(2\mathrm{cosec}2x\), or otherwise, prove that \[ c_{n}=\frac{2^{n-1}-1}{2^{n}-1}\frac{1}{2^{n-1}}a_{n-1}\qquad(n\geqslant1). \]
Show SolutionShow, by finding \(R\) and \(\gamma\), that \(A \sinh x + B\cosh x \) can be written in the form \(R\cosh (x+\gamma)\) if \(B>A>0\). Determine the corresponding forms in the other cases that arise, for \(A>0\), according to the value of \(B\). Two curves have equations \(y = \sech x\) and \(y = a\tanh x + b\,\), where \(a>0\).
Starting from the result that \[ \.h(t) >0\ \mathrm{for}\ 0< t < x \Longrightarrow \int_0^x \.h(t)\ud t > 0 \,, \] show that, if \(\.f''(t) > 0\) for \(0 < t < x_0\) and \(\.f(0)=\.f'(0) =0\), then \(\.f(t)>0\) for \(0 < t < x_0\).
Let \(y = \ln (x^2-1)\,\), where \(x >1\), and let \(r\) and \(\theta\) be functions of \(x\) determined by \(r= \sqrt{x^2-1}\) and \(\coth\theta= x\). Show that \[ \frac {\d y}{\d x} = \frac {2\cosh \theta}{r} \text{ and } \frac {\d^2 y}{\d x^2} = -\frac {2 \cosh 2\theta}{r^2}\,, \] and find an expression in terms of \(r\) and \(\theta\) for \(\dfrac {\d^3 y}{\d x^3}\,\). Find, with proof, a similar formula for \(\dfrac{\d^n y}{\d x^n}\) in terms of \(r\) and \(\theta\).
Show SolutionDefine \(\cosh x\) and \(\sinh x\) in terms of exponentials and prove, from your definitions, that \[ \cosh^{4}x-\sinh^{4}x=\cosh2x \] and \[ \cosh^{4}x+\sinh^{4}x=\tfrac{1}{4}\cosh4x+\tfrac{3}{4}. \] Find \(a_{0},a_{1},\ldots,a_{n}\) in terms of \(n\) such that \[ \cosh^{n}x=a_{0}+a_{1}\cosh x+a_{2}\cosh2x+\cdots+a_{n}\cosh nx. \] Hence, or otherwise, find expressions for \(\cosh^{2m}x-\sinh^{2m}x\) and \(\cosh^{2m}x+\sinh^{2m}x,\) in terms of \(\cosh kx,\) where \(k=0,\ldots,2m.\)
Show SolutionThe real numbers \(x\) and \(y\) satisfy the simultaneous equations $$ \sinh (2x) = \cosh y \qquad\hbox{and}\qquad \sinh(2y) = 2 \cosh x. $$ Show that \(\sinh^2 y\) is a root of the equation $$ 4t^3 + 4t^2 -4t -1=0 $$ and demonstrate that this gives at most one valid solution for \(y\). Show that the relevant value of \(t\) lies between \(0.7\) and \(0.8\), and use an iterative process to find \(t\) to 6 decimal places. Find \(y\) and hence find \(x\), checking your answers and stating the final answers to four decimal places.
Show SolutionThe transformation \(T\) from \(\binom{x}{y}\) to \(\binom{x'}{y'}\) in two-dimensional space is given by \[ \begin{pmatrix}x'\\ y' \end{pmatrix}=\begin{pmatrix}\cosh u & \sinh u\\ \sinh u & \cosh u \end{pmatrix}\begin{pmatrix}x\\ y \end{pmatrix}, \] where \(u\) is a positive real constant. Show that the curve with equation \(x^{2}-y^{2}=1\) is transformed into itself. Find the equations of two straight lines through the origin which transform into themselves. A line, not necessary through the origin, which has gradient \(\tanh v\) transforms under \(T\) into a line with gradient \(\tanh v'\). Show that \(v'=v+u\). The lines \(\ell_{1}\) and \(\ell_{2}\) with gradients \(\tanh v_{1}\) and \(\tanh v_{2}\) transform under \(T\) into lines with gradients \(\tanh v_{1}'\) and \(\tanh v_{2}'\) respectively. Find the relation satisfied by \(v_{1}\) and \(v_{2}\) that is the necessary and sufficient for \(\ell_{1}\) and \(\ell_{2}\) to intersect at the same angle as their transforms. In the case when \(\ell_{1}\) and \(\ell_{2}\) meet at the origin, illustrate in a diagram the relation between \(\ell_{1}\), \(\ell_{2}\) and their transforms.
Solve the quadratic equation \(u^{2}+2u\sinh x-1=0\), giving \(u\) in terms of \(x\). Find the solution of the differential equation \[ \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}\sinh x-1=0 \] which satisfies \(y=0\) and \(y'>0\) at \(x=0\). Find the solution of the differential equation \[ \sinh x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}-\sinh x=0 \] which satisfies \(y=0\) at \(x=0\).
Show SolutionThe real variables \(\theta\) and \(u\) are related by the equation \(\tan\theta=\sinh u\) and \(0\leqslant\theta<\frac{1}{2}\pi.\) Let \(v=\mathrm{sech}u.\) Prove that
Given that \(y=\cosh(n\cosh^{-1}x),\) for \(x\geqslant1,\) prove that \[ y=\frac{(x+\sqrt{x^{2}-1})^{n}+(x-\sqrt{x^{2}-1})^{n}}{2}. \] Explain why, when \(n=2k+1\) and \(k\in\mathbb{Z}^{+},\) \(y\) can also be expressed as the polynomial \[ a_{0}x+a_{1}x^{3}+a_{2}x^{5}+\cdots+a_{k}x^{2k+1}. \] Find \(a_{0},\) and show that
The real numbers \(x\) and \(y\) are related to the real numbers \(u\) and \(v\) by \[ 2(u+\mathrm{i}v)=\mathrm{e}^{x+\mathrm{i}y}-\mathrm{e}^{-x-\mathrm{i}y}. \] Show that the line in the \(x\)-\(y\) plane given by \(x=a\), where \(a\) is a positive constant, corresponds to the ellipse \[ \left(\frac{u}{\sinh a}\right)^{2}+\left(\frac{v}{\cosh a}\right)^{2}=1 \] in the \(u\)-\(v\) plane. Show also that the line given by \(y=b\), where \(b\) is a constant and \(0<\sin b<1,\) corresponds to one branch of a hyperbola in the \(u\)-\(v\) plane. Write down the \(u\) and \(v\) coordinates of one point of intersection of the ellipse and hyperbola branch, and show that the curves intersect at right-angles at this point. Make a sketch of the \(u\)-\(v\) plane showing the ellipse, the hyperbola branch and the line segments corresponding to:
Show that the following functions are positive when \(x\) is positive:
Let \(f(x) = \sqrt{x^2 + 1} - x\).
The definite integrals \(T\), \(U\), \(V\) and \(X\) are defined by \begin{align*} T&= \int_{\frac13}^{\frac12} \frac{{\rm artanh}\, t}t \,\d t\,, & U&= \int _{\ln 2 }^{\ln 3 } \frac{u}{2\sinh u}\, \d u \,, \\[3mm] V&= - \int_{\frac13}^{\frac12} \frac{\ln v}{1-v^2} \,\d v \,, & X&= \int _{\frac12\ln2}^{\frac12\ln3} \ln ({\coth x})\, \d x\,. \end{align*} Show, without evaluating any of them, that \(T\), \(U\), \(V\) and \(X\) are all equal.
Show SolutionThe following result applies to any function \(\f\) which is continuous, has positive gradient and satisfies \(\f(0)=0\,\): \[ ab\le \int_0^a\f(x)\, \d x + \int_0^b \f^{-1}(y)\, \d y\,, \tag{\(*\)}\] where \(\f^{-1}\) denotes the inverse function of \(\f\), and \(a\ge 0\) and \(b\ge 0\).
In this question, \(a\) is a positive constant.
Show that if \(\displaystyle \int\frac1{u \, \f(u)}\; \d u = \F(u) + c\;\), then \(\displaystyle \int\frac{m}{x \, \f(x^m)} \;\d x = \F(x^m) + c\;\), where \(m\ne0\). Find:
Show that \[ \int_0^a \frac{\sinh x}{2\cosh^2 x -1} \, \mathrm{d} x = \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}\cosh a -1}{\sqrt{2}\cosh a +1}\r + \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}+1}{\sqrt{2}-1}\r \] and find \[ \int_0^a \frac{\cosh x}{1+2\sinh^2 x} \, \mathrm{d} x \, . \] Hence show that \[ \int_0^\infty \frac{\cosh x - \sinh x}{1+2\sinh^2 x} \, \mathrm{d} x = \frac{\pi}{2\sqrt{2}} - \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}+1}{\sqrt{2}-1}\r \, . \] By substituting \(u = \e^x\) in this result, or otherwise, find \[ \int_1^\infty \frac{1}{1+u^4} \, \mathrm{d} u \, . \]
Given that \(x+a>0\) and \(x+b>0\,\), and that \(b>a\,\), show that \[ \frac{\mathrm{d} \ }{\mathrm{d} x} \arcsin \left ( \frac{x + a }{ \ x + b} \right) = \frac{ \sqrt{\;b - a\;}} {( x + b ) \sqrt{ a + b + 2x} \ \ } \] and find $\displaystyle \frac{\mathrm{d} \ }{ \mathrm{d} x} \; \mathrm{arcosh} \left ( \frac{x + b }{ \ x + a} \right)$. Hence, or otherwise, integrate, for \(x > -1\,\),
Show that \( \cosh^{-1} x = \ln ( x + \sqrt{x^2-1})\). Show that the area of the region defined by the inequalities \(\displaystyle y^2 \ge x^2-8\) and \(\displaystyle x^2\ge 25y^2 -16 \) is \((72/5) \ln 2\).
Show SolutionCalculate the following integrals
Scalar product, equation of plane, angles, vector product, shortest distances (point and line, point and plane, two lines)
The points \(O\), \(A\) and \(B\) are the vertices of an acute-angled triangle. The points \(M\) and \(N\) lie on the sides \(OA\) and \(OB\) respectively, and the lines \(AN\) and \(BM\) intersect at \(Q\). The position vector of \(A\) with respect to \(O\) is \(\bf a\), and the position vectors of the other points are labelled similarly. Given that \(\vert MQ \vert = \mu \vert QB\vert \), and that \(\vert NQ \vert = \nu \vert QA\vert \), where \(\mu\) and \(\nu\) are positive and \(\mu \nu <1\), show that \[ {\bf m} = \frac {(1+\mu)\nu}{1+\nu} \, {\bf a} \,. \] The point \(L\) lies on the side \(OB\), and \(\vert OL \vert = \lambda \vert OB \vert \,\). Given that \(ML\) is parallel to \(AN\), express~\(\lambda\) in terms of \(\mu\) and \(\nu\). What is the geometrical significance of the condition \(\mu\nu<1\,\)?
All vectors in this question lie in the same plane. The vertices of the non-right-angled triangle \(ABC\) have position vectors \(\bf a\), \(\bf b\) and \(\bf c\), respectively. The non-zero vectors \(\bf u\) and \(\bf v\) are perpendicular to \(BC\) and \(CA\), respectively. Write down the vector equation of the line through \(A\) perpendicular to \(BC\), in terms of \(\bf u\),~\(\bf a\) and a parameter \(\lambda \). The line through \(A\) perpendicular to \(BC\) intersects the line through \(B\) perpendicular to \(CA\) at \(P\). Find the position vector of \(P\) in terms of \(\bf a\),~\(\bf b\), \(\bf c\) and \(\bf u\). Hence show that the line \(CP\) is perpendicular to the line \(AB\).
The sides \(OA\) and \(CB\) of the quadrilateral \(OABC\) are parallel. The point \(X\) lies on \(OA\), between \(O\) and \(A\). The position vectors of \(A\), \(B\), \(C\) and \(X\) relative to the origin \(O\) are \(\bf a\), \(\bf b\), \(\bf c\) and \(\bf x\), respectively. Explain why \(\bf c\) and \(\bf x\) can be written in the form \[ {\bf c} = k {\bf a} + {\bf b} \text{ \ \ \ \ and \ \ \ \ } {\bf x} = m {\bf a}\,, \] where \(k\) and \(m\) are scalars, and state the range of values that each of \(k\) and \(m\) can take. %
\noindent
The four distinct points \(P_i\) (\(i=1\), \(2\), \(3\), \(4\)) are the vertices, labelled anticlockwise, of a cyclic quadrilateral. The lines \(P_1P_3\) and \(P_2P_4\) intersect at \(Q\).
In the triangle \(OAB\), the point \(D\) divides the side \(BO\) in the ratio \(r:1\) (so that \(BD = rDO\)), and the point \(E\) divides the side \(OA\) in the ratio \(s:1\) (so that \(OE =s EA\)), where \(r\) and \(s\) are both positive.
The four vertices \(P_i\) (\(i= 1, 2, 3, 4\)) of a regular tetrahedron lie on the surface of a sphere with centre at \(O\) and of radius 1. The position vector of \(P_i\) with respect to \(O\) is \({\bf p}_i\) (\(i= 1, 2, 3, 4\)). Use the fact that \({\bf p}_1+ {\bf p}_2+{\bf p}_3+{\bf p}_4={\bf 0}\,\) to show that \({\bf p}_i \,.\, {\bf p}_j =-\frac13\,\) for \(i\ne j\). Let \(X\) be any point on the surface of the sphere, and let \(XP_i\) denote the length of the line joining \(X\) and \(P_i\) (\(i= 1, 2, 3, 4\)).
Three distinct points, \(X_1\), \(X_2\) and \(X_3\), with position vectors \({\bf x}_1\), \({\bf x}_2\) and \({\bf x}_3\) respectively, lie on a circle of radius 1 with its centre at the origin \(O\). The point \(G\) has position vector \(\frac13({\bf x}_1+{\bf x}_2+{\bf x}_3)\). The line through \(X_1\) and \(G\) meets the circle again at the point \(Y_1\) and the points \(Y_2\) and \(Y_3\) are defined correspondingly. Given that \(\overrightarrow{GY_1} =-\lambda_1\overrightarrow{GX_1}\), where \(\lambda_1\) is a positive scalar, show that \[ \overrightarrow{OY_1}= \tfrac13 \big( (1-2\lambda_1){\bf x}_1 +(1+\lambda_1)({\bf x}_2+{\bf x}_3)\big) \] and hence that \[ \lambda_1 = \frac {3-\alpha-\beta-\gamma} {3+\alpha -2\beta-2\gamma} \,,\] where \(\alpha = {\bf x}_2 \,.\, {\bf x}_3\), \(\beta = {\bf x}_3\,.\, {\bf x}_1\) and \(\gamma = {\bf x}_1\,.\, {\bf x}_2\). Deduce that $\dfrac {GX_1}{GY_1} + \dfrac {GX_2}{GY_2} + \dfrac {GX_3}{GY_3} =3 \,$.
Show SolutionThe points \(A\) and \(B\) have position vectors \(\bf a \) and \(\bf b\) with respect to an origin \(O\), and \(O\), \(A\)~and~\(B\) are non-collinear. The point \(C\), with position vector \(\bf c\), is the reflection of \(B\) in the line through \(O\) and \(A\). Show that \(\bf c\) can be written in the form \[ \bf c = \lambda \bf a -\bf b \] where \(\displaystyle \lambda = \frac{2\,{\bf a .b}}{{\bf a.a}}\). The point \(D\), with position vector \(\bf d\), is the reflection of \(C\) in the line through \(O\) and \(B\). Show that \(\bf d\) can be written in the form \[ \bf d = \mu\bf b - \lambda \bf a \] for some scalar \(\mu\) to be determined. Given that \(A\), \(B\) and \(D\) are collinear, find the relationship between \(\lambda\) and \(\mu\). In the case \(\lambda = -\frac12\), determine the cosine of \(\angle AOB\) and describe the relative positions of \(A\), \(B\) and \(D\).
The points \(A\) and \(B\) have position vectors \(\bf i +j+k\) and \(5{\bf i} - {\bf j} -{\bf k}\), respectively, relative to the origin \(O\). Find \(\cos2\alpha\), where \(2\alpha\) is the angle \(\angle AOB\).
Relative to a fixed origin \(O\), the points \(A\) and \(B\) have position vectors \(\bf{a}\) and \(\bf{b}\), respectively. (The points \(O\), \(A\) and \(B\) are not collinear.) The point \(C\) has position vector \(\bf c\) given by \[ {\bf c} =\alpha {\bf a}+ \beta {\bf b}\,, \] where \(\alpha\) and \(\beta\) are positive constants with \(\alpha+\beta<1\,\). The lines \(OA\) and \(BC\) meet at the point \(P\) with position vector \(\bf p\) and the lines \(OB\) and \(AC\) meet at the point \(Q\) with position vector \(\bf q\). Show that \[ {\bf p} =\frac{\alpha {\bf a} }{1-\beta}\,, \] and write down \(\bf q\) in terms of \(\alpha,\ \beta\) and \(\bf {b}\). Show further that the point \(R\) with position vector \(\bf r\) given by \[ {\bf r} =\frac{\alpha {\bf a} + \beta {\bf b}}{\alpha + \beta}\,, \] lies on the lines \(OC\) and \(AB\). The lines \(OB\) and \(PR\) intersect at the point \(S\). Prove that $ \dfrac{OQ}{BQ} = \dfrac{OS}{BS}\,$.
The non-collinear points \(A\), \(B\) and \(C\) have position vectors \(\bf a\), \(\bf b\) and \(\bf c\), respectively. The points \(P\) and \(Q\) have position vectors \(\bf p\) and \(\bf q\), respectively, given by \[ {\bf p}= \lambda {\bf a} +(1-\lambda){\bf b} \text{ \ \ \ and \ \ \ } {\bf q}= \mu {\bf a} +(1-\mu){\bf c} \] where \(0<\lambda<1\) and \(\mu>1\). Draw a diagram showing \(A\), \(B\), \(C\), \(P\) and \(Q\). Given that \(CQ\times BP = AB\times AC\), find \(\mu\) in terms of \(\lambda\), and show that, for all values of \(\lambda\), the the line \(PQ\) passes through the fixed point \(D\), with position vector \({\bf d}\) given by \({\bf d= -a +b +c}\,\). What can be said about the quadrilateral \(ABDC\)?
The points \(A\) and \(B\) have position vectors \(\bf a\) and \(\bf b\), respectively, relative to the origin \(O\). The points \(A\), \(B\) and \(O\) are not collinear. The point \(P\) lies on \(AB\) between \(A\) and \(B\) such that \[ AP : PB = (1-\lambda):\lambda\,. \] Write down the position vector of \(P\) in terms of \(\bf a\), \(\bf b\) and \(\lambda\). Given that \(OP\) bisects \(\angle AOB\), determine \(\lambda\) in terms of \(a\) and \(b\), where \(a=\vert \bf a\vert\) and $b=\vert \bb\vert$. The point \(Q\) also lies on \(AB\) between \(A\) and \(B\), and is such that \(AP=BQ\). Prove that $$OQ^2-OP^2=(b-a)^2\,.$$
The points \(B\) and \(C\) have position vectors \(\mathbf{b}\) and \(\mathbf{c}\), respectively, relative to the origin \(A\), and \(A\), \(B\) and \(C\) are not collinear.
Show that the line through the points with position vectors \(\bf x\) and \(\bf y\) has equation \[{\bf r} = (1-\alpha){\bf x} +\alpha {\bf y}\,, \] where \(\alpha\) is a scalar parameter. The sides \(OA\) and \(CB\) of a trapezium \(OABC\) are parallel, and \(OA>CB\). The point \(E\) on \(OA\) is such that \(OE : EA = 1:2\), and \(F\) is the midpoint of \(CB\). The point \(D\) is the intersection of \(OC\) produced and \(AB\) produced; the point \(G\) is the intersection of \(OB\) and \(EF\); and the point \(H\) is the intersection of \(DG\) produced and \(OA\). Let \(\bf a\) and \(\bf c\) be the position vectors of the points \(A\) and \(C\), respectively, with respect to the origin \(O\).
The position vectors, relative to an origin \(O\), at time \(t\) of the particles \(P\) and \(Q\) are $$\cos t \; {\bf i} + \sin t\;{\bf j} + 0 \; {\bf k} \text{ and } \cos (t+\tfrac14{\pi})\, \big[{\tfrac32}{\bf i} + { \tfrac {3\sqrt{3}}2} {\bf k}\big] + 3\sin(t+\tfrac14{\pi}) \; {\bf j}\;,$$ respectively, where \(0\le t \le 2\pi\,\).
Given two non-zero vectors $\mathbf{a}=\begin{pmatrix}a_{1}\\ a_{2} \end{pmatrix}\( and \)\mathbf{b}=\begin{pmatrix}b_{1}\\ b_{2} \end{pmatrix}$ \mbox{define \(\Delta\!\! \left( \bf a, \bf b \right)\) by \(\Delta\!\! \left( \bf a, \bf b \right) = a_1 b_2 - a_2 b_1\).} Let \(A\), \(B\) and \(C\) be points with position vectors \(\bf a\), \(\bf b\) and \(\bf c\), respectively, no two of which are parallel. Let \(P\), \(Q\) and \(R\) be points with position vectors \(\bf p\), \(\bf q\) and \(\bf r\), respectively, none of which are parallel.
The line \(l\) has vector equation \({\bf r} = \lambda {\bf s}\), where \[ {\bf s} = (\cos\theta+\sqrt3\,) \; {\bf i} +(\surd2\;\sin\theta)\;{\bf j} +(\cos\theta-\sqrt3\,)\;{\bf k} \] and \(\lambda\) is a scalar parameter. Find an expression for the angle between \(l\) and the line \mbox{\({\bf r} = \mu(a\, {\bf i} + b\,{\bf j} +c\, {\bf k})\)}. Show that there is a line \(m\) through the origin such that, whatever the value of \(\theta\), the acute angle between \(l\) and \(m\) is \(\pi/6\). A plane has equation \(x-z=4\sqrt3\). The line \(l\) meets this plane at \(P\). Show that, as \(\theta\) varies, \(P\) describes a circle, with its centre on \(m\). Find the radius of this circle.
A plane \(\pi\) in 3-dimensional space is given by the vector equation \(\mathbf{r}\cdot\mathbf{n}=p,\) where \(\mathbf{n}\) is a unit vector and \(p\) is a non-negative real number. If \(\mathbf{x}\) is the position vector of a general point \(X\), find the equation of the normal to \(\pi\) through \(X\) and the perpendicular distance of \(X\) from \(\pi\). The unit circles \(C_{i},\) \(i=1,2,\) with centres \(\mathbf{r}_{i},\) lie in the planes \(\pi_{i}\) given by \(\mathbf{r}\cdot\mathbf{n}_{i}=p_{i},\) where the \(\mathbf{n}_{i}\) are unit vectors, and \(p_{i}\) are non-negative real numbers. Prove that there is a sphere whose surface contains both circles only if there is a real number \(\lambda\) such that \[ \mathbf{r}_{1}+\lambda\mathbf{n}_{1}=\mathbf{r}_{2}\pm\lambda\mathbf{n}_{2}. \] Hence, or otherwise, deduce the necessary conditions that \[ (\mathbf{r}_{1}-\mathbf{r}_{2})\cdot(\mathbf{n}_{1}\times\mathbf{n}_{2})=0 \] and that \[ (p_{1}-\mathbf{n}_{1}\cdot\mathbf{r}_{2})^{2}=(p_{2}-\mathbf{n}_{2}\cdot\mathbf{r}_{1})^{2}. \] Interpret each of these two conditions geometrically.
Show SolutionTwo non-parallel lines in 3-dimensional space are given by \(\mathbf{r}=\mathbf{p}_{1}+t_{1}\mathbf{m}_{1}\) and \(\mathbf{r}=\mathbf{p}_{2}+t_{2}\mathbf{m}_{2}\) respectively, where \(\mathbf{m}_{1}\) and \(\mathbf{m}_{2}\) are unit vectors. Explain by means of a sketch why the shortest distance between the two lines is \[ \frac{\left|(\mathbf{p}_{1}-\mathbf{p}_{2})\cdot(\mathbf{m}_{1}\times\mathbf{m}_{2})\right|}{\left|(\mathbf{m}_{1}\times\mathbf{m}_{2})\right|}. \]
Let \(\mathbf{a},\mathbf{b}\) and \(\mathbf{c}\) be the position vectors of points \(A,B\) and \(C\) in three-dimensional space. Suppose that \(A,B,C\) and the origin \(O\) are not all in the same plane. Describe the locus of the point whose position vector \(\mathbf{r}\) is given by \[ \mathbf{r}=(1-\lambda-\mu)\mathbf{a}+\lambda\mathbf{b}+\mu\mathbf{c}, \] where \(\lambda\) and \(\mu\) are scalar parameters. By writing this equation in the form \(\mathbf{r}\cdot\mathbf{n}=p\) for a suitable vector \(\mathbf{n}\) and scalar \(p\), show that \[ -(\lambda+\mu)\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})+\lambda\mathbf{b}\cdot(\mathbf{c}\times\mathbf{a})+\mu\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b})=0 \] for all scalars \(\lambda,\mu.\) Deduce that \[ \mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=\mathbf{b}\cdot(\mathbf{c}\times\mathbf{a})=\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b}). \] Say briefly what happens if \(A,B,C\) and \(O\) are all in the same plane.
Show SolutionThe points \(A,B\) and \(C\) lie on the surface of the ground, which is an inclined plane. The point \(B\) is 100m due north of \(A,\) and \(C\) is 60m due east of \(B\). The vertical displacements from \(A\) to \(B,\) and from \(B\) to \(C\), are each 5m downwards. A plane coal seam lies below the surface and is to be located by making vertical bore-holes at \(A,B\) and \(C\). The bore-holes strike the coal seam at 95m, 45m and 76m below \(A,B\) and \(C\) respectively. Show that the coal seam is inclined at \(\cos^{-1}(\frac{4}{5})\) to the horizontal. The coal seam comes to the surface along a line. Find the bearing of this line.
Show SolutionBy substituting \(y(x)=xv(x)\) in the differential equation \[ x^{3}\frac{\mathrm{d}v}{\mathrm{d}x}+x^{2}v=\frac{1+x^{2}v^{2}}{\left(1+x^{2}\right)v}, \] or otherwise, find the solution \(v(x)\) that satisfies \(v=1\) when \(x=1\). What value does this solution approach when \(x\) becomes large?
Show SolutionGiven that \(y=xu\), where \(u\) is a function of \(x\), write down an expression for \(\dfrac {\d y}{\d x}\).
Show that if \[ {\mathrm{d}y \over \mathrm{d} x}=\f(x)y + {\g(x) \over y} \] then the substitution \(u = y^2\) gives a linear differential equation for \(u(x)\,\). Hence or otherwise solve the differential equation \[ {\mathrm{d}y \over \mathrm{d} x}={y \over x} - {1 \over y}\;. \] Determine the solution curves of this equation which pass through \((1 \,, 1)\,\), \((2\, , 2)\) and \((4 \, , 4)\) and sketch graphs of all three curves on the same axes.
Show SolutionIf there are \(x\) micrograms of bacteria in a nutrient medium, the population of bacteria will grow at the rate \((2K-x)x\) micrograms per hour. Show that, if \(x=K\) when \(t=0\), the population at time \(t\) is given by \[ x(t)=K+K\frac{1-\mathrm{e}^{-2Kt}}{1+\mathrm{e}^{-2Kt}}. \] Sketch, for \(t\geqslant0\), the graph of \(x\) against \(t\). What happens to \(x(t)\) as \(t\rightarrow\infty\)? Now suppose that the situation is as described in the first paragraph, except that we remove the bacteria from the nutrient medium at a rate \(L\) micrograms per hour where \(K^{2}>L\). We set \(\alpha=\sqrt{K^{2}-L}.\) Write down the new differential equation for \(x\). By considering a new variable \(y=x-K+\alpha,\) or otherwise, show that, if \(x(0)=K\) then \(x(t)\rightarrow K+\alpha\) as \(t\rightarrow\infty\).
Let \(P,Q\) and \(R\) be functions of \(x\). Prove that, for any function \(y\) of \(x\), the function \[ Py''+Qy'+Ry \] can be written in the form \(\dfrac{\mathrm{d}}{\mathrm{d}x}(py'+qy),\) where \(p\) and \(q\) are functions of \(x\), if and only if \(P''-Q'+R=0.\) Solve the differential equation \[ (x-x^{4})y''+(1-7x^{3})y'-9x^{2}y=(x^{3}+3x^2)\mathrm{e}^{x}, \] given that when \(x=2,y=2\mathrm{e}^{2}\) and \(y'=0.\)
Show SolutionLet \(y,u,v,P\) and \(Q\) all be functions of \(x\). Show that the substitution \(y=uv\) in the differential equation \[ \frac{\mathrm{d}y}{\mathrm{d}x}+Py=Q \] leads to an equation for \(\dfrac{\mathrm{d}v}{\mathrm{d}x}\) in terms of \(x,Q\) and \(u\), provided that \(u\) satisfies a suitable first order differential equation. Hence or otherwise solve \[ \frac{\mathrm{d}y}{\mathrm{d}x}-\frac{2y}{x+1}=\left(x+1\right)^{\frac{5}{2}}, \] given that \(y(1)=0\). For what set of values of \(x\) is the solution valid?
Show SolutionThe matrix \(\mathbf{F}\) is defined by \[ \mathbf{F}=\mathbf{I}+\sum_{n=1}^{\infty}\frac{1}{n!}t^{n}\mathbf{A}^{n}, \] where $\mathbf{A}=\begin{pmatrix}-3 & -1\\ 8 & 3 \end{pmatrix} \( and \) t \( is a variable scalar. Evaluate \)\mathbf{A}^{2}$, and show that \[ \mathbf{F}=\mathbf{I}\cosh t+\mathbf{A}\sinh t. \] Show also that \(\mathbf{F}^{-1}=\mathbf{I}\cosh t-\mathbf{A}\sinh t\), and that \(\dfrac{\mathrm{d}\mathbf{F}}{\mathrm{d}t}=\mathbf{FA}\). The vector $\mathbf{r}=\begin{pmatrix}x(t)\\ y(t) \end{pmatrix}$ satisfies the differential equation \[ \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}+\mathbf{A}\mathbf{r}=\mathbf{0}, \] with \(x=\alpha\) and \(y=\beta\) at \(t=0.\) Solve this equation by means of a suitable matrix integrating factor, and hence show that \begin{alignat*}{1} x(t) & =\alpha\cosh t+(3\alpha+\beta)\sinh t\\ y(t) & =\beta\cosh t-(8\alpha+3\beta)\sinh t. \end{alignat*}
Show SolutionEulers formulae, de moivre, roots of unity
Explain the geometrical relationship between the points in the Argand diagram represented by the complex numbers \(z\) and \(z\mathrm{e}^{\mathrm{i}\theta}.\) Write down necessary and sufficient conditions that the distinct complex numbers \(\alpha,\beta\) and \(\gamma\) represent the vertices of an equilateral triangle taken in anticlockwise order. Show that \(\alpha,\beta\) and \(\gamma\) represent the vertices of an equilateral triangle (taken in any order) if and only if \[ \alpha^{2}+\beta^{2}+\gamma^{2}-\beta\gamma-\gamma\alpha-\alpha\beta=0. \] Find necessary and sufficient conditions on the complex coefficients \(a,b\) and \(c\) for the roots of the equation \[ z^{3}+az^{2}+bz+c=0 \] to lie at the vertices of an equilateral triangle in the Argand digram.
Show SolutionSum each of the series \[ \sin\left(\frac{2\pi}{23}\right)+\sin\left(\frac{6\pi}{23}\right)+\sin\left(\frac{10\pi}{23}\right)+\cdots+\sin\left(\frac{38\pi}{23}\right)+\sin\left(\frac{42\pi}{23}\right) \] and \[ \sin\left(\frac{2\pi}{23}\right)-\sin\left(\frac{6\pi}{23}\right)+\sin\left(\frac{10\pi}{23}\right)-\cdots-\sin\left(\frac{38\pi}{23}\right)+\sin\left(\frac{42\pi}{23}\right), \] giving each answer in terms of the tangent of a single angle. {[}No credit will be given for a numerical answer obtained purely by use of a calculator.{]}
Show SolutionThe transformation \(R\) in the complex plane is a rotation (anticlockwise) by an angle \(\theta\) about the point represented by the complex number \(a\). The transformation \(S\) in the complex plane is a rotation (anticlockwise) by an angle \(\phi\) about the point represented by the complex number \(b\).
Let \(\omega = \e^{2\pi {\rm i}/n}\), where \(n\) is a positive integer. Show that, for any complex number \(z\), \[ (z-1)(z-\omega) \cdots (z - \omega^{n-1}) = z^n -1\,. \] The points \(X_0\), \(X_1\), \ldots\,, \(X_{n-1}\) lie on a circle with centre \(O\) and radius 1, and are the vertices of a regular polygon.
Evaluate \(\displaystyle \sum_{r=0}^{n-1} \e^{2i(\alpha + r\pi/n)}\) where \(\alpha\) is a fixed angle and \(n\ge2\). The fixed point \(O\) is a distance \(d\) from a fixed line \(D\). For any point \(P\), let \(s\) be the distance from \(P\) to \(D\) and let \(r\) be the distance from \(P\) to \(O\). Write down an expression for \(s\) in terms of \(d\), \(r\) and the angle \(\theta\), where \(\theta\) is as shown in the diagram below.
Show that \((z-\e^{i\theta})(z-\e^{-i\theta})=z^2 -2z\cos\theta +1\,\). Write down the \((2n)\)th roots of \(-1\) in the form \(\e^{i\theta}\), where \(-\pi <\theta \le \pi\), and deduce that \[ z^{2n} +1 = \prod_{k=1}^n \left(z^2-2z \cos\left( \tfrac{(2k-1)\pi}{2n}\right) +1\right) \,. \] Here, \(n\) is a positive integer, and the \(\prod\) notation denotes the product.
Show that, provided \(q^2\ne 4p^3\), the polynomial \[ \hphantom{(p\ne0, \ q\ne0)\hspace{2cm}} x^3-3px +q \hspace {2cm} (p\ne0, \ q\ne0) \] can be written in the form \[ a(x-\alpha)^3 + b(x-\beta)^3\,, \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(pt^2 -qt +p^2=0\), and \(a\) and \(b\) are constants which you should express in terms of \(\alpha\) and \(\beta\). Hence show that one solution of the equation \(x^3-24x+48=0\,\) is \[ x= \frac{2 (2-2^{\frac13})}{1-2^{\frac13}} \] and obtain similar expressions for the other two solutions in terms of \(\omega\), where \(\omega = \mathrm{e}^{2\pi\mathrm{i}/3}\,\). Find also the roots of \(x^3-3px +q=0\) when \(p=r^2\) and \(q= 2r^3\) for some non-zero constant \(r\).
For any given positive integer \(n\), a number \(a\) (which may be complex) is said to be a primitive \(n\)th root of unity if \(a^n=1\) and there is no integer \(m\) such that \(0 < m < n\) and \(a^m = 1\). Write down the two primitive 4th roots of unity. Let \({\rm C}_n(x)\) be the polynomial such that the roots of the equation \({\rm C}_n(x)=0\) are the primitive \(n\)th roots of unity, the coefficient of the highest power of \(x\) is one and the equation has no repeated roots. Show that \({\rm C}_4(x) = x^2+1\,\).
Show that $\big\vert \e^{\i\beta} -\e^{\i\alpha}\big\vert = 2\sin\frac12 (\beta-\alpha)\,\( for \)0<\alpha<\beta<2\pi\,$. Hence show that \[ \big\vert \e^{\i\alpha} -\e^{\i\beta}\big\vert \; \big\vert \e^{\i\gamma} -\e^{\i\delta}\big\vert + \big\vert \e^{\i\beta} -\e^{\i\gamma}\big\vert \; \big\vert \e^{\i\alpha} -\e^{\i\delta}\big\vert = \big\vert \e^{\i\alpha} -\e^{\i\gamma}\big\vert \; \big\vert \e^{\i\beta} -\e^{\i\delta}\big\vert \,, \] where \(0<\alpha<\beta<\gamma<\delta<2\pi\). Interpret this result as a theorem about cyclic quadrilaterals.
In this question, you may use without proof the results \[ 4 \cosh^3 y - 3 \cosh y = \cosh (3y) \ \ \ \ \text{and} \ \ \ \ \mathrm{arcosh} \, y = \ln ( y+\sqrt{y^2-1}). \] \noindent[ {\bf Note: } \(\mathrm{arcosh}y\) is another notation for \(\cosh^{-1}y\,\)] Show that the equation \(x^3 - 3a^2x = 2a^3 \cosh T\) is satisfied by \( 2a \cosh \l \frac13 T \r\) and hence that, if \(c^2\ge b^3>0\), one of the roots of the equation \(x^3-3bx=2c\) is \(\ds u+\frac{b}{u}\), where \(u = (c+\sqrt{c^2-b^3})^{\frac13}\;\). Show that the other two roots of the equation \(x^3-3bx=2c\) are the roots of the quadratic equation \[\ds x^2 + \Big( u+\frac{b}{u}\Big) x + u^2+\frac{b^2}{u^2}-b=0\, ,\] and find these roots in terms of \(u\), \(b\) and \(\omega\), where \(\omega = \frac{1}{2}(-1 + \mathrm{i}\sqrt{3})\). Solve completely the equation \(x^3-6x=6\,\).
Given that \(\alpha = \e^{\mathrm{i} \pi/3}\) , prove that \(1 + \alpha^2 = \alpha\). A triangle in the Argand plane has vertices \(A\), \(B\), and \(C\) represented by the complex numbers \(p\), \(q\alpha^2\) and \(- r\alpha\) respectively, where \(p\), \(q\) and \(r\) are positive real numbers. Sketch the triangle~\(ABC\). Three equilateral triangles \(ABL\), \(BCM\) and \(CAN\) (each lettered clockwise) are erected on sides \(AB\), \(BC\) and \(CA\) respectively. Show that the complex number representing \(N\) is \mbox{\(( 1 - \alpha) p- \alpha^2 r\)} and find similar expressions for the complex numbers representing \(L\) and \(M\). Show that lines \(LC\), \(MA\) and \(NB\) all meet at the origin, and that these three line segments have the common length \(p+q+r\).
Prove that \[ (\cos\theta +\mathrm{i}\sin\theta) (\cos\phi +\mathrm{i}\sin\phi) = \cos(\theta+\phi) +\mathrm{i}\sin(\theta+\phi) \] and that, for every positive integer \(n\), $$ {(\cos {\theta} + \mathrm{i}\sin {\theta})}^n = \cos{n{\theta}} + \mathrm{i}\sin{n{\theta}}. $$ By considering \((5-\mathrm{i})^2(1+\mathrm{i})\), or otherwise, prove that \[ \arctan\left(\frac{7}{17}\right)+2\arctan\left(\frac{1}{5}\right)=\frac{\pi}{4}\,. \] Prove also that \[ 3\arctan\left(\frac{1}{4}\right)+\arctan\left(\frac{1}{20}\right)+\arctan\left(\frac{1}{1985}\right)=\frac{\pi}{4}\,. \] [Note that \(\arctan\theta\) is another notation for \(\tan^{-1}\theta\).]
By considering the solutions of the equation \(z^n-1=0\), or otherwise, show that \[(z-\omega)(z-\omega^2)\dots(z-\omega^{n-1})=1+z+z^2+\dots+z^{n-1},\] where \(z\) is any complex number and \(\omega={\rm e}^{2\pi i/n}\). Let \(A_1,A_2,A_3,\dots,A_n\) be points equally spaced around a circle of radius \(r\) centred at \(O\) (so that they are the vertices of a regular \(n\)-sided polygon). Show that \[\overrightarrow{OA_1}+\overrightarrow{OA_2}+\overrightarrow{OA_3} +\dots+\overrightarrow{OA_n}=\mathbf0.\] Deduce, or prove otherwise, that \[\sum_{k=1}^n|A_1A_k|^2=2r^2n.\]
Show, using de Moivre's theorem, or otherwise, that \[ \tan7\theta=\frac{t(t^{6}-21t^{4}+35t^{2}-7)}{7t^{6}-35t^{4}+21t^{2}-1}\,, \] where \(t=\tan\theta.\)
If \(u\) and \(v\) are the two roots of \(z^{2}+az+b=0,\) show that \(a=-u-v\) and \(b=uv.\) Let \(\alpha=\cos(2\pi/7)+\mathrm{i}\sin(2\pi/7).\) Show that \(\alpha\) is a root of \(z^{6}-1=0\) and express the roots in terms of \(\alpha.\) The number \(\alpha+\alpha^{2}+\alpha^{4}\) is a root of a quadratic equation \[ z^{2}+Az+B=0 \] where \(A\) and \(B\) are real. By guessing the other root, or otherwise, find the numerical values of \(A\) and \(B\). Show that \[ \cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{8\pi}{7}=-\frac{1}{2}, \] and evaluate \[ \sin\frac{2\pi}{7}+\sin\frac{4\pi}{7}+\sin\frac{8\pi}{7}, \] making it clear how you determine the sign of your answer.
Show SolutionBy applying de Moivre's theorem to \(\cos5\theta+\mathrm{i}\sin5\theta,\) expanding the result using the binomial theorem, and then equating imaginary parts, show that \[ \sin5\theta=\sin\theta\left(16\cos^{4}\theta-12\cos^{2}\theta+1\right). \] Use this identity to evaluate \(\cos^{2}\frac{1}{5}\pi\), and deduce that \(\cos\frac{1}{5}\pi=\frac{1}{4}(1+\sqrt{5}).\)
Show SolutionShow that \[ \sin(2n+1)\theta=\sin^{2n+1}\theta\sum_{r=0}^{n}(-1)^{n-r}\binom{2n+1}{2r}\cot^{2r}\theta, \] where \(n\) is a positive integer. Deduce that the equation \[ \sum_{r=0}^{n}(-1)^{r}\binom{2n+1}{2r}x^{r}=0 \] has roots \(\cot^{2}(k\pi/(2n+1))\) for \(k=1,2,\ldots,n\). Show that
A path is made up in the Argand diagram of a series of straight line segments \(P_{1}P_{2},\) \(P_{2}P_{3},\) \(P_{3}P_{4},\ldots\) such that each segment is \(d\) times as long as the previous one, \((d\neq1)\), and the angle between one segment and the next is always \(\theta\) (where the segments are directed from \(P_{j}\) towards \(P_{j+1}\), and all angles are measured in the anticlockwise direction). If \(P_{j}\) represents the complex number \(z_{j},\) express \[ \frac{z_{n+1}-z_{n}}{z_{n}-z_{n-1}} \] as a complex number (for each \(n\geqslant2\)), briefly justifying your answer. If \(z_{1}=0\) and \(z_{2}=1\), obtain an expression for \(z_{n+1}\) when \(n\geqslant2\). By considering its imaginary part, or otherwise, show that if \(\theta=\frac{1}{3}\pi\) and \(d=2\), then the path crosses the real axis infinitely often.
Show SolutionGiven that \(\sin\beta\neq0,\) sum the series \[ \cos\alpha+\cos(\alpha+2\beta)+\cdots+\cos(\alpha+2r\beta)+\cdots+\cos(\alpha+2n\beta) \] and \[ \cos\alpha+\binom{n}{1}\cos(\alpha+2\beta)+\cdots+\binom{n}{r}\cos(\alpha+2r\beta)+\cdots+\cos(\alpha+2n\beta). \] Given that \(\sin\theta\neq0,\) prove that \[ 1+\cos\theta\sec\theta+\cos2\theta\sec^{2}\theta+\cdots+\cos r\theta\sec^{r}\theta+\cdots+\cos n\theta\sec^{n}\theta=\frac{\sin(n+1)\theta\sec^{n}\theta}{\sin\theta}. \]
Show SolutionShow, using de Moivre's theorem, or otherwise, that \[ \tan9\theta=\frac{t(t^{2}-3)(t^{6}-33t^{4}+27t^{2}-3)}{(3t^{2}-1)(3t^{6}-27t^{4}+33t^{2}-1)},\qquad\mbox{ where }t=\tan\theta. \] By considering the equation \(\tan9\theta=0,\) or otherwise, obtain a cubic equation with integer coefficients whose roots are \[ \tan^{2}\left(\frac{\pi}{9}\right),\qquad\tan^{2}\left(\frac{2\pi}{9}\right)\qquad\mbox{ and }\qquad\tan^{2}\left(\frac{4\pi}{9}\right). \] Deduce the value of \[ \tan\left(\frac{\pi}{9}\right)\tan\left(\frac{2\pi}{9}\right)\tan\left(\frac{4\pi}{9}\right). \] Show that \[ \tan^{6}\left(\frac{\pi}{9}\right)+\tan^{6}\left(\frac{2\pi}{9}\right)+\tan^{6}\left(\frac{4\pi}{9}\right)=33273. \]
Show SolutionLet \(\omega=\mathrm{e}^{2\pi\mathrm{i}/3}.\) Show that \(1+\omega+\omega^{2}=0\) and calculate the modulus and argument of \(1+\omega^{2}.\) Let \(n\) be a positive integer. By evaluating \((1+\omega^{r})^{n}\) in two ways, taking \(r=1,2\) and \(3\), or otherwise, prove that \[ \binom{n}{0}+\binom{n}{3}+\binom{n}{6}+\cdots+\binom{n}{k}=\frac{1}{3}\left(2^{n}+2\cos\left(\frac{n\pi}{3}\right)\right), \] where \(k\) is the largest multiple of \(3\) less than or equal to \(n\). Without using a calculator, evaluate \[ \binom{25}{0}+\binom{25}{3}+\cdots+\binom{25}{24} \] and \[ \binom{24}{2}+\binom{24}{5}+\cdots+\binom{24}{23}\,. \] {[}\(2^{25}=33554432.\){]}
Show SolutionThe differential equation \[\frac{d^2x}{dt^2} = 2x\frac{dx}{dt}\] describes the motion of a particle with position \(x(t)\) at time \(t\). At \(t = 0\), \(x = a\), where \(a > 0\).
The coordinates of a particle at time \(t\) are \(x\) and \(y\). For \(t \geq 0\), they satisfy the pair of coupled differential equations \[ \begin{cases} \dot{x} &= -x -ky \\ \dot{y} &= x - y \end{cases}\] where \(k\) is a constant. When \(t = 0\), \(x = 1\) and \(y = 0\).
The functions \(x(t)\) and \(y(t)\) satisfy the simultaneous differential equations \begin{alignat*}{1} \dfrac{\mathrm{d}x}{\mathrm{d}t}+2x-5y & =0\\ \frac{\mathrm{d}y}{\mathrm{d}t}+ax-2y & =2\cos t, \end{alignat*} subject to \(x=0,\) \(\dfrac{\mathrm{d}y}{\mathrm{d}t}=0\) at \(t=0.\) Solve these equations for \(x\) and \(y\) in the case when \(a=1\). Without solving the equations explicitly, state briefly how the form of the solutions for \(x\) and \(y\) if \(a>1\) would differ from the form when \(a=1.\)
Show SolutionShow that the second-order differential equation \[ x^2y''+(1-2p) x\, y' + (p^2-q^2) \, y= \f(x) \,, \] where \(p\) and \(q\) are constants, can be written in the form \[ x^a \big(x^b (x^cy)'\big)' = \f(x) \,, \tag{\(*\)} \] where \(a\), \(b\) and \(c\) are constants.
Two particles \(X\) and \(Y\), of equal mass \(m\), lie on a smooth horizontal table and are connected by a light elastic spring of natural length \(a\) and modulus of elasticity \(\lambda\). Two more springs, identical to the first, connect \(X\) to a point \(P\) on the table and \(Y\) to a point \(Q\) on the table. The distance between \(P\) and \(Q\) is \(3a\). Initially, the particles are held so that \(XP=a\), \(YQ= \frac12 a\,\), and \(PXYQ\) is a straight line. The particles are then released. At time \(t\), the particle \(X\) is a distance \(a+x\) from \(P\) and the particle \(Y\) is a distance \(a+y\) from \(Q\). Show that \[ m \frac{\.d ^2 x}{\.d t^2} = -\frac\lambda a (2x+y) \] and find a similar expression involving \(\dfrac{\.d^2 y}{\.d t^2}\). Deduce that \[ x-y = A\cos \omega t +B \sin\omega t \] where \(A\) and \(B\) are constants to be determined and \(ma\omega^2=\lambda\). Find a similar expression for \(x+y\). Show that \(Y\) will never return to its initial position.
A sphere of radius \(R\) and uniform density \(\rho_{\text{s}}\) is floating in a large tank of liquid of uniform density \(\rho\). Given that the centre of the sphere is a distance \(x\) above the level of the liquid, where \(x < R\), show that the volume of liquid displaced is \[ \frac \pi 3 (2R^3-3R^2x +x^3)\,. \] The sphere is acted upon by two forces only: its weight and an upward force equal in magnitude to the weight of the liquid it has displaced. Show that \[ 4 R^3\rho_{\text{s}} (g+\ddot x) = (2R^3 -3R^2x +x^3)\rho g\,. \] Given that the sphere is in equilibrium when \(x=\frac12 R\), find \(\rho_{\text{s}}\) in terms of \(\rho\). Find, in terms of \(R\) and \(g\), the period of small oscillations about this equilibrium position.
A pain-killing drug is injected into the bloodstream. It then diffuses into the brain, where it is absorbed. The quantities at time \(t\) of the drug in the blood and the brain respectively are \(y(t)\) and \(z(t)\). These satisfy \[ \dot y = - 2(y-z)\,, \ \ \ \ \ \ \ \dot z = - \dot y -3z\, , \] where the dot denotes differentiation with respect to \(t\). Obtain a second order differential equation for \(y\) and hence derive the solution \[ y= A\e^{-t} + B\e ^{-6t}\,, \ \ \ \ \ \ \ z= \tfrac12 A \e^{-t} - 2 B \e^{-6t}\,, \] where \(A\) and \(B\) are arbitrary constants. \begin{questionparts} \item Obtain the solution that satisfies \(z(0)=0\) and \(y(0)= 5\). The quantity of the drug in the brain for this solution is denoted by \(z_1(t)\). \item Obtain the solution that satisfies $ z(0)=z(1)= c$, where \(c\) is a given constant. %\[ %C=2(1-\e^{-1})^{-1} - 2(1-\e^{-6})^{-1}\,. %\] The quantity of the drug in the brain for this solution is denoted by \(z_2(t)\). \item Show that for \(0\le t \le 1\), \[ z_2(t) = \sum _{n=-\infty}^{0} z_1(t-n)\,, \] provided \(c\) takes a particular value that you should find. \end {questionparts}
Given that \(\displaystyle z = y^n \left( \frac{\d y}{\d x}\right)^{\!2}\), show that \[ \frac{\d z}{\d x} = y^{n-1} \frac{\d y}{\d x} \left( n \left(\frac{\d y}{\d x}\right)^{\!2} + 2y \frac{\d^2y}{\d x^2}\right) . \]
A small bead \(B\), of mass \(m\), slides without friction on a fixed horizontal ring of radius \(a\). The centre of the ring is at \(O\). The bead is attached by a light elastic string to a fixed point \(P\) in the plane of the ring such that \(OP = b\), where \(b > a\). The natural length of the elastic string is \(c\), where \(c < b - a\), and its modulus of elasticity is \(\lambda\). Show that the equation of motion of the bead is \[ ma\ddot \phi = -\lambda\left( \frac{a\sin\phi}{c\sin\theta}-1\right)\sin(\theta+\phi) \,, \] where \(\theta=\angle BPO\) and \(\phi=\angle BOP\). Given that \(\theta\) and \(\phi\) are small, show that $a(\theta+\phi)\approx b\theta$. Hence find the period of small oscillations about the equilibrium position \(\theta=\phi =0\).
Show that, if \(y=\e^x\), then \[ (x-1) \frac{\d^2 y}{\d x^2} -x \frac{\d y}{\d x} +y=0\,. \tag{\(*\)} \] In order to find other solutions of this differential equation, now let \(y=u\e^x\), where \(u\) is a function of \(x\). By substituting this into \((*)\), show that \[ (x-1) \frac{\d^2 u}{\d x^2} + (x-2) \frac{\d u}{\d x} =0\,. \tag{\(**\)} \] By setting \( \dfrac {\d u}{\d x}= v\) in \((**)\) and solving the resulting first order differential equation for \(v\), find~\(u\) in terms of \(x\). Hence show that \(y=Ax + B\e^x\) satisfies \((*)\), where \(A\) and \(B\) are any constants.
A light spring is fixed at its lower end and its axis is vertical. When a certain particle \(P\) rests on the top of the spring, the compression is \(d\). When, instead, \(P\) is dropped onto the top of the spring from a height \(h\) above it, the compression at time \(t\) after \(P\) hits the top of the spring is \(x\). Obtain a second-order differential equation relating \(x\) and \(t\) for \(0\le t \le T\), where \(T\) is the time at which \(P\) first loses contact with the spring. Find the solution of this equation in the form \[ x= A + B\cos (\omega t) + C\sin(\omega t)\,, \] where the constants \(A\), \(B\), \(C\) and \(\omega\) are to be given in terms of \(d\), \(g\) and \(h\) as appropriate. Show that \[ T = \sqrt{d/g\;} \left (2 \pi - 2 \arctan \sqrt{2h/d\;}\;\right)\,. \]
In this question, \(p\) denotes \(\dfrac{\d y}{\d x}\,\).
Given that \(y=x\) and \(y=1-x^2\) satisfy the differential equation $$ \frac{\d^2 {y}}{\d x^2} + \p(x) \frac{\d {y}}{\d x} + \q(x) {y}=0\;, \tag{*} $$ show that \(\p(x)= -2x(1+x^2)^{-1}\) and \(\q(x) = 2(1+x^2)^{-1}\). Show also that \(ax+b(1-x^2)\) satisfies the differential equation for any constants \(a\) and \(b\). Given instead that \(y=\cos^2(\frac{1}{2}x^2)\) and \(y=\sin^2(\frac{1}{2}x^2)\) satisfy the equation \((*)\), find \(\p(x)\) and \(\q(x)\).
Show SolutionThe function \(y(x)\) is defined for \(x\ge0\) and satisfies the conditions \[ y=0 \mbox{ \ \ and \ \ } \frac{\d y}{\d x}=1 \mbox{ \ \ at \(x=0\)}. \] When \(x\) is in the range \(2(n-1)\pi< x <2n\pi\), where \(n\) is a positive integer, \(y(t)\) satisfies the differential equation $$ {\d^2y \over \d x^2} + n^2 y=0. $$ Both \(y\) and \(\displaystyle \frac{\d y}{\d x} \) are continuous at \(x=2n\pi\) for \(n=0,\; 1,\;2,\; \ldots\;\).
Show that \(\sin(k\sin^{-1} x)\), where \(k\) is a constant, satisfies the differential equation $$ (1-x^{2})\frac {\d^2 y}{\d x^2} -x\frac{\d y}{\d x} +k^{2}y=0. \eqno(*) $$ In the particular case when \(k=3\), find the solution of equation \((*)\) of the form \[ y=Ax^{3}+Bx^{2}+Cx+D, \] that satisfies \(y=0\) and \(\displaystyle \frac{\d y}{\d x}=3\) at \(x=0\). Use this result to express \(\sin 3\theta\) in terms of powers of \(\sin\theta\).
Suppose that \(y_n\) satisfies the equations \[(1-x^2)\frac{{\rm d}^2y_n}{{\rm d}x^2}-x\frac{{\rm d}y_n}{{\rm d}x}+n^2y_n=0,\] \[y_n(1)=1,\quad y_n(x)=(-1)^ny_n(-x).\] If \(x=\cos\theta\), show that \[\frac{{\rm d}^2y_n}{{\rm d}\theta^2}+n^2y_n=0,\] and hence obtain \(y_n\) as a function of \(\theta\). Deduce that for \(|x|\leqslant1\) \[y_0=1,\quad y_1=x,\] \[y_{n+1}-2xy_n+y_{n-1}=0.\]
Suppose that \[{\rm f}''(x)+{\rm f}(-x)=x+3\cos 2x\] and \({\rm f}(0)=1\), \({\rm f}'(0)=-1\). If \({\rm g}(x)={\rm f}(x)+{\rm f}(-x)\), find \({\rm g}(0)\) and show that \({\rm g}'(0)=0\). Show that \[{\rm g}''(x)+{\rm g}(x)=6\cos 2x,\] and hence find \({\rm g}(x)\). Similarly, if \({\rm h}(x)={\rm f}(x)-{\rm f}(-x)\), find \({\rm h}(x)\) and show that \[{\rm f}(x)=2\cos x -\cos2x-x.\]
Show SolutionShow that \(y=\sin^{2}(m\sin^{-1}x)\) satisfies the differential equation \[ (1-x^{2})y^{(2)}=xy^{(1)}+2m^{2}(1-2y), \] and deduce that, for all \(n\geqslant1,\) \[ (1-x^{2})y^{(n+2)}=(2n+1)xy^{(n+1)}+(n^{2}-4m^{2})y^{(n)}, \] where \(y^{(n)}\) denotes the \(n\)th derivative of \(y\). Derive the Maclaurin series for \(y\), making it clear what the general term is.
What is the general solution of the differential equation \[ \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}+2k\frac{\mathrm{d}x}{\mathrm{d}t}+x=0 \] for each of the cases: (i) \(k>1;\) (ii) \(k=1\); (iii) \(0 < x < 1\)? In case (iii) the equation represents damped simple harmonic motion with damping factor \(k\). Let \(x(0)=0\) and let \(x_{1},x_{2},\ldots,x_{n},\ldots\) be the sequence of successive maxima and minima, so that if \(x_{n}\) is a maximum then \(x_{n+1}\) is the next minimum. Show that \(\left|x_{n+1}/x_{n}\right|\) takes a value \(\alpha\) which is independent of \(n\), and that \[ k^{2}=\frac{(\ln\alpha)^{2}}{\pi^{2}+(\ln\alpha)^{2}}. \]
Find functions \(\mathrm{f,g}\) and \(\mathrm{h}\) such that \[ \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}+\mathrm{f}(x)\frac{\mathrm{d}y}{\mathrm{d}x}+\mathrm{g}(x)y=\mathrm{h}(x)\tag{\ensuremath{*}} \] is satisfied by all three of the solutions \(y=x,y=1\) and \(y=x^{-1}\) for \(0 < x < 1.\) If \(\mathrm{f,g}\) and \(\mathrm{h}\) are the functions you have found in the first paragraph, what condition must the real numbers \(a,b\) and \(c\) satisfy in order that \[ y=ax+b+\frac{c}{x} \] should be a solution of \((*)\)?