UFM Pure

Method of differences (telescoping)

Showing 1-25 of 30 problems
1987 Paper 3 Q7
D: 1500.0 B: 1500.0

Prove that \[ \tan^{-1}t=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\cdots+\frac{(-1)^{n}t^{2n+1}}{2n+1}+(-1)^{n+1}\int_{0}^{t}\frac{x^{2n+2}}{1+x^{2}}\,\mathrm{d}x. \] Hence show that, if \(0\leqslant t\leqslant1,\) then \[ \frac{t^{2n+3}}{2(2n+3)}\leqslant\left|\tan^{-1}t-\sum_{r=0}^{n}\frac{(-1)^{r}t^{2r+1}}{2r+1}\right|\leqslant\frac{t^{2n+3}}{2n+3}. \] Show that, as \(n\rightarrow\infty,\) \[ 4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)}\rightarrow\pi, \] but that the error in approximating \(\pi\) by \({\displaystyle 4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)}}\) is at least \(10^{-2}\) if \(n\) is less than or equal to \(98\).

Show Solution
We start by noticing that \(\displaystyle \tan^{-1} t = \int_0^t \frac{1}{1+x^2} \d x\). Consider the geometric series \(1-x^2+(-x^2)^2+ \cdots + (-x^2)^n = \frac{1-(-x^2)^{n+1}}{1+x^2}\). Therefore, \((1+x^2)(1-x^2+(-x^2)^2+ \cdots + (-x^2)^n) = 1-(-x^2)^{n+1}\) or \(1 = (1+x^2)(1-x^2+x^4-\cdots+(-1)^nx^{2n}) +(-1)^{n+1}x^{2n+2}\) \begin{align*} \tan^{-1} t &= \int_0^t \frac{1}{1+x^2} \d x \\ &= \int_0^t \frac{(1+x^2)(1-x^2+x^4-\cdots+(-1)^nx^{2n}) +(-1)^{n+1}x^{2n+2}}{x^2+1} \d x \\ &= \int_0^t (1-x^2+x^4-\cdots+(-1)^nx^{2n})\d x + \int_0^t \frac{(-1)^{n+1}x^{2n+2}}{x^2+1} \d x \\ &= t - \frac{t^3}{3}+\frac{t^5}{5}-\cdots + (-1)^n \frac{t^{2n+1}}{2n+1}+\int_0^t \frac{(-1)^{n+1}x^{2n+2}}{x^2+1} \d x \\ &= \sum_{r=0}^n \frac{(-1)^r t^{2r+1}}{2r+1} + \int_0^t \frac{(-1)^{n+1}x^{2n+2}}{x^2+1} \d x \\ \end{align*} Therefore we can say (for \(0 \leq t \leq 1\)) \begin{align*} \left | \tan^{-1} t - \sum_{r=0}^n \frac{(-1)^r t^{2r+1}}{2r+1} \right | &= \left | \int_0^t \frac{(-1)^{n+1}x^{2n+2}}{x^2+1} \d x \right | \\ &\leq \left | \int_0^t x^{2n+2} \d x \right | \\ &= \frac{t^{2n+3}}{2n+3} \\ \\ \left | \tan^{-1} t - \sum_{r=0}^n \frac{(-1)^r t^{2r+1}}{2r+1} \right | &= \left | \int_0^t \frac{(-1)^{n+1}x^{2n+2}}{x^2+1} \d x \right | \\ &\geq \left | \int_0^t \frac{(-1)^{n+1}x^{2n+2}}{1+1} \d x \right | \\ &= \frac{t^{2n+3}}{2(2n+3)} \\ \end{align*} Since \(\tan^{-1} 1 = \frac{\pi}{4}\) we must have that: \begin{align*} \lim_{n \to \infty} \left | \frac{\pi}{4} - \sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)} \right | \to 0 \Rightarrow \lim_{n \to \infty} 4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)} \to \pi \end{align*} However, \begin{align*} && \left | 4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)} - \pi \right | &\geq 4 \frac{1}{2(2n+3)} \\ && &= \frac{2}{2n+3} \\ \\ && \frac{2}{2n+3} \geq 10^{-2} \\ \Leftrightarrow && 200 \geq 2n+3 \\ \Leftrightarrow && 197 \geq 2n \\ \Leftrightarrow && 98.5 \geq n \\ \end{align*} Therefore we need more than \(98\) terms to get two decimal places of accuracy. Not great!
1987 Paper 2 Q5
D: 1500.0 B: 1500.0

If \(y=\mathrm{f}(x)\), then the inverse of \(\mathrm{f}\) (when it exists) can be obtained from Lagrange's identity. This identity, which you may use without proof, is \[ \mathrm{f}^{-1}(y)=y+\sum_{n=1}^{\infty}\frac{1}{n!}\frac{\mathrm{d}^{n-1}}{\mathrm{d}y^{n-1}}\left[y-\mathrm{f}\left(y\right)\right]^{n}, \] provided the series converges.

  1. Verify Lagrange's identity when \(\mathrm{f}(x)=\alpha x\), \((0<\alpha<2)\).
  2. Show that one root of the equation \[ \tfrac{1}{2}=x-\tfrac{1}{4}x^{3} \] is \[ x=\sum_{n=0}^{\infty}\frac{\left(3n\right)!}{n!\left(2n+1\right)!2^{4n+1}} \]
  3. Find a solution for \(x\), as a series in \(\lambda,\) of the equation \[ x=\mathrm{e}^{\lambda x}. \]
[You may assume that the series in part \((ii) \)converges, and that the series in part \((iii) \)converges for suitable \(\lambda\).]

Show Solution
  1. If \(f(x) = \alpha x\) then \(f^{-1}(x) = \frac{1}{\alpha}x\). \begin{align*} && \frac{\d^{n-1}}{\d y^{n-1}} [y - \alpha y]^n &= \frac{\d^{n-1}}{\d y^{n-1}} [(1 - \alpha)^n y^n] \\ && &= (1-\alpha)^n n! y \\ \Rightarrow && y + \sum_{n=1}^{\infty} \frac{1}{n!}\frac{\d^{n-1}}{\d y^{n-1}} [y - \alpha y]^n &= y +\sum_{n=1}^{\infty} (1-\alpha)^ny \\ &&&= y + y\l \frac{1}{1-(1-\alpha)}-1 \r \\ &&&= \frac{1}{\alpha}y \end{align*} Where we can sum the geometric progression if \(|1-\alpha| < 1 \Leftrightarrow 0 < \alpha < 2\)
  2. Suppose that \(f(x) = x-\frac14x^3\). We would like to find \(f^{-1}(\frac12)\). \begin{align*} && \frac{\d^{n-1}}{\d y^{n-1}} [y - (y+\frac14 y^3)]^n &= \frac{\d^{n-1}}{\d y^{n-1}} [\frac1{4^n} y^{3n}] \\ && &= \frac{1}{4^n} \frac{(3n)!}{(2n+1)!} y^{2n+1} \\ \Rightarrow && f^{-1}(\frac12) &= \frac12 + \sum_{n=1}^{\infty} \frac{1}{4^n} \frac{(3n)!}{n!(2n+1)!} \frac{1}{2^{2n+1}} \\ &&&= \frac12 + \sum_{n=1}^{\infty} \frac{(3n)!}{n!(2n+1)!} \frac{1}{2^{4n+1}} \\ \end{align*} Since when \(n = 0\) \(\frac{0!}{0!1!} \frac{1}{2^{0+1}} = \frac12\) we can include the wayward \(\frac12\) in our infinite sum and so we have the required result.
  3. Consider \(f(x) = x - e^{\lambda x}\) we are interested in \(f^{-1}(0)\). \begin{align*} && \frac{\d^{n-1}}{\d y^{n-1}} [y - (y-e^{\lambda y})]^n &= \frac{\d^{n-1}}{\d y^{n-1}} [e^{n\lambda y}] \\ &&&= n^{n-1} \lambda^{n-1}e^{n \lambda y} \\ \Rightarrow && f^{-1}(0) &= \sum_{n=1}^\infty \frac{1}{n!} n^{n-1} \lambda^{n-1} \end{align*} We don't care about convergence, but it's worth noting this has a radius of convergence of \(\frac{1}{e}\) (ie this series is valid if \(|\lambda| < \frac1e\)).
1987 Paper 1 Q4
D: 1500.0 B: 1500.0

Show that the sum of the infinite series \[ \log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots \] is \[ \frac{1}{\ln(2\sqrt{2})}. \] {[}\(\log_{a}b=c\) is equivalent to \(a^{c}=b\).{]}

Show Solution
Let \(S = \log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots\) then \begin{align*} S &= \sum_{n=0}^{\infty} (-1)^n \log_{2^{2^n}} e \\ &= \sum_{n=0}^{\infty} (-1)^n \frac{\log e}{\log {2^{2^n}}} \\ &= \sum_{n=0}^{\infty} (-1)^n \frac{\log e}{2^n\log {2}} \\ &= \frac{\log e}{\log 2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \\ &= \frac{1}{\log_e 2} \frac{1}{1+\frac12} \\ &= \frac{1}{\ln (2^{3/2})} \\ &= \frac{1}{\ln (2 \sqrt{2})} \end{align*}
2017 Paper 3 Q8
D: 1700.0 B: 1500.0

Prove that, for any numbers \(a_1\), \(a_2\), \(\ldots\)\,, and \(b_1\), \(b_2\), \(\ldots\)\,, and for \(n\ge1\), \[ \sum_{m=1}^n a_m(b_{m+1} -b_m) = a_{n+1}b_{n+1} -a_1b_1 -\sum_{m=1}^n b_{m+1}(a_{m+1} -a_m) \,. \]

  1. By setting \(b_m = \sin mx\), show that \[ \sum_{m=1}^n \cos (m+\tfrac12)x = \tfrac12 \big(\sin (n+1)x - \sin x \big) \cosec \tfrac12 x \,. \] {\bf Note:} $\sin A - \sin B = \displaystyle 2 \cos \big( \tfrac{{\displaystyle A+B\vphantom{_1}}} {\displaystyle 2\vphantom{^1}} \big)\, \sin\big( \tfrac{{\displaystyle A-B\vphantom{_1}}}{\displaystyle 2\vphantom{^1}} \big)\, $.
  2. Show that \[ \sum_{m=1}^n m\sin mx = \big (p \sin(n+1)x +q \sin nx\big) \cosec^2 \tfrac12 x \,, \] where \(p\) and \(q\) are to be determined in terms of \(n\). \vspace{3mm} {\bf Note:} \(2\sin A \sin B = \cos (A-B) - \cos (A+B)\,\); \\[2mm] \phantom {\bf Note:} \(2\cos A \sin B = \sin (A+B) - \sin (A-B)\,\).

2017 Paper 3 Q1
D: 1700.0 B: 1516.0

  1. Prove that, for any positive integers \(n\) and \(r\), \[ \frac{1}{^{n+r}\C_{r+1}} =\frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right). \] Hence determine \[ \sum_{n=1}^{\infty}{\frac{1}{^{n+r}\C_{r+1}}} \,, \] and deduce that \ \(\displaystyle \sum_{n=2}^\infty \frac 1 {^{n+2}\C_3} = \frac12\,\).
  2. Show that, for \(n \ge 3\,\), \[ \frac{3!}{n^3} < \frac{1}{^{n+1}\C_{3}} \ \ \ \ \ \text{and} \ \ \ \ \ \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} < \frac{5!}{n^3} \,. \] By summing these inequalities for \(n \ge 3\,\), show that \[ \frac{115}{96} < \sum_{n=1}^{\infty}{\frac{1}{n^3}} < \frac{116}{96} \, . \]
{\bf Note: } \(^n\C_r\) is another notation for \(\displaystyle \binom n r \).

Show Solution
\begin{align*} \frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right) &= \frac{r+1}{r} \l \frac{r!(n-1)!}{(n+r-1)!} - \frac{r!n!}{(n+r)!} \r \\ &= \frac{(r+1)!(n-1)!}{r(n+r-1)!} \l 1 - \frac{n}{n+r} \r \\ &= \frac{(r+1)!(n-1)!}{r(n+r-1)!} \frac{r}{n+r} \\ &= \frac{(r+1)!n!}{(n+r)!} \\ &= \frac{1}{^{n+r}\C_{r+1}} \end{align*} \begin{align*} \sum_{n=1}^{\infty}{\frac{1}{^{n+r}\C_{r+1}}} &= \sum_{n=1}^{\infty} \l \frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right) \r \\ &= \frac{r+1}{r} \sum_{n=1}^{\infty} \l \frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}} \r \\ &= \frac{r+1}{r} \lim_{N \to \infty} \sum_{n=1}^{N} \l \frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}} \r \\ &= \frac{r+1}{r} \lim_{N \to \infty} \l \frac{1}{^{1+r-1}\C_{r}} - \frac{1}{^{N+r}\C_{r}}\r \\ &= \frac{r+1}{r} \frac{1}{^{1+r-1}\C_{r}} \tag{since \(\frac{1}{^{N+r}\C_{r}} \to 0\)} \\ &= \frac{r+1}{r} \end{align*} When \(r = 2\), we have: \begin{align*} && \frac{3}{2} &= \sum_{n=1}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ && &=\frac{1}{^{1+2}\C_{3}} + \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ && &= 1 + \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ \Rightarrow && \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} &= \frac12 \end{align*} \begin{align*} \frac{1}{^{n+1}\C_{3}} &= \frac{3!}{(n+1)n(n-1)} \\ &= \frac{3!}{n^3-n} \\ &> \frac{3!}{n^3} \end{align*} \begin{align*} \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} &= \frac{5!}{(n+1)n(n-1)} - \frac{5!}{(n+2)(n+1)n(n-1)(n-2)} \\ &= \frac{5!}{n^3} \frac{n^2}{n^2-1}\l 1- \frac{1}{n^2-4} \r \\ &= \frac{5!}{n^3} \frac{n^2}{n^2-1}\l \frac{n^2-5}{n^2-4} \r \\ &= \frac{5!}{n^3} \frac{n^2(n^2-5)}{(n^2-1)(n^2-4)} \\ &< \frac{5!}{n^3} \end{align*} Since \(k(k-5) < (k-1)(k-4) \Leftrightarrow 0 < 4\), this only makes sense if \(n \geq 3\) \begin{align*} &&\frac{3!}{n^3} &< \frac{1}{^{n+1}\C_{3}} \tag{if \(n \geq 3\)} \\ \Rightarrow &&\sum_{n=3}^\infty \frac{3!}{n^3} &< \sum_{n=3}^\infty \frac{1}{^{n+1}\C_{3}} \\ \Rightarrow && \frac{6}{1^3} + \frac{6}{2^3} + \sum_{n=3}^\infty \frac{3!}{n^3} &< \frac{6}{1^3} + \frac{6}{2^3} + \sum_{n=3}^\infty \frac{1}{^{n+1}\C_{3}} \\ \Rightarrow && \sum_{n=1}^\infty \frac{3!}{n^3} &< 6 + \frac{3}{4} + \sum_{n=2}^\infty \frac{1}{^{n+2}\C_{2+1}} \\ \Rightarrow && \sum_{n=1}^\infty \frac{3!}{n^3} &< 6 + \frac{3}{4} + \frac{1}{2} = \frac{29}{4} \\ \Rightarrow && \sum_{n=1}^\infty \frac{1}{n^3} &< \frac{29}{24} = \frac{116}{96} \\ \end{align*} \begin{align*} && \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} &< \frac{5!}{n^3} \\ \Rightarrow && \sum_{n=3}^\infty \l \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} \r &< \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{20}{^{n+1}\C_3} - \sum_{n=3}^\infty \frac{1}{^{n+2}\C_{5}} &< \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=2}^\infty \frac{20}{^{n+2}\C_{2+1}} - \sum_{n=1}^\infty \frac{1}{^{n+4}\C_{4+1}} &< \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \frac{20}{2} - \frac{4+1}{4} &< \sum_{n=1}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{115}{96} &< \sum_{n=1}^\infty \frac{1}{n^3} \\ \end{align*}
2016 Paper 3 Q4
D: 1700.0 B: 1484.0

  1. By considering \ $\displaystyle \frac1 {1+ x^r} - \frac1 {1+ x^{r +1}} $ \ for \(\vert x \vert \ne 1\), simplify \[ \sum_{r=1}^N \frac{x^r}{(1+x^r)(1+x^{r+1})} \,. \] Show that, for \(\vert x \vert <1\), \[ \sum_{r=1}^\infty \frac{x^r}{(1+x^r)(1+x^{r+1})} = \frac x {1-x^2} \,. \]
  2. Deduce that \[ \sum_{r=1}^\infty \sech(ry)\sech((r + 1)y) = 2\e^{-y} \cosech (2 y) \] for \(y > 0\). Hence simplify \[ \sum_{r=-\infty}^\infty \sech(ry) \sech((r + 1)y) \,,\] for \(y>0\).

2016 Paper 2 Q8
D: 1600.0 B: 1500.0

Evaluate the integral \[ \hphantom{ \ \ \ \ \ \ \ \ \ (m> \tfrac12)\,.} \int_{m-\frac12} ^\infty \frac 1{x^2}\, \d x { \ \ \ \ \ \ \ \ \ (m> \tfrac12)\,.} \] Show by means of a sketch that \[ \sum_{r=m}^n \frac 1 {r^2} \approx \int_{m-\frac12}^{n+\frac12} \frac1 {x^2} \, \d x \,, \tag{\(*\)} \] where \(m\) and \(n\) are positive integers with \(m

  • You are given that the infinite series $\displaystyle \sum_{r=1}^\infty \frac 1 {r^2}$ converges to a value denoted by \(E\). Use~\((*)\) to obtain the following approximations for \(E\): \[ E\approx 2\,; \ \ \ \ E\approx \frac53\,; \ \ \ \ E\approx \frac{33}{20} \,.\]
  • Show that, when \(r\) is large, the error in approximating \(\dfrac 1{r^2}\) by \(\displaystyle \int_{r-\frac12}^{r+\frac12} \frac 1 {x^2} \, \d x\) is approximately~\(\dfrac 1{4r^4}\,\). Given that \(E \approx 1.645\), show that \(\displaystyle \sum_{r=1}^\infty \frac1{r^4} \approx 1.08\, \).
  • 2014 Paper 3 Q8
    D: 1700.0 B: 1516.0

    The numbers \(\.f(r)\) satisfy \(\.f(r)>\.f(r+1)\) for \(r=1\), \(2\), \dots. Show that, for any non-negative integer \(n\), \[ k^n(k-1) \, \.f(k^{n+1}) \le \sum_{r=k^n}^{k^{n+1}-1}\.f(r) \le k^n(k-1)\, \.f(k^n)\, \] where \(k\) is an integer greater than 1.

    1. By taking \(\.f(r) = 1/r\), show that \[ \frac{N+1}2 \le \sum_{r=1}^{2^{N+1}-1} \frac1r \le N+1 \,. \] Deduce that the sum \(\sum\limits_{r=1}^\infty \frac1r\) does not converge.
    2. By taking \(\.f(r)= 1/r^3\), show that \[ \sum_{r=1}^\infty \frac1 {r^3} \le 1 \tfrac 13 \,. \]
    3. Let \(S(n)\) be the set of positive integers less than \(n\) which do not have a \(2\) in their decimal representation and let \(\sigma(n)\) be the sum of the reciprocals of the numbers in \(S(n)\), so for example \(\sigma(5) = 1+\frac13+\frac14\). Show that \(S(1000)\) contains \(9^3-1\) distinct numbers. Show that \(\sigma (n) < 80\) for all \(n\).

    2013 Paper 2 Q6
    D: 1600.0 B: 1485.5

    In this question, the following theorem may be used.\newline {\sl Let \(u_1\), \(u_2\), \(\ldots\) be a sequence of (real) numbers. If the sequence is bounded above (that is, \(u_n\le b\) for all \(n\), where \(b\) is some fixed number) and increasing (that is, \(u_n\ge u_{n-1}\) for all \(n\)), then the sequence tends to a limit (that is, converges).} The sequence \(u_1\), \(u_2\), \(\ldots\) is defined by \(u_1=1\) and \[ u_{n+1} = 1+\frac 1{u_n} \ \ \ \ \ \ \ \ \ \ (n\ge1)\,. \tag{\(*\)} \]

    1. Show that, for \(n\ge3\), \[ u_{n+2}-u_n = \frac{u_{n} - u_{n-2}}{(1+u_n)(1+u_{n-2})} . \]
    2. Prove, by induction or otherwise, that \(1\le u_n \le 2\) for all \(n\).
    3. Show that the sequence \(u_1\), \(u_3\), \(u_5\), \(\ldots\) tends to a limit, and that the sequence \(u_2\), \(u_4\), \(u_6\), \(\ldots\) tends to a limit. Find these limits and deduce that the sequence \(u_1\), \(u_2\), \(u_3\), \(\ldots\,\) tends to a limit. Would this conclusion change if the sequence were defined by \((*)\) and \(u_1=3\)?

    2012 Paper 3 Q8
    D: 1700.0 B: 1500.0

    The sequence \(F_0\), \(F_1\), \(F_2\), \(\ldots\,\) is defined by \(F_0=0\), \(F_1=1\) and, for \(n\ge0\), \[ F_{n+2} = F_{n+1} + F_n \,. \]

    1. Show that \(F_0F_3-F_1F_2 = F_2F_5- F_3F_4\,\).
    2. Find the values of \(F_nF_{n+3} - F_{n+1}F_{n+2}\) in the two cases that arise.
    3. Prove that, for \(r=1\), \(2\), \(3\), \(\ldots\,\), \[ \arctan \left( \frac 1{F_{2r}}\right) =\arctan \left( \frac 1{F_{2r+1}}\right)+ \arctan \left( \frac 1{F_{2r+2}}\right) \] and hence evaluate the following sum (which you may assume converges): \[ \sum_{r=1}^\infty \arctan \left( \frac 1{F_{2r+1}}\right) \,. \]

    2012 Paper 3 Q2
    D: 1700.0 B: 1516.0

    In this question, \(\vert x \vert <1\) and you may ignore issues of convergence.

    1. Simplify \[ (1-x)(1+x)(1+x^2)(1+x^4) \cdots (1+x^{2^n})\,, \] where \(n\) is a positive integer, and deduce that \[ \frac1{1-x} = (1+x)(1+x^2)(1+x^4) \cdots (1+x^{2^n}) + \frac {x^{2^{n+1}}}{1-x}\,. \] Deduce further that \[ \ln(1-x) = - \sum_{r=0}^\infty \ln \left (1+ x ^{2^r}\right) \,, \] and hence that \[ \frac1 {1-x} = \frac 1 {1+x} + \frac {2x}{1+x^2} + \frac {4x^3}{1+x^4} +\cdots\,. \]
    2. Show that \[ \frac{1+2x}{1+x+x^2} = \frac{1-2x}{1-x+x^2} + \frac{2x-4x^3}{1-x^2+x^4} + \frac {4x^3-8x^7}{1-x^4+x^8} + \cdots\,. \]

    Show Solution
    1. \begin{align*} (1-x)&(1+x)(1+x^2)(1+x^4) \cdots (1+x^{2^n}) \\ &= (1-x^2)(1+x^2)(1+x^4) \cdots (1+x^{2^n}) \\ &= (1-x^4)(1+x^4) \cdots (1+x^{2^n}) \\ &= 1-x^{2^{n+1}} \\ \end{align*} Therefore, \begin{align*} && \frac{1}{1-x} - \frac{x^{2^{n+1}}}{1-x} &= (1+x)(1+x^2)\cdots(1+x^{2^n}) \\ \Rightarrow && \frac{1}{1-x} &=(1+x)(1+x^2)\cdots(1+x^{2^n})+ \frac{x^{2^{n+1}}}{1-x} \\ \Rightarrow && -\ln (1-x) &= \sum_{r=0}^{\infty} \ln (1+x^{2^r}) \\ \Rightarrow && \ln(1-x) &= - \sum_{r=0}^{\infty} \ln (1+x^{2^r}) \\ \underbrace{\Rightarrow}_{\frac{\d}{\d x}} && \frac{1}{1-x} &= \sum_{r=0}^{\infty} \frac{2^r x^{2^r-1}}{1+x^{2^r}} \\ &&&= \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \cdots \end{align*}
    2. Consider \begin{align*}(1+x+x^2)&(1-x+x^2)(1-x^2+x^4)\cdots(1-x^{2^n}+x^{2^{n+1}}) \\ &= (1+x^2 + x^4)(1-x^2+x^4) \cdots (1-x^{2^n}+x^{2^{n+1}}) \\ &= (1-x^{2^{n+1}}+x^{2^{n+2}}) \\ \end{align*} Therefore, \begin{align*} && \frac{1}{1+x+x^2} &= (1-x+x^2)(1-x^2+x^4)\cdots(1-x^{2^n}+x^{2^{n+1}}) + \frac{x^{2^{n+1}}}{1+x+x^2} -\frac{x^{2^{n+2}}}{1+x+x^2} \\ \Rightarrow && -\ln(1+x+x^2) &= \sum_{r=0}^\infty \ln (1 - x^{2^r}+x^{2^{r+1}}) \\ \underbrace{\Rightarrow}_{\frac{\d}{\d x}} && -\frac{1+2x}{1+x+x^2} &= \sum_{r=0}^{\infty} \frac{ -2^r x^{2^r-1}+2^{r+1}x^{2^{r+1}-1}}{1 - x^{2^r}+x^{2^{r+1}}} \\ &&&= \frac{-1+2x}{1-x+x^2}+\frac{-2x+4x^3}{1-x^2+x^4} + \frac{-4x^3+8x^7}{1-x^4+x^8} + \cdots \end{align*} Which is the desired result when we multiply both sides by \(-1\)
    2012 Paper 2 Q8
    D: 1600.0 B: 1485.7

    The positive numbers \(\alpha\), \(\beta\) and \(q\) satisfy \(\beta-\alpha >q\). Show that \[ \frac{\alpha^2+\beta^2 -q^2}{\alpha\beta}-2> 0\,. \] The sequence \(u_0\), \(u_1\), \(\ldots\) is defined by \(u_0=\alpha\), \(u_1=\beta\) and \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u_{n+1} = \frac {u_{n}^2 -q^2}{u_{n-1}} \ \ \ \ \ \ \ \ \ \ \ (n\ge1), \] where \(\alpha\), \(\beta\) and \(q\) are given positive numbers (and \(\alpha\) and \(\beta\) are such that no term in the sequence is zero). Prove that \(u_n(u_n+u_{n+2}) = u_{n+1}(u_{n-1}+u_{n+1})\,\). Prove also that \[ u_{n+1} -pu_n + u_{n-1}=0 \] for some number \(p\) which you should express in terms of \(\alpha\), \(\beta\) and \(q\). Hence, or otherwise, show that if \(\beta> \alpha+q\), the sequence is strictly increasing (that is, \(u_{n+1}-u_n > 0\) for all \(n\)). Comment on the case \(\beta =\alpha +q\).

    Show Solution
    \begin{align*} && \beta - \alpha &> q \\ \Rightarrow &&(\beta - \alpha)^2 &> q^2 \\ \Rightarrow && \beta^2 +\alpha^2 - 2\beta \alpha &> q^2 \\ \Rightarrow && \alpha^2+\beta^2-q^2 -2 \beta \alpha &> 0 \\ \Rightarrow && \frac{\alpha^2+\beta^2-q^2}{\alpha\beta} - 2 &> 0 \end{align*} \begin{align*} && u_n(u_n+u_{n+2}) &= u_n \cdot \left (u_n + \frac {u_{n+1}^2 -q^2}{u_{n}}\right) \\ &&&= u_n^2 + u_{n+1}^2-q^2 \\ &&&= u_n^2 + u_{n+1}^2 - (u_n^2-u_{n-1}u_{n+1}) \\ &&&= u_{n+1}^2 + u_{n+1}u_{n-1} \\ &&&= u_{n+1}(u_{n-1}+u_{n+1}) \\ \\ && u_{n+1}-pu_n+u_{n-1} &= -pu_n+\frac{u_{n}(u_{n-2}+u_n)}{u_{n-1}} \\ &&&= \frac{u_n(u_{n}-pu_{n-1}+u_{n-2})}{u_{n-1}} \end{align*} Therefore if \(u_2 -pu_1 + u_0 = 0\) it is always zero, ie if \begin{align*} && u_2 &= p\beta - \alpha \\ && u_2 &= \frac{\beta^2-q^2}{\alpha} \\ \Rightarrow && \frac{\beta^2-q^2}{\alpha} &= p\beta - \alpha \\ \Rightarrow && p &= \frac{\alpha^2+\beta^2-q^2}{\alpha\beta} \end{align*} If \(\beta > \alpha + q\) we must have that \(p > 2\), and so \(u_{n+1}-u_n = (p-1)u_n - u_{n-1} > u_n-u_{n-1} > 0\), therefore the sequence is strictly increasing. If \(\beta = \alpha + q\) the sequence follows \(u_{n+1} - 2u_n + u_{n-1} =0\) and so \(u_{n+1}-u_n = u_n - u_{n-1}\) for all \(n\) (which is still increasing - it's an arithmetic progression with common difference \(\beta - \alpha\)).
    2012 Paper 1 Q7
    D: 1500.0 B: 1500.0

    A sequence of numbers \(t_0\), \(t_1\), \(t_2\), \(\ldots\,\) satisfies \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ t_{n+2} = p t_{n+1}+qt_{n} \ \ \ \ \ \ \ \ \ \ (n\ge0), \] where \(p\) and \(q\) are real. Throughout this question, \(x\), \(y\) and \(z\) are non-zero real numbers.

    1. Show that, if \(t_n=x\) for all values of \(n\), then \(p+q=1\) and \(x\) can be any (non-zero) real number.
    2. Show that, if \(t_{2n} = x\) and \(t_{2n+1}=y\) for all values of \(n\), then \(q\pm p=1\). Deduce that either \(x=y\) or \(x=-y\), unless \(p\) and \(q\) take certain values that you should identify.
    3. Show that, if \(t_{3n} = x\), \(t_{3n+1}=y\) and \(t_{3n+2}=z\) for all values of \(n\), then \[ p^3+q^3 +3pq-1=0\,. \] Deduce that either \(p+q=1\) or \((p-q)^2 +(p+1)^2+(q+1)^2=0\). Hence show that either \(x=y=z\) or \(x+y+z=0\).

    Show Solution
    1. Suppose \(t_n = x\) for all \(n\), then we must have \begin{align*} && x &= p x + q x \\ \Leftrightarrow && 1 &= p+q \end{align*} and this clearly works for any value of \(x\).
    2. Suppose \(t_{2n} = x, t_{2n+1} = y\) for all \(n\), then \begin{align*} && x &= py + q x \\ && y &= px + q y \\ \Rightarrow && 0 &= py + (q-1) x \\ && 0 &= px + (q-1) y \\ \Rightarrow && p &= (q-1) \frac{x}{y} = (q-1) \frac{y}{x} \\ \Rightarrow && \frac{y}{x} = \pm 1 & \text{ or } q = 1, p = 0 \\ \Rightarrow && y = \pm x & \text{ or } (p,q) = (0,1) \\ \end{align*}
    3. Suppose \(t_{3n} = x\), \(t_{3n+1}=y\) and \(t_{3n+2}=z\) , so \begin{align*} && x &= pz + qy \\ && y & = px + qz \\ && z &= py + qx \\ \\ && z &= p(px+qz) + q(pz + qy) \\ &&&= p^2x + 2pqz + q^2 y \\ &&&= p^2(pz+qy) + 2pqz + q^2(px+qz) \\ &&&= p^3 z + p^2qy + 2pqz + q^2p x + q^3 z \\ &&&= (p^3+q^3+2pq)z + pq(py+qx) \\ &&&= (p^3 + q^3 + 2pq)z + pq z \\ &&&= (p^3 + q^3 + 3pq)z \\ \Rightarrow && 0 &= p^3 + q^3 + 3pq- 1 \\ &&&= (p+q-1)(p^2+q^2+1+p+q-pq) \\ &&&= \tfrac12(p+q-1)((p-q)^2+(p+1)^2+(q+1)^2) \end{align*} Therefore \(p+q = 1\) or \((p-q)^2+(p+1)^2+(q+1)^2 = 0 \Rightarrow p = q = -1\). If \(p+q = 1\), then \(z = py + (1-p)x\) and \(x = p(py+(1-p)x) + (1-p)y \Rightarrow (1-p+p^2)x = (1-p+p^2)y \Rightarrow x = y \Rightarrow x= y = z\). If \(p = q = -1\) then adding all the equations we get \(x + y + z = -2(x+y+z) \Rightarrow x + y + z = 0\)
    Note that what is actually going on here is that solutions must be of the form \(t_n = \lambda^n\) so the only way to be constant is for \(\lambda = 1\) to be a root, the only way for it to be \(2\)-periodic is for \(\lambda = -1\) to be a root, and the only way for it to be \(3\)-periodic is for \(\lambda = 1, \omega, \omega^2\) to be the roots (although we see this via the classic \(x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x + \omega y + \omega^2 z)(x+\omega^2 y +\omega z)\) which is because of the real constraint in the question.
    2010 Paper 3 Q7
    D: 1700.0 B: 1516.0

    Given that \(y = \cos(m \arcsin x)\), for \(\vert x \vert <1\), prove that \[ (1-x^2) \frac {\d^2 y}{\d x^2} -x \frac {\d y}{\d x} +m^2y=0\,. \] Obtain a similar equation relating \(\dfrac{\d^3y}{\d x^3}\,\),\; \(\dfrac{\d^2y}{\d x^2}\, \) and \(\, \dfrac{\d y}{\d x}\,\), and a similar equation relating \(\dfrac{\d^4y}{\d x^4}\,\),~~\(\dfrac{\d^3y}{\d x^3}\,\) and \(\,\dfrac{\d^2 y}{\d x^2}\,\). Conjecture and prove a relation between \(\dfrac{\d^{n+2}y}{\d x^{n+2}}\,\), \ \(\dfrac{\d^{n+1}y}{\d x^{n+1}}\;\) and \(\;\dfrac{\d^n y}{\d x^n}\,\). Obtain the first three non-zero terms of the Maclaurin series for \(y\). Show that, if \(m\) is an even integer, \(\cos m\theta\) may be written as a polynomial in \(\sin\theta\) beginning \[ 1 - \frac{m^2\sin^2\theta}{2!}+ \frac{m^2(m^2-2^2)\sin^4\theta}{4!} -\cdots \,. \, \tag{\(\vert\theta\vert < \tfrac12 \pi\)} \] State the degree of the polynomial.

    2008 Paper 3 Q2
    D: 1700.0 B: 1555.2

    Let \(S_k(n) \equiv \sum\limits_{r=0}^n r^k\,\), where \(k\) is a positive integer, so that \[ S_1(n) \equiv \tfrac12 n(n+1) \text{ and } S_2(n) \equiv \tfrac16 n(n+1)(2n+1)\,. \]

    1. By considering \(\sum\limits_{r=0}^n \left[ (r+1)^k-r^k\right]\, \), show that \[ kS_{k-1}(n)=(n+1)^k -(n+1) - \binom{k}{2} S_{k-2}(n) - \binom {k}{3} S_{k-3}(n) - \cdots - \binom{k}{k-1} S_{1}(n) \;. \tag{\(*\)} \] Obtain simplified expressions for \(S_3(n)\) and \(S_4(n)\).
    2. Explain, using \((*)\), why \(S_k(n)\) is a polynomial of degree \(k+1\) in \(n\). Show that in this polynomial the constant term is zero and the sum of the coefficients is 1.

    Show Solution
    1. \begin{align*} &&(n+1)^k &= \sum_{r=0}^n \left [ (r+1)^k - r^k \right] \\ &&&= \sum_{r=0}^n \left [ \left ( \binom{k}{0}r^k+\binom{k}1r^{k-1} + \binom{k}{2}r^{k-2} + \cdots + \binom{k}{k} 1 \right) - r^k\right] \\ &&&= \sum_{r=0}^n \left ( \binom{k}1r^{k-1} + \binom{k}{2}r^{k-2} + \cdots + \binom{k}{k} 1 \right) \\ &&&=k \sum_{r=0}^n r^{k-1} + \binom{k}{2}\sum_{r=0}^nr^{k-2} + \cdots + \binom{k}{k} \sum_{r=0}^n 1 \\ &&&= kS_{k-1}(n) + \binom{k}2 S_{k-2}(n) + \cdots +\binom{k}{k-1}S_1(n) + (n+1) \\ \Rightarrow && k S_{k-1}(n) &= (n+1)^k -(n+1) -\binom{k}2 S_{k-2}(n) - \cdots -\binom{k}{k-1}S_1(n) \\ && 4S_3(n) &= (n+1)^4-(n+1) - \binom{4}{2} \frac{n(n+1)(2n+1)}{6} - \binom{4}{3} \frac{n(n+1)}{2} \\ &&&= (n+1) \left ( (n+1)^3-1 - n(2n+1)-2n \right) \\ &&&= (n+1) \left ( n^3+3n^2+3n+1-1 - 2n^2-3n \right) \\ &&&= (n+1) \left ( n^3+n^2 \right) \\ &&&= n^2(n+1)^2 \\ \Rightarrow && S_3(n) &= \frac{n^2(n+1)^2}{4} \\ \\ &&5S_4(n) &=(n+1)^5-(n+1) - \binom{5}{2} \frac{n^2(n+1)^2}4 - \binom{5}{3} \frac{n(n+1)(2n+1)}{6} - \binom{5}{4} \frac{n(n+1)}{2} \\ &&&= (n+1) \left ((n+1)^4 - 1-\frac{5n^2(n+1)}{2} - \frac{5n(2n+1)}{3} -\frac{5n}{2}\right)\\ &&&= \frac{n+1}{6} \left (6(n+1)^4-6-15n^2(n+1)-10n(2n+1)-15n \right) \\ &&&= \frac{n+1}{6} \left (6n^4+24n^3+36n^2+24n+6 -6-15n^3-15n^2-20n^2-10n-15n\right) \\ &&&= \frac{n+1}{6} \left (6n^4+9n^3+n^2-n\right) \\ &&&= \frac{(n+1)n(2n+1)(3n^2+3n-1)}{6} \\ \Rightarrow && S_4(n) &= \frac{(n+1)n(2n+1)(3n^2+3n-1)}{30} \end{align*}
    2. Proceeding by induction, since \(S_k(n)\) is a polynomial of degree \(k+1\) for small \(k\), we can see that \[ (k+1)S_k(n) = \underbrace{(n+1)^{k+1}}_{\text{poly deg }=k+1} - \underbrace{(n+1)}_{\text{poly deg}=1} - \underbrace{\binom{k+1}{2}S_{k-1}(n)}_{\text{poly deg}=k} - \underbrace{\cdots}_{\text{polys deg}< k} - \underbrace{\binom{k+1}{k} S_1(n)}_{\text{poly deg}=1}\] therefore \(S_k(n)\) is a polynomial of degree \(k+1\) (in fact with leading coefficient \(\frac{1}{k+1}\). Since \(S_k(0) = \sum_{r=0}^{0} r^k = 0\) there is no constant term, and since \(S_k(1) = \sum_{r=0}^1 r^k = 1\) the sum of the coefficients is \(1\)
    2006 Paper 2 Q1
    D: 1600.0 B: 1485.5

    The sequence of real numbers \(u_1\), \(u_2\), \(u_3\), \(\ldots\) is defined by \begin{equation*} u_1=2 \,, \qquad\text{and} \qquad u_{n+1} = k - \frac{36}{u_n} \quad \text{for } n\ge1, \tag{\(*\)} \end{equation*} where \(k\) is a constant.

    1. Determine the values of \(k\) for which the sequence \((*)\) is: (a) constant; (b) periodic with period 2; (c) periodic with period 4.
    2. In the case \(k=37\), show that \(u_n\ge 2\) for all \(n\). Given that in this case the sequence \((*)\) converges to a limit \(\ell\), find the value of \(\ell\).

    2005 Paper 3 Q4
    D: 1700.0 B: 1457.9

    The sequence \(u_n\) (\(n= 1, 2, \ldots\)) satisfies the recurrence relation \[ u_{n+2}= \frac{u_{n+1}}{u_n}(ku_n-u_{n+1}) \] where \(k\) is a constant. If \(u_1=a\) and \(u_2=b\,\), where \(a\) and \(b\) are non-zero and \(b \ne ka\,\), prove by induction that \[ u_{2n}=\Big(\frac b a \Big) u_{2n-1} \] \[ u_{2n+1}= c u_{2n} \] for \(n \ge 1\), where \(c\) is a constant to be found in terms of \(k\), \(a\) and \(b\). Hence express \(u_{2n}\) and \(u_{2n-1}\) in terms of \(a\), \(b\), \(c\) and \(n\). Find conditions on \(a\), \(b\) and \(k\) in the three cases:

    1. the sequence \(u_n\) is geometric;
    2. \(u_n\) has period 2;
    3. the sequence \(u_n\) has period 4.

    2004 Paper 3 Q6
    D: 1700.0 B: 1503.0

    Given a sequence \(w_0\), \(w_1\), \(w_2\), \(\ldots\,\), the sequence \(F_1\), \(F_2\), \(\ldots\) is defined by $$F_n = w_n^2 + w_{n-1}^2 - 4w_nw_{n-1} \,.$$ Show that $\; F_{n}-F_{n-1} = \l w_n-w_{n-2} \r \l w_n+w_{n-2}-4w_{n-1} \r \; \( for \)n \ge 2\,$.

    1. The sequence \(u_0\), \(u_1\), \(u_2\), \(\ldots\) has \(u_0 = 1\), and \(u_1 = 2\) and satisfies \[ u_n = 4u_{n-1} -u_{n-2} \quad (n \ge 2)\;. \] Prove that \ $ u_n^2 + u_{n-1}^2 = 4u_nu_{n-1}-3 \; $ for \(n \ge 1\,\).
    2. A sequence \(v_0\), \(v_1\), \(v_2\), \(\ldots\,\) has \(v_0=1\) and satisfies \begin{equation*} v_n^2 + v_{n-1}^2 = 4v_nv_{n-1}-3 \quad (n \ge 1). \tag{\(\ast\)} \end{equation*} \makebox[7mm]{(a) \hfill}Find \(v_1\) and prove that, for each \(n\ge2\,\), either \(v_n= 4v_{n-1} -v_{n-2}\) or \(v_n=v_{n-2}\,\). \makebox[7mm]{(b) \hfill}Show that the sequence, with period 2, defined by \begin{equation*} v_n = \begin{cases} 1 & \mbox{for \(n\) even} \\ 2 & \mbox{for \(n\) odd} \end{cases} \end{equation*} \makebox[7mm]{\hfill}satisfies \((\ast)\). \makebox[7mm]{(c) \hfill}Find a sequence \(v_n\) with period 4 which has \(v_0=1\,\), and satisfies~\((\ast)\).

    2004 Paper 3 Q3
    D: 1700.0 B: 1516.0

    Given that \(\f''(x) > 0\) when \(a \le x \le b\,\), explain with the aid of a sketch why \[ (b-a) \, \f \Big( {a+b \over 2} \Big) < \int^b_a \f(x) \, \mathrm{d}x < (b-a) \, \displaystyle \frac{\f(a) + \f(b)}{2} \;. \] By choosing suitable \(a\), \(b\) and \(\f(x)\,\), show that \[ {4 \over (2n-1)^2} < {1 \over n-1} - {1 \over n} < {1 \over 2} \l {1 \over n^2} + {1 \over (n-1)^2}\r \,, \] where \(n\) is an integer greater than 1. Deduce that \[ 4 \l {1 \over 3^2} +{1 \over 5^2} + {1 \over 7^2} + \cdots \r < 1 < {1 \over 2} + \left( {1 \over 2^2} +{1 \over 3^2} + {1 \over 4^2} + \cdots \right)\,. \] Show that \[ {1 \over 2} \l {1 \over 3^2} + {1 \over 4^2} + {1 \over 5^2} + \frac 1 {6^2} + \cdots \r < {1 \over 3^2} +{1 \over 5^2} + {1 \over 7^2} + \cdots \] and hence show that \[ {3 \over 2} \displaystyle < \sum_{n=1}^\infty {1 \over n^2} <{7 \over 4}\;. \]

    2004 Paper 1 Q8
    D: 1500.0 B: 1547.8

    A sequence \(t_0\), \(t_1\), \(t_2\), \(...\) is said to be {\sl strictly increasing} if \(t_{n+1} > t_n\) for all \(n\ge{0}\,\).

    1. The terms of the sequence \(x_0\,\), \(x_1\,\), \(x_2\,\), \(\ldots\) satisfy $$ \ds x_{n+1}=\frac{x_n^2 +6}{5} $$ for \(n\ge{0}\,\). Prove that if \(x_0 > 3\) then the sequence is strictly increasing.
    2. The terms of the sequence \(y_0\,\), \(y_1\,\), \(y_2\,\), \(\ldots\) satisfy $$ \ds y_{n+1}= 5-\frac 6 {y_n} $$ for \(n\ge{0}\,\). Prove that if \(2 < y_0 < 3\) then the sequence is strictly increasing but that \(y_n<3\) for all \(n\,\).

    2003 Paper 3 Q6
    D: 1700.0 B: 1516.0

    Show that \[ 2\sin \frac12 \theta \, \cos r\theta = \sin\big(r+\frac12\big)\theta - \sin\big(r-\frac12\big)\theta \;. \] Hence, or otherwise, find all solutions of the equation \[ \cos a\theta + \cos (a + 1) \theta + \dots + \cos(b-2)\theta+\cos (b - 1 ) \theta = 0 \;, \] where \(a\) and \(b\) are positive integers with \(a < b-1\,\).

    Show Solution
    \begin{align*} && \sin\left(r+\frac12\right)\theta - \sin\left(r-\frac12\right)\theta &= \sin r \theta \cos \tfrac12 \theta+\cos r \theta \sin \tfrac12 \theta- \left (\sin r \theta \cos \tfrac12 \theta-\cos r \theta \sin \tfrac12 \theta \right)\\ &&&= 2 \cos r\theta \sin \tfrac12 \theta \end{align*} \begin{align*} && S &= \cos a\theta + \cos (a + 1) \theta + \dots + \cos(b-2)\theta+\cos (b - 1 ) \theta \\ && 2\sin\tfrac12 \theta S &= \sum_{r=a}^{b-1} 2\sin\tfrac12 \theta \cos r \theta \\ &&&= \sum_{r=a}^{b-1} \left ( \sin\left(r+\frac12\right)\theta - \sin\left(r-\frac12\right)\theta \right) \\ &&&= \sin \left (b-\frac12 \right)\theta - \sin \left (a -\frac12 \right)\theta \\ \Rightarrow && \sin \left (b-\frac12 \right)\theta &= \sin \left (a -\frac12 \right)\theta \\ \end{align*} Case 1: \(A = B + 2n\pi\) \begin{align*} && \left (b-\frac12 \right)\theta &= \left (a -\frac12 \right)\theta + 2n\pi \\ \Rightarrow && (b-a) \theta &= 2n \pi \\ \Rightarrow && \theta &= \frac{2n\pi}{b-a} \end{align*} Case 2: \(A = (2n+1)\pi - B\) \begin{align*} && \left (b-\frac12 \right)\theta &= (2n+1)\pi -\left (a -\frac12 \right)\theta \\ \Rightarrow && (b+a-1) \theta &= (2n+1) \pi \\ \Rightarrow && \theta &= \frac{2n\pi}{b+a-1} \end{align*}
    2003 Paper 2 Q7
    D: 1600.0 B: 1500.0

    Show that, if \(n>0\,\), then $$ \int_{e^{1/n}}^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x = {2 \over {n^2\e}}\;. $$ You may assume that \(\ds \frac{\ln x} x \to 0\;\) as \(x\to\infty\,\). Explain why, if \(1 < a < b\,\), then $$ \int_b^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x < \int_a^\infty\,{{\ln x} \over {x^{n+1}}}\,\d x\;. $$ Deduce that $$ \sum_{n=1}^{N}{1 \over n^2} < {\e \over 2}\int_{\e^{1/N}}^{\infty} \left({1-x^{-N}} \over {x^2-x}\right) \ln x\,\d x\;, $$ where \(N\,\) is any integer greater than \(1\).

    2000 Paper 3 Q7
    D: 1700.0 B: 1516.0

    Given that $$\e = 1 + {1 \over 1 !} + {1 \over 2 !} + {1 \over 3 !} + \cdots + {1 \over r !} + \cdots \; ,$$ use the binomial theorem to show that $$ {\left( 1 + {1 \over n} \right)}^{\!n} < \e $$ for any positive integer \(n\). The product \({\rm P }( n )\) is defined, for any positive integer \(n\), by $$ {\rm P} ( n ) = {3 \over 2} \cdot {5 \over 4} \cdot {9 \over 8} \cdot \ldots \cdot {2^n + 1 \over 2^n} . $$ Use the arithmetic-geometric mean inequality, $$ {a_1 + a_2 + \cdots + a_n \over n} \ge \ {\left( a_1 \cdot a_2 \cdot \ldots \cdot a_n \right)}^{1 \over n}\,, $$ to show that \({\rm P }( n ) < \e\) for all \(n\) . Explain briefly why \({\rm P} ( n )\) tends to a limit as \(n\to\infty\). Show that this limit, \(L\), satisfies \(2 < L\le\e\).

    1999 Paper 3 Q5
    D: 1700.0 B: 1516.0

    The sequence \(u_0\), \(u_1\), \(u_2\), ... is defined by $$ u_0=1,\hspace{0.2in} u_1=1, \quad u_{n+1}=u_n+u_{n-1} \hspace{0.2in}{\rm for}\hspace{0.1in}n \ge 1\,. $$ Prove that $$ u^2_{n+2} + u^2_{n-1} = 2( u^2_{n+1} + u^2_n ) \,. $$ Using induction, or otherwise, prove the following result: \[ u_{2n} = u^2_n + u^2_{n-1} \quad \mbox{ and }\quad u_{2n+1} = u^2_{n+1} - u^2_{n-1} \] for any positive integer \(n\).

    Show Solution
    Claim: \(u^2_{n+2} + u^2_{n-1} = 2( u^2_{n+1} + u^2_n )\) Proof: (By Induction). (Base Case): \(n = 1\) \begin{align*} && LHS &= u_{n+2}^2 + u_{n-1}^2 \\ &&&= u_3^2 + u_0^2 \\ &&&= 3^2 + 1^2 = 10\\ && RHS &= 2(u_{n+1}^2+u_n^2) \\ &&&= 2(2^2 + 1^2) \\ &&&= 10 \end{align*} Therefore the base case is true. (Inductive hypothesis) Suppose \(u^2_{n+2} + u^2_{n-1} = 2( u^2_{n+1} + u^2_n )\) is true for some \(n = k\), ie \(u^2_{k+2} + u^2_{k-1} = 2( u^2_{k+1} + u^2_k )\), the consider \(n = k+1\) \begin{align*} && LHS &= u_{k+1+2}^2 + u_{k+1-1}^2 \\ &&&= (u_{k+1}+u_{k+2})^2+u_k^2 \\ &&&= u_{k+2}^2+u_{k+1}^2+ u_k^2 + 2u_{k+1}u_{k+2} \\ &&&= u_{k+2}^2+u_{k+1}^2+ u_k^2 + 2u_{k+1}(u_{k+1}+u_k) \\ &&&= u_{k+2}^2 + u_{k+1}^2+u_k^2+2u_{k+1}^2+2u_{k+1}u_k \\ &&&= u_{k+1}^2+2u_{k+1}^2+ u_{k+1}^2+u_k^2+2u_{k+1}u_k \\ &&&= u_{k+2}^2+2u_{k+1}^2+ (u_{k+1}+u_k)^2 \\ &&&= u_{k+2}^2+2u_{k+1}^2+ u_{k+2}^2 \\ &&&=2(u_{k+2}^2+u_{k+1}^2) \\ &&&= RHS \end{align*} Therefore it is true for \(n = k+1\). Therefore by the principle of mathematical induction it is true for all \(n \geq 1\) Claim: $ u_{2n} = u^2_n + u^2_{n-1} \quad \mbox{ and }\quad u_{2n+1} = u^2_{n+1} - u^2_{n-1} $ Proof: Notice that \(\begin{pmatrix}u_{n+1} \\ u_n \end{pmatrix}= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix}1 \\1 \end{pmatrix}\), in particular \begin{align*} && \begin{pmatrix}u_{n}& u_{n-1} \\ u_{n-1} & u_{n-2} \end{pmatrix}&= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} \\ \Rightarrow && \begin{pmatrix}u_{2n}& u_{2n-1} \\ u_{2n-1} & u_{2n-2} \end{pmatrix}&= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2n} \\ &&&= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} \\ &&&=\begin{pmatrix}u_{n}& u_{n-1} \\ u_{n-1} & u_{n-2} \end{pmatrix}\begin{pmatrix}u_{n}& u_{n-1} \\ u_{n-1} & u_{n-2} \end{pmatrix}\\ &&&= \begin{pmatrix}u_{n}^2+u_{n-1}^2& u_{n-1}(u_n+u_{n-2}) \\ u_{n-1}(u_n+u_{n-2}) & u_{n-1}^2+u_{n-2}^2 \end{pmatrix} \end{align*} Therefore \(u_{2n} = u_{n}^2+u_{n-1}^2\) and \(u_{2n+1} = u_n(u_{n+1}+u_{n-1}) =(u_{n+1}-u_{n-1})(u_{n+1}-u_{n-1}) = u_{n+1}^2-u_{n-1}^2\)
    1999 Paper 3 Q3
    D: 1700.0 B: 1518.8

    Justify, by means of a sketch, the formula $$ \lim_{n\rightarrow\infty}\left\{{1\over n}\sum_{m=1}^n \f(1+m/n)\right\} = \int_1^2 \f(x)\,\d x \,. $$ Show that $$ \lim_{n\rightarrow\infty}\left\{{1\over n+1} + {1\over n+2} + \cdots + {1\over n+n}\right\} = \ln 2 \,. $$ Evaluate $$ \lim_{n\rightarrow\infty}\left\{{n\over n^2+1} + {n\over n^2+4} + \cdots + {n\over n^2+n^2}\right\}\,. $$

    Show Solution
    TikZ diagram
    \begin{align*} && V &= \lim_{n\rightarrow\infty}\left\{{1\over n+1} + {1\over n+2} + \cdots + {1\over n+n}\right\} \\ && &= \lim_{n\rightarrow\infty}\left\{\sum_{m=1}^n \frac{1}{n+m}\right\} \\ && &= \lim_{n\rightarrow\infty}\left\{\frac1n\sum_{m=1}^n \frac{1}{1+\frac{m}{n}}\right\} \\ &&&=\int_1^2 \frac{1}{x} \d x \\ &&&= \left [\ln x \right]_1^2 = \ln 2 \end{align*} \begin{align*} V &= \lim_{n\rightarrow\infty}\left\{{n\over n^2+1} + {n\over n^2+4} + \cdots + {n\over n^2+n^2}\right\} \\ &= \lim_{n\rightarrow\infty}\left\{\sum_{m=1}^n \frac{n}{n^2+m^2}\right\} \\ &= \lim_{n\rightarrow\infty}\left\{\frac{1}{n}\sum_{m=1}^n \frac{1}{1+\left (\frac{m}{n} \right)^2}\right\} \\ &= \int_0^1 \frac{1}{1+x^2} \d x \\ &= \left [\tan^{-1} x \right]_0^1 \\ &= \frac{\pi}4 \end{align*}

    Showing 1-13 of 13 problems
    2025 Paper 3 Q6
    D: 1500.0 B: 1500.0

    1. Let \(a\), \(b\) and \(c\) be three non-zero complex numbers with the properties \(a + b + c = 0\) and \(a^2 + b^2 + c^2 = 0\). Show that \(a\), \(b\) and \(c\) cannot all be real. Show further that \(a\), \(b\) and \(c\) all have the same modulus.
    2. Show that it is not possible to find three non-zero complex numbers \(a\), \(b\) and \(c\) with the properties \(a + b + c = 0\) and \(a^3 + b^3 + c^3 = 0\).
    3. Show that if any four non-zero complex numbers \(a\), \(b\), \(c\) and \(d\) have the properties \(a + b + c + d = 0\) and \(a^3 + b^3 + c^3 + d^3 = 0\), then at least two of them must have the same modulus.
    4. Show, by taking \(c = 1\), \(d = -2\) and \(e = 3\) that it is possible to find five real numbers \(a\), \(b\), \(c\), \(d\) and \(e\) with distinct magnitudes and with the properties \(a + b + c + d + e = 0\) and \(a^3 + b^3 + c^3 + d^3 + e^3 = 0\).

    Show Solution
    1. If \(a,b,c\) were all real then \(a^2+b^2+c^2 = 0 \Rightarrow a,b,c = 0\) but they are non-zero. Therefore they cannot all be real. Since \((a+b+c)^2 = 0\) we must have \(ab+bc+ca = 0\). Therefore \(a,b,c\) must satisfy \(x^3 -abc = 0 \Rightarrow\) they all have the same modulus, since they are all cube roots of the same number.
    2. Notice that \(a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab-bc-ca) \Rightarrow abc = 0\) but therefore they cannot all be non-zero.
    3. Suppose \(a+b+c+d = 0\) then note that \(\displaystyle a^2+b^2+c^2+d^2 = (a+b+c+d)^2 - 2\sum_{sym} ab\) and \(\displaystyle a^3+b^3+c^3+d^3 = (a+b+c+d)^3 - 3(a+b+c+d)(ab+ac+ad+bc+bd+cd) + 3(abc+abd+acd+bcd) \Rightarrow abc+abd+acd+bcd = 0\). Therefore \(a,b,c,d\) are roots of a polynomial of the form \(x^4 -kx^2 + l = 0\), but this means they must come in pairs with the same modulus.
    4. Suppose \(c = 1, d = -2, e = 3\) so \(c+d+e = 2\) and \(c^3 + d^3 + e^3 = 1 - 8 + 27 = 20\), so we need to find \(a,b\) satisfying \(a+b = -2, a^2+b^2 = -20\), ie \(4 = (a+b)^2 = -20 + 2ab \Rightarrow ab = 12\), so we need the roots of \(x^2 +2x + 12= 0\) which clearly have different modulus.
    2019 Paper 3 Q4
    D: 1500.0 B: 1500.0

    The \(n\)th degree polynomial P\((x)\) is said to be reflexive if:

    1. [(a)] P\((x)\) is of the form \(x^n - a_1x^{n-1} + a_2x^{n-2} - \cdots + (-1)^na_n\) where \(n \geq 1\);
    2. [(b)] \(a_1, a_2, \ldots, a_n\) are real;
    3. [(c)] the \(n\) (not necessarily distinct) roots of the equation P\((x) = 0\) are \(a_1, a_2, \ldots, a_n\).
    1. Find all reflexive polynomials of degree less than or equal to 3.
    2. For a reflexive polynomial with \(n > 3\), show that $$2a_2 = -a_2^2 - a_3^2 - \cdots - a_n^2.$$ Deduce that, if all the coefficients of a reflexive polynomial of degree \(n\) are integers and \(a_n \neq 0\), then \(n \leq 3\).
    3. Determine all reflexive polynomials with integer coefficients.

    Show Solution
    1. Suppose \(n = 1\), then all polynomials are reflexive (since \(x - a_1\) has the root \(a_1\). Suppose \(n = 2\), then we want \begin{align*} && x^2-a_1x+a_2 &= (x-a_1)(x-a_2) \\ &&&= x^2-(a_1+a_2)x+a_1a_2 \\ \Rightarrow && a_2 &= 0 \\ \end{align*} So all polynomials of the form \(x^2-a_1x\) work and no others. Suppose \(n = 3\) then we want \begin{align*} && x^3-a_1x^2+a_2x-a_3 &= (x-a_1)(x-a_2)(x-a_3) \\ &&&= x^3-(a_1+a_2+a_3)x+(a_1a_2+a_1a_3+a_2a_3)x-a_1a_2a_3 \\ \Rightarrow && a_2+a_3 &= 0 \\ && a_2a_3 &= a_2 \\ \Rightarrow && -a_2^2 &= a_2 \\ \Rightarrow && a_2 &= 0, -1 \\ && -a_1a_2^2 &= -a_2 \\ \Rightarrow && a_2 &= 0, a_2 = 1/a_1 \end{align*} So we need either \(x^3-a_1x\) or \((x+1)^2(x-1) = x^3+x^2-x-1\)
    2. Suppose \(n > 3\) then \begin{align*} && \sum a_i^2 &= \left (\sum a_i \right)^2 - 2 \sum_{i < j} a_i a_j \\ && &= a_1^2 - 2a_2 \\ \Rightarrow && 2a_2 &= a_1^2 - \sum a_i^2 \\ &&&= -a_2^2 - a_3^2 - \cdots - a_n^2 \end{align*} So \((a_2+1)^2 = 1-a_3^2 -\cdots -a_n^2\) so if \(a_n > 0\) (or any other \(a_i, i > 2\) for that matter) then we must have \(a_n = \pm 1, a_{3}, \ldots a_{n-1} = 0\), but if \(a_n = \pm 1\) \(x = 0\) is not a root. Therefore we must have \(a_0\) and \(a_i = 0\) for all \(i > 3\)
    3. The only reflexive polynomials therefore must be \(x^n - kx^{n-1}\) and \(x^{n+3}+x^{n+2}-x^{n+1}-x^n\)
    2018 Paper 3 Q1
    D: 1700.0 B: 1484.0

    1. The function \(\f\) is given by \[ \f(\beta)=\beta - \frac 1 \beta - \frac 1 {\beta^2} \ \ \ \ \ \ \ \ (\beta\ne0) \,. \] Find the stationary point of the curve \(y=\f(\beta)\,\) and sketch the curve. Sketch also the curve \(y=\g(\beta)\,\), where \[ \g(\beta) = \beta + \frac 3 \beta - \frac 1 {\beta^2} \ \ \ \ \ \ \ \ (\beta\ne0)\,. \]
    2. Let \(u\) and \(v\) be the roots of the equation \[ x^2 +\alpha x +\beta = 0 \,, \] where \(\beta\ne0\,\). Obtain expressions in terms of \(\alpha\) and \(\beta\) for \(\displaystyle u+v + \frac 1 {uv}\) and \( \displaystyle \frac 1 u + \frac 1 v + uv\,\).
    3. Given that \(\displaystyle u+v + \frac 1 {uv} = -1\,\), and that \(u\) and \(v\) are real, show that \(\displaystyle \frac 1 u+ \frac 1 v + {uv} \le -1\;\).
    4. Given instead that \(\displaystyle u+v + \frac 1 {uv} = 3 \;\), and that \(u\) and \(v\) are real, find the greatest value of \(\displaystyle \frac 1 u+ \frac 1v + {uv}\,\).

    Show Solution
    1. \begin{align*} && f(\beta) &= \beta - \frac1{\beta}-\frac1{\beta^2} \\ \Rightarrow && f'(\beta) &= 1 +\frac{1}{\beta^2}+\frac{2}{\beta^3} \\ \Rightarrow && 0 &= f'(\beta) \\ &&&= 1 + \frac1{\beta^2} + \frac{2}{\beta^3} \\ \Rightarrow && 0 &= \beta^3 + \beta + 2 \\ &&&= (\beta+1)(\beta^2-\beta+2) \end{align*} Therefore the only stationary point is at \(\beta = -1, f(-1) = -1\)
      TikZ diagram
      \begin{align*} && g(\beta) &= \beta + \frac3{\beta}-\frac1{\beta^2} \\ \Rightarrow && g'(\beta) &= 1 -\frac{3}{\beta^2}+\frac{2}{\beta^3} \\ \Rightarrow && 0 &= f'(\beta) \\ &&&= 1 - \frac3{\beta^2} + \frac{2}{\beta^3} \\ \Rightarrow && 0 &= \beta^3 - 3\beta + 2 \\ &&&= (\beta-1)^2(\beta+2) \end{align*} Therefore there are stationary points at \(\beta=1,f(1) = 3, \beta=-2, f(-2) = \frac14\)
      TikZ diagram
    2. Let \(u,v\) be the roots of \(x^2 + \alpha x + \beta = 0\), then since \((x-u)(x-v) = 0\) we must have \(\alpha = -(u+v), \beta = uv\). Therefore: \begin{align*} && u+v +\frac{1}{uv} &= -\alpha + \frac{1}{\beta} \\ && \frac1u+\frac1v + uv &= \frac{u+v}{uv} + uv \\ &&&= -\frac{\alpha}{\beta} + \beta \end{align*} Given \(u+v + \frac 1 {uv} = -1\), ie \(-\alpha + \frac{1}{\beta} = -1\). Since the roots are real, we must also have that \(\alpha^2 - 4\beta \geq 0\), so \begin{align*} && -\alpha + \frac1\beta &= -1 \\ \Rightarrow && \alpha &= 1 +\frac1\beta \\ \Rightarrow && -\frac{\alpha}{\beta}+\beta &= -\frac{1}{\beta} \l1+\frac1{\beta}\r + \beta \\ &&&=\beta - \frac{1}{\beta}-\frac{1}{\beta^2} \end{align*} So we want to maximise \(f(\beta)\) subject to \(\alpha ^2 - 4\beta \geq 0\) \begin{align*} && 0 &\leq \alpha^2 -4 \beta \\ &&&= \l 1 + \frac1{\beta} \r^2 - 4\beta \\ &&&= 1+ \frac2{\beta} + \frac1{\beta^2} - 4\beta \\ \Leftrightarrow && 0 &\leq -4\beta^3+\beta^2 + 2\beta + 1 \\ &&&=-(\beta-1)(4\beta^2+3\beta+1)\\ \Leftrightarrow && \beta &\leq 1 \end{align*} But we know \(f(\beta) \leq -1\) on \((-\infty,1]\) so we're done.
    3. Given that \(-\alpha + \frac{1}{\beta} = 3\) we have \begin{align*} && -\alpha + \frac1\beta &= 3 \\ \Rightarrow && \alpha &= -3 +\frac1\beta \\ \Rightarrow && -\frac{\alpha}{\beta}+\beta &= -\frac{1}{\beta} \l-3+\frac1{\beta}\r + \beta \\ &&&=\beta + \frac{3}{\beta}-\frac{1}{\beta^2} \end{align*} which we want to maximise, subject to: \begin{align*} && 0 &\leq \alpha^2 -4 \beta \\ &&&= \l -3 + \frac1{\beta} \r^2 - 4\beta \\ &&&= 9- \frac6{\beta} + \frac1{\beta^2} - 4\beta \\ \Leftrightarrow && 0 &\leq -4\beta^3+9\beta^2 - 6\beta + 1 \\ &&&=-(\beta-1)^2(4\beta-1)\\ \Leftrightarrow && \beta &\leq \frac14 \end{align*} Therefore the maximum will either be \(f(-2) = \frac14\) or \(f(\frac14) = -\frac{15}4\). Therefore the maximum is \(\frac14\)
    2017 Paper 3 Q3
    D: 1700.0 B: 1500.0

    Let \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\) be the roots of the quartic equation \[ x^4 +px^3 +qx^2 +r x +s =0 \,. \] You are given that, for any such equation, \(\,\alpha \beta + \gamma\delta\,\), \(\alpha\gamma+\beta\delta\,\) and \(\,\alpha \delta + \beta\gamma\,\) satisfy a cubic equation of the form \[ y^3+Ay^2+ (pr-4s)y+ (4qs-p^2s -r^2) =0 \,. \] Determine \(A\). Now consider the quartic equation given by \(p=0\,\), \(q= 3\,\), \(r=-6\,\) and \(s=10\,\).

    1. Find the value of \(\alpha\beta + \gamma \delta\), given that it is the largest root of the corresponding cubic equation.
    2. Hence, using the values of \(q\) and \(s\), find the value of \((\alpha +\beta)(\gamma+\delta)\,\) and the value of \(\alpha\beta\) given that \(\alpha\beta >\gamma\delta\,\).
    3. Using these results, and the values of \(p\) and \(r\), solve the quartic equation.

    Show Solution
    \begin{align*} A &= -(\alpha \beta + \gamma\delta + \alpha\gamma+\beta\delta+\alpha \delta + \beta\gamma) \\ &= -q \end{align*}
    1. The corresponding cubic equation is: \begin{align*} && 0 &= y^3 - 3y^2-40y+(120-36) \\ &&&= y^3 -3y^2 - 40y + 84 \\ &&&= (y-7)(y-2)(y+6) \end{align*} Therefore \(\alpha\beta + \gamma \delta = 7\)
    2. \begin{align*}(\alpha+\beta)(\gamma+\delta) &= \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta \\ &= 3 -(\alpha\beta + \gamma\delta) \\ &=3-7 = -4 \end{align*} Let \(\alpha\beta\) and \(\gamma\delta\) be the roots of a quadratic; then the quadratic will be \(t^2-7t+10 = 0 \Rightarrow t = 2,5\) so \(\alpha\beta = 5\)
    3. \(\alpha\beta = 5, \gamma\delta = 2\) Consider the quadratic with roots \(\alpha+\beta\) and \(\gamma+\delta\), then \(t^2-4 = 0 \Rightarrow t = \pm 2\). Suppose \(\alpha+\beta = 2, \gamma+\delta=-2\) then \(\alpha, \beta = 1 \pm 2i, \gamma,\delta = -1 \pm i\) \(\alpha \beta \gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta = 5\gamma + 2\beta + 2\alpha + 5\delta = -6 \neq 6\) Suppose \(\alpha+\beta = -2, \gamma+\delta=2\) then \(\alpha, \beta = -1 \pm 2i, \gamma,\delta = 1 \pm i\) \(\alpha \beta \gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta = 5\gamma + 2\beta + 2\alpha + 5\delta = 6\), therefore these are there roots. (In some order): \(1 \pm i, -1 \pm 2i\)
    2015 Paper 3 Q6
    D: 1700.0 B: 1553.5

    1. Let \(w\) and \(z\) be complex numbers, and let \(u= w+z\) and \(v=w^2+z^2\). Prove that \(w\) and \(z\) are real if and only if \(u\) and \(v\) are real and \(u^2\le2v\).
    2. The complex numbers \(u\), \(w\) and \(z\) satisfy the equations \begin{align*} w+z-u&=0 \\ w^2+z^2 -u^2 &= - \tfrac 23 \\ w^3+z^3 -\lambda u &= -\lambda\, \end{align*} where \(\lambda \) is a positive real number. Show that for all values of \(\lambda\) except one (which you should find) there are three possible values of \(u\), all real. Are \(w\) and \(z\) necessarily real? Give a proof or counterexample.

    Show Solution
    1. Notice that \(u^2 = v+2wz\), so \(w,z\) are roots of the quadratic \(t^2 -ut+\frac{u^2-v}{2}\). Therefore they are both real if \(u^2 \geq 2(u^2-v) \Rightarrow 2v \geq u^2\).
    2. \begin{align*} && w+z &= u \\ && w^2+z^2 &= u^2 - \tfrac23 \\ && w^3+z^3 &= \lambda(u-1) \\ \\ && wz &= \frac{u^2 - (u^2-\tfrac23)}{2} = \tfrac13\\ \\ && (w+z)(w^2+z^2) &= w^3+z^3+wz(w+z) \\ &&u(u^2-\tfrac23)&= \lambda(u-1)+\frac13u \\ \Rightarrow && u^3-u&= \lambda (u-1) \\ \Rightarrow && 0 &= (u-1)(u(u+1) - \lambda) \\ \Rightarrow && 0 &= (u-1)(u^2+u - \lambda) \end{align*} Therefore there will be at most 3 values for \(u\), unless \(1\) is a root of \(u^2+u-\lambda\), ie \(\lambda = 2\). Suppose \(u = 1\), then we have: \(w+z = 1, wz = 1/3 \Rightarrow w,z = \frac{-1 \pm \sqrt{-1/3}}{2}\) which are clearly complex.
    2014 Paper 3 Q1
    D: 1700.0 B: 1542.2

    Let \(a\), \(b\) and \(c\) be real numbers such that \(a+b+c=0\) and let \[(1+ax)(1+bx)(1+cx) = 1+qx^2 +rx^3\,\] for all real \(x\). Show that \(q = bc+ca+ab\) and \(r= abc\).

    1. Show that the coefficient of \(x^n\) in the series expansion (in ascending powers of \(x\)) of \(\ln (1+qx^2+rx^3)\) is \((-1)^{n+1} S_n\) where \[S_n = \frac{a^n+b^n+c^n}{n} \,, \ \ \ \ \ \ \ \ (n\ge1).\]
    2. Find, in terms of \(q\) and \(r\), the coefficients of \(x^2\), \(x^3\) and \(x^5\) in the series expansion (in ascending powers of \(x\)) of \(\ln (1+qx^2+rx^3)\) and hence show that \(S_2S_3 =S_5\).
    3. Show that \(S_2S_5 =S_7\).
    4. Give a proof of, or find a counterexample to, the claim that \(S_2S_7=S_9\).

    Show Solution
    \begin{align*} (1+ax)(1+bx)(1+cx) &= (1+(a+b)x+abx^2)(1+cx) \\ &= 1+(a+b+c)x+(ab+bc+ca)x^2+abcx^3 \end{align*} Therefore by comparing coefficients, \(q = bc + ca + ab\) and \(r = abc\) as required.
    1. \begin{align*} \ln (1+qx^2 + rx^3) &= \ln(1+ax) + \ln(1+bx)+\ln(1+cx) \\ &= -\sum_{n=1}^{\infty} \frac{(-ax)^n}{n}-\sum_{n=1}^{\infty} \frac{(-bx)^n}{n}-\sum_{n=1}^{\infty} \frac{(-cx)^n}{n} \\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(a^n+b^n+c^n)}{n} x^n \\ &= \sum_{n=1}^{\infty} (-1)^{n+1} S_n x^n \\ \end{align*}
    2. \begin{align*} \ln (1 + qx^2 + rx^3) &= (qx^2+rx^3) -\frac{(qx^2+rx^3)^2}{2} + O(x^6) \\ &= qx^2 + rx^3 - \frac12 q^2 x^4 - qr x^5 + O(x^6) \\ \end{align*} Comparing coefficients we see that \(S_2 = -q\) and \(S_3 = r\), we also must have \(S_5 = -qr = S_2S_3\) as required.
    3. \begin{align*} \ln (1 + qx^2 + rx^3) &= (qx^2+rx^3) -\frac{(qx^2+rx^3)^2}{2} +\frac{(qx^2+rx^3)^3}{3}+ O(x^8) \\ &= qx^2 + rx^3 - \frac12 q^2 x^4 - qr x^5 + \frac12 rx^6 + \frac13 q^3 x^6 + q^2r x^7 + O(x^8) \\ &= qx^2 + rx^3 - \frac12 q^2 x^4 - qr x^5 + \left ( \frac12 r+ \frac13 q^3 \right)x^6 + q^2r x^7 \end{align*} Comparing coefficients we see that \(S_2 = -q\) and \(S_5 =-qr\), we also must have \(S_7 = q^2r = S_2S_5\) as required.
    4. Let \(a = b = 1, c = -2\), then \(S_2 = \frac{1^2+1^2 + (-2)^2}{2} = 3, S_7 = \frac{1^2+1^2+(-2)^7}{7} = -18, S_9 = \frac{1^1+1^2+(-2)^9}{9} = \frac{2 - 512}{9} \neq 3 \cdot (-18)\)
    2009 Paper 3 Q5
    D: 1700.0 B: 1516.0

    The numbers \(x\), \(y\) and \(z\) satisfy \begin{align*} x+y+z&= 1\\ x^2+y^2+z^2&=2\\ x^3+y^3+z^3&=3\,. \end{align*} Show that \[ yz+zx+xy=-\frac12 \,.\] Show also that \(x^2y+x^2z+y^2z+y^2x+z^2x+z^2y=-1\,\), and hence that \[ xyz=\frac16 \,.\] Let \(S_n=x^n+y^n+z^n\,\). Use the above results to find numbers \(a\), \(b\) and \(c\) such that the relation \[ S_{n+1}=aS_{n}+bS_{n-1}+cS_{n-2}\,, \] holds for all \(n\).

    Show Solution
    \begin{align*} && (x+y+z)^2 &= x^2 + y^2 + z^2 + 2(xy+yz+zx) \\ \Rightarrow && 1^2 &= 2 + 2(xy+yz+zx) \\ \Rightarrow && xy+yz+zx &= -\frac12 \end{align*} \begin{align*} && 1 \cdot 2 &= (x+y+z)(x^2+y^2+z^2) \\ &&&= x^3 + y^3 + z^3 + x^2y+x^2z+y^2z+y^2x+z^2x+z^2y \\ &&&= 3 + x^2y+x^2z+y^2z+y^2x+z^2x+z^2y\\ \Rightarrow && -1 &= x^2y+x^2z+y^2z+y^2x+z^2x+z^2y \end{align*} \begin{align*} && (x+y+z)^3 &= x^3 + y^3 + z^3 + \\ &&&\quad \quad 3xy^2 + 3xz^2 + \cdots + 3zx^2 + 3zy^2 + \\ &&&\quad \quad \quad 6xyz \\ \Rightarrow && 1 &= 3 + 3(-1) + 6xyz \\ \Rightarrow && xyz &= \frac16 \end{align*} Since we have \(f(t) = (t-x)(t-y)(t-z) = t^3-t^2-\frac12 t - \frac16\) is zero for \(x,y,z\) we can notice that: \(t^{n+1} = t^n +\frac12 t^{n-1} + \frac16 t^{n-2}\) is also true for \(x,y,z\) (by multiplying by \(t^{n-2}\). Therefore: \(S_{n+1} = S_n + \frac12 S_{n-1} + \frac16 S_{n-2}\)
    2008 Paper 3 Q1
    D: 1700.0 B: 1516.0

    Find all values of \(a\), \(b\), \(x\) and \(y\) that satisfy the simultaneous equations \begin{alignat*}{3} a&+b & &=1 &\\ ax&+by & &= \tfrac13& \\ ax^2&+by^2& &=\tfrac15& \\ ax^3 &+by^3& &=\tfrac17\,.& \end{alignat*} \noindent{\bf [} {\bf Hint}: you may wish to start by multiplying the second equation by \(x+y\). {\bf ]}

    Show Solution
    This is a second order recurrence relation, so we need to find \(m\) and \(n\) such that; \begin{align*} &&\frac15 &= m\frac13 + n \\ &&\frac17 &= m \frac15 + n\frac13 \\ \Rightarrow && m,n &= \frac67, - \frac{3}{35} \end{align*} So we now need to solve the characteristic equation: \(\lambda^2 - \frac67 \lambda + \frac{3}{35} = 0\) So \(x,y = \frac{15 \pm 2 \sqrt{30}}{35}\). We need, \begin{align*} && 1 &= a+ b \\ && \frac13 &= a \frac{15 + 2 \sqrt{30}}{35} + b \frac{15 - 2 \sqrt{30}}{35} \\ && \frac13 &= \frac{15}{35} + \frac{2 \sqrt{30}}{35}(a-b) \\ \Rightarrow && -\frac{\sqrt{30}}{18} &= a-b \\ \Rightarrow && a &= \frac{18-\sqrt{30}}{36} \\ && b &= \frac{18+\sqrt{30}}{38} \end{align*} So our two answers are: \[ (a,b,x,y) = \left (\frac{18\pm\sqrt{30}}{36} ,\frac{18\mp\sqrt{30}}{36},\frac{15 \pm 2 \sqrt{30}}{35},\frac{15 \mp 2 \sqrt{30}}{35}, \right)\]
    2007 Paper 3 Q1
    D: 1700.0 B: 1500.0

    In this question, do not consider the special cases in which the denominators of any of your expressions are zero. Express \(\tan(\theta_1+\theta_2+\theta_3+\theta_4)\) in terms of \(t_i\), where \(t_1=\tan\theta_1\,\), etc. Given that \(\tan\theta_1\), \(\tan\theta_2\), \(\tan\theta_3\) and \(\tan\theta_4\) are the four roots of the equation \[at^4+bt^3+ct^2+dt+e=0 \] (where \(a\ne0\)), find an expression in terms of \(a\), \(b\), \(c\), \(d\) and \(e\) for \(\tan(\theta_1+\theta_2+\theta_3+\theta_4)\). The four real numbers \(\theta_1\), \(\theta_2\), \(\theta_3\) and \(\theta_4\) lie in the range \(0\le \theta_i<2\pi\) and satisfy the equation \[ p\cos2\theta+\cos(\theta-\alpha)+p=0\,,\] where \(p\) and \(\alpha\) are independent of \(\theta\). Show that \(\theta_1+\theta_2+\theta_3+\theta_4=n\pi\) for some integer \(n\).

    Show Solution
    \begin{align*} \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) &= \frac{\tan(\theta_1 + \theta_2) + \tan(\theta_3 + \theta_4)}{1 - \tan(\theta_1 +\theta_2)\tan(\theta_3+\theta_4)} \\ &= \frac{\frac{t_1+t_2}{1-t_1t_2}+\frac{t_3+t_4}{1-t_3t_4}}{1-\frac{t_1+t_2}{1-t_1t_2}\frac{t_3+t_4}{1-t_3t_4}} \\ &= \frac{(t_1+t_2)(1-t_3t_4)+(t_3+t_4)(1-t_1t_2)}{(1-t_1t_2)(1-t_3t_4)-(t_1+t_2)(t_3+t_4)} \\ &= \frac{t_1 +t_2+t_3+t_4 - (t_1t_2t_3+t_1t_2t_4+t_1t_3t_4+t_2t_3t_4)}{1-t_1t_2-t_1t_3-t_1t_4-t_2t_3-t_2t_4-t_3t_4} \end{align*} If \(t_1, t_2, t_3, t_4\) are the roots of \(at^4+bt^3+ct^2+dt+e = 0\), then \(t_1+t_2+t_3+t_4 = -\frac{b}{a}, t_1t_2+t_1t_3+t_1t_4+t_2t_3+t_2t_4+t_3t_4 = \frac{c}{a}, t_1t_2t_3+t_1t_2t_4+t_1t_3t_4+t_2t_3t_4 = -\frac{d}{a}\), therefore the expression is: \begin{align*} \tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) &= \frac{-\frac{b}{a}+\frac{d}{a}}{1 - \frac{c}{a}} \\ &= \frac{d-b}{a-c} \end{align*} \begin{align*} &&0 &= p \cos 2\theta + \cos (\theta - \alpha) + p \\ &&&= p (2\cos^2 \theta -1) + \cos \theta \cos \alpha - \sin \theta \sin \alpha + p \\ &&&= 2p \cos^2 \theta + \cos \theta \cos \alpha - \sin \theta \sin \alpha\\ \Rightarrow && 0 &=2p \cos \theta + \cos \alpha - \tan \theta \sin \alpha \\ \Rightarrow && -2p \cos \theta&= \cos \alpha - \tan \theta \sin \alpha \\ \Rightarrow && 4p^2 \cos^2 \theta &= \cos^2 \alpha - 2 \sin \alpha \cos \alpha \tan \theta + \sin^2 \alpha \tan^2 \theta \\ && 4p^2 \frac{1}{1 + \tan^2 \theta} &= \cos^2 \alpha - \sin 2\alpha \tan \theta + \sin^2 \alpha \tan^2 \theta \\ \Rightarrow && 4p^2 &= \cos^2 \alpha - \sin 2\alpha t+t^2-\sin2\alpha t^3+\sin^2 \alpha t^4 \\ \Rightarrow && \tan (\theta_1+\theta_2 + \theta_3+ \theta_4) &= \frac{0}{\sin^2 \alpha - 1} \\ &&&= 0 \\ \Rightarrow && \theta_1 + \theta_2 + \theta_3 + \theta_4 &= n\pi \end{align*}
    1997 Paper 3 Q4
    D: 1700.0 B: 1516.0

    In this question, you may assume that if \(k_1,\dots,k_n\) are distinct positive real numbers, then \[\frac1n\sum_{r=1}^nk_r>\left({\prod\limits_{r=1}^n} k_r\right )^{\!\! \frac1n},\] i.e. their arithmetic mean is greater than their geometric mean. Suppose that \(a\), \(b\), \(c\) and \(d\) are positive real numbers such that the polynomial \[{\rm f}(x)=x^4-4ax^3+6b^2x^2-4c^3x+d^4\] has four distinct positive roots.

    1. Show that \(pqr,qrs,rsp\) and \(spq\) are distinct, where \(p,q,r\) and \(s\) are the roots of the polynomial \(\mathrm{f}\).
    2. By considering the relationship between the coefficients of \(\mathrm{f}\) and its roots, show that \(c > d\).
    3. Explain why the polynomial \(\mathrm{f}'(x)\) must have three distinct roots.
    4. By differentiating \(\mathrm{f}\), show that \(b > c\).
    5. Show that \(a > b\).

    Show Solution
    1. Suppose \(pqr = qrs\), since the roots are positive, we can divide by \(qr\) to obtain \(p=s\) (a contradiction. Therefore all those terms are distinct.
    2. \(4c^3 = pqr+qrs+rsp+spq\), \(d^4 = pqrs\). Applying AM-GM, we obtain: \begin{align*} && c^3 = \frac{ pqr+qrs+rsp+spq}{4} & > \sqrt[4]{p^3q^3r^3s^3} = d^{3} \\ \Rightarrow && c &> d \end{align*}
    3. There must be a turning point between each root (since there are no repeated roots).
    4. \(f'(x) = 4x^3-12ax^2+12b^2-4c^3 = 4(x^3-3ax^2+3b^2-c^3)\). Letting the roots of this polynomial be \(\alpha, \beta, \gamma\) and again applying AM-GM, we must have: \begin{align*} && b^2 = \frac{\alpha\beta + \beta \gamma+\gamma \alpha}{3} &> \sqrt[3]{\alpha^2\beta^2\gamma^2} = c^2 \\ \Rightarrow && b &> c \end{align*}
    5. Again, since there are turning points between the roots of \(f'(x)\) we must have distinct roots for \(f''(x)\), ie: \(f''(x) = 3x^2-6ax+6b^2 = 3(x^2-2ax+b^2)\) has distinct real roots. But for this to occur we must have that \((2a)^2-4b^2 = 4(a^2-b^2) > 0\), ie \(a>b\)
    1996 Paper 3 Q7
    D: 1700.0 B: 1515.1

    1. If \(x+y+z=\alpha,\) \(xy+yz+zx=\beta\) and \(xyz=\gamma,\) find numbers \(A,B\) and \(C\) such that \[ x^{3}+y^{3}+z^{3}=A\alpha^{3}+B\alpha\beta+C\gamma. \] Solve the equations \begin{alignat*}{1} x+y+z & =1\\ x^{2}+y^{2}+z^{2} & =3\\ x^{3}+y^{3}+z^{3} & =4. \end{alignat*}
    2. The area of a triangle whose sides are \(a,b\) and \(c\) is given by the formula \[ \mathrm{area}=\sqrt{s(s-a)(s-b)(s-c)} \] where \(s\) is the semi-perimeter \(\frac{1}{2}(a+b+c).\) If \(a,b\) and \(c\) are the roots of the equation \[ x^{3}-16x^{2}+81x-128=0, \] find the area of the triangle.

    Show Solution
    1. \begin{align*} (x+y+z)^3 &= x^3+y^3+z^3+ \\ &\quad 3xy^2 + 3xz^2 + 3yx^2 + \cdots + 3zy^2 \\ &\quad\quad + 6xyz \\ (x+y+z)(xy+yz+zx) &= x^2y+x^2z + \cdots + z^2 x + 3xyz \\ x^3+y^3+z^3 &= (x+y+z)^3 - 3(xy^2 + \cdots + zy^2) - 6xyz \\ &= \alpha^3 - 3(\alpha \beta - 3\gamma)-6\gamma \\ &= \alpha^3-3\alpha \beta+3\gamma \end{align*} Since \(4 = 1^3-3\cdot1\cdot(-1) + 3 \gamma \Rightarrow \gamma = 0\), therefore one of \(x,y,z = 0\). WLOG \(x = 0\), so \(y+z = 1, y^2 + z^2 = 3 \Rightarrow y^2 + (1-y)^2 = 3 \Rightarrow y^2 -y -1 = 0 \Rightarrow y = \frac{1 \pm \sqrt{5}}{2}\), so we have \((x,y,z) = (0, \frac{1 +\sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2})\) and permutations.
    2. \begin{align*} A^2 &= s(s-a)(s-b)(s-c) \\ \end{align*} Notice the second part is the same as plugging \(s= 16/2 = 8\) into our polynomial Therefore \begin{align*} A^2 &= 8 \cdot (8^3 - 16 \cdot 8^2 + 81 \cdot 8 - 128) \\ &= 8 \cdot 8 (8^2 - 16 \cdot 8 + 81- 16) \\ &= 64 (-64+81-16) \\ &= 64 \end{align*} Therefore \(A = 8\)
    1992 Paper 2 Q7
    D: 1600.0 B: 1500.0

    The cubic equation \[ x^{3}-px^{2}+qx-r=0 \] has roots \(a,b\) and \(c\). Express \(p,q\) and \(r\) in terms of \(a,b\) and \(c\).

    1. If \(p=0\) and two of the roots are equal to each other, show that \[ 4q^{3}+27r^{2}=0. \]
    2. Show that, if two of the roots of the original equation are equal to each other, then \[ 4\left(q-\frac{p^{2}}{3}\right)^{3}+27\left(\frac{2p^{3}}{27}-\frac{pq}{3}+r\right)^{2}=0. \]

    Show Solution
    \(p = a+b+c, q = ab+bc+ca, r = abc\)
    1. Suppose two roots are equal to each other, this means that one of the roots is also a root of the derivative. ie \begin{align*} && 0 &= x^3+qx - r \\ && 0 &= 3x^2+q \end{align*} have a common root, but this root must satisfy \(x^2 = -\frac{q}{3}\). Then \begin{align*} &&0 &= x^3 + qx - r \\ &&&= x^3 -3x^3 - r \\ &&&= -2x^3 -r \\ \Rightarrow && r^2 &= 4x^6 \\ &&&= 4 \left ( -\frac{q}{3}\right)^3 \\ \Rightarrow && 0 &= 27r^2+4q^3 \end{align*}
    2. Consider \(x = z + \frac{p}{3}\), then the equation is: \begin{align*} x^{3}-px^{2}+qx-r &= (z + \frac{p}{3})^3 - p(z + \frac{p}{3})^2 + q(z + \frac{p}{3}) - r \\ &= z^3 + pz^2 + \frac{p^2}{3}z + \frac{p^3}{27} - \\ &\quad -pz^2-\frac{2p^2}{3}z-\frac{p^3}{9} + \\ &\quad\quad qz + \frac{pq}{3} - r \\ &= z^3+\left (\frac{p^2}{3}-\frac{2p^2}{3}+q \right)z + \left (\frac{p^3}{27}-\frac{p^3}{9}+\frac{pq}{3}-r \right) \\ &= z^3+\left (-\frac{p^2}{3}+q \right)z + \left (-\frac{2p^3}{27}+\frac{pq}{3}-r \right) \\ \end{align*} Since this equation must also have repeated roots we must have: \begin{align*} 4\left (-\frac{p^2}{3}+q \right)^3 + 27 \left (-\frac{2p^3}{27}+\frac{pq}{3}-r \right)^2 = 0 \end{align*} which is exactly our desired result
    1991 Paper 3 Q10
    D: 1700.0 B: 1516.0

    The equation \[ x^{n}-qx^{n-1}+r=0, \] where \(n\geqslant5\) and \(q\) and \(r\) are real constants, has roots \(\alpha_{1},\alpha_{2},\ldots,\alpha_{n}.\) The sum of the products of \(m\) distinct roots is denoted by \(\Sigma_{m}\) (so that, for example, \(\Sigma_{3}=\sum\alpha_{i}\alpha_{j}\alpha_{k}\) where the sum runs over the values of \(i,j\) and \(k\) with \(n\geqslant i>j>k\geqslant1\)). The sum of \(m\)th powers of the roots is denoted by \(S_{m}\) (so that, for example, \(S_{3}=\sum\limits_{i=1}^{n}\alpha_{i}^{3}\)). Prove that \(S_{p}=q^{p}\) for \(1\leqslant p\leqslant n-1.\) You may assume that for any \(n\)th degree equation and \(1\leqslant p\leqslant n\) \[ S_{p}-S_{p-1}\Sigma_{1}+S_{p-2}\Sigma_{2}-\cdots+(-1)^{p-1}S_{1}\Sigma_{p-1}+(-1)^{p}p\Sigma_{p}=0.] \] Find expressions for \(S_{n},\) \(S_{n+1}\) and \(S_{n+2}\) in terms of \(q,r\) and \(n\). Suggest an expression for \(S_{n+m},\) where \(m < n\), and prove its validity by induction.

    Show Solution
    Claim: \(S_p = q^p\) for \(1 \leq p \leq n-1\) Proof: When \(p = 1\), \(S_p = \Sigma_1 = q\) as expected. Note that \(\Sigma_i = 0\) for \(i = 2, \cdots, n-1\). Using \(S_p = S_{p-1}\Sigma_{1}-S_{p-2}\Sigma_{2}+\cdots+(-1)^{p-1+1}S_{1}\Sigma_{p-1}+(-1)^{p+1}p\Sigma_{p}\), we can see that \(S_p = qS_{p-q}\) when \(1 \leq p \leq n-1\), ie \(S_p = q^p\). Note that \begin{align*} S_n &= \sum \alpha_i^n \\ &= q\sum \alpha_i^{n-1} - \sum r \\ &= qS_{n-1} - nr \\ &= q^n - nr \\ \\ S_{n+1} &= \sum \alpha_i^{n+1} \\ &= q \sum \alpha_i^{n} - r \sum \alpha_i \\ &= q^{n+1} - rq \\ \\ S_{n+2} &= \sum \alpha_i^{n+2} \\ &= q \sum \alpha_i^{n+1} - r \sum \alpha_i^2 \\ &= q^{n+2} - rq^2 \\ \end{align*} Claim: \(S_{n+m} = q^{n+m} - rq^{m}\) Proof: The obvious

    Showing 1-15 of 15 problems
    2018 Paper 3 Q4
    D: 1700.0 B: 1503.2

    The point \(P(a\sec \theta, b\tan \theta )\) lies on the hyperbola \[ \dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1\,, \] where \(a>b>0\,\). Show that the equation of the tangent to the hyperbola at \(P\) can be written as \[ bx- ay \sin\theta = ab \cos\theta \,. \]

    1. This tangent meets the lines \(\dfrac x a = \dfrac yb\) and \(\dfrac x a =- \dfrac y b\) at \(S\) and \(T\), respectively. How is the mid-point of \(ST\) related to \(P\)?
    2. The point \(Q(a\sec \phi, b\tan \phi)\) also lies on the hyperbola and the tangents to the hyperbola at \(P\) and \(Q\) are perpendicular. These two tangents intersect at \((x,y)\). Obtain expressions for \(x^2\) and \(y^2\) in terms of \(a\), \(\theta\) and \(\phi\). Hence, or otherwise, show that \(x^2+y^2 = a^2 -b^2\).

    Show Solution
    Note that \begin{align*} && \frac{\d a \sec \theta}{\d \theta} &= a \sec \theta \tan \theta \\ && \frac{\d b \tan \theta}{\d \theta} &= b \sec^2 \theta \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} \\ &&&= \frac{b}{a} \frac{1}{\sin \theta} \\ \Rightarrow && \frac{y-b \tan \theta}{x - a \sec \theta} &= \frac{b}{a} \frac{1}{\sin \theta} \\ \Rightarrow && a \sin \theta y - ab \tan \theta \sin \theta &= bx -ab \sec \theta \\ \Rightarrow && bx-ay\sin \theta &= ab \sec x (1 - \sin ^2 \theta) \\ &&&= ab \cos \theta \end{align*}
    1. \begin{align*} S: &&& \begin{cases} bx-ay &= 0 \\ bx-ay \sin \theta &= ab \cos \theta \end{cases} \\ \Rightarrow && ay(1-\sin \theta) &= ab \cos \theta \\ \Rightarrow && y &= \frac{b \cos \theta}{1-\sin \theta} \\ &&x &=\frac{a\cos \theta}{1-\sin \theta} \\ T: &&& \begin{cases} bx+ay &= 0 \\ bx-ay \sin \theta &= ab \cos \theta \end{cases} \\ \Rightarrow && ay(1+\sin \theta) &= -ab \cos \theta \\ \Rightarrow && y &= \frac{-b \cos \theta}{1+\sin \theta} \\ &&x &=\frac{a\cos \theta}{1+\sin \theta} \\ M: && x &= \frac{a \cos \theta}{2} \frac{2}{1-\sin^2 \theta} \\ &&&= a \sec \theta \\ && y &= \frac{b \cos \theta}{2} \frac{2 \sin \theta}{1-\sin^2 \theta} \\ &&&= b \tan \theta \end{align*} The midpoint of \(ST\) is the same as \(P\).
    2. The tangents are perpendicular, therefore \(\frac{b}{a} \cosec \theta = - \frac{a}{b} \sin \phi\), ie \(b^2 = -a^2 \sin \phi \sin \theta\) The will intersect at: \begin{align*} &&& \begin{cases} bx - ay \sin \theta &= ab \cos \theta \\ bx - ay \sin \phi &= ab \cos \phi \end{cases} \\ \Rightarrow && ay ( \sin \theta - \sin \phi) &= ab(\cos \phi - \cos \theta) \\ \Rightarrow && y &= \frac{b(\cos \phi - \cos \theta)}{(\sin \theta - \sin \phi)} \\ && y^2 &= \frac{-a^2 \sin \phi \sin \theta (\cos\phi - \cos \theta)^2}{(\sin \theta - \sin \phi)^2} \\ \Rightarrow && bx(\sin \phi - \sin \theta) &= ab(\cos \theta \sin \phi - \cos \phi \sin \theta) \\ \Rightarrow && x &= \frac{a(\cos \theta \sin \phi - \cos \phi \sin \theta)}{\sin \phi - \sin \theta} \\ &&&= \frac{a^2(\cos \theta \sin \phi - \cos \phi \sin \theta)^2}{(\sin \phi - \sin \theta)^2} \end{align*} Therefore \begin{align*} && x^2+y^2 &= \frac{a^2}{(\sin \phi - \sin \theta)^2} \l (\cos \theta \sin \phi- \cos \phi \sin \theta)^2 - \sin \phi \sin \theta (\cos\phi - \cos \theta)^2 \r \\ &&&= \frac{a^2}{(\sin \phi - \sin \theta)^2} \l (\sin \phi - \sin \theta)(\cos^2 \theta \sin \phi - \sin \theta \cos^2 \phi) \r \\ &&&=a^2-b^2 \end{align*}
    2017 Paper 3 Q5
    D: 1700.0 B: 1484.0

    The point with cartesian coordinates \((x,y)\) lies on a curve with polar equation \(r=\f(\theta)\,\). Find an expression for \(\dfrac{\d y}{\d x}\) in terms of \(\f(\theta)\), \(\f'(\theta)\) and \(\tan\theta\,\). Two curves, with polar equations \(r=\f(\theta)\) and \(r=\g(\theta)\), meet at right angles. Show that where they meet \[ \f'(\theta) \g'(\theta) +\f(\theta)\g(\theta) = 0 \,. \] The curve \(C\) has polar equation \(r=\f(\theta)\) and passes through the point given by \(r=4\), \(\theta = - \frac12\pi\). For each positive value of \(a\), the curve with polar equation \(r= a(1+\sin\theta)\) meets~\(C\) at right angles. Find \(\f(\theta)\,\). Sketch on a single diagram the three curves with polar equations \(r= 1+\sin\theta\,\), \ \(r= 4(1+\sin\theta)\) and \(r=\f(\theta)\,\).

    Show Solution
    \((x, y) = (f(\theta)\cos(\theta), f(\theta)\sin(\theta))\) so \begin{align*} \frac{dy}{d\theta} &= -f(\theta)\sin(\theta) + f'(\theta)\cos(\theta) \\ \frac{dx}{d\theta} &= f(\theta)\cos(\theta) + f'(\theta)\sin(\theta) \\ \frac{dy}{dx} &= \frac{-f(\theta)\sin(\theta) + f'(\theta)\cos(\theta)}{f(\theta)\cos(\theta) + f'(\theta)\sin(\theta) } \\ &= \frac{-f(\theta)\tan(\theta) + f'(\theta)}{f(\theta) + f'(\theta)\tan(\theta) } \end{align*} If the curves meet at right angles then the product of their gradients is \(-1\), ie \begin{align*} \frac{-f(\theta)\tan(\theta) + f'(\theta)}{f(\theta) + f'(\theta)\tan(\theta) } \cdot \frac{-g(\theta)\tan(\theta) + g'(\theta)}{g(\theta) + g'(\theta)\tan(\theta) } &= -1 \\ f(\theta)g(\theta)\tan^2 \theta - f(\theta)g'(\theta)\tan \theta - f'(\theta)g(\theta)\tan \theta + f'(\theta)g'(\theta) &= \\ \quad - \l f(\theta)g(\theta) + f(\theta)g'(\theta)\tan(\theta) + f'(\theta)g(\theta)\tan(\theta) + f'(\theta)g'(\theta)\tan^2 \theta \r \\ \tan^2\theta \l f(\theta)g(\theta) + f'(\theta)g'(\theta) \r + f'(\theta)g'(\theta) + f(\theta)g(\theta) &= 0 \\ (\tan^2\theta + 1) \l f(\theta)g(\theta) + f'(\theta)g'(\theta) \r &= 0 \\ f(\theta)g(\theta) + f'(\theta)g'(\theta) &= 0 \end{align*} \(g(\theta) = a(1+\sin\theta), g'(\theta) = a\cos\theta\) Therefore \(f'(\theta)a\cos \theta+f(\theta)a(1+\sin(\theta)) = 0\) \begin{align*} && \frac{f'(\theta)}{f(\theta)} &= -\sec(\theta) - \tan(\theta) \\ \Rightarrow && \ln(f(\theta)) &= -\ln |\tan(\theta) + \sec(\theta)| + \ln |\cos(\theta)| + C \\ \Rightarrow && f(\theta) &= A \frac{\cos \theta}{\tan \theta + \sec \theta} \\ &&&= A \frac{\cos^2 \theta}{\sin \theta + 1} \\ &&&= A \frac{1-\sin^2 \theta}{\sin \theta + 1} \\ &&&= A (1-\sin \theta) \end{align*} When \(\theta = -\frac12 \pi, r = 4\), so \(A = 2\).
    TikZ diagram
    2015 Paper 3 Q8
    D: 1700.0 B: 1500.0

    1. Show that under the changes of variable \(x= r\cos\theta\) and \(y = r\sin\theta\), where \(r\) is a function of \(\theta\) with \(r>0\), the differential equation \[ (y+x)\frac{\d y}{\d x} = y-x \] becomes \[ \frac{\d r}{\d\theta} + r=0 \,. \] Sketch a solution in the \(x\)-\(y\) plane.
    2. Show that the solutions of \[ \left( y+x -x(x^2+y^2) \right) \, \frac{\d y }{\d x} = y-x - y(x^2+y^2) \] can be written in the form \\ \[ r^2 = \dfrac 1 {1+A\e^{2\theta}}\, \]\\ and sketch the different forms of solution that arise according to the value of \(A\).

    Show Solution
    1. \begin{align*} && (y+x)\frac{\d y}{\d x} &= y-x \\ \Rightarrow && (r \sin \theta + r \cos\theta) \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} &= (r \sin\theta - r \cos\theta) \\ \Rightarrow && ( \sin \theta + \cos\theta) \frac{dy}{d\theta} &= (\sin\theta - \cos\theta){\frac{dx}{d\theta}} \\ \Rightarrow && ( \sin \theta + \cos\theta) \left ( \frac{dr}{d\theta} \cos \theta - r \sin \theta\right ) &= (\sin\theta - \cos\theta)\left ( \frac{dr}{d\theta} \sin\theta + r \cos \theta\right) \\ \Rightarrow && \frac{dr}{d\theta} \left (\sin \theta \cos \theta + \cos^2 \theta - \sin^2 \theta + \sin \theta \cos \theta \right)&= r \left (\sin \theta \cos \theta - \cos^2 \theta + \sin^2 \theta + \sin\theta \cos \theta\right) \\ \Rightarrow && \frac{dr}{d\theta}&= -r \\ \end{align*} Therefore \(r = Ae^{-\theta}\)
      TikZ diagram
    2. \begin{align*} && \left( y+x -x(x^2+y^2) \right) \, \frac{\d y }{\d x} &= y-x - y(x^2+y^2) \\ \Rightarrow && \left( r \sin \theta+r\cos \theta -r^3\cos \theta \right) \, \frac{\d y }{\d \theta} &= \left ( r \sin \theta- r \cos \theta- r^3\sin \theta \right)\frac{\d x }{\d \theta} \\ \Rightarrow && \left( r \sin \theta+r\cos \theta -r^3\cos \theta \right) \, \left (\frac{\d r}{\d \theta} \sin \theta + r \cos \theta \right) &= \\ && \left ( r \sin \theta- r \cos \theta- r^3\sin \theta \right)&\left (\frac{\d r}{\d \theta} \cos \theta - r \sin \theta \right) \\ \Rightarrow && \frac{\d r}{\d \theta} \left (\sin \theta ( \sin \theta + \cos \theta - r^2 \cos \theta) - \cos \theta (\sin \theta - \cos \theta - r^2 \sin \theta) \right) &= \\ && r ( -\sin \theta (\sin \theta - \cos \theta - r^2 \sin \theta) - \cos \theta ( \sin \theta + \cos \theta &- r^2 \cos \theta)) \\ \Rightarrow && \frac{\d r}{\d \theta} &= r ( -1 +r^2) \\ \Rightarrow && \int \frac{1}{r(r-1)(r+1)} \d r &= \int \d \theta \\ \Rightarrow && \int \l \frac{-1}{r} + \frac{1}{2(r-1)} + \frac{1}{2(r+1)} \r \d r &= \int \d \theta \\ \Rightarrow && \l -\log r+ \frac12 \log (1+r)+ \frac12 \log (1-r)\r + C &= \theta \\ \Rightarrow && \frac12 \log \left (\frac{1-r^2}{r^2} \right) + C &= \theta \\ \Rightarrow && \log \left (\frac{1}{r^2}-1 \right) + C &= 2\theta \\ \Rightarrow && r &= \frac{1}{1 + Ae^{2\theta}} \\ \end{align*}
      TikZ diagram
      TikZ diagram
      TikZ diagram
    2015 Paper 3 Q3
    D: 1700.0 B: 1484.0

    In this question, \(r\) and \(\theta\) are polar coordinates with \(r \ge0\) and \(- \pi < \theta\le \pi\), and \(a\) and \(b\) are positive constants. Let \(L\) be a fixed line and let \(A\) be a fixed point not lying on \(L\). Then the locus of points that are a fixed distance (call it \(d\)) from \(L\) measured along lines through \(A\) is called a conchoid of Nicomedes.

    1. Show that if \[ \vert r- a \sec\theta \vert = b\,, \tag{\(*\)} \] where \(a>b\), then \(\sec\theta >0\). Show that all points with coordinates satisfying (\(*\)) lie on a certain conchoid of Nicomedes (you should identify \(L\), \(d\) and \(A\)). Sketch the locus of these points.
    2. In the case \(a < b\), sketch the curve (including the loop for which \(\sec\theta<0\)) given by \[ \vert r- a \sec\theta \vert = b\, . \] Find the area of the loop in the case \(a=1\) and \(b=2\). [Note: $ %\displaystyle \int \! \sec\theta \,\d \theta = \ln \vert \sec\theta + \tan\theta \vert + C \,. $]

    Show Solution
    1. \(r = a \sec \theta \pm b\). The points on \(r = a \sec \theta \Leftrightarrow r \cos \theta = a \Leftrightarrow x = a\) are points on the line \(x = a\). Therefore points on the curve \(r = a \sec \theta \pm b\) are points which are a distance \(b\) from the line \(x = a\) measured towards \(O\). So \(A\) is the origin and \(d = b\).
      TikZ diagram
    2. TikZ diagram
      The loop starts and ends when \(r = a \sec \theta - b = 0 \Rightarrow \cos \theta = \frac{a}{b}\), so when \(a = 1, b = 2\), this is \(-\frac{\pi}{3}\) to \(\frac{\pi}{3}\) \begin{align*} && A &= \frac12 \int r^2 \d \theta \\ &&&= \frac12 \int_{-\pi/3}^{\pi/3} \left ( \sec \theta - 2 \right)^2 \d \theta \\ &&&= \frac12 \int_{-\pi/3}^{\pi/3} \left (\sec^2 \theta - 4 \sec \theta + 4\right)\d \theta \\ &&&= \frac12 \left [ \tan \theta -4 \ln | \sec \theta + \tan \theta| + 4 \theta \right]_{-\pi/3}^{\pi/3} \\ &&&= \frac12 \left (\left (\tan \frac{\pi}3 - 4 \ln | \sec \frac{\pi}3 + \tan \frac{\pi}3 | + 4\left ( \frac{\pi}3 \right)\right) - \left (\tan \left (-\frac{\pi}3 \right) - 4 \ln | \sec \left (-\frac{\pi}3 \right)+ \tan\left ( -\frac{\pi}3 \right) | + 4\left ( -\frac{\pi}3 \right)\right) \right) \\ &&&= \frac12 \left ( 2\sqrt{3} - 4 \ln |2 + \sqrt{3}| + 4 \ln |2-\sqrt{3}| + \frac{8\pi}3 \right) \\ &&&= \sqrt{3} + 2\ln \frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{4\pi}3 \\ &&&= \sqrt{3} + 4 \ln (2 - \sqrt{3})+ \frac{4\pi}3 \end{align*}
    2011 Paper 3 Q5
    D: 1700.0 B: 1476.9

    A movable point \(P\) has cartesian coordinates \((x,y)\), where \(x\) and \(y\) are functions of \(t\). The polar coordinates of \(P\) with respect to the origin \(O\) are \(r\) and \(\theta\). Starting with the expression \[ \tfrac12 \int r^2 \, \d \theta \] for the area swept out by \(OP\), obtain the equivalent expression \[ \tfrac12 \int \left( x\frac{\d y}{\d t} - y \frac{\d x}{\d t}\right)\d t \,. \tag{\(*\)} \] The ends of a thin straight rod \(AB\) lie on a closed convex curve \(\cal C\). The point \(P\) on the rod is a fixed distance \(a\) from \(A\) and a fixed distance \(b\) from \(B\). The angle between \(AB\) and the positive \(x\) direction is \(t\). As \(A\) and \(B\) move anticlockwise round \(\cal C\), the angle \(t\) increases from \(0\) to \(2\pi\) and \(P\) traces a closed convex curve \(\cal D\) inside \(\cal C\), with the origin \(O\) lying inside \(\cal D\), as shown in the diagram.

    TikZ diagram
    Let \((x,y)\) be the coordinates of \(P\). Write down the coordinates of \(A\) and \(B\) in terms of \(a\), \(b\), \(x\), \(y\) and \(t\). The areas swept out by \(OA\), \(OB\) and \(OP\) are denoted by \([A]\), \([B]\) and \([P]\), respectively. Show, using \((*)\), that \[ [A] = [P] +\pi a^2 - af \] where \[ f = \tfrac12 \int _0^{2\pi} \left( \Big(x+\frac{\d y}{\d t}\Big)\cos t + \Big(y- \frac{\d x}{\d t}\Big)\sin t \right) \d t\,. \] Obtain a corresponding expression for \([B]\) involving \(b\). Hence show that the area between the curves \(\cal C\) and \(\cal D\) is \(\pi ab\).

    Show Solution
    \begin{align*} && \tan \theta &= y/x \\ \Rightarrow && \sec^2 \theta \frac{\d \theta}{\d t} &= \frac{x \frac{\d y}{\d t} - y \frac{\d x}{\d t}}{x^2} \\ \Rightarrow && \frac{\d \theta}{\d t} &=\left (x \frac{\d y}{\d t} - y \frac{\d x}{\d t} \right) \frac{\cos^2 \theta}{x^2} \\ &&&=\left (x \frac{\d y}{\d t} - y \frac{\d x}{\d t} \right) \frac{\cos^2 \theta}{r^2 \cos^2 \theta } \\ &&&=\left (x \frac{\d y}{\d t} - y \frac{\d x}{\d t} \right) \frac{1}{r^2 } \\ && \tfrac12 \int r^2 \, \d \theta &= \tfrac12 \int \left (x \frac{\d y}{\d t} - y \frac{\d x}{\d t} \right) \d t \end{align*} \(A = (x - a \cos t, y - a \sin t), B = (x + b \cos t , y + b \sin t)\) \begin{align*} && [A] &= \tfrac12 \int_0^{2\pi} \left ((x-a \cos t) \frac{\d (y-a \sin t)}{\d t} - (y-a \sin t) \frac{\d (x-a \cos t)}{\d t} \right) \d t \\ &&&= \tfrac12 \int_0^{2\pi} \left ((x - a \cos t) \left ( \frac{\d y}{\d t} - a \cos t \right) - (y - a \sin t) \left ( \frac{\d x}{\d t} + a \sin t \right)\right) \d t \\ &&&= \tfrac12 \int_0^{2\pi} \left ( x \frac{\d y}{\d t} - y \frac{\d x}{\d t} - a \cos t \frac{\d y}{\d t}-ax \cos t +a^2 \cos^2 t + a \sin t \frac{\d x}{\d t}-y a \sin t + a^2 \sin^2 t \right) \d t \\ &&&= \tfrac12 \int_0^{2\pi} \left ( \underbrace{x \frac{\d y}{\d t} - y \frac{\d x}{\d t}}_{[P]}-a\left ((x + \frac{\d y}{\d x}) \cos t + (y - \frac{\d x}{\d t}) \sin t \right) + \underbrace{a^2}_{\pi a^2} \right) \d t \\ &&&= [P] + \pi a^2 - af \end{align*} \begin{align*} && [B] &= \tfrac12 \int_0^{2\pi} \left ((x+b \cos t) \frac{\d (y+b \sin t)}{\d t} - (y+b \sin t) \frac{\d (x+b \cos t)}{\d t} \right) \d t \\ &&&= \tfrac12 \int_0^{2\pi} \left ((x+b \cos t) (\frac{\d y}{\d t} + b \cos t) - (y+b \sin t)(\frac{\d x}{\d t} - b \sin t) \right) \d t \\ &&&= \tfrac12 \int_0^{2\pi} \left (x \frac{\d y}{\d t} - y \frac{\d x}{\d t} + b^2 + b(\cos t (x + \frac{\d y}{\d t}) +(y - \frac{\d x}{\d t})\sin t\right) \d t \\ &&&= [P] + \pi b^2 + b f \end{align*} Since \(A\) and \(B\) trace out the same area, we must have \(\pi a^2 - af = \pi b^2 + bf \Rightarrow \pi (a^2-b^2) = f(b+a) \Rightarrow f = \pi (a-b)\). In particular the area inbetween is \([A] - [P] = \pi a^2 - a \pi (a-b)\)
    2006 Paper 3 Q6
    D: 1700.0 B: 1516.0

    Show that in polar coordinates the gradient of any curve at the point \((r,\theta)\) is \[ \frac{ \ \ \dfrac{\d r }{\d\theta} \tan\theta + r \ \ } { \dfrac{\d r }{\d\theta} -r\tan\theta}\,. \] \noindent

    \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-0.6,-3)(6.8,3) \psline(0,0)(6.54,0) \rput[tl](4.13,-0.22){\(O\)} \rput[tl](-0.47,0.07){\(L\)} \rput{-270}(5.75,0.08){\psplot[plotpoints=500]{-12}{12}{x^2/2/3}} \psline(2,1.5)(5.42,1.5) \psline(3.73,-0.74)(5.42,1.5) \psline[linewidth=0.4pt]{->}(3,1.5)(4,1.5) \psline[linewidth=0.4pt]{->}(5.42,1.5)(4.99,0.93) \psline(3.84,0.78)(6.62,2.05) \end{pspicture*} \par
    A mirror is designed so that if an incident ray of light is parallel to a fixed line \(L\) the reflected ray passes through a fixed point \(O\) on \(L\). Prove that the mirror intersects any plane containing \(L\) in a parabola. You should assume that the angle between the incident ray and the normal to the mirror is the same as the angle between the reflected ray and the normal.

    1998 Paper 3 Q4
    D: 1700.0 B: 1516.0

    Show that the equation (in plane polar coordinates) \(r=\cos\theta\), for $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$, represents a circle. Sketch the curve \(r=\cos2\theta\) for \(0\le\theta\le 2\pi\), and describe the curves \(r=\cos2n\theta\), where \(n\) is an integer. Show that the area enclosed by such a curve is independent of \(n\). Sketch also the curve \(r=\cos3\theta\) for \(0\le\theta\le 2\pi\).

    1993 Paper 3 Q2
    D: 1700.0 B: 1500.0

    The curve \(C\) has the equation \(x^3+y^3 = 3xy\).

    1. Show that there is no point of inflection on \(C\). You may assume that the origin is not a point of inflection.
    2. The part of \(C\) which lies in the first quadrant is a closed loop touching the axes at the origin. By converting to polar coordinates, or otherwise, evaluate the area of this loop.

    1993 Paper 2 Q5
    D: 1600.0 B: 1500.0

    \noindent

    \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-0.57,-0.63)(8.51,6.23) \psline(0,0)(7,5) \psline(7,5)(7.75,1.98) \psline(7.75,1.98)(0,0) \parametricplot{-0.6740818217636368}{0.22208190190547994}{1*5.52*cos(t)+0*5.52*sin(t)+1.48|0*5.52*cos(t)+1*5.52*sin(t)+4.9} \psline(7,5)(5.79,1.45) \rput[tl](-0.4,-0.02){\(O\)} \rput[tl](5.76,1.29){\(P\)} \rput[tl](8.1,2.01){\(R\)} \rput[tl](7.2,5.26){\(Q\)} \psline(7.67,2.29)(7.37,2.22) \psline(7.37,2.22)(7.45,1.91) \end{pspicture*} \par
    In the diagram, \(O\) is the origin, \(P\) is a point of a curve \(r=r(\theta)\) with coordinates \((r,\theta)\) and \(Q\) is another point of the curve, close to \(P\), with coordinates \((r+\delta r,\theta+\delta\theta).\) The angle \(\angle PRQ\) is a right angle. By calculating \(\tan\angle QPR,\) show that the angle at which the curve cuts \(OP\) is \[ \tan^{-1}\left({\displaystyle r\dfrac{\mathrm{d}\theta}{\mathrm{d}r}}\right). \] Let \(\alpha\) be a constant angle, \(0<\alpha<\frac{1}{2}\pi\). The curve with the equation \[ r=\mathrm{e}^{\theta\cot\alpha} \] in polar coordinates is called an equiangular spiral. Show that it cuts every radius line at an angle \(\alpha.\) Sketch the spiral. Find the length of the complete turn of the spiral beginning at \(r=1\) and going outwards. What is the total length of the part of the spiral for which \(r\leqslant1\)? {[}You may assume that the arc length \(s\) of the curve satisfies \[ {\displaystyle \left(\frac{\mathrm{d}s}{\mathrm{d}\theta}\right)^{2}=r^{2}+\left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^{2}.}] \]

    1992 Paper 3 Q10
    D: 1700.0 B: 1484.8

    Sketch the curve \(C\) whose polar equation is \[ r=4a\cos2\theta\qquad\mbox{ for }-\tfrac{1}{4}\pi<\theta<\tfrac{1}{4}\pi. \] The ellipse \(E\) has parametric equations \[ x=2a\cos\phi,\qquad y=a\sin\phi. \] Show, without evaluating the integrals, that the perimeters of \(C\) and \(E\) are equal. Show also that the areas of the regions enclosed by \(C\) and \(E\) are equal.

    Show Solution
    TikZ diagram
    \begin{align*} && \text{Perimeter}(C) &= \int_{-\pi/4}^{\pi/4} \sqrt{r^2 + \left ( \frac{\d r}{\d \theta} \right)^2} \d \theta \\ &&&= \int_{-\pi/4}^{\pi/4} \sqrt{16a^2 \cos^2 2 \theta + 64a^2 \sin^2 2 \theta } \d \theta \\ &&&= \int_{-\pi/4}^{\pi/4} 4a\sqrt{1 + 3 \sin^2 2 \theta } \d \theta \\ \\ \\ && \text{Perimeter}(D) &= \int_0^{2 \pi} \sqrt{\left ( \frac{\d x}{\d \phi}\right)^2+\left ( \frac{\d y}{\d \phi}\right)^2} \d \phi \\ &&&= \int_0^{2 \pi} \sqrt{ 4a^2 \sin^2 \phi+a^2 \cos^2 \phi} \d \phi \\ &&&= a^2\int_0^{2 \pi} \sqrt{ 1+3 \sin^2 \phi} \d \phi \\ \end{align*} But clearly these two integrals are equal. \begin{align*} && \text{A}(C) &= \frac12 \int_{-\pi/4}^{\pi/4} r^2 \d \theta \\ &&&= \frac12 \int_{-\pi/4}^{\pi/4} 16a^2 \cos^2 2 \theta \d \theta \\ &&&= 8a^2\int_{-\pi/4}^{\pi/4} \cos^2 2 \theta \d \theta \\ &&&= 8a^2 \frac{\pi}{4} = 2\pi a^2 \\ && \text{A}(D) &= 2\pi a^2 \end{align*}
    1991 Paper 3 Q9
    D: 1700.0 B: 1485.6

    The parametric equations \(E_{1}\) and \(E_{2}\) define the same ellipse, in terms of the parameters \(\theta_{1}\) and \(\theta_{2}\), (though not referred to the same coordinate axes). \begin{alignat*}{2} E_{1}:\qquad & x=a\cos\theta_{1}, & \quad & y=b\sin\theta_{1},\\ E_{2}:\qquad & x=\dfrac{k\cos\theta_{2}}{1+e\cos\theta_{2}}, & \quad & y=\dfrac{k\sin\theta_{2}}{1+e\cos\theta_{2}}, \end{alignat*} where \(0< b< a,\) \(0< e< 1\) and \(0< k\). Find the position of the axes for \(E_{2}\) relative to the axes for \(E_{1}\) and show that \(k=a(1-e^{2})\) and \(b^{2}=a^{2}(1-e^{2}).\) {[}The standard polar equation of an ellipse is \(r=\dfrac{\ell}{1+e\cos\theta}.]\) By considering expressions for the length of the perimeter of the ellipse, or otherwise, prove that \[ \int_{0}^{\pi}\sqrt{1-e^{2}\cos^{2}\theta}\,\mathrm{d}\theta=\int_{0}^{\pi}\frac{1-e^{2}}{(1+e\cos\theta)^{2}}\sqrt{1+e^{2}+2e\cos\theta}\,\mathrm{d}\theta. \] Given that \(e\) is so small that \(e^{6}\) may be neglected, show that the value of either integral is \[ \tfrac{1}{64}\pi(64-16e^{2}-3e^{4}). \]

    1991 Paper 3 Q5
    D: 1700.0 B: 1500.0

    The curve \(C\) has the differential equation in polar coordinates \[ \frac{\mathrm{d}^{2}r}{\mathrm{d}\theta^{2}}+4r=5\sin3\theta,\qquad\text{for }\quad\frac{\pi}{5}\leqslant\theta\leqslant\frac{3\pi}{5}, \] and, when \(\theta=\dfrac{\pi}{2},\) \(r=1\) and \(\dfrac{\mathrm{d}r}{\mathrm{d}\theta}=-2.\) Show that \(C\) forms a closed loop and that the area of the region enclosed by \(C\) is \[ \frac{\pi}{5}+\frac{25}{48}\left[\sin\left(\frac{\pi}{5}\right)-\sin\left(\frac{2\pi}{5}\right)\right]. \]

    Show Solution
    First we seek the complementary function. \begin{align*} && \frac{\mathrm{d}^{2}r}{\mathrm{d}\theta^{2}}+4r &= 0 \\ \Rightarrow && r &= A \sin 2\theta + B \cos 2 \theta \end{align*} Next we seek a particular integral, of the form \(r = C \sin 3 \theta\). \begin{align*} && \frac{\mathrm{d}^{2}r}{\mathrm{d}\theta^{2}}+4r &= 5 \sin 3 \theta \\ \Rightarrow && -9C \sin 3 \theta + 4C \sin 3 \theta &= 5 \sin 3 \theta \\ \Rightarrow && C &= -1 \\ \end{align*} So our general solution is \(A \sin 2\theta + B \cos 2 \theta -\sin 3 \theta\). Plugging in boundary conditions we obtain: \begin{align*} \theta = \frac{\pi}{2}, r = 1: &&1 &= -B +1 \\ \Rightarrow && B &= 0 \\ \theta = \frac{\pi}{2}, \frac{\d r}{\d \theta} = -2: && -2 &= -2A \\ \Rightarrow && A &= 1 \end{align*} So the general solution is \(r = \sin 2 \theta - \sin 3 \theta = 2 \sin \left ( \frac{-\theta}{2} \right) \cos \left (\frac{5 \theta}{2} \right)\) First notice that for \(\theta \in \left [\frac{\pi}{5}, \frac{3 \pi}{5} \right]\) this is positive, and it is zero on the end points, therefore we are tracing out a a loop. The area of the loop will be: \begin{align*} A &= \int_{\pi/5}^{3\pi/5} \frac12 \left ( \sin 2 \theta - \sin 3 \theta \right)^2 \d \theta \\ &= \frac12\int_{\pi/5}^{3\pi/5} \sin^2 2\theta + \sin^2 3 \theta - 2 \sin 2 \theta \cos 3 \theta \d \theta \\ &= \frac12\int_{\pi/5}^{3\pi/5} \frac{1-2 \cos 4 \theta}{2} + \frac{1-2 \cos6 \theta}{2} - \sin5 \theta-\cos\theta \d \theta \\ &= \frac12 \left [\theta - \frac14 \sin 4 \theta-\frac16 \sin 6 \theta + \frac15 \cos 5 \theta - \sin \theta \right]_{\pi/5}^{3\pi/5} \\ &= \frac{\pi}{5} +\frac{25}{48}\left [ \sin\left(\frac{\pi}{5}\right)-\sin\left(\frac{2\pi}{5}\right) \right] \end{align*}
    1990 Paper 2 Q9
    D: 1600.0 B: 1500.0

    Show by means of a sketch that the parabola \(r(1+\cos\theta)=1\) cuts the interior of the cardioid \(r=4(1+\cos\theta)\) into two parts. Show that the total length of the boundary of the part that includes the point \(r=1,\theta=0\) is \(18\sqrt{3}+\ln(2+\sqrt{3}).\)

    Show Solution
    TikZ diagram
    The curves will intersect when: \begin{align*} && \frac{1}{1+\cos \theta} &= 4 (1 + \cos \theta) \\ \Rightarrow && 1 + \cos \theta &= \pm \frac{1}{2} \\ \Rightarrow && \cos \theta &= -\frac12 \\ \Rightarrow && \theta &= \pm \frac{2\pi}{3}, \end{align*} Therefore we can measure the two sides of the boundaries. For the cardioid it will be: \begin{align*} s &= \int_{-2\pi/3}^{2 \pi /3} \sqrt{r^2 + \left ( \frac{\d r}{\d \theta} \right)^2} \d \theta \\ &= \int_{-2\pi/3}^{2 \pi /3}\sqrt{r^2 + \left ( \frac{\d r}{\d \theta} \right)^2} \d \theta \\ &= \int_{-2\pi/3}^{2 \pi /3}\sqrt{16(1 + \cos \theta)^2 + 16 \sin^2 \theta} \d \theta \\ &= 4\int_{-2\pi/3}^{2 \pi /3}\sqrt{2 + 2 \cos \theta} \d \theta \\ &= 8\int_{-2\pi/3}^{2 \pi /3}\sqrt{\cos^2 \frac{\theta}{2}} \d \theta \\ &= 8\int_{-2\pi/3}^{2 \pi /3}|\cos \frac{\theta}{2}| \d \theta \\ &= 16\int_{\pi}^{2\pi/3}(-\cos \frac{\theta}{2}) \d \theta + 8\int_{-\pi}^{\pi}\cos \frac{\theta}{2} \d \theta \\ &= 16 \cdot \left [ 2\sin \frac{\theta}{2}\right]_{\pi}^{2\pi/3}+ 8 \cdot 4 \\ &= 16 \cdot (\sqrt{3}-2) + 8 \cdot 4 \\ &= 16\sqrt{3} \end{align*} For the parabola we have that \(\sqrt{x^2+y^2} + x = 1 \Rightarrow x^2 + y^2 = 1 - 2x + x^2 \Rightarrow y^2 = 1-2x\). So we can parameterise our parabola as \(y = t, x = \frac{1-t^2}2\). And we are interested in the points \(t = -\sqrt{3}\) and \(t =\sqrt3\) \begin{align*} &&s &= \int_{-\sqrt3}^\sqrt3 \sqrt{\left ( \frac{\d x}{\d t} \right)^2 + \left ( \frac{\d y}{\d t} \right)^2 } \d t \\ &&&= \int_{-\sqrt3}^\sqrt3 \sqrt{t^2+1^2} \d t \\ \sinh u = t, \frac{\d t}{\d u} = \cosh u&&&= \int_{-\sinh^{-1} \sqrt3}^{\sinh^{-1}\sqrt3} \cosh^2 u \d u \\ &&&= \left [\frac12 u + \frac14 \sinh(2u) \right ]_{-\sinh^{-1} \sqrt3}^{\sinh^{-1}\sqrt3} \\ &&&= \sinh^{-1} \sqrt{3} + 2\sqrt{3} \\ &&&= \ln(2 + \sqrt{3}) + 2\sqrt{3} \end{align*} Therefore the total distance is as required.
    1989 Paper 3 Q6
    D: 1700.0 B: 1500.0

    Show that, for a given constant \(\gamma\) \((\sin\gamma\neq0)\) and with suitable choice of the constants \(A\) and \(B\), the line with cartesian equation \(lx+my=1\) has polar equations \[ \frac{1}{r}=A\cos\theta+B\cos(\theta-\gamma). \] The distinct points \(P\) and \(Q\) on the conic with polar equations \[ \frac{a}{r}=1+e\cos\theta \] correspond to \(\theta=\gamma-\delta\) and \(\theta=\gamma+\delta\) respectively, and \(\cos\delta\neq0.\) Obtain the polar equation of the chord \(PQ.\) Hence, or otherwise, obtain the equation of the tangent at the point where \(\theta=\gamma.\) The tangents at \(L\) and \(M\) to a conic with focus \(S\) meet at \(T.\) Show that \(ST\) bisects the angle \(LSM\) and find the position of the intersection of \(ST\) and \(LM\) in terms of your chosen parameters for \(L\) and \(M.\)

    Show Solution
    \begin{align*} && \frac1{r} &= A \cos \theta + B \cos (\theta - \gamma) \\ &&&= A \cos \theta + B \cos \theta \cos \gamma + B \sin \theta \sin \gamma \\ &&&= (A+B \cos \gamma) \cos \theta + B \sin \gamma \sin \theta \\ \Longleftrightarrow && 1 &= (A+B \cos \gamma) x + B \sin \gamma y \end{align*} So if we choose \(B = \frac{m}{\sin \gamma}\) and \(A = l-m \cot \gamma\) we have the desired result. \begin{align*} && \frac{1 + e \cos (\gamma -\delta)}a &= A \cos (\gamma - \delta) + B \cos (\gamma - \delta - \gamma) \\ &&&= A \cos(\gamma-\delta) +B \cos \delta\\ && \frac{1 + e \cos (\gamma +\delta)}{a} &= A \cos (\gamma + \delta) + B \cos (\gamma + \delta - \gamma) \\ &&&= A \cos(\gamma + \delta) + B \cos \delta\\ \Rightarrow && \frac1{r} &= \frac{e}{a} \cos \theta + \frac{1}{a \cos \delta} \cos (\theta - \gamma) \\ \lim{\delta \to 0} &&\frac1{r} &= \frac{e}{a} \cos \theta+ \frac{1}{a} \cos (\theta - \gamma) \end{align*} Suppose we have have points \(L\) and \(M\) with \(\theta = \gamma_L, \gamma_M\) then our tangents are: \begin{align*} && \frac{a}{r} &= \cos \theta + \cos (\theta - \gamma_L) \\ && \frac{a}{r} &= \cos \theta + \cos (\theta - \gamma_M) \\ \Rightarrow && 0 &= \cos (\theta - \gamma_L) -\cos(\theta - \gamma_M) \\ &&&= - 2 \sin \frac{(\theta - \gamma_L)+(\theta - \gamma_M)}{2} \sin \frac{(\theta - \gamma_L)-(\theta - \gamma_M)}{2} \\ &&&= -2 \sin \left ( \theta - \frac{\gamma_L+\gamma_M}2 \right) \sin \left ( \frac{\gamma_M - \gamma_L}{2}\right) \\ \Rightarrow && \theta &= \frac{\gamma_L+\gamma_M}{2} \end{align*} Therefore clearly \(ST\) bisects \(LSM\). The line \(LM\) can be seen as the chord from the points \(\frac{\gamma_L+\gamma_M}{2} \pm \frac{\gamma_L-\gamma_M}{2}\), so the line is: \begin{align*} && \frac{a}{r} &= e \cos \theta + \frac{1}{\cos \left ( \frac{\gamma_L-\gamma_M}{2}\right)} \cos \left (\theta - \frac{\gamma_L+\gamma_M}{2} \right) \end{align*} and we want the point on the line where \(\theta =\frac{\gamma_L+\gamma_M}{2}\) so \begin{align*} && \frac{a}{r} &= e \cos \left ( \frac{\gamma_L+\gamma_M}{2} \right) + \frac{1}{\cos \left ( \frac{\gamma_L-\gamma_M}{2}\right)} \\ \Rightarrow && r &= \frac{a}{e \cos \left ( \frac{\gamma_L+\gamma_M}{2} \right) + \frac{1}{\cos \left ( \frac{\gamma_L-\gamma_M}{2}\right)}} \end{align*}
    1989 Paper 2 Q5
    D: 1600.0 B: 1561.1

    1. Show that in polar coordinates, the gradient of any curve at the point \((r,\theta)\) is \[ \left.\left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\tan\theta+r\right)\right/\left(\frac{\mathrm{d}r}{\mathrm{d}\theta}-r\tan\theta\right). \]
      TikZ diagram
    2. A mirror is designed so that any ray of light which hits one side of the mirror and which is parallel to a certain fixed line \(L\) is reflected through a fixed point \(O\) on \(L\). For any ray hitting the mirror, the normal to the mirror at the point of reflection bisects the angle between the incident ray and the reflected ray, as shown in the figure. Prove that the mirror intersects any plane containing \(L\) in a parabola.

    Show Solution
    1. Suppose our curve is \(r(\theta)\), then \(y = r \sin \theta, x = r \cos \theta\) and \begin{align*} && \frac{\d y}{\d \theta} &= \frac{\d r}{\d \theta} \sin \theta + r \cos \theta \\ && \frac{\d x}{\d \theta} &= \frac{\d r}{\d \theta} \cos \theta - r \sin \theta \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{\d y}{\d \theta} \Bigg / \frac{\d x}{\d \theta} \\ &&&= \frac{\frac{\d r}{\d \theta} \sin \theta + r \cos \theta}{\frac{\d r}{\d \theta} \cos \theta - r \sin \theta} \\ &&&= \frac{\frac{\d r}{\d \theta} \tan\theta + r }{\frac{\d r}{\d \theta} - r \tan\theta} \end{align*} as required.
    2. Set up a system of polar coordinates such that the origin is at \(O\) and all points in the plane containing \(L\) are represented by \((r, \theta)\). The constraint we have is that the angle of the normal, is \(\frac12 \theta\). Let \(\tan \tfrac12 \theta = t\), then \(\tan \theta = \frac{2t}{1-t^2}\) \begin{align*} && \tan \frac12 \theta &= -\frac{\frac{\d r}{\d \theta} - r \tan\theta}{\frac{\d r}{\d \theta} \tan\theta + r } \\ \Rightarrow && t &= -\frac{r'-r\frac{2t}{1-t^2}}{r' \frac{2t}{1-t^2}+r} \\ &&&= \frac{2tr-(1-t^2)r'}{2tr'+(1-t^2)r} \\ \Rightarrow && (2t^2+1-t^2)r' &= (2t-t+t^3)r \\ && (1+t^2)r' &= t(t^2+1) r \\ \Rightarrow && r' &= t r \\ \Rightarrow && \frac{\d r}{\d \theta} &= \tan \tfrac12 \theta r \\ \Rightarrow && \int \frac1r \d r &= \int \tan \frac12 \theta \d \theta \\ && \ln r &= -2\ln \cos \tfrac12 \theta+C \\ \Rightarrow && r\cos^2 \frac12 \theta &= C \\ \Rightarrow && r + r\cos \theta &= D \\ \Rightarrow && r &= D-x \\ \Rightarrow && x^2 + y^2 &= D^2 - 2Dx + x^2 \\ \Rightarrow && y^2 &= D^2-2Dx \end{align*} Therefore it is a parabola

    Showing 1-8 of 8 problems
    2016 Paper 3 Q2
    D: 1700.0 B: 1484.0

    The distinct points \(P(ap^2 , 2ap)\), \(Q(aq^2 , 2aq)\) and \(R(ar^2,2ar)\) lie on the parabola \(y^2 = 4ax\), where \(a>0\). The points are such that the normal to the parabola at \(Q\) and the normal to the parabola at \(R\) both pass through \(P\).

    1. Show that \(q^2 +qp + 2 = 0\).
    2. Show that \(QR\) passes through a certain point that is independent of the choice of \(P\).
    3. Let \(T\) be the point of intersection of \(OP\) and \(QR\), where \(O\) is the coordinate origin. Show that \(T\) lies on a line that is independent of the choice of \(P\). Show further that the distance from the \(x\)-axis to \(T\) is less than \(\dfrac {\;a}{\sqrt2}\,\).

    Show Solution
    1. \begin{align*} && 2y \frac{\d y}{\d x} &= 4a \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{2a}{y} \end{align*} Therefore we must have \begin{align*} && \underbrace{-\frac{2aq}{2a}}_{\text{gradient of normal}} &= \underbrace{\frac{2ap-2aq}{ap^2-aq^2}}_{\Delta y / \Delta x} \\ \Rightarrow && -q &= \frac{2}{p+q} \\ && 0 &= 2 + pq+q^2 \end{align*}
    2. We must have that \(q,r\) are the two roots of \(x^2+px+2 = 0\) \(QR\) has the equation: \begin{align*} && \frac{y-2aq}{x-aq^2} &= \frac{2ar-2aq}{ar^2-aq^2} \\ \Rightarrow && \frac{y-2aq}{x-aq^2} &= \frac{2}{r+q} \\ \Rightarrow && y &= \frac{2}{q+r}(x-aq^2) +2aq \\ && y &= -\frac{2}{p}x+2a\left(q-\frac{q^2}{q+r} \right) \\ &&y&= -\frac{2}{p}x+2a \frac{qr}{q+r} \\ && y &= -\frac{2}{p}x - 2a \frac{2}{p} \\ && y & = -\frac{2}{p}(x+2a) \end{align*} Therefore the point \((-2a,0)\) lies on all such lines.
    3. \(OP\) has equation \(y = \frac{2}{p} x\) \begin{align*} && y &= \frac{2}{p} x \\ && y & = -\frac{2}{p}(x+2a) \\ && 2y &= -\frac{4a}{p} \\ \Rightarrow && y &= -\frac{2a}{p} \\ && x &= -a \end{align*} Therefore \(T\left (-a, -\frac{2a}{p} \right)\) always lies on the line \(x = -a\) The distance to the \(x\)-axis from \(T\) is \(\frac{2a}{|p|}\). We need to show that \(p\) can't be too small. Specifically \(x^2+px+2 = 0\) must have \(2\) real roots, ie \(\Delta = p^2-8 \geq 0 \Rightarrow |p| \geq 2\sqrt{2}\), ie \(\frac{2a}{|p|} \leq \frac{2a}{2\sqrt{2}} = \frac{a}{\sqrt{2}}\) as required.
    2014 Paper 3 Q3
    D: 1700.0 B: 1500.0

    1. The line \(L\) has equation \(y=mx+c\), where \(m>0\) and \(c>0\). Show that, in the case \(mc>a>0\), the shortest distance between \(L\) and the parabola \(y^2=4ax\) is \[ \frac{mc-a}{m\sqrt{m^2+1}}\,.\] What is the shortest distance in the case that \(mc\le a\)?
    2. Find the shortest distance between the point \((p,0)\), where \(p>0\), and the parabola \(y^2=4ax\), where \(a>0\), in the different cases that arise according to the value of \(p/a\). [\textit{You may wish to use the parametric coordinates \((at^2, 2at)\) of points on the parabola.}] Hence find the shortest distance between the circle $(x-p)^2 + y^2 =b^2\(, where \)p>0\( and \)b>0\(, and the parabola \)y^2=4ax\(, where \)a>0$, in the different cases that arise according to the values of \(p\), \(a\) and~\(b\).

    2008 Paper 3 Q3
    D: 1700.0 B: 1484.8

    The point \(P(a\cos\theta\,,\, b\sin\theta)\), where \(a>b>0\), lies on the ellipse \[\dfrac {x^2}{a^2} + \dfrac {y^2}{b^2}=1\,.\] The point \(S(-ea\,,\,0)\), where \(b^2=a^2(1-e^2)\,\), is a focus of the ellipse. The point \(N\) is the foot of the perpendicular from the origin, \(O\), to the tangent to the ellipse at \(P\). The lines \(SP\) and \(ON\) intersect at \(T\). Show that the \(y\)-coordinate of \(T\) is \[\dfrac{b\sin\theta}{1+e\cos\theta}\,.\] Show that \(T\) lies on the circle with centre \(S\) and radius \(a\).

    Show Solution
    Find the gradient of the tangent of the ellipse at \(P\): \begin{align*} && \frac{2x}{a^2} + \frac{2y}{b^2} \frac{\d y}{\d x} &= 0 \\ \Rightarrow && \frac{\d y}{\d x} &= - \frac{2xb^2}{2ya^2} \\ &&&=- \frac{a \cos \theta b^2}{b \sin \theta a^2} \\ &&&=-\frac{b}{a} \cot \theta \end{align*} Therefore the gradient of \(ON\) is \(\frac{a}{b} \tan \theta\). \begin{align*} && y &= \frac{a}{b} \tan \theta x \\ && \frac{y-0}{x-(-ea)} &= \frac{b\sin \theta-0}{a\cos \theta -(-ea)} \\ && y &= \frac{b \sin \theta}{a(e+\cos \theta)}(x+ea) \\ \Rightarrow && y &= \frac{b \sin \theta}{a(\cos \theta+e)}\frac{b}{a} \cot \theta y+ \frac{eb \sin \theta}{\cos \theta + e} \\ &&&= \frac{b^2 \cos \theta}{a^2(\cos \theta +e)}y + \frac{eb \sin \theta}{\cos \theta + e} \\ \Rightarrow && (\cos \theta+e)y &= (1-e^2)\cos \theta y +eb \sin \theta\\ && e(1+e\cos \theta)y &= eb \sin \theta \\ \Rightarrow && y &= \frac{b \sin \theta}{1+e\cos \theta} \\ && x &= \frac{b \sin \theta}{1+e\cos \theta} \frac{b}{a} \cot \theta \\ &&&= \frac{b^2 \cos \theta}{a(1+e\cos \theta)} \end{align*} Therefore \(\displaystyle T\left (\frac{b^2 \cos \theta}{a(1+e\cos \theta)}, \frac{b \sin \theta}{1+e\cos \theta} \right)\). Finally, we can look at the distance of \(T\) from \(S\) \begin{align*} && d^2 &= \left (\frac{b^2 \cos \theta}{a(1+e\cos \theta)}-(-ea) \right)^2 + \left (\frac{b \sin \theta}{1+e\cos \theta} -0\right)^2 \\ &&&= \frac{\left (b^2 \cos \theta+ea^2(1+e\cos\theta)\right)^2 + \left ( ab \sin \theta\right)^2}{a^2(1+e\cos \theta)^2} \\ &&&= \frac{b^4\cos^2\theta+e^2a^4(1+e\cos\theta)^2+2ea^2b^2(1+e\cos\theta)+a^2b^2\sin^2\theta}{a^2(1+e\cos\theta)^2} \\ &&&= \frac{a^4(1-e^2)^2\cos^2\theta+e^2a^4(1+e\cos\theta)^2+2ea^2a^2(1-e^2)(1+e\cos\theta)+a^4(1-e^2)\sin^2\theta}{a^2(1+e\cos\theta)^2} \\ &&&= a^2 \left ( \frac{(1-e^2)^2\cos^2\theta+e^2(1+e\cos\theta)^2+2e(1-e^2)(1+e\cos\theta)+(1-e^2)(1-\cos^2\theta)}{(1+e\cos\theta)^2} \right) \\ &&&= a^2 \left ( \frac{e^2(1+e\cos\theta)^2+(1-e^2)((1-e^2)\cos^2\theta+2e(1+e\cos\theta)+(1-\cos^2\theta))}{(1+e\cos\theta)^2} \right) \\ &&&= a^2 \left ( \frac{e^2(1+e\cos\theta)^2+(1-e^2)(1+e\cos\theta)^2}{(1+e\cos\theta)^2} \right) \\ &&&= a^2 \end{align*} Therefore a circle radius \(a\) centre \(S\).
    TikZ diagram
    2005 Paper 3 Q5
    D: 1700.0 B: 1502.1

    Let \(P\) be the point on the curve \(y=ax^2+bx+c\) (where \(a\) is non-zero) at which the gradient is \(m\). Show that the equation of the tangent at \(P\) is \[ y-mx=c-\frac{(m-b)^2}{4a}\;. \] Show that the curves \(y=a_1 x^2+b_1 x+c_1\) and \(y=a_2 x^2+b_2 x+c_2\) (where \(a_1\) and \(a_2\) are non-zero) have a common tangent with gradient \(m\) if and only if \[ (a_2 -a_1 )m^2 + 2(a_1 b_2-a_2 b_1)m + 4a_1 a_2(c_2-c_1)+ a_2 b_1^2-a_1 b_2 ^2=0\;. \] Show that, in the case \(a_1 \ne a_2 \,\), the two curves have exactly one common tangent if and only if they touch each other. In the case \(a_1 =a_2\,\), find a necessary and sufficient condition for the two curves to have exactly one common tangent.

    Show Solution
    \begin{align*} && y' &= 2ax+b \\ \Rightarrow && m &= 2ax_t+b \\ \Rightarrow && x_t &= \frac{m-b}{2a} \end{align*} Therefore we must have \begin{align*} mx_t &= 2ax_t^2+bx_t \\ y - mx &= ax_t^2+bx_t+c - mx_t \\ &= ax_t^2+bx_t+c - (2ax_t^2+bx_t) \\ &= c - ax_t^2 \\ &= c-a\left (\frac{m-b}{2a} \right)^2 \\ &= c - \frac{(m-b)^2}{4a} \end{align*} They will have a common tangent if and only if the constant terms are equal, ie \begin{align*} && c_1 - \frac{(m-b_1)^2}{4a_1} &= c_2 - \frac{(m-b_2)^2}{4a_2} \\ \Leftrightarrow && (c_1-c_2) &= \frac{(m-b_1)^2}{4a_1} -\frac{(m-b_2)^2}{4a_2} \\ \Leftrightarrow && 4a_1a_2(c_1-c_2) &= a_2(m-b_1)^2-a_1(m-b_2)^2 \\ &&&= (a_2-a_1)m^2+2(a_1b_2-a_2b_1)m+a_2b_1^2-a_1b_2^2 \end{align*} as required. Treating this as a polynomial in \(m\), we can see that the two curves will have exactly one common tangent iff \(\Delta = 0\), ie: \begin{align*} && 0 &= \Delta \\ &&&= (2(a_1b_2-a_2b_1))^2 - 4 (a_2-a_1)(4a_1 a_2(c_2-c_1)+ a_2 b_1^2-a_1 b_2 ^2) \\ &&&= 4a_1^2b_2^2-8a_1a_2b_1b_2+4a_2b_1^2 - 4a_2^2b_1^2-4a_1^2b_2^2 + 4a_1a_2(b_1^2+b_2^2)-16(a_2-a_1)a_1a_2(c_2-c_1) \\ &&&=-8a_1a_2b_1b_2+4a_1a_2(b_1^2+b_2^2)-16(a_2-a_1)a_1a_2(c_2-c_1) \\ &&&=a_1a_2(4(b_1-b_2)^2-16(a_2-a_1)(c_2-c_1)) \\ &&&= 4a_1a_2((b_2-b_1)^2 - 4(a_2-a_1)(c_2-c_1) \end{align*} But this is just the discriminant of the difference, ie equivalent to the two parabolas just touching. (Assuming \(a_1-a_2 \neq 0\) and we do end up with a quadratic). If \(a_1 = a_2 = a\) then we need exactly one solution to \(2a(b_1-b_2)m +4a^2(c_2-c_1)+a(b_1^2-b_2^2) = 0\), ie \(b_1 \neq b_2\).
    2003 Paper 3 Q7
    D: 1700.0 B: 1484.0

    In the \(x\)--\(y\) plane, the point \(A\) has coordinates \((a\,,0)\) and the point \(B\) has coordinates \((0\,,b)\,\), where \(a\) and \(b\) are positive. The point \(P\,\), which is distinct from \(A\) and \(B\), has coordinates~\((s,t)\,\). \(X\) and \(Y\) are the feet of the perpendiculars from \(P\) to the \(x\)--axis and \(y\)--axis respectively, and \(N\) is the foot of the perpendicular from \(P\) to the line \(AB\,\). Show that the coordinates \((x\,,y)\) of \(N\) are given by \[ x= \frac {ab^2 -a(bt-as)}{a^2+b^2} \;, \ \ \ y = \frac{a^2b +b(bt-as)}{a^2+b^2} \;. \] Show that, if $\ds \ \left( \frac{t-b} s\right)\left( \frac t {s-a}\right) = -1\;\(, then \)N$ lies on the line \(XY\,\). Give a geometrical interpretation of this result.

    1994 Paper 1 Q5
    D: 1500.0 B: 1516.0

    A parabola has the equation \(y=x^{2}.\) The points \(P\) and \(Q\) with coordinates \((p,p^{2})\) and \((q,q^{2})\) respectively move on the parabola in such a way that \(\angle POQ\) is always a right angle.

    1. Find and sketch the locus of the midpoint \(R\) of the chord \(PQ.\)
    2. Find and sketch the locus of the point \(T\) where the tangents to the parabola at \(P\) and \(Q\) intersect.

    Show Solution
    1. The line \(PO\) has gradient \(\frac{p^2}{p} = p\) and teh line \(QO\) has gradient \(q\), therefore we must have that \(pq = -1\). Therefore, \(R\) is the point \begin{align*} && R &= \left ( \frac{p-\frac{1}{p}}{2}, \frac{p^2+\frac{1}{p^2}}{2} \right) \\ &&&= \left ( \frac12\left ( p - \frac{1}{p} \right),2\left (\frac12 \left(p-\frac{1}{p}\right) \right)^2+1 \right) \\ &&&= \left ( t, 2t^2+1\right) \end{align*} So we are looking at another parabola.
      TikZ diagram
    2. The tangents are \(y = 2px+c\), ie \(p^2 = 2p^2+c\), ie \(y = 2px -p^2\) so we have \begin{align*} && y - 2px &= -p^2 \\ && y - 2qx &= -q^2 \\ \Rightarrow && (2p-2q)x &= p^2-q^2 \\ \Rightarrow && x &= \frac12 (p+q)\\ && y &= p(p+q)-p^2 \\ && y &= pq = -1 \end{align*} Therefore \(x = \frac12(p - \frac1p), y= -1\), so we have the line \(y = -1\) (the directrix)
      TikZ diagram
    1992 Paper 3 Q9
    D: 1700.0 B: 1515.1

    The straight line \(OSA,\) where \(O\) is the origin, bisects the angle between the positive \(x\) and \(y\) axes. The ellipse \(E\) has \(S\) as focus. In polar coordinates with \(S\) as pole and \(SA\) as the initial line, \(E\) has equation \(\ell=r(1+e\cos\theta).\) Show that, at the point on \(E\) given by \(\theta=\alpha,\) the gradient of the tangent to the ellipse is given by \[ \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\sin\alpha-\cos\alpha-e}{\sin\alpha+\cos\alpha+e}. \] The points on \(E\) given by \(\theta=\alpha\) and \(\theta=\beta\) are the ends of a diameter of \(E\). Show that \[ \tan(\alpha/2)\tan(\beta/2)=-\frac{1+e}{1-e}. \] [Hint. A diameter of an ellipse is a chord through its centre.]

    Show Solution
    TikZ diagram
    \begin{align*} && \ell &= r(1 + e \cos \theta) \\ \Rightarrow && 0 &= \frac{\d r}{\d \theta}(1 + e \cos \theta) - re \sin \theta \\ \Rightarrow && \frac{\d r}{\d \theta} &= \frac{re \sin \theta}{1+e \cos \theta} \end{align*} Suppose we consider the \((x',y')\) plane, which is essentially the \(x-y\) plan rotated by \(45^\circ\), then we would have \begin{align*} && \frac{\d y'}{ \d x'} &= \frac{\frac{\d y'}{\d \theta}}{\frac{\d x'}{\d \theta}} \\ &&&= \frac{\frac{\d r}{\d \theta} \sin \theta + r\cos \theta}{\frac{\d r}{\d \theta} \cos \theta - r\sin \theta} \\ &&&= \frac{\frac{re \sin \theta}{1+e \cos \theta} \sin \theta + r\cos \theta}{\frac{re \sin \theta}{1+e \cos \theta} \cos\theta -r\sin \theta} \\ &&&= \frac{re\sin^2 \theta+r \cos \theta(1+e \cos \theta)}{re\sin \theta \cos \theta -r \sin \theta (1+e \cos \theta)} \\ &&&= \frac{\cos \theta + e \cos^2 \theta+e \sin^2 \theta}{-\sin \theta} \\ &&&= \frac{\cos \theta + e}{-\sin \theta} \end{align*} Since our frame is rotated by \(45^\circ\) we need to consider the appropriate gradient for this. We know that \(m = \tan \theta\) so \(m' = \tan (\theta+45^{\circ}) = \frac{1+m}{1-m}\) therefore we should have \begin{align*} && \frac{\d y}{ \d x} &= \frac{1+\frac{\cos \theta + e}{-\sin \theta}}{1-\frac{\cos \theta + e}{-\sin \theta}} \\ &&&= \frac{\cos \theta - \sin \theta + e}{-\sin \theta - \cos \theta-e} \\ &&&= \frac{\sin \theta - \cos \theta -e}{\sin \theta + \cos \theta +e} \end{align*} As required. The tangents at those points are parallel, therefore \begin{align*} && \frac{\cos \alpha+e}{\sin \alpha} &= \frac{\cos \beta+e}{\sin \beta} \\ \Rightarrow && \frac{\frac{1-\tan^2 \frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}}+e}{\frac{2\tan \frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}}} &= \frac{\frac{1-\tan^2 \frac{\beta}{2}}{1+\tan^2 \frac{\beta}{2}}+e}{\frac{2\tan \frac{\beta}{2}}{1+\tan^2 \frac{\beta}{2}}} \\ && \frac{1-\tan^2 \frac{\alpha}{2}+e(1+\tan^2\frac{\alpha}{2})}{2\tan\frac{\alpha}{2}} &= \frac{1-\tan^2 \frac{\beta}{2}+e(1+\tan^2\frac{\beta}{2})}{2\tan\frac{\beta}{2}} \\ && \frac{(1+e)+(e-1)\tan^2 \frac{\alpha}{2}}{2\tan \frac{\alpha}{2}} &= \frac{(1+e)+(e-1)\tan^2 \frac{\beta}{2}}{2\tan \frac{\beta}{2}} \\ && \frac{(1+e)}{\tan\frac{\alpha}2} - (1-e)\tan\frac{\alpha}2 &= \frac{(1+e)}{\tan\frac{\beta}2} - (1-e)\tan\frac{\beta}2 \end{align*} ie both \(\tan \frac{\alpha}{2}\) and \(\tan \frac{\beta}{2}\) are roots of a quadratic of the form \((1-e)x^2-cx-(1+e)\) but this means the product of the roots is \(-\frac{1+e}{1-e}\)
    1988 Paper 3 Q8
    D: 1700.0 B: 1500.0

    Find the equations of the tangent and normal to the parabola \(y^{2}=4ax\) at the point \((at^{2},2at).\) For \(i=1,2,\) and 3, let \(P_{i}\) be the point \((at_{i}^{2},2at_{i}),\) where \(t_{1},t_{2}\) and \(t_{3}\) are all distinct. Let \(A_{1}\) be the area of the triangle formed by the tangents at \(P_{1},P_{2}\) and \(P_{3},\) and let \(A_{2}\) be the area of the triangle formed by the normals at \(P_{1},P_{2}\) and \(P_{3}.\) Using the fact that the area of the triangle with vertices at \((x_{1},y_{1}),(x_{2},y_{2})\) and \((x_{3},y_{3})\) is the absolute value of \[ \tfrac{1}{2}\det\begin{pmatrix}x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{pmatrix}, \] show that \(A_{3}=(t_{1}+t_{2}+t_{3})^{2}A_{1}.\) Deduce a necessary and sufficient condition in terms of \(t_{1},t_{2}\) and \(t_{3}\) for the normals at \(P_{1},P_{2}\) and \(P_{3}\) to be concurrent.

    Show Solution
    \(\frac{dy}{dt} = 2a, \frac{dx}{dt} = 2at \Rightarrow \frac{dy}{dx} = \frac{1}{t}\). Therefore the equation of the tangent will be \(\frac{y - 2at}{x-at^2} = \frac{1}{t} \Rightarrow y = \frac1tx +at\) and normal will be \(\frac{y-2at}{x-at^2} = -t \Rightarrow y = t(at^2-x+2a)\). The tangents will meet when: \begin{align*} && \begin{cases} t_iy -x &= at_i^2 \\ t_j y - x &= at_j^2 \\ \end{cases} \\ \Rightarrow &&(t_i - t_j)y &= a(t_i-t_j)(t_i+t_j) \\ \Rightarrow && y &= a(t_i+t_j) \\ && x &= at_it_j \end{align*} The normals will meet when: \begin{align*} && \begin{cases} y +t_i x &= at_i^3+2at_i \\ y +t_j x &= at_j^3+2at_j \\ \end{cases} \\ \Rightarrow &&(t_i - t_j)x &= a(t_i-t_j)(t_i^2+t_it_j+t_j^2+2) \\ \Rightarrow && x&= a(t_i^2+t_it_j+t_j^2+2) \\ && y &= -at_it_j(t_i+t_j) \end{align*} Therefore the area of our triangles will be: \begin{align*} \tfrac{1}{2}\det\begin{pmatrix}at_1t_2 & a(t_1+t_2) & 1\\ at_2t_3 & a(t_2+t_3) & 1\\ at_3t_1 & a(t_3+t_1) & 1 \end{pmatrix} &= \frac{a^2}{2}\det\begin{pmatrix}t_1t_2 & (t_1+t_2) & 1\\ t_2t_3 & (t_2+t_3) & 1\\ t_3t_1 & (t_3+t_1) & 1 \end{pmatrix} \\ &= \frac{a^2}{2}\det\begin{pmatrix}t_1t_2 & (t_1+t_2) & 1\\ t_2(t_3-t_1) & (t_3-t_1) & 0\\ t_1(t_3-t_2) & (t_3-t_2) & 0 \end{pmatrix} \\ &= \frac{a^2}{2}|(t_2-t_1)(t_3-t_2)(t_1-t_3)| \end{align*} and \begin{align*} \tfrac{1}{2}\det\begin{pmatrix}a(t_1^2+t_1t_2+t_2^2+2) & -at_1t_2(t_1+t_2) & 1\\ a(t_2^2+t_2t_3+t_3^2+2) & -at_2t_3(t_2+t_3) & 1\\ a(t_3^2+t_3t_1+t_1^2+2) & -at_3t_1(t_3+t_1) & 1\\ \end{pmatrix} &= \frac{a^2}{2}\det\begin{pmatrix}(t_1^2+t_1t_2+t_2^2+2) & -t_1t_2(t_1+t_2) & 1\\ (t_2^2+t_2t_3+t_3^2+2) & -t_2t_3(t_2+t_3) & 1\\ (t_3^2+t_3t_1+t_1^2+2) & -t_3t_1(t_3+t_1) & 1\\ \end{pmatrix} \\ &= \frac{a^2}{2}\det\begin{pmatrix}(t_1^2+t_1t_2+t_2^2+2) & -t_1t_2(t_1+t_2) & 1\\ t_3^2-t_1^2+t_2(t_3-t_1) & t_2(t_1^2+t_1t_2-t_2t_3-t_3^2) & 0\\ t_3^2-t_2^2+t_1(t_3-t_2) & t_1(t_2^2+t_2t_1-t_1t_3-t_3^2) & 0\\ \end{pmatrix} \\ &= \frac{a^2}{2}\det\begin{pmatrix}(t_1^2+t_1t_2+t_2^2+2) & -t_1t_2(t_1+t_2) & 1\\ (t_3-t_1)(t_3+t_2+t_1) & t_2(t_1-t_3)(t_1+t_3+t_2) & 0\\ (t_3-t_2)(t_3+t_2+t_1) & t_1(t_2-t_3)(t_1+t_2+t_3)& 0\\ \end{pmatrix} \\ &= \frac{a^2}{2}(t_1+t_2+t_3)^2|(t_2-t_1)(t_3-t_2)(t_1-t_3)| \end{align*} as required. The normals will be concurrent iff the area of their triangle is \(0\). This is certainly true if \(t_1+t_2+t_3 = 0\). In fact the only if is also true, since no \(3\) tangents can be concurrent.

    Showing 1-17 of 17 problems
    2018 Paper 3 Q8
    D: 1700.0 B: 1516.0

    In this question, you should ignore issues of convergence.

    1. Let \[ I = \int_0^1 \frac{\f(x^{-1}) } {1+x} \, \d x \,, \] where \(\f(x)\) is a function for which the integral exists. Show that \[ I = \sum_{n=1}^\infty \int_n^{n+1} \frac{\f(y) } {y(1+y)}\, \d y \] and deduce that, if \(\f(x) = \f(x+1)\) for all \(x\), then \[ I= \int_0^1 \frac{\f(x)} {1+x} \, \d x \,. \]
    2. The {\em fractional part}, \(\{x\}\), of a real number \(x\) is defined to be \(x-\lfloor x\rfloor\) where \(\lfloor x \rfloor\) is the largest integer less than or equal to \(x\). For example \(\{3.2\} = 0.2\) and \(\{3\}=0\,\). Use the result of part (i) to evaluate \[ \displaystyle \int _0^1 \frac { \{x^{-1}\}}{1+x}\, \d x \text{ and } \displaystyle \int _0^1 \frac { \{2x^{-1}\}}{1+x}\, \d x \,. \]
    3. (Bonus) Use the same method to evaluate \[ \int_0^1 \frac {x\{x^{-1}\}}{1-x^2} \, \d x \,. \]
    4. (Bonus - harder) Use the same method to evaluate \[ \int_0^1 \frac {x^2\{x^{-1}\}}{1-x^2} \, \d x \,. \]

    Show Solution
    1. \begin{align*} && I &= \int_0^1 \frac{f(x^{-1})}{1+x} \d x \\ u = x^{-1}, \d u = -x^{-2} \d x: &&&= \int_{\infty}^1 \frac{f(u)}{1+\frac{1}{u}} \frac{-1}{u^2} \d u \\ &&&= \int_1^{\infty} \frac{f(u)}{u(1+u)} \d u \\ &&&= \sum_{n=1}^{\infty} \int_n^{n+1} \frac{f(u)}{u(u+1)} \d u \\ \\ \text{if} f(x) = f(x+1)\, \forall x && &=\sum_{n=1}^{\infty} \int_{0}^1 \frac{f(x+n)}{(x+n)(x+n+1)} \d x \\ &&&= \sum_{n=1}^\infty \int_0^1 \frac{f(x)}{(x+n)(x+n+1)} \d x \\ &&&= \int_0^1 f(x) \l \sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}\r \d x \\ &&&= \int_0^1 f(x) \l \sum_{n=1}^{\infty} \l \frac{1}{x+n} - \frac{1}{x+n+1} \r\r \d x \\ &&&= \int_0^1 f(x) \l \frac{1}{x+1} \r \d x \\ &&&= \int_0^1\frac{f(x)}{x+1} \d x \\ \end{align*}
    2. Since the fractional part is periodic with period \(1\), we can say \begin{align*} && \int_0^1 \frac{\{ x^{-1} \} }{1+x} \d x &= \int_0^1 \frac{\{ x\}}{x+1} \d x \\ &&&= \int_0^1 \frac{x}{x+1} \d x \\ &&&= \int_0^1 1-\frac{1}{x+1} \d x \\ &&&= [x - \ln (1+x) ]_0^1 \\ &&&= 1 - \ln 2 \end{align*} \begin{align*} && \int_0^1 \frac{\{ 2x^{-1}\}}{1+x} \d x &= \int_0^1 \frac{\{2x\}}{x+1} \d x \\ &&&= \int_0^{1/2} \frac{2x}{x+1} \d x +\int_{1/2}^{1} \frac{2x-1}{x+1} \d x \\ &&&= 2\int_0^1 \frac{x}{x+1} \d x + \int_{1/2}^1 \frac{-1}{x+1} \d x \\ &&&= 2 - 2\ln 2 - \l \ln 2 - \ln \tfrac32 \r \\ &&&= 2 - 4 \ln 2 + \ln 3 \\ &&&= 2 + \ln \tfrac {3}{16} \end{align*}
    3. \begin{align*} && \int_0^1 \frac{x \{ x^{-1} \} }{1-x^2} \d x &= \frac12 \l \int_0^1 \frac{ \{ x^{-1} \}}{1-x} - \frac{\{x^{-1} \}}{1+x} \d x\r \end{align*} Consider for \(f\) periodic with period \(1\) \begin{align*} \int_0^1 \frac{f(x^{-1})}{1-x} \d x &= \int_1^{\infty} \frac{f(u)}{u(u-1)} \d u \\ &= \sum_{n=1}^{\infty}\int_{n}^{n+1} \frac{f(u)}{u(u-1)} \d u \\ &= \sum_{n=1}^{\infty}\int_{0}^{1} \frac{f(u)}{(u+n)(u+n-1)} \d u \\ &= \int_{0}^{1} \sum_{n=1}^{\infty}\frac{f(u)}{(u+n)(u+n-1)} \d u \\ &= \int_{0}^{1} f(u) \sum_{n=1}^{\infty}\l\frac{1}{u+n-1} - \frac{1}{u+n} \r\d u \\ &= \int_0^1 \frac{f(u)}{u} \d u \end{align*} So we have \begin{align*} && \int_0^1 \frac{x \{ x^{-1} \} }{1-x^2} \d x &= \frac12 \l \int_0^1 \frac{ \{ x^{-1} \}}{1-x} - \frac{\{x^{-1} \}}{1+x} \d x \r \\ &&&= \frac12 \int_0^1 \frac{\{ x \}}{x} \d x - \frac12 (1 - \ln 2) \\ &&&= \frac12 - \frac12 + \frac12 \ln 2 \\ &&&= \frac12 \ln 2 \end{align*}
    2018 Paper 2 Q5
    D: 1600.0 B: 1505.3

    In this question, you should ignore issues of convergence.

    1. Write down the binomial expansion, for \(\vert x \vert<1\,\), of \(\;\dfrac{1}{1+x}\,\) and deduce that %. By considering %$ %\displaystyle \int \frac 1 {1+x} \, \d x %\,, %$ %show that \[ \displaystyle \ln (1+x) = -\sum_{n=1}^\infty \frac {(-x)^n}n \, \] for \(\vert x \vert <1 \,\).
    2. Write down the series expansion in powers of \(x\) of \(\displaystyle \e^{-ax}\,\). Use this expansion to show that \[ \int_0^\infty \frac {\left(1- \e^{-ax}\right)\e^{-x}}x \,\d x = \ln(1+a) \ \ \ \ \ \ \ (\vert a \vert <1)\,. \]
    3. Deduce the value of \[ \int_0^1 \frac{x^p - x^q}{\ln x} \, \d x \ \ \ \ \ \ (\vert p\vert <1, \ \vert q\vert <1) \,. \]

    Show Solution
    1. \begin{align*} && \frac1{1+x} &= 1 - x+ x^2 - x^3+ \cdots \\ \Rightarrow && \int_0^x \frac{1}{1+t} \d t &= \int_0^x \sum_{n=0}^{\infty} (-t)^n \d t \\ &&&= \left [\sum_{n=0}^{\infty} -\frac{(-t)^{n+1}}{n+1} \right]_0^x \\ \Rightarrow &&\ln(1+x)&=- \sum_{n=1}^\infty \frac{(-x)^n}{n} \end{align*}
    2. \begin{align*} && e^{-ax} &= \sum_{n=0}^\infty \frac{(-a)^n}{n!} x^n \\ \Rightarrow && \int_0^{\infty} \frac{1}{x} \left (1-e^{-ax} \right)e^{-x} \d x &= \int_0^{\infty} \frac{1}{x} \left (-\sum_{n=1}^\infty \frac{(-a)^n}{n!}x^n \right)e^{-x} \d x \\ &&&= -\int_0^{\infty} \sum_{n=1}^\infty \frac{(-a)^n}{n!} x^{n-1} e^{-x} \d x \\ &&&= -\sum_{n=1}^\infty \frac{(-a)^n}{n!} \int_0^{\infty} x^{n-1} e^{-x} \d x \\ &&&= -\sum_{n=1}^\infty \frac{(-a)^n}{n!} (n-1)! \\ &&&= -\sum_{n=1}^\infty \frac{(-a)^n}{n} \\ &&&= \ln (1+a) \end{align*}
    3. \begin{align*} && \int_0^1 \frac{x^p - x^q}{\ln x} \, \d x &= \int_0^1 \frac{x^p(1 - x^{q-p})}{\ln x} \, \d x \\ e^{-u} = x, \d x = -e^{-u} \d u: &&&=\int_{u=\infty}^{0} \frac{e^{-pu}-e^{-qu}}{-u} (-e^{-u})\d u \\ &&&= \int_0^\infty \frac{e^{-u}(e^{-qu}-e^{-pu})}{u} \d u \\ &&&= \int_0^\infty \frac{e^{-(1+q)u}(1-e^{-(p-q)u})}{u} \d u \\ v = (1+q)u, \d v = (1+q) \d u: &&&=\int_0^{\infty} \frac{e^{-v}(1-e^{-\left(\frac{p-q}{1+q}\right)v}}{v}\d v \\ &&&= \ln \left(1 + \frac{p-q}{1+q} \right) \\ &&&= \ln \left ( \frac{1+p}{1+q} \right) \end{align*}
    2015 Paper 2 Q1
    D: 1600.0 B: 1516.0

    1. By use of calculus, show that \(x- \ln(1+x)\) is positive for all positive \(x\). Use this result to show that \[ \sum_{k=1}^n \frac 1 k > \ln (n+1) \,. \]
    2. By considering \( x+\ln (1-x)\), show that \[ \sum_{k=1}^\infty \frac 1 {k^2} <1+ \ln 2 \,. \]

    Show Solution
    1. Consider \(f(x) = x - \ln (1+ x)\), then \(f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0\) if \(x >0\). Therefore \(f(x)\) is strictly increasing on the positive reals. Since \(f(0) = 0\) we must have \(f(x) > 0\) for all positive \(x\), ie \(x - \ln(1+x)\) is positive for all positive \(x\). \begin{align*} \sum_{k=1}^n \frac1k &\underbrace{>}_{x > \ln(1+x)} \sum_{k=1}^n \ln \left (1 + \frac1k \right ) \\ &= \sum_{k=1}^n \ln \left ( \frac{k+1}{k} \right ) \\ &= \sum_{k=1}^n \left ( \ln (k+1) - \ln (k) \right) \\ &= \ln (n+1) - \ln 1 \\ &= \ln (n+1) \end{align*}
    2. Let \(g(x) = x + \ln (1-x)\) ,then \(g'(x) = 1 - \frac{1}{1-x} = \frac{-x}{1-x} < 0\) if \(0 < x < 1\) and \(g(0) = 0\). Therefore \(g(x)\) is decreasing and hence negative on \(0 < x < 1\), in particular \(x < -\ln(1-x) \) \begin{align*} \sum_{k=2}^n \frac1{k^2} &\underbrace{<}_{x < -\ln(1+x)} \sum_{k=2}^n - \ln \left (1-\frac1{k^2} \right) \\ &= -\sum_{k=2}^n \ln \left ( \frac{k^2-1}{k^2}\right) \\ &= \sum_{k=2}^n \l 2 \ln k - \ln(k-1) - \ln(k+1) \r \\ &= \ln n - \ln(n+1) - \ln 0+\ln 2 \\ &= \ln 2 + \ln \frac{n}{n+1} \end{align*} as \(n \to \infty\) we must have \(\displaystyle \sum_{k=2}^{\infty} \frac1{k^2} < \ln 2\) ie \[ \sum_{k=1}^\infty \frac 1 {k^2} <1+ \ln 2\]
    2013 Paper 3 Q2
    D: 1700.0 B: 1516.0

    In this question, you may ignore questions of convergence. Let \(y= \dfrac {\arcsin x}{\sqrt{1-x^2}}\,\). Show that \[ (1-x^2)\frac {\d y}{\d x} -xy -1 =0 \] and prove that, for any positive integer \(n\), \[ (1-x^2) \frac{\d^{n+2}y}{\d x^{n+2}} - (2n+3)x \frac{\d ^{n+1}y}{\d x ^{n+1}} -(n+1)^2 \frac{\d^ny}{\d x^n}=0\, . \] Hence obtain the Maclaurin series for \( \dfrac {\arcsin x}{\sqrt{1-x^2}}\,\), giving the general term for odd and for even powers of \(x\). Evaluate the infinite sum \[ 1 + \frac 1 {3!} + \frac{2^2}{5!} + \frac {2^2\times 3^2}{7!}+\cdots + \frac {2^2\times 3^2\times \cdots \times n^2}{(2n+1)!} + \cdots\,. \]

    Show Solution
    \begin{align*} && y &= \frac{\arcsin x}{\sqrt{1-x^2}} \\ && \frac{\d y}{\d x} &= \frac{(1-x^2)^{-1/2} \cdot (1-x^2)^{1/2}-\arcsin x \cdot (-x)(1-x^2)^{-1/2}}{1-x^2} \\ &&&= \frac{1+ xy}{1-x^2} \\ \Rightarrow && 0 &= (1-x^2) \frac{\d y}{\d x} -xy-1\\ \\ \frac{\d^n}{\d x^{n+1}}: && 0 &= \left ( (1-x^2) y' \right)^{(n+1)} - (xy)^{(n+1)} \\ \Rightarrow && 0 &= (1-x^2)y^{(n+2)} + \binom{n+1}{1}(1-x^2)^{(1)}y^{(n+1)}+\binom{n+1}{2} (1-x^2)^{(2)}y^{(n)} - (xy^{(n+1)} +\binom{n+1}{1} y^{(n)} ) \\ &&&= (1-x^2)y^{(n+2)}+\left ( (n+1)\cdot(-2x)-x \right)y^{(n+1)} + \left ( \frac{(n+1)n}{2} \cdot (-2)-(n+1) \right)y^{(n)} \\ &&&= (1-x^2)y^{(n+2)}-\left ( 2n+3 \right)xy^{(n+1)} - \left ( (n+1)n+(n+1)\right)y^{(n)} \\ &&&= (1-x^2)y^{(n+2)}-\left ( 2n+3 \right)xy^{(n+1)} - \left ( n+1\right)^2y^{(n)} \\ \end{align*} Since \(y(0) = 0, y'(0) = 1\) we can look at the recursion: \(y^{(n+2)} - (n+1)^2y^{(n)}\) for larger terms, ie \(y^{(2k)}(0) = 0\) \(y^{(1)}(0) = 1, y^{(3)}(0) = (1+1)^2 \cdot 1 = 2^2, y^{(5)}(0) = (3+1)^2 y^{(3)} = 4^2 \cdot 2^2\) and \(y^{(2k+1)}(0) = (2k)^2 \cdot (2k-2)^2 \cdots 2^2 \cdot 1^2 = 2^{2k} \cdot (k!)^2\). Therefore \begin{align*} && \frac{\arcsin x}{\sqrt{1-x^2}} &= \sum_{k=0}^{\infty} \frac{2^{2k} \cdot (k!)^2}{(2k+1)!} x^{2k+1} \\ \\ \Rightarrow && \frac{\arcsin \frac12}{\sqrt{1-\left (\frac12 \right)^2}} &= \sum_{k=0}^{\infty} \frac{2^{2k} \cdot (k!)^2}{(2k+1)!} 2^{-2k-1}\\ &&&= \frac12 \sum_{k=0}^{\infty} \frac{ (k!)^2}{(2k+1)!} \\ &&&= \frac12 \left ( 1 + \frac1{3!} + \frac{2^2}{5!} + \cdots+ \right) \\ \Rightarrow&& S &= 2 \frac{2\frac{\pi}{6}}{\sqrt{3}} = \frac{2\pi}{3\sqrt{6}} \end{align*}
    2012 Paper 3 Q4
    D: 1700.0 B: 1500.0

    1. Show that \[ \sum_{n=1} ^\infty \frac{n+1}{n!} = 2\e - 1 \] and \[ \sum _{n=1}^\infty \frac {(n+1)^2}{n!} = 5\e-1\,. \] Sum the series $\displaystyle \sum _{n=1}^\infty \frac {(2n-1)^3}{n!} \,.$
    2. Sum the series $\displaystyle \sum_{n=0}^\infty \frac{(n^2+1)2^{-n}}{(n+1)(n+2)}\,$, giving your answer in terms of natural logarithms.

    Show Solution
    1. \begin{align*} \sum_{n=1}^{\infty} \frac{n+1}{n!} &= \sum_{n=1}^\infty \left ( \frac{1}{(n-1)!} + \frac{1}{n!} \right) \\ &= \sum_{n=0}^\infty \frac{1}{n!} + \sum_{n=1}^\infty \frac{1}{n!} \\ &= \sum_{n=0}^\infty \frac{1}{n!} + \sum_{n=0}^\infty \frac{1}{n!} - 1 \\ &= e + e - 1 \\ &= 2e-1 \end{align*} \begin{align*} \sum_{n=1}^{\infty} \frac{(n+1)^2}{n!} &= \sum_{n=1}^{\infty} \frac{n(n-1) + 3n + 1}{n!} \\ &= \sum_{n=2}^{\infty} \frac{1}{(n-2)!} + 3 \sum_{n=1}^\infty \frac1{(n-1)!} + \sum_{n=1}^\infty \frac{1}{n!} \\ &= \sum_{n=0}^{\infty} \frac{1}{n!} + 3 \sum_{n=0}^\infty \frac1{n!} + \sum_{n=0}^\infty \frac{1}{n!} -1 \\ &= 5e-1 \end{align*} \begin{align*} \sum_{n=1}^\infty \frac{(2n-1)^3}{n!} &= \sum_{n=1}^\infty \frac{8n^3-12n^2+6n-1}{n!} \\ &= \sum_{n=1}^\infty \frac{8n(n-1)(n-2)+12n^2-10n-1}{n!} \\ &= \sum_{n=1}^\infty \frac{8n(n-1)(n-2)+12n(n-1)+2n-1}{n!} \\ &= 8 e+12e+2e-(e-1) \\ &=21e+1 \end{align*}
    2. \begin{align*} \frac{n^2+1}{(n+1)(n+2)} &= \frac{n^2+3n+2-3n-1}{(n+1)(n+2)}\\ &= 1 - \frac{3n+1}{(n+1)(n+2)} \\ &= 1 + \frac{2}{n+1} - \frac{5}{n+2} \\ -\log(1-x) &= \sum_{n=1}^\infty \frac1{n}x^{n} \\ \log(2) &= \sum_{n=1}^\infty \frac{2^{-n}}{n} \\ \sum_{n=0}^\infty \frac{(n^2+1)2^{-n}}{(n+1)(n+2)} &= \sum_{n=0}^{\infty} 2^{-n} + 2 \sum_{n=0}^\infty \frac{2^{-n}}{n+1}-5 \sum_{n=0}^\infty \frac{2^{-n}}{n+2} \\ &= 2 + 2\log2-5 \sum_{n=2}^\infty \frac{2^{-n+2}}{n} \\ &= 2 + 2 \log 2 - 5 \left (2\log 2 - 2 \right) \\ &= 12-8\log2 \end{align*}
    2012 Paper 2 Q4
    D: 1600.0 B: 1500.0

    In this question, you may assume that the infinite series \[ \ln(1+x) = x-\frac{x^2}2 + \frac{x^3}{3} -\frac {x^4}4 +\cdots + (-1)^{n+1} \frac {x^n}{n} + \cdots \] is valid for \(\vert x \vert <1\).

    1. Let \(n\) be an integer greater than 1. Show that, for any positive integer \(k\), \[ \frac1{(k+1)n^{k+1}} < \frac1{kn^{k}}\,. \] Hence show that \(\displaystyle \ln\! \left(1+\frac1n\right) <\frac1n\,\). Deduce that \[ \left(1+\frac1n\right)^{\!n}<\e\,. \]
    2. Show, using an expansion in powers of \(\dfrac1y\,\), that $ \displaystyle \ln \! \left(\frac{2y+1}{2y-1}\right) > \frac 1y %= \sum _{r=0}^\infty \frac 1{(2r+1)(2y)^{2r}}\,. \( for \)y>\frac12$. Deduce that, for any positive integer \(n\), \[ \e < \left(1+\frac1n\right)^{\! n+\frac12}\,. \]
    3. Use parts (i) and (ii) to show that as \(n\to\infty\) \[ \left(1+\frac1n\right)^{\!n} \to \e\,. \]

    Show Solution
    1. Since \(k \geq 1\) we have \(n^{k+1} > n^k\) and \((k+1) > k\), therefore \((k+1)n^{k+1} >kn^k \Rightarrow \frac{1}{(k+1)n^{k+1}} < \frac{1}{kn^k}\) \begin{align*} && \ln \left ( 1 + \frac1n \right) &= \frac1n -\frac{1}{2n^2} + \frac{1}{3n^3} - \frac{1}{4n^4} + \cdots \\ &&&= \frac1n - \underbrace{\left (\frac{1}{2n^2}-\frac{1}{3n^3} \right)}_{>0}- \underbrace{\left (\frac{1}{4n^4}-\frac{1}{5n^5} \right)}_{>0} - \cdot \\ &&&< \frac1n \\ \\ \Rightarrow && n \ln \left ( 1 + \frac1n \right) &< 1 \\ \Rightarrow && \ln \left ( \left ( 1 + \frac1n \right)^n \right) &< 1 \\ \Rightarrow && \left ( 1 + \frac1n \right)^n &< e \end{align*}
    2. \(\,\) \begin{align*} &&\ln \left(\frac{2y+1}{2y-1}\right) &= \ln \left (1 + \frac{1}{2y} \right)-\ln \left (1 - \frac{1}{2y} \right) \\ &&&= \frac{1}{2y} - \frac{1}{2(2y)^2} + \frac{1}{3(2y)^3} - \cdots - \left (-\frac{1}{2y} - \frac{1}{2(2y)^2} - \frac{1}{3(2y)^3} - \cdots \right) \\ &&&= \frac{1}{y} + \frac{2}{3(2y)^3} + \frac{2}{5(2y)^5} \\ &&&= \sum_{r=1}^{\infty} \frac{2}{(2r-1)(2y)^{2r-1}} \\ &&&> \frac1y \\ \\ \Rightarrow && \ln \left (1 + \frac{1}{y-\frac12} \right) &> \frac{1}{y} \\\Rightarrow && \ln \left (1 + \frac{1}{n} \right) &> \frac{1}{n+\frac12} \\ \Rightarrow &&(n+\tfrac12) \ln \left (1 + \frac{1}{n} \right) &> 1\\ \Rightarrow && \ln \left ( \left (1 + \frac{1}{n} \right)^{n+\tfrac12} \right) &> 1\\ \Rightarrow && \left (1 + \frac{1}{n} \right)^{n+\tfrac12} & > e \end{align*}
    \item Since \(\left (1 + \frac1n \right)^n\) is both bounded above, and increasing, it must tend to some limit \(L\). \begin{align*} && \lim_{n \to \infty} \left (1 + \frac1n \right)^n && \leq e &\leq & \lim_{n \to \infty} \left (1 + \frac1n \right)^{n+\frac12} \\ \Rightarrow && \lim_{n \to \infty} \left (1 + \frac1n \right)^n && \leq e &\leq & \lim_{n \to \infty} \left (1 + \frac1n \right)^{n} \lim_{n \to \infty} \sqrt{1 + \frac1n} \\ \Rightarrow && \lim_{n \to \infty} \left (1 + \frac1n \right)^n && \leq e &\leq & \lim_{n \to \infty} \left (1 + \frac1n \right)^{n} \\ \end{align*} And therefore equality must hold.
    2009 Paper 3 Q3
    D: 1700.0 B: 1500.0

    The function \(\f(t)\) is defined, for \(t\ne0\), by \[ \f(t) = \frac t {\e^t-1}\,. \] \begin{questionparts} \item By expanding \(\e^t\), show that \(\displaystyle \lim _{t\to0} \f(t) = 1\,\). Find \(\f'(t)\) and evaluate \(\displaystyle \lim _{t\to0} \f'(t)\,\). \item Show that \(\f(t) +\frac12 t\) is an even function. [{\bf Note:} A function \(\g(t)\) is said to be {\em even} if \(\g(t) \equiv \g(-t)\).] \item Show with the aid of a sketch that \( \e^t( 1-t)\le 1\,\) and deduce that \(\f'(t)\ne 0\) for \(t\ne0\). \end{questionpart} Sketch the graph of \(\f(t)\).

    Show Solution
    1. Claim \(f(t) + \frac12 t\) is an even function. Proof: Consider \(f(-t) - \frac12t\), then \begin{align*} f(-t) - \frac12t &= \frac{-t}{e^{-t}-1} - \frac12t \\ &= \frac{-te^t}{1-e^t} - \frac12 t \\ &= \frac{t(1-e^t) -t}{1-e^t} - \frac12 t \\ &= t - \frac{t}{1-e^t} - \frac12 t \\ &= \frac{t}{e^t-1} + \frac12 t \end{align*} So it is even.
    2. TikZ diagram
      Drawing the tangent to \(y = e^{-x}\) at \((0,1)\) we find that \(e^{-t} \geq (1-t)\) for all \(t\), in particular, \(e^t(1-t) \leq 1\) \(f'(t) = \frac{(e^t(1-t) -1}{(e^t-1)^2} \leq 0\) and \(f'(t) = -\frac12\) when \(t = 0\)
    TikZ diagram
    [Note: This is the exponential generating function for the Bernoulli numbers]
    2006 Paper 3 Q4
    D: 1700.0 B: 1516.0

    The function \(f\) satisfies the identity \begin{equation} f(x) +f(y) \equiv f(x+y) \tag{\(*\)} \end{equation} for all \(x\) and \(y\). Show that \(2\f(x)\equiv \f(2x)\) and deduce that \(f''(0)=0\). By considering the Maclaurin series for \(\f(x)\), find the most general function that satisfies \((*)\). [{\it Do not consider issues of existence or convergence of Maclaurin series in this question.}]

    1. By considering the function \(\G\), defined by \(\ln\big(\g(x)\big) =\G(x)\), find the most general function that, for all \(x\) and \(y\), satisfies the identity \[ \g(x) \g(y) \equiv \g(x+y)\,. \]
    2. By considering the function \(H\), defined by \(\h(\e^u) =H(u)\), find the most general function that satisfies, for all positive \(x\) and \(y\), the identity \[ \h(x) +\h(y) \equiv \h(xy) \,. \]
    3. Find the most general function \(t\) that, for all \(x\) and \(y\), satisfies the identity \begin{equation*} t(x) + t(y) \equiv t(z)\,, \end{equation*} where \(z= \dfrac{x+y}{1-xy}\,\).

    Show Solution
    \begin{align*} &&2f(x) &\equiv f(x) + f(x) \\ &&&\equiv f(x+x) \\ &&&\equiv f(2x) \\ \\ \Rightarrow && 2f(0) &= f(0) \\ \Rightarrow && f(0) &= 0 \\ && f''(0) &= \lim_{h \to 0} \frac{f(2h)-2f(0)+f(-2h)}{h^2} \\ &&&= \lim_{h \to 0} \frac{f(2h)+f(-2h)}{h^2} \\ &&&= \lim_{h \to 0} \frac{f(0)}{h^2} \\ &&&= 0 \\ \Rightarrow && f''(0) &= 0 \end{align*} If \(f(x)\) satisfies the equation, then \(f'(x)\) satisfies the equation. In particular this means that \(f^{(n)}(0) = 0\) for all \(n \geq 2\). Therefore the only non-zero term in the Maclaurin series is \(x^1\). Therefore \(f(x) = cx\)
    1. Suppose \(g(x)g(y) \equiv g(x+y)\), then if \(G(x) = \ln g(x)\) we must have \(G(x)+G(y) \equiv G(x+y)\), ie \(G(x) = cx \Rightarrow g(x) = e^{cx}\)
    2. Suppose \(h(x)+h(y) \equiv h(xy)\), then if \(h(e^u) = H(u)\) we must have that \(H(u)+H(v) \equiv h(e^u) + h(e^v) \equiv h(e^{u+v}) \equiv H(u+v)\).Therefore \(H(u) = cu\), ie \(h(e^u) = cu\) or \(h(x) = h(e^{\ln x}) = c \ln x\).
    3. Finally if \(t(x) + t(y) \equiv t(z)\), the considering \(T(w) = t(\tan w)\) then \(T(x) + T(y) \equiv t(\tan x) + t(\tan y) \equiv t( \frac{\tan x + \tan y}{1- \tan x \tan y}) \equiv t (\tan (x+y)) \equiv T(x+y)\). Therefore \(T(x) = cx\) Therefore \(t(\tan w) = c w \Rightarrow t(x) = c \tan^{-1} x\)
    2006 Paper 3 Q3
    D: 1700.0 B: 1500.0

    1. Let \[ \tan x = \sum\limits_{n=0}^\infty a_n x^n \text{ and } \cot x = \dfrac 1 x +\sum\limits_{n=0}^\infty b_nx^n \] for \(0< x < \frac12\pi\,\). Explain why \(a_n=0\) for even \(n\). Prove the identity \[ \cot x - \tan x \equiv 2 \cot 2x\, \] and show that \[a_{n} = (1-2^{n+1})b_n\,.\]
    2. Let $ \displaystyle {\rm cosec}\, x = \frac1x +\sum\limits _{n=0}^\infty c_n x^n\,$ for \(0< x < \frac12\pi\,\). By considering \(\cot x + \tan x\), or otherwise, show that \[ c_n = (2^{-n} -1)b_n \,. \]
    3. Show that \[ \left(1+x{ \sum\limits_{n=0}^\infty} b_n x^n \right)^2 +x^2 = \left(1+x{ \sum\limits_{n=0} ^\infty} c_n x^n \right)^2\,. \] Deduce from this and the previous results that \(a_1=1\), and find \(a_3\).

    Show Solution
    1. Since \(\tan (-x) = -\tan x\), \(\tan\) is an odd function, and in particular all it's even coefficients are zero. \begin{align*} && 2 \cot 2x &\equiv \frac{2 cos 2x}{\sin 2 x} \\ &&&\equiv \frac{2(\cos^2 x- \sin^2 x)}{2 \sin x \cos x} \\ &&&\equiv \frac{\cos x}{\sin x} - \frac{\sin x}{ \cos x} \\ &&&\equiv \cot x - \tan x \end{align*} Therefore \begin{align*} && \underbrace{\frac1x + \sum_{n=0}^\infty b_nx^n}_{\cot x} - \underbrace{\sum_{n=0}^\infty a_n x^n}_{\tan x} &= 2 \left (\underbrace{\frac{1}{2x} + \sum_{n=0}^\infty b_n(2x)^n}_{\cot 2x} \right) \\ \Rightarrow && \sum_{n=0}^\infty a_n x^n &= \sum_{n=0}^\infty b_nx^n - 2\sum_{n=0}^\infty b_n(2x)^n \\ &&&= \sum_{n=0}^{\infty}b_n(1-2^{n+1})x^n \\ [x^n]: && a_n &= (1-2^{n+1})b_n \end{align*}
    2. \(\,\) \begin{align*} && \cot x + \tan x &= \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} \\ &&&= \frac{1}{\sin x \cos x} \\ &&&=2\cosec 2x \\ \\ \Rightarrow && \underbrace{\frac1x + \sum_{n=0}^\infty b_nx^n}_{\cot x} + \underbrace{\sum_{n=0}^\infty a_n x^n}_{\tan x} &= 2\left (\underbrace{ \frac1{2x} +\sum\limits _{n=0}^\infty c_n (2x)^n}_{\cosec 2x} \right) \\ \Rightarrow && \sum_{n=0}^\infty 2^{n+1}c_n x^n &= \sum_{n=0}^{\infty}(a_n+b_n)x^n \\ &&&= \sum_{n=0}^{\infty}\left((1-2^{n+1})b_n+ b_n\right)x^n \\ &&&= \sum_{n=0}^{\infty}\left(2-2^{n+1}\right)b_nx^n \\ [x^n]: && c_n &= (2^{-n}-1)b_n \end{align*}
    3. \(\,\) \begin{align*} && \cot^2 x + 1 &= \cosec^2 x \\ \Rightarrow && x^2 \cot^2 x + x^2 &= x^2 \cosec^2 x \\ \Rightarrow && x^2 \left ( \underbrace{\frac1x + \sum_{n=0}^\infty b_nx^n}_{\cot x} \right)^2 + x^2 &= x^2 \left (\underbrace{ \frac1{x} +\sum\limits _{n=0}^\infty c_n x^n}_{\cosec x} \right)^2 \\ \Rightarrow && \left ( 1 + x\sum_{n=0}^\infty b_nx^{n} \right)^2 + x^2 &= \left ( 1 +x\sum\limits _{n=0}^\infty c_n x^{n} \right)^2 \\ \\ \Rightarrow && \left ( 1 + x(b_1x + b_3 x^3 + \cdots) \right)^2 + x^2 &= \left ( 1 + x(c_1x + c_3 x^3 + \cdots) \right)^2 \\ \Rightarrow && 1 + (1+2b_1)x^2+(2b_3+b_1^2)x^4 + \cdots &= 1 + 2c_1x^2 + (2c_3+c_1^2)x^4 + \cdots \\ \Rightarrow && 1 + 2b_1 &= 2(2^{-1}-1)b_1 \\ \Rightarrow && b_1 &= -\frac13 \\ \Rightarrow && a_1 &= (1-2^{2})(-\tfrac13) = 1 \\ && c_1 &= \frac16\\ \Rightarrow && 2b_3+\frac19&= 2c_3+\frac1{36} \\ \Rightarrow && 2b_3 -2(2^{-3}-1)b_3 &= -\frac{1}{12} \\ \Rightarrow && \frac{15}{4}b_3 &= -\frac{1}{12} \\ \Rightarrow && b_3 &= -\frac{1}{45} \\ \Rightarrow && a_3 &= -(1-2^4)\frac{1}{45} = \frac13 \end{align*}
    2001 Paper 3 Q1
    D: 1700.0 B: 1500.0

    Given that \(y = \ln ( x + \sqrt{x^2 + 1})\), show that \( \displaystyle \frac{\d y}{\d x} = \frac1 {\sqrt{x^2 + 1} }\;\). Prove by induction that, for \(n \ge 0\,\), \[ \l x^2 + 1 \r y^{\l n + 2 \r} + \l 2n + 1 \r x y^{\l n + 1 \r} + n^2 y^{\l n \r} = 0\;, \] where \(\displaystyle y^{(n)} = \frac{\d^n y}{\d x^n}\) and \(y^{(0)} =y\,\). Using this result in the case \(x = 0\,\), or otherwise, show that the Maclaurin series for \(y\) begins \[ x - {x^3 \over 6} +{3 x^5 \over 40} \] and find the next non-zero term.

    Show Solution
    \begin{align*} && y & = \ln ( x + \sqrt{x^2+1}) \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{1}{x+\sqrt{x^2+1}} \cdot \frac{\d }{\d x} \left ( x + \sqrt{x^2+1} \right) \\ &&&= \frac{1}{x+\sqrt{x^2+1}} \left (1 + \frac12 \frac{2x}{\sqrt{x^2+1}} \right) \\ &&&= \frac{1}{x+\sqrt{x^2+1}} \left ( \frac{\sqrt{x^2+1} + x}{\sqrt{x^2+1}}\right) \\ &&&= \frac{1}{\sqrt{x^2+1}} \end{align*} Note that \(\displaystyle y^{(2)} = - \frac12 \frac{2x}{(x^2+1)^{3/2}} = - \frac{x}{(x^2+1)^{3/2}}\), and in particular \((x^2+1)y^{(2)} + xy^{(1)} = 0\). Now applying Leibnitz formula: \begin{align*} 0 &= \left ( (x^2+1)y^{(2)} + xy^{(1)} \right )^{(n)} \\ &= \left ( (x^2+1)y^{(2)}\right )^{(n)} + \left (xy^{(1)} \right )^{(n)} \\ &= (x^2+1)y^{(n+2)} +n2xy^{(n+1)} + \binom{n}{2}2y^{(n)} + xy^{(n+1)} + n y^{(n)} \\ &= (x^2+1)y^{(n+2)} + (2n+1)xy^{(n+1)} + (n^2-n+n)y^{(n)} \\ &= (x^2+1)y^{(n+2)} + (2n+1)xy^{(n+1)} + n^2y^{(n)} \end{align*} as required. When \(x = 0\): \begin{align*} && y(0) &= \ln(0 + \sqrt{0^2+1}) \\ &&&= \ln 1 = 0 \\ && y'(0) &= \frac{1}{\sqrt{0^2+1}} = 1 \\ && y^{(n+2)} &= -n^2 y^{(n)} \\ && y^{(2k)} &= 0 \\ && y^{(3)} &= -1 \\ && y^{(5)} &= 3^2 \\ && y^{(7)} &= - 5^2 \cdot 3^2 \\ \end{align*} Therefore the Maclaurin series about \(x = 0\) is \begin{align*} y &= x - \frac{1}{3!} x^3 + \frac{3^2}{5!} x^5 - \frac{3^2 \cdot 5^2}{7!} x^7 + \cdots \\ &= x - \frac{1}{6} x^3 + \frac{3}{1 \cdot 2 \cdot 4 \cdot 5} x^5 - \frac{5}{1 \cdot 2 \cdot 4 \cdot 2 \cdot 7} x^7 + \cdots \\ &= x - \frac{1}{6}x^3 + \frac{3}{40} x^5 - \frac{5}{56} x^7 + \cdots \end{align*}
    1998 Paper 3 Q7
    D: 1700.0 B: 1500.0

    Sketch the graph of \({\rm f}(s)={ \e}^s(s-3)+3\) for \(0\le s < \infty\). Taking \({\e\approx 2.7}\), find the smallest positive integer, \(m\), such that \({\rm f}(m) > 0\). Now let $$ {\rm b}(x) = {x^3 \over \e^{x/T} -1} \, $$ where \(T\) is a positive constant. Show that \({\rm b}(x)\) has a single turning point in \(0 < x < \infty\). By considering the behaviour for small \(x\) and for large \(x\), sketch \({\rm b}(x)\) for \(0\le x < \infty\). Let $$ \int_0^\infty {\rm b}(x)\,\d x =B, $$ which may be assumed to be finite. Show that \(B = K T^n\) where \(K\) is a constant, and \(n\) is an integer which you should determine. Given that \(\displaystyle{B \approx 2 \int_0^{Tm} {\rm b}(x) {\,\rm d }x}\), use your graph of \({\rm b}(x)\) to find a rough estimate for \(K\).

    1998 Paper 3 Q5
    D: 1700.0 B: 1516.0

    The exponential of a square matrix \({\bf A}\) is defined to be $$ \exp ({\bf A}) = \sum_{r=0}^\infty {1\over r!} {\bf A}^r \,, $$ where \({\bf A}^0={\bf I}\) and \(\bf I\) is the identity matrix. Let $$ {\bf M}=\left(\begin{array}{cc} 0 & -1 \\ 1 & \phantom{-} 0 \end{array} \right) \,. $$ Show that \({\bf M}^2=-{\bf I}\) and hence express \(\exp({\theta {\bf M}})\) as a single \(2\times 2\) matrix, where \(\theta\) is a real number. Explain the geometrical significance of \(\exp({\theta {\bf M}})\). Let $$ {\bf N}=\left(\begin{array}{rr} 0 & 1 \\ 0 & 0 \end{array}\right) \,. $$ Express similarly \(\exp({s{\bf N}})\), where \(s\) is a real number, and explain the geometrical significance of \(\exp({s{\bf N}})\). For which values of \(\theta\) does $$ \exp({s{\bf N}})\; \exp({\theta {\bf M}})\, = \, \exp({\theta {\bf M}})\;\exp({s{\bf N}}) $$ for all \(s\)? Interpret this fact geometrically.

    Show Solution
    \begin{align*} \mathbf{M}^2 &= \begin{pmatrix} 0 & - 1 \\ 1 & 0 \end{pmatrix}^2 \\ &= \begin{pmatrix} 0 \cdot 0 + (-1) \cdot 1 & 0 \cdot (-1) + (-1) \cdot 0 \\ 1 \cdot 0 + 0 \cdot 1 & 1 \cdot (-1) + 0 \cdot 0 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 0 \\ 0 & -1\end{pmatrix} \\ &= - \mathbf{I} \end{align*} \begin{align*} \exp(\theta \mathbf{M}) &= \sum_{r=0}^\infty \frac1{r!} (\theta \mathbf{M})^r \\ &= \sum_{r=0}^\infty \frac{1}{r!} \theta^r \mathbf{M}^r \\ &= \cos \theta \mathbf{I} + \sin \theta \mathbf{M} \\ &= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \end{align*} This is a rotation of \(\theta\) degrees about the origin. \begin{align*} && \mathbf{N}^2 &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 \\ && &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \Rightarrow && \exp(s\mathbf{N}) &= \sum_{r=0}^\infty \frac{1}{r!} (s\mathbf{N})^r \\ &&&= \mathbf{I} + s \mathbf{N} \\ &&&= \begin{pmatrix} 1 &s \\ 0 & 1 \end{pmatrix} \end{align*} This is a shear, leaving the \(y\)-axis invariant, sending \((1,1)\) to \((1+s, 1)\). Suppose those matrices commute, for all \(s\), ie \begin{align*} && \begin{pmatrix} 1 &s \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} &= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}\begin{pmatrix} 1 &s \\ 0 & 1 \end{pmatrix} \\ \Rightarrow && \begin{pmatrix} \cos \theta - s \sin \theta & -\sin \theta + s \cos \theta \\ \sin \theta & \cos \theta \end{pmatrix} &= \begin{pmatrix} \cos \theta & s \cos \theta - \sin \theta \\ \sin \theta & s \sin \theta + \cos \theta \end{pmatrix} \\ \Rightarrow && \sin \theta &= 0 \\ \Rightarrow && \theta &=n \pi, n \in \mathbb{Z} \end{align*} Clearly it doesn't matter when we do nothing. If we are rotating by \(\pi\) then it also doesn't matter which order we do it in as the stretch happens in both directions equally.
    1997 Paper 3 Q1
    D: 1700.0 B: 1500.0

    1. By considering the series expansion of \((x^2+5x+4){\rm \; e}^x\) show that \[10{\rm\, e}=4+\frac{3^2}{1!}+\frac{4^2}{2!}+\frac{5^2}{3!}+\cdots\;.\]
    2. Show that \[5{\rm\, e}=1+\frac{2^2}{1!}+\frac{3^2}{2!}+\frac{4^2}{3!}+\cdots\;.\]
    3. Evaluate \[1+\frac{2^3}{1!}+\frac{3^3}{2!}+\frac{4^3}{3!}+\cdots\;.\]

    Show Solution
    1. \begin{align*} (x^2+5x+4)e^x &= \sum_{k=0}^\infty \frac{1}{k!} x^{k+2}+\sum_{k=0}^\infty \frac{5}{k!} x^{k+1}+\sum_{k=0}^\infty \frac{4}{k!} x^{k} \\ &= \sum_{k=0}^{\infty} \l \frac{1}{k!}+\frac{5}{(k+1)!}+\frac{4}{(k+2)!} \r x^{k+2} + 5x+4+4x \\ &= 4 + 9x + \sum_{k=0}^{\infty} \l \frac{(k+2)(k+1)}{(k+2)!}+\frac{5(k+2)}{(k+2)!}+\frac{4}{(k+2)!} \r x^{k+2}\\ &= 4 + 9x + \sum_{k=0}^{\infty} \l \frac{k^2+3k+2+5k+10+4}{(k+2)!} \r x^{k+2}\\ &= 4 + 9x + \sum_{k=0}^{\infty} \frac{(k+4)^2}{(k+2)!} x^{k+2}\\ &= 4 + 9x + \sum_{k=2}^{\infty} \frac{(k+2)^2}{k!} x^{k}\\ \end{align*} So when \(x = 1\) we have \[10e = 4 + \frac{3^2}{1!} + \frac{4^2}{2!} + \frac{5^2}{3!} + \cdots \]
    2. \begin{align*} (x^2+3x+1)e^x &= \sum_{k=0}^\infty \frac{1}{k!}x^{k+2}+\sum_{k=0}^\infty 3\frac{1}{k!}x^{k+1} + \sum_{k=0}^{\infty} \frac{1}{k!} x^k \\ &= 1+3x+\sum_{k=1}^{\infty} \l \frac1{(k-1)!}+\frac{3}{k!} + \frac{1}{(k+1)!} \r x^{k+1} \\ &= 1+3x+\sum_{k=1}^{\infty} \frac{(k+1)k + 3(k+1)+1}{(k+1)!}x^{k+1} \\ &= 1+3x+\sum_{k=1}^{\infty} \frac{k^2+4k+4}{(k+1)!}x^{k+1} \\ &= 1+3x+\sum_{k=0}^{\infty} \frac{(k+2)^2}{(k+1)!}x^{k+1} \\ &=1+3x+ \sum_{k=1}^{\infty} \frac{(k+1)^2}{k!}x^k \end{align*} Plugging in \(x=1\) we get the desired result.
    3. \begin{align*} && xe^x &= \sum_{k=0}^{\infty} \frac{x^{k+1}}{k!} \\ x\frac{\d}{\d x} : && x(1+x)e^x &= \sum_{k=0}^{\infty} \frac{(k+1)x^{k+1}}{k!} \\ x\frac{\d}{\d x} : && x(x(1+x)+1+2x)e^x &= \sum_{k=0}^{\infty} \frac{(k+1)^2x^{k+1}}{k!} \\ &&(x^3+3x^2+x)e^x &= \sum_{k=0}^{\infty} \frac{(k+1)^2x^{k+1}}{k!} \\ \frac{\d}{\d x} : && e^x(x^3+3x^2+x+3x^2+6x+1) &=\sum_{k=0}^{\infty} \frac{(k+1)^3x^{k}}{k!} \\ \Rightarrow && 15e &= 1 + \frac{2^3}{1!} + \frac{3^3}{2!} + \cdots \end{align*}
    1994 Paper 3 Q5
    D: 1700.0 B: 1486.8

    The function \(\mathrm{f}\) is given by \(\mathrm{f}(x)=\sin^{-1}x\) for \(-1 < x < 1.\) Prove that \[ (1-x^{2})\mathrm{f}''(x)-x\mathrm{f}'(x)=0. \] Prove also that \[ (1-x^{2})\mathrm{f}^{(n+2)}(x)-(2n+1)x\mathrm{f}^{(n+1)}(x)-n^{2}\mathrm{f}^{(n)}(x)=0, \] for all \(n>0\), where \(\mathrm{f}^{(n)}\) denotes the \(n\)th derivative of \(\mathrm{f}\). Hence express \(\mathrm{f}(x)\) as a Maclaurin series. The function \(\mathrm{g}\) is given by \[ \mathrm{g}(x)=\ln\sqrt{\frac{1+x}{1-x}}, \] for \(-1 < x < 1.\) Write down a power series expression for \(\mathrm{g}(x),\) and show that the coefficient of \(x^{2n+1}\) is greater than that in the expansion of \(\mathrm{f},\) for each \(n > 0\).

    1991 Paper 3 Q1
    D: 1700.0 B: 1501.5

    1. Evaluate \[ \sum_{r=1}^{n}\frac{6}{r(r+1)(r+3)}. \]
    2. Expand \(\ln(1+x+x^{2}+x^{3})\) as a series in powers of \(x\), where \(\left|x\right|<1\), giving the first five non-zero terms and the general term.
    3. Expand \(\mathrm{e}^{x\ln(1+x)}\) as a series in powers of \(x\), where \(-1 < x\leqslant1\), as far as the term in \(x^{4}\).

    Show Solution
    1. \begin{align*} && \frac{6}{r(r+1)(r+3)} &= \frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+3} \\ \Rightarrow && \sum_{r=1}^n \frac{6}{r(r+1)(r+3)} &= \sum_{r=1}^n \l \frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+3} \r \\ &&&= \sum_{r=1}^n \frac{2}{r} - \sum_{r=1}^n \frac{3}{r+1} + \sum_{r=1}^n \frac{1}{r+3} \\ &&&= \sum_{r=1}^n \frac{2}{r} - \sum_{r=2}^{n+1} \frac{3}{r} + \sum_{r=3}^{n+2} \frac{1}{r} \\ &&& = \frac{2}{1} + \frac{2}{2} - \frac{3}{2} - \frac{3}{n+1} + \frac{1}{n+1} + \frac{1}{n+2} \\ &&& = \frac{3}{2} - \frac{2}{n+1} + \frac{1}{n+2} \end{align*}
    2. \begin{align*} && \ln (1 + x+ x^2 + x^3) &= \ln \l \frac{1-x^4}{1-x} \r \\ &&&= \ln (1-x^4) - \ln(1-x) \\ &&&= \sum_{k=1}^{\infty} -\frac{x^{4k}}{k} - \sum_{k=1}^{\infty} - \frac{x^k}{k} \\ &&&= x + \frac12x^2+\frac13x^3-\frac34x^4+\frac15x^5 + \cdots \\ &&&= \sum_{k=1}^{\infty}a_k x^k \end{align*} Where \(a_k = \frac{1}{k}\) if \(k \neq 0 \pmod{4}\) otherwise \(a_k = -\frac{3}{k}\) if \(k \equiv 0 \pmod{4}\)
    3. \begin{align*} \exp(x \ln (1+x) ) &= \exp\l x \l x-\frac12x^2+\frac13x^3-\cdots \r \r \\ &= \exp\l x^2-\frac12x^3+\frac13x^4 \r \\ &= 1 + \l x^2-\frac12x^3+\frac13x^4 \r + \frac12 \l x^2-\frac12x^3+\frac13x^4 \r^2 + \cdots \\ &= 1 + x^2-\frac12x^3+\frac13x^4 + \frac12x^4 + \cdots \\ &= 1 + x^2 -\frac12x^3+\frac56x^4+\cdots \end{align*}
    1990 Paper 3 Q7
    D: 1700.0 B: 1552.4

    The points \(P\,(0,a),\) \(Q\,(a,0)\) and \(R\,(a,-a)\) lie on the curve \(C\) with cartesian equation \[ xy^{2}+x^{3}+a^{2}y-a^{3}=0,\qquad\mbox{ where }a>0. \] At each of \(P,Q\) and \(R\), express \(y\) as a Taylor series in \(h\), where \(h\) is a small increment in \(x\), as far as the term in \(h^{2}.\) Hence, or otherwise, sketch the shape of \(C\) near each of these points. Show that, if \((x,y)\) lies on \(C\), then \[ 4x^{4}-4a^{3}x-a^{4}\leqslant0. \] Sketch the graph of \(y=4x^{4}-4a^{3}x-a^{4}.\) Given that the \(y\)-axis is an asymptote to \(C\), sketch the curve \(C\).

    Show Solution
    \begin{align*} && 0 &= xy^{2}+x^{3}+a^{2}y-a^{3} \\ \frac{\d }{\d x} : && 0 &= y^2+2xyy' + 3x^2+a^2y' \\ \Rightarrow && y' &= -\frac{y^2+3x^2}{a^2+2xy} \\ \\ \frac{\d^2 }{\d x^2}: && 0 &= 2yy'+2yy'+2x(y')^2+2xyy''+6x+a^2y'' \\ \Rightarrow && y'' &= -\frac{4yy'+2x(y')^2+6x}{a^2+2xy} \\ \\ P: && y &= a \\ && y' &= -\frac{a^2}{a^2} = -1 \\ && y'' &= -\frac{-4a}{a^2} = \frac{4}{a} \\ \Rightarrow && y &\approx a - h+\frac{2}{a}h^2 \\ \\ Q: && y &= 0 \\ && y' &= -\frac{3a^2}{a^2} = -3 \\ && y'' &= -\frac{18a+6a}{a^2} = -\frac{24}{a} \\ \Rightarrow && y &\approx 0-3h-\frac{12}{a}h \\ \\ R: && y &= -a \\ && y' &= -\frac{a^2+3a^2}{a^2-2a^2} = 4 \\ && y'' &= -\frac{-16a+32a+6a}{a^2-2a^2} = \frac{22}{a} \\ \Rightarrow && y &\approx -a+4h + \frac{11}{a}h^2 \end{align*} Alternatively: \begin{align*} && 0 &= xy^{2}+x^{3}+a^{2}y-a^{3} \\ P(0,a): && y &\approx a + c_1h + c_2h^2 \\ && 0 &= h(a+c_1h)^2 + a^2(a + c_1h + c_2h^2)-a^3 \\ &&&= a^3-a^3 + (a^2+a^2c_1)h+(2ac_1+a^2c_2)h^2 \\ \Rightarrow && c_1 &=-1, c_2 =\frac{2}{a} \\ \Rightarrow && y &\approx a - h + \frac{2}{a}h^2 \\ \\ Q(a,0): && y &\approx c_1h + c_2h^2 \\ && 0 &= (a+h)(c_1h)^2+(a+h)^3+a^2(c_1h + c_2h^2 )-a^3 \\ &&&= a^3-a^3+(3a^2+a^2c_1)h + (ac_1^2+3a+a^2c_2)h^2 + \cdots \\ \Rightarrow && c_1 &=-3, c_2 = -\frac{12}{a} \\ \Rightarrow && y &\approx -3h -\frac{12}{a}h \\ \\ R(a,-a): && y &\approx -a + c_1h + c_2h^2 \\ && 0 &= (a+h)(-a + c_1h+c_2h^2)^2+(a+h)^3+a^2(-a + c_1h + c_2h^2)-a^3 \\ &&&= (a^2-2a^2c_1+3a^2+a^2c_1)h+(-2ac_1+c_1^2+\cdots)h^2 \\ \Rightarrow && c_1 &=4, c_2 = \frac{11}{a} \\ \Rightarrow && y &\approx -a + 4h + \frac{11}{a} \end{align*}
    TikZ diagram
    If \((x,y)\) lies on the curve, then viewing it as a quadratic in \(y\) we must have \(\Delta = (a^2)^2-4\cdot x \cdot (x^3-a^3) \geq 0 \Rightarrow a^4-4x^4+4xa^3 \geq 0 \Rightarrow 4x^4-4a^3x-a^4 \leq 0\)
    TikZ diagram
    TikZ diagram
    1989 Paper 2 Q2
    D: 1600.0 B: 1543.0

    Let \begin{alignat*}{2} \tan x & =\ \ \, \quad{\displaystyle \sum_{n=0}^{\infty}a_{n}x^{n}} & & \text{ for small }x,\\ x\cot x & =1+\sum_{n=1}^{\infty}b_{n}x^{n}\quad & & \text{ for small }x\text{ and not zero}. \end{alignat*} Using the relation \[ \cot x-\tan x=2\cot2x,\tag{*} \] or otherwise, prove that \(a_{n-1}=(1-2^{n})b_{n}\), for \(n\geqslant1\). Let \[ x\mathrm{cosec}x=1+{\displaystyle \sum_{n=1}^{\infty}c_{n}x^{n}\quad\text{ for small }x\neq0. \qquad \qquad \, } \] Using a relation similar to \((*)\) involving \(2\mathrm{cosec}2x\), or otherwise, prove that \[ c_{n}=\frac{2^{n-1}-1}{2^{n}-1}\frac{1}{2^{n-1}}a_{n-1}\qquad(n\geqslant1). \]

    Show Solution
    \begin{align*} && \cot x - \tan x &= 2 \cot 2x \\ \Rightarrow && x\cot x - x\tan x &= 2x\cot 2x \\ \Rightarrow && 1 + \sum_{n=1}^{\infty} b_n x^n - \sum_{n=0}^{\infty}a_n x^{n+1} &= 1 + \sum_{n=1}^{\infty} b_n (2x)^n \\ \Rightarrow && \sum_{n=1}^{\infty}(1-2^n)b_nx^n &= \sum_{n=1}^{\infty} a_{n-1}x^n \\ \Rightarrow && a_{n-1} &= (1-2^n)b_n \quad \text{if }n \geq 1 \end{align*} \begin{align*} \cot x + \tan x &= 2 \cosec 2x \end{align*} So \begin{align*} && \cot x + \tan x &= 2 \cosec 2x \\ \Rightarrow && x \cot x + x\tan x &= 2x \cosec 2x \\ \Rightarrow && 1 + \sum_{n=1}^{\infty} b_n x^n + \sum_{n=0}^{\infty} a_n x^{n+1} &= 1+\sum_{n=1}^\infty c_n (2x)^n \\ \Rightarrow && \sum_{n=1}^{\infty} \frac{1}{1-2^n}a_{n-1} +\sum_{n=1}^{\infty}a_{n-1}x^n &= \sum_{n=1}^{\infty} 2^nc_n x^n \\ \Rightarrow && c_n &= \frac{1}{2^n} \left ( 1 + \frac{1}{1-2^n} \right)a_{n-1} \\ &&&= \frac1{2^n} \frac{2^n-2}{2^n-1} a_{n-1}\\ &&&= \frac1{2^{n-1}}\frac{2^{n-1}-1}{2^n-1} a_{n-1} \end{align*}

    Showing 1-14 of 14 problems
    1987 Paper 3 Q4
    D: 1500.0 B: 1500.0

    TikZ diagram
    Two funnels \(A\) and \(B\) have surfaces formed by rotating the curves \(y=x^{2}\) and \(y=2\sinh^{-1}x\) \((x>0)\) above the \(y\)-axis. The bottom of \(B\) is one unit lower than the bottom of \(A\) and they are connected by a thin rubber tube with a tap in it. The tap is closed and \(A\) is filled with water to a depth of 4 units. The tap is then opened. When the water comes to rest, both surfaces are at a height \(h\) above the bottom of \(B\), as shown in the diagram. Show that \(h\) satisfies the equation \[ h^{2}-3h+\sinh h=15. \]

    Show Solution
    The initial volume of water in \(A\) is: \begin{align*} \pi \int_0^4 x^2 \, \d y &= \pi \int_0^4 y \d y \\ &= \pi [ \frac{y^2}{2}]_0^4 \\ &= 8\pi \end{align*} We assume that no water is in the tube as it is `thin'. Therefore we must have: \begin{align*} && 8\pi &= \pi \int_0^{h-1} x^2 \d y +\pi \int_0^{h} x^2 \d y \\ &&&= \pi \int_0^{h-1} y \d y +\pi \int_0^{h} \l \sinh \frac{x}{2}\r^2 \d y \\ &&&= \pi \left [\frac{y^2}{2} \right]_0^{h-1} + \pi \int_0^h \frac{-1+\cosh y}{2}\d y \\ &&&= \pi \frac{(h-1)^2}{2} + \pi \left [ -\frac{y}{2} +\frac{\sinh y}{2}\right]_0^h \\ &&&= \pi \frac{(h-1)^2}{2} -\pi \frac{h}{2} + \pi \frac{\sinh h}{2} \\ \Rightarrow && 0 &= h^2-2h+1-h+\sinh h -16 \\ &&&= h^2 -3h+\sinh h - 15 \\ \Rightarrow && 15 &= h^2 -3h+\sinh h \end{align*}
    2016 Paper 3 Q6
    D: 1700.0 B: 1484.0

    Show, by finding \(R\) and \(\gamma\), that \(A \sinh x + B\cosh x \) can be written in the form \(R\cosh (x+\gamma)\) if \(B>A>0\). Determine the corresponding forms in the other cases that arise, for \(A>0\), according to the value of \(B\). Two curves have equations \(y = \sech x\) and \(y = a\tanh x + b\,\), where \(a>0\).

    1. In the case \(b>a\), show that if the curves intersect then the \(x\)-coordinates of the points of intersection can be written in the form \[ \pm\arcosh \left( \frac 1 {\sqrt{b^2-a^2}}\right) - {\rm artanh \,} \frac a b .\]
    2. Find the corresponding result in the case \(a>b>0\,\).
    3. Find necessary and sufficient conditions on \(a\) and \(b\) for the curves to intersect at two distinct points.
    4. Find necessary and sufficient conditions on \(a\) and \(b\) for the curves to touch and, given that they touch, express the \(y\)-coordinate of the point of contact in terms of \(a\).

    2014 Paper 3 Q6
    D: 1700.0 B: 1516.0

    Starting from the result that \[ \.h(t) >0\ \mathrm{for}\ 0< t < x \Longrightarrow \int_0^x \.h(t)\ud t > 0 \,, \] show that, if \(\.f''(t) > 0\) for \(0 < t < x_0\) and \(\.f(0)=\.f'(0) =0\), then \(\.f(t)>0\) for \(0 < t < x_0\).

    1. Show that, for \(0 < x < \frac12\pi\), \[ \cos x \cosh x <1 \,. \]
    2. Show that, for \(0 < x < \frac12\pi\), \[ \frac 1 {\cosh x} < \frac {\sin x} x < \frac x {\sinh x} \,. \] %
    3. Show that, for \(0 < x < \frac12\pi\), \(\tanh x < \tan x\).

    2007 Paper 3 Q5
    D: 1700.0 B: 1516.0

    Let \(y = \ln (x^2-1)\,\), where \(x >1\), and let \(r\) and \(\theta\) be functions of \(x\) determined by \(r= \sqrt{x^2-1}\) and \(\coth\theta= x\). Show that \[ \frac {\d y}{\d x} = \frac {2\cosh \theta}{r} \text{ and } \frac {\d^2 y}{\d x^2} = -\frac {2 \cosh 2\theta}{r^2}\,, \] and find an expression in terms of \(r\) and \(\theta\) for \(\dfrac {\d^3 y}{\d x^3}\,\). Find, with proof, a similar formula for \(\dfrac{\d^n y}{\d x^n}\) in terms of \(r\) and \(\theta\).

    Show Solution
    \begin{align*} && y &= \ln(x^2 -1) \\ && r &= \sqrt{x^2-1} \\ && \coth \theta &= x \\ && r &= \sqrt{\coth^2 \theta - 1} = \sqrt{\textrm{cosech}^2 \theta} = \textrm{cosech} \theta \\ && \frac{\d y}{\d x} &= \frac{2x}{x^2-1} \\ &&&= \frac{2 \coth \theta}{r^2} \\ &&&= \frac{2 \cosh \theta}{\sinh \theta \cdot r \cdot \textrm{cosech} \theta } \\ &&&= \frac{2 \cosh \theta}{r } \\ \\ && \frac{\d^2 y}{\d x^2} &= \frac{2(x^2-1)-4x^2}{(x^2-1)^2} \\ &&&= \frac{-2(1+x^2)}{r^2 \textrm{cosech}^2 r} \\ &&&= -\frac{2(1 + \coth^2 \theta) \sinh^2 \theta}{r^2} \\ &&&= -\frac{2(\sinh^2 \theta + \cosh^2 \theta)}{r^2} \\ &&&= -\frac{2 \cosh 2 \theta}{r^2} \\ \\ && \frac{\d^3 y}{\d x^3} &= \frac{-4x(x^2-1)^2-(-2x^2-2)\cdot2(x^2-1)\cdot 2x}{(x^2-1)^4} \\ &&&= \frac{-4x(x^2-1)+8x(x^2+1)}{(x^2-1)^3}\\ &&&= \frac{4x^3+12x}{(x^2-1)^3} \\ &&&=\frac{\sinh^3 \theta (4\coth^3 \theta + 12\coth \theta )}{r^3} \\ &&&=\frac{4\cosh^3 \theta + 12\cosh \theta \sinh^2 \theta}{r^3} \\ &&&= \frac{4 \cosh 3 \theta}{r^3} \\ \end{align*} Claim: \(\frac{\d^n y}{\d x^n} = (-1)^{n+1}\frac{2(n-1)!\cosh n \theta}{r^n}\) Proof: By induction. Base cases already proven \begin{align*} \frac{\d r}{\d x} &= \frac{x}{\sqrt{x^2-1}} = \frac{\coth \theta}{\textrm{cosech} \theta} = \cosh \theta \\ \frac{\d \theta}{\d x} &= - \sinh^2 \theta \\ \\ \frac{\d^{n+1} y}{\d x^{n+1}} &= (-1)^{n+1}(n-1)!\frac{\d}{\d x} \left ( \frac{2\cosh n \theta}{r^n}\right) \\ &= (-1)^{n+1}\frac{2 n \sinh n \theta \cdot r^n \cdot \frac{\d \theta}{\d x}- 2\cosh n \theta \cdot nr^{n-1} \frac{\d r}{\d x} }{r^{2n}} \\ &= (-1)^{n+2}\frac{2n( \cosh n \theta\cosh \theta + r\sinh n \theta \sinh^2 \theta) }{r^{n+1}} \\ &= (-1)^{n+2}n!\frac{2\cosh(n+1) \theta }{r^{n+1}} \\ \end{align*} We can think of this as \(\ln(x^2-1) = \ln(x+1)+\ln(x-1)\) and also note \(x \pm 1 = \coth \theta \pm 1 = \frac{\cosh \theta \pm \sinh \theta}{\sinh \theta} = \frac{e^{\pm \theta}}{\sinh \theta}\) \begin{align*} && \frac{\d^n}{\d x^n} \ln(x^2-1) &= (n-1)!(-1)^{n-1} \left ( \frac{1}{(x+1)^n} + \frac{1}{(x-1)^n} \right) \\ &&&= (-1)^{n-1}(n-1)! \left ( \frac{\sinh^n \theta}{e^{n\theta}} + \frac{\sinh^n \theta}{e^{-n\theta}} \right) \\ &&&= (-1)^{n-1} (n-1)!2\cosh n \theta \cdot \sinh^n \theta \\ &&&= (-1)^{n-1}(n-1)! \frac{2 \cosh n \theta }{r^n} \end{align*}
    2006 Paper 3 Q7
    D: 1700.0 B: 1500.0

    1. Solve the equation \(u^2+2u\sinh x -1=0\) giving \(u\) in terms of \(x\). Find the solution of the differential equation \[ \left( \frac{\d y}{\d x}\right)^{\!2} +2 \frac{\d y}{\d x} \sinh x -1 = 0 \] that satisfies \(y=0\) and \(\dfrac {\d y}{\d x} >0\) at \(x=0\).
    2. Find the solution, not identically zero, of the differential equation \[ \sinh y \left( \frac{\d y}{\d x}\right)^{\!2} +2 \frac{\d y}{\d x} -\sinh y = 0 \] that satisfies \(y=0\) at \(x=0\), expressing your solution in the form \(\cosh y=\f(x)\). Show that the asymptotes to the solution curve are \(y=\pm(-x+\ln 4)\).

    1996 Paper 3 Q1
    D: 1700.0 B: 1500.0

    Define \(\cosh x\) and \(\sinh x\) in terms of exponentials and prove, from your definitions, that \[ \cosh^{4}x-\sinh^{4}x=\cosh2x \] and \[ \cosh^{4}x+\sinh^{4}x=\tfrac{1}{4}\cosh4x+\tfrac{3}{4}. \] Find \(a_{0},a_{1},\ldots,a_{n}\) in terms of \(n\) such that \[ \cosh^{n}x=a_{0}+a_{1}\cosh x+a_{2}\cosh2x+\cdots+a_{n}\cosh nx. \] Hence, or otherwise, find expressions for \(\cosh^{2m}x-\sinh^{2m}x\) and \(\cosh^{2m}x+\sinh^{2m}x,\) in terms of \(\cosh kx,\) where \(k=0,\ldots,2m.\)

    Show Solution
    \begin{align*} \cosh x &= \frac12 (e^x + e^{-x}) \\ \sinh x &= \frac12 (e^x - e^{-x}) \\ \end{align*} \begin{align*} \cosh^4x -\sinh^4 x &= (\cosh^2x -\sinh^2 x)(\cosh^2x +\sinh^2 x) \\ &= \left ( \frac14 \left (e^{2x}+2+e^{-2x} \right)- \frac14 \left (e^{2x}-2+e^{-2x} \right) \right)(\cosh^2x +\sinh^2 x) \\ &= (\cosh^2x +\sinh^2 x) \\ &= \left ( \frac14 \left (e^{2x}+2+e^{-2x} \right)+ \frac14 \left (e^{2x}-2+e^{-2x} \right) \right) \\ &= \frac{1}{4} \left (2e^{2x}+2e^{-2x} \right) \\ &= \frac12 \left ( e^{2x}+e^{-2x} \right) \\ &= \cosh 2x \\ \\ \cosh^4x +\sinh^4 x &= \frac1{2^4}\left (e^{4x}+4e^{2x}+6+4e^{-2x}+e^{-4x} \right)+\frac1{2^4}\left (e^{4x}-4e^{2x}+6-4e^{-2x}+e^{-4x} \right) \\ &= \frac18 (e^{4x}+e^{-4x}) + \frac{3}{4} \\ &= \frac14 \cosh 4x + \frac34 \end{align*} \begin{align*} \cosh^n x &=\frac{1}{2^n} \left ( e^{x}+e^{-x} \right)^n \\ &= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{kx}e^{-(n-k)x} \\ &= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{2kx-nx} \\ &= \frac{1}{2^n} \left ( \binom{n}{n} \left(e^{nx}+e^{-nx} \right) + \binom{n}{n-1}\left(e^{(n-2)x}+e^{-(n-2)x} \right) + \cdots + \binom{n}{n-k} \left( e^{(n-2k)x}+e^{-(n-2k)x} \right) + \cdots \right) \\ &= \frac{1}{2^{n-1}} \cosh nx + \frac{1}{2^{n-1}} \binom{n}{n-1} \cosh (n-2)x + \cdots + \frac{1}{2^{n-1}} \binom{n}{n-k} \cosh (n-2k)x + \cdots \end{align*} ie \begin{align*} \cosh^{2m} x &= \frac{1}{2^{2m-1}} \cosh 2m x + \frac{2m}{2^{2m-1}} \cosh(2(m-1)x) + \cdots + \frac{1}{2^{2m-1}}\binom{2m}{k} \cosh (2(m-k)x) +\cdots+ \frac{1}{2^{2m-1}} \binom{2m}{m} \\ \sinh^{2m} x &= \frac{1}{2^{2m-1}} \cosh 2m x - \frac{2m}{2^{2m-1}} \cosh(2(m-1)x) + \cdots + (-1)^{k}\frac{1}{2^{2m-1}}\binom{2m}{k} \cosh (2(m-k)x) +\cdots+ (-1)^m\frac{1}{2^{2m-1}} \binom{2m}{m} \\ \cosh^{2m} x -\sinh^{2m} x &= \frac{m}{2^{2m-3}} \cosh (2(m-1)x) + \cdots + \frac{1}{2^{2m-2}} \binom{2m}{2k+1}\cosh(2(m-2k-1)x) + \cdots\\ \cosh^{2m} x +\sinh^{2m} x &= \frac{1}{2^{2m-2}} \cosh (2mx) + \cdots + \frac{1}{2^{2m-2}} \binom{2m}{2k}\cosh(2(m-2k)x) + \cdots \end{align*}
    1993 Paper 3 Q7
    D: 1700.0 B: 1516.0

    The real numbers \(x\) and \(y\) satisfy the simultaneous equations $$ \sinh (2x) = \cosh y \qquad\hbox{and}\qquad \sinh(2y) = 2 \cosh x. $$ Show that \(\sinh^2 y\) is a root of the equation $$ 4t^3 + 4t^2 -4t -1=0 $$ and demonstrate that this gives at most one valid solution for \(y\). Show that the relevant value of \(t\) lies between \(0.7\) and \(0.8\), and use an iterative process to find \(t\) to 6 decimal places. Find \(y\) and hence find \(x\), checking your answers and stating the final answers to four decimal places.

    Show Solution
    Let \(t = \sinh^2 y\), then \begin{align*} && \sinh(2x) &= \cosh y \tag{1}\\ && \sinh(2y) &= 2 \cosh x \tag{2} \\ \\ && \cosh(2x) &= 2 \cosh^2 x -1 \\ (2): &&&= \frac12 \sinh^2(2y) -1 \\ && 1 &= \left (\frac12 \sinh^2(2y) -1 \right)^2 - \cosh^2 y \\ &&&= \frac14 \sinh^4(2y)-\sinh^2(2y)+1-\cosh^2 y \\ \Rightarrow && 0 &= \frac14 (\cosh^2 (2y)-1)^2- (\cosh^2 (2y)-1) - \cosh^2 y \\ &&&= \frac14 \left ( \left (1+2\sinh^2 y \right)^2-1 \right)^2 -\left ( \left (1+2\sinh^2 y \right)^2 -1\right) - (1 + \sinh^2 y ) \\ &&&= \frac14 \left ( 1 + 4t+4t^2 -1\right)^2 - \left ( 1+4t+4t^2-1\right) - (1 + t) \\ &&&= \frac14 (4t + 4t^2)^2 - (4t+4t^2)-1-t \\ &&&= 4(t+t^2)^2 - 4t^2-5t-1 \\ &&&= 4t^4+8t^3+4t^2-4t^2-5t-1 \\ &&& = 4t^4+8t^3-5t-1 \\ &&&= (t+1)(4t^3+4t^2-4t-1) \end{align*} Since \(\sinh^2 y\) is positive, we must be a root of the second cubic. Let \(f(t) = 4t^3+4t^2-4t-1\), then \(f(0) = -1\) and \(f'(t) = 12t^2+8t-4 = 4(t+1)(3t-1)\), so we have turning points at \(-1\) and \(\frac13\). Since \(f(-1) = 3 > 0\) and \(f(0) < 0\) we must have exactly one root larger than zero. Therefore there is a unique root. \(f(0.7) = -0.468 < 0\) \(f(0.8) = 0.408 > 0\) since \(f\) is continuous and changes sign, the root must fall in the interval \((0.7, 0.8)\). Let \(t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)}\), and \(t_0 = 0.75\), then \begin{align*} t_0 &= 0.75 \\ t_1 &= 0.7571428571 \\ t_2 &= 0.7570684728 \\ t_3 &= 0.7570684647 \end{align*} So \(t \approx 0.757068\), \(\sinh y \approx 0.870097\), \(y \approx 0.786474\), \(x \approx 0.546965\)
    1992 Paper 3 Q1
    D: 1700.0 B: 1500.0

    1. Given that \[ \mathrm{f}(x)=\ln(1+\mathrm{e}^{x}), \] prove that \(\ln[\mathrm{f}'(x)]=x-\mathrm{f}(x)\) and that \(\mathrm{f}''(x)=\mathrm{f}'(x)-[\mathrm{f}'(x)]^{2}.\) Hence, or otherwise, expand \(\mathrm{f}(x)\) as a series in powers of \(x\) up to the term in \(x^{4}.\)
    2. Given that \[ \mathrm{g}(x)=\frac{1}{\sinh x\cosh2x}, \] explain why \(\mathrm{g}(x)\) can not be expanded as a series of non-negative powers of \(x\) but that \(x\mathrm{g}(x)\) can be so expanded. Explain also why this latter expansion will consist of even powers of \(x\) only. Expand \(x\mathrm{g}(x)\) as a series as far as the term in \(x^{4}.\)

    Show Solution
    1. \begin{align*} && f(x) &= \ln (1+e^x) \\ && f'(x) &= \frac{1}{1+e^x} \cdot e^x \\ &&&= \frac{e^x}{1+e^x} \\ \Rightarrow && \ln [f'(x)] &= x - \ln (1+e^x) \\ &&&= x - f(x) \\ \\ \Rightarrow && \frac{f''(x)}{f'(x)} &= 1 - f'(x) \\ \Rightarrow && f''(x) &= f'(x) - [f'(x)]^2 \\ && f'''(x) &= f''(x) - 2f'(x) f''(x) \\ && f^{(4)}(x) &= f'''(x) - 2[f''(x)]^2-2f'(x)f'''(x) \end{align*} \begin{align*} f(0) &= \ln 2 \\ f'(0) &= \tfrac12 \\ f''(0) &= \tfrac12 -\tfrac14 \\ &= \tfrac 14 \\ f'''(0) &= \tfrac14 - 2 \tfrac12 \tfrac 14 \\ &= 0 \\ f^{(4)}(0) &= -2 \cdot \tfrac1{16} \\ &= -\frac18 \end{align*} Therefore \(f(x) = \ln 2 + \tfrac12 x + \tfrac18 x^2 - \frac1{8 \cdot 4!} x^4 + O(x^5)\)
    2. As \(x \to 0\), \(g(x) \to \infty\) therefore there can be no power series about \(0\). But as \(x \to 0, x g(x) \not \to \infty\) as \(\frac{x}{\sinh x}\) is well behaved. We can also notice that \(x g(x)\) is an even function, since \(\cosh x\) is even and \(\frac{x}{\sinh x}\) is even, therefore the power series will consist of even powers of \(x\) \begin{align*} \lim_{x \to 0} \frac{x}{\sinh x \cosh 2 x} &= \lim_{x \to 0} \frac{x}{\sinh x} \cdot \lim_{x \to 0} \frac{1}{\cosh2 x} \\ &= 1 \end{align*} Notice that \begin{align*} \frac{x}{\sinh x \cosh 2 x} &= \frac{4x}{(e^x - e^{-x})(e^{2x}+e^{-2x})} \\ &= \frac{4x}{(2x + \frac{x^3}{3} + \cdots)(2 + 4x^2 + \frac43 x^4 + \cdots )} \\ &= \frac{1}{1+\frac{x^2}{6}+\frac{x^4}{5!} + \cdots } \frac{1}{1 + 2x^2 + \frac23 x^4 + \cdots } \\ &= \left (1-(\frac{x^2}{6} + \frac{x^4}{5!})+ (\frac{x^2}{6} )^2 + O(x^6)\right) \left (1-(2x^2+\frac23 x^4)+ (2x^2)^2 + O(x^6)\right) \\ &= \left (1 - \frac16 x^2 + \frac{7}{360} x^4 + O(x^6) \right) \left (1 - 2x^2+ \frac{10}3x^4 + O(x^6) \right) \\ &= 1 - \frac{13}{6} x^2 + \frac{1327}{360}x^4 + O(x^6) \end{align*}
    1991 Paper 3 Q6
    D: 1700.0 B: 1516.0

    The transformation \(T\) from \(\binom{x}{y}\) to \(\binom{x'}{y'}\) in two-dimensional space is given by \[ \begin{pmatrix}x'\\ y' \end{pmatrix}=\begin{pmatrix}\cosh u & \sinh u\\ \sinh u & \cosh u \end{pmatrix}\begin{pmatrix}x\\ y \end{pmatrix}, \] where \(u\) is a positive real constant. Show that the curve with equation \(x^{2}-y^{2}=1\) is transformed into itself. Find the equations of two straight lines through the origin which transform into themselves. A line, not necessary through the origin, which has gradient \(\tanh v\) transforms under \(T\) into a line with gradient \(\tanh v'\). Show that \(v'=v+u\). The lines \(\ell_{1}\) and \(\ell_{2}\) with gradients \(\tanh v_{1}\) and \(\tanh v_{2}\) transform under \(T\) into lines with gradients \(\tanh v_{1}'\) and \(\tanh v_{2}'\) respectively. Find the relation satisfied by \(v_{1}\) and \(v_{2}\) that is the necessary and sufficient for \(\ell_{1}\) and \(\ell_{2}\) to intersect at the same angle as their transforms. In the case when \(\ell_{1}\) and \(\ell_{2}\) meet at the origin, illustrate in a diagram the relation between \(\ell_{1}\), \(\ell_{2}\) and their transforms.

    1991 Paper 2 Q8
    D: 1600.0 B: 1484.8

    Solve the quadratic equation \(u^{2}+2u\sinh x-1=0\), giving \(u\) in terms of \(x\). Find the solution of the differential equation \[ \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}\sinh x-1=0 \] which satisfies \(y=0\) and \(y'>0\) at \(x=0\). Find the solution of the differential equation \[ \sinh x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}-\sinh x=0 \] which satisfies \(y=0\) at \(x=0\).

    Show Solution
    \begin{align*} && 0 &= u^2 + 2u \sinh x -1 \\ &&&= u^2 + u(e^x-e^{-x})-e^{x}e^{-x} \\ &&&= (u-e^{-x})(u+e^x) \\ \Rightarrow && u &= e^{-x}, -e^x \end{align*} \begin{align*} && 0 &= \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}\sinh x-1 \\ \Rightarrow && \frac{\d y}{\d x} &= e^{-x}, -e^x \\ \Rightarrow && y &= -e^{-x}+C, -e^x+C \\ y(0) = 0: && C &= 1\text{ both cases } \\ y'(0) > 0: && y &= 1-e^{-x} \end{align*} \begin{align*} && 0 &= \sinh x u^2 + 2u -\sinh x \\ \Rightarrow && u &= \frac{-2 \pm \sqrt{4+4\sinh^2 x}}{2\sinh x} \\ &&&= \frac{-1 \pm \cosh x}{\sinh x} = - \textrm{cosech }x \pm \textrm{coth}x \\ \\ && 0 &= \sinh x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}-\sinh x \\ \Rightarrow && \frac{\d y}{\d x} &= - \textrm{cosech }x \pm \textrm{coth}x \\ \Rightarrow && y &= -\ln \left ( \tanh \frac{x}{2} \right) \pm \ln \sinh x+C \end{align*} For \(x \to 0\) to be defined, we need \(+\), so \begin{align*} && y &= \ln \left (\frac{\sinh x}{\tanh \frac{x}{2}} \right) + C \\ && y &= \ln \left (\frac{2\sinh \frac{x}{2} \cosh \frac{x}{2}}{\tanh \frac{x}{2}} \right)+C \\ &&&= \ln \left (2 \cosh^2 x \right) + C \\ y(0) = 0: && 0 &= \ln 2+C \\ \Rightarrow && y &= \ln(2 \cosh^2 x) -\ln 2 \\ && y &= 2 \ln (\cosh x) \end{align*}
    1990 Paper 3 Q9
    D: 1700.0 B: 1484.7

    The real variables \(\theta\) and \(u\) are related by the equation \(\tan\theta=\sinh u\) and \(0\leqslant\theta<\frac{1}{2}\pi.\) Let \(v=\mathrm{sech}u.\) Prove that

    1. \(v=\cos\theta;\)
    2. \(\dfrac{\mathrm{d}\theta}{\mathrm{d}u}=v;\)
    3. \(\sin2\theta=-2\dfrac{\mathrm{d}v}{\mathrm{d}u}\quad\) and \(\quad\cos2\theta=-\cosh u\dfrac{\mathrm{d}^{2}v}{\mathrm{d}u^{2}};\)
    4. \({\displaystyle \frac{\mathrm{d}u}{\mathrm{d}\theta}\frac{\mathrm{d}^{2}v}{\mathrm{d}\theta^{2}}+\frac{\mathrm{d}v}{\mathrm{d}\theta}\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta^{2}}+\left(\frac{\mathrm{d}u}{\mathrm{d}\theta}\right)^{2}=0.}\)

    Show Solution
    1. \begin{align*} v &= \mathrm{sech} u \\ &= \frac{1}{\mathrm{cosh } u} \\ &= \frac{1}{\sqrt{1+\mathrm{sinh}^2 u}} \tag{\(u > 0\)} \\ &= \frac{1}{\sqrt{1+\tan^2 \theta}} \\ &= \frac{1}{\sqrt{\mathrm{sec}^2 \theta}} \\ &= \cos \theta \tag{\(0 < \theta < \tfrac{\pi}{2}\)} \end{align*}
    2. \begin{align*} && \tan \theta &= \textrm{sinh} u \\ \underbrace{\Rightarrow}_{\frac{\d}{\d u}} && \sec^2 \theta \cdot \frac{\d \theta}{\d u} &= \cosh u \\ \Rightarrow && \frac{\d \theta}{\d u} &=\cosh u \cdot \cos^2 \theta \\ &&&= \frac{1}{v} \cdot v^2 \\ &&&=v \end{align*}
    3. \begin{align*} \sin 2 \theta &= 2 \sin \theta \cos \theta \\ &= 2 \sin \theta \cdot \frac{\d \theta}{\d u} \\ &= -2 \frac{\d v}{\d \theta} \cdot \frac{\d \theta}{\d u} \tag{\(\cos \theta = v\)} \\ &= -2 \frac{\d v}{\d u} \end{align*} \begin{align*} && \sin 2 \theta &= -2 \frac{\d v}{\d u} \\ \underbrace{\Rightarrow}_{\frac{\d}{\d u}} && 2 \cos 2 \theta \cdot \frac{\d \theta}{\d u} &= -2 \frac{\d^2 v}{\d u^2} \\ \Rightarrow && \cos 2 \theta &= - \frac{\d^2 v}{\d u^2} \frac{1}{v} \\ &&&= -\frac{\d ^2v}{\d u^2} \cosh u \end{align*}
    4. \begin{align*} && \frac{\d u}{\d \theta} &= \frac{1}{v} \\ \Rightarrow && \frac{\d^2 u}{\d \theta^2} &= -\frac{1}{v^2} \frac{\d v}{\d \theta} \\ &&&= \frac{1}{v^2} \sin \theta \\ && \frac{\d v}{\d \theta} &= -\sin \theta \\ \Rightarrow && \frac{\d^2 v}{\d \theta^2} &= -\cos \theta \\ &&&= - v \\ \end{align*} Therefore \begin{align*} \frac{\mathrm{d}u}{\mathrm{d}\theta}\frac{\mathrm{d}^{2}v}{\mathrm{d}\theta^{2}}+\frac{\mathrm{d}v}{\mathrm{d}\theta}\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta^{2}}+\left(\frac{\mathrm{d}u}{\mathrm{d}\theta}\right)^{2} &= \frac{1}{v} \cdot \left (-v\right) + \left ( - \sin \theta \right ) \cdot \left (\frac{1}{v^2} \sin \theta \right) + \frac{1}{v^2} \\ &= -1 + \frac{1-\sin^2 \theta}{v^2} \\ &= -1 + \frac{\cos^2 \theta}{v^2} \\ &= -1 + 1 \\ &= 0 \end{align*}
    1989 Paper 3 Q5
    D: 1700.0 B: 1516.0

    Given that \(y=\cosh(n\cosh^{-1}x),\) for \(x\geqslant1,\) prove that \[ y=\frac{(x+\sqrt{x^{2}-1})^{n}+(x-\sqrt{x^{2}-1})^{n}}{2}. \] Explain why, when \(n=2k+1\) and \(k\in\mathbb{Z}^{+},\) \(y\) can also be expressed as the polynomial \[ a_{0}x+a_{1}x^{3}+a_{2}x^{5}+\cdots+a_{k}x^{2k+1}. \] Find \(a_{0},\) and show that

    1. \(a_{1}=(-1)^{k-1}2k(k+1)(2k+1)/3\);
    2. \(a_{2}=(-1)^{k}2(k-1)k(k+2)(2k+1)/15.\)
    Find also the value of \({\displaystyle \sum_{r=0}^{k}a_{r}.}\)

    Show Solution
    Recall, \(\cosh^{-1} x = \ln (x + \sqrt{x^2-1})\) \begin{align*} \cosh(n \cosh^{-1} x) &= \frac12 \left ( \exp(n \cosh^{-1} x) + \exp(-n\cosh^{-1}x) \right) \\ &= \frac12 \left ((x + \sqrt{x^2-1})^n + (x + \sqrt{x^2-1})^{-n} \right) \\ &= \frac12 \left ((x + \sqrt{x^2-1})^n + (x - \sqrt{x^2-1})^{n} \right) \\ \end{align*} When \(n = 2k+1\) \begin{align*} \cosh(n \cosh^{-1} x)&= \frac12 \left ((x + \sqrt{x^2-1})^n + (x - \sqrt{x^2-1})^{n} \right) \\ &= \frac12 \left (\sum_{i=0}^{2k+1}\binom{2k+1}{i}x^{2k+1-i}\left ( (\sqrt{x^2-1}^{i} + (-\sqrt{x^2-1})^{i} \right) \right) \\ &=\sum_{i=0}^{k} \binom{2k+1}{2i}x^{2k+1-2i}(x^2-1)^i \\ &=\sum_{i=0}^{k} \binom{2k+1}{2i}x^{2(k-i)+1}(x^2-1)^i \\ \end{align*} Which is clearly a polynomial with only odd degree terms. \begin{align*} a_0 &= \frac{\d y}{\d x} \vert_{x=0} \\ &= \sum_{i=0}^k\binom{2k+1}{2i} \left ( (2(k-i)+1)x^{2(k-i)}(x^2-1)^i + 2i\cdot x^{2(k-i)+2}(x^2-1) \right) \\ &= \binom{2k+1}{2k} (-1)^{k} \\ &= (-1)^k(2k+1) \end{align*}
    1. \begin{align*} a_1 &= \binom{2k+1}{2k}\binom{k}{1}(-1)^{k-1}+\binom{2k+1}{2(k-1)}(-1)^{k-1} \\ &=(-1)^{k-1}\cdot ( (2k+1)k + \frac{(2k+1)\cdot 2k \cdot (2k-1)}{3!}) \\ &= (-1)^{k-1}(2k+1)k\frac{3 + 2k-1}{3} \\ &= (-1)^{k-1}2(2k+1)k (k+1) \end{align*}
    2. \begin{align*} a_2 &= \binom{2k+1}{2k} \binom{k}{2}(-1)^{k-2} + \binom{2k+1}{2(k-1)} \binom{k-1}{1} (-1)^{k-2}+\binom{2k+1}{2(k-2)} (-1)^{k-2} \\ &= \binom{2k+1}{1} \binom{k}{2}(-1)^{k-2} + \binom{2k+1}{3} \binom{k-1}{1} (-1)^{k-2}+\binom{2k+1}{5} (-1)^{k-2} \\ &= (-1)^{k} \left (\binom{2k+1}{1} \frac{k(k-1)}{2} + \binom{2k+1}{3}(k-1)+\binom{2k+1}{5} \right) \\ &= (-1)^{k} \left ( \frac{(2k+1)k(k-1)}{2} + \frac{(2k+1)k(2k-1)}{3} + \frac{(2k+1)k(2k-1)(k-1)(2k-3)}{5\cdot2\cdot3} \right) \\ &= (-1)^k (2k+1)k\frac{1}{30} \left ( 15(k-1) + 10(2k-1)+(2k-1)(k-1)(2k-3) \right) \end{align*}
    \begin{align*} \sum_{r=0}^k a_k &= \frac12 \left ((1 + \sqrt{1^2-1})^n + (1 - \sqrt{1^2-1})^{n} \right) \\ &= 1 \end{align*}
    1989 Paper 2 Q3
    D: 1600.0 B: 1500.0

    The real numbers \(x\) and \(y\) are related to the real numbers \(u\) and \(v\) by \[ 2(u+\mathrm{i}v)=\mathrm{e}^{x+\mathrm{i}y}-\mathrm{e}^{-x-\mathrm{i}y}. \] Show that the line in the \(x\)-\(y\) plane given by \(x=a\), where \(a\) is a positive constant, corresponds to the ellipse \[ \left(\frac{u}{\sinh a}\right)^{2}+\left(\frac{v}{\cosh a}\right)^{2}=1 \] in the \(u\)-\(v\) plane. Show also that the line given by \(y=b\), where \(b\) is a constant and \(0<\sin b<1,\) corresponds to one branch of a hyperbola in the \(u\)-\(v\) plane. Write down the \(u\) and \(v\) coordinates of one point of intersection of the ellipse and hyperbola branch, and show that the curves intersect at right-angles at this point. Make a sketch of the \(u\)-\(v\) plane showing the ellipse, the hyperbola branch and the line segments corresponding to:

    1. \(x=0\);
    2. \(y=\frac{1}{2}\pi,\) \(\quad 0\leqslant x\leqslant a.\)

    Show Solution
    \begin{align*} && 2(u+iv) &= e^{a+iy} - e^{-a-iy} \\ && &=(e^a \cos y - e^{-a} \cos y) + (e^a \sin y + e^{-a} \sin y)i \\ &&&= 2 \sinh a \cos y + 2\cosh a \sin y i\\ \Rightarrow && \frac{u}{\sinh a} &= \cos y \\ && \frac{v}{\cosh a} &= \sin y \\ \Rightarrow && 1 &= \left(\frac{u}{\sinh a}\right)^{2}+\left(\frac{v}{\cosh a}\right)^{2} \end{align*} \begin{align*} && 2(u+iv) &= e^{x+ib} - e^{-x-ib} \\ &&&= 2\sinh x \cos b + 2\cosh x \sin b i \\ \Rightarrow && \frac{u}{\cos b} &= \sinh x \\ && \frac{v}{\sin b} &= \cosh x \\ \Rightarrow && 1 &= \left (\frac{v}{\sin b} \right)^2 - \left (\frac{u}{\cos b} \right)^2 \end{align*} Therefore all the points lie of a hyperbola, and since \(\frac{v}{\sin b} > 0 \Rightarrow v > 0\) it's one branch of the hyperbola. (And all points on it are reachable as \(x\) varies from \(-\infty < x < \infty\). \begin{align*} 2(u+iv) &= e^{a+ib} - e^{-a-ib} \\ &= 2 \sinh a \cos b + 2 \cosh a \sin b i \end{align*} so we can take \(u = \sinh a \cos b, v = \cosh a \sin b\). \begin{align*} \frac{\d }{\d u} && 0 &= \frac{2 u}{\sinh^2 a} + \frac{2v}{\cosh^2 a} \frac{\d v}{\d u} \\ \Rightarrow && \frac{\d v}{\d u} &= -\frac{u}{v} \coth^2 a \\ \\ && \frac{\d v}{\d u} \rvert_{(u,v)} &= -\frac{\sinh a \cos b}{\cosh a \sin b} \coth^2 a \\ &&&= -\cot b \coth a \\ \frac{\d }{\d u} && 0 &= \frac{2 v}{\sin^2 b} \frac{\d v}{\d u} - \frac{2u}{\cos^2 b} \\ \Rightarrow && \frac{\d v}{\d u} &= \frac{u}{v} \tan^2 b \\ && \frac{\d v}{\d u} \rvert_{(u,v)} &= \frac{\sinh a \cos b}{\cosh a \sin b} \tan^2 b \\ &&&= \tanh a \tan b \end{align*} Therefore they are negative reciprocals and hence perpendicular.
    TikZ diagram
    1988 Paper 2 Q6
    D: 1600.0 B: 1500.0

    Show that the following functions are positive when \(x\) is positive:

    1. [ \(x-\tanh x\)
    2. \(x\sinh x-2\cosh x+2\)
    3. \(2x\cosh2x-3\sinh2x+4x\).
    The function \(\mathrm{f}\) is defined for \(x>0\) by \[ \mathrm{f}(x)=\frac{x(\cosh x)^{\frac{1}{3}}}{\sinh x}. \] Show that \(\mathrm{f}(x)\) has no turning points when \(x>0,\) and sketch \(\mathrm{f}(x)\) for \(x>0.\)

    Show Solution
    1. Notice that \(f(x) = x - \tanh x\) has \(f'(x) = 1-\textrm{sech}^2 x = \tanh^2 x > 0\) so \(f(x)\) is strictly increasing on \((0, \infty)\) and \(f(0) = 0\) therefore \(f(x)\) is positive for all \(x\) positive
    2. Let \(f(x) = x\sinh x-2\cosh x+2\) then \(f'(x) = \sinh x +x \cosh x - 2 \sinh x = x \cosh x -\sinh x = \cosh x ( x - \tanh x) > 0\) by the first part. \(f(0) = 0\) so \(f(x)\) is positive for all \(x\) positive.
    3. Let \(f(x) = 2x\cosh2x-3\sinh2x+4x\) then \begin{align*} f'(x) &= 2\cosh 2x +4x\sinh 2x - 6 \cosh 2x + 4 \\ &= 4( x\sinh 2x-\cosh 2x +1) \\ &= 4(x2\cosh x \sinh x -2\cosh^2x ) \\ &= 8 \cosh^2 x (x - \tanh x) \end{align*} Which is always positive when \(x\) > 0, \(f(0) = 0\) so \(f(x) > 0\) for all positive \(x\).
    Let \(f(x) = \frac{x(\cosh x)^{\frac{1}{3}}}{\sinh x}\) then \begin{align*} f'(x) &= \frac{(\cosh x)^{\frac13}\sinh x+\frac13 x \cosh^{-\frac23} x \sinh^2 x - x(\cosh x)^{\frac13} \cosh x}{\sinh^2 x} \\ &= \frac{\cosh x \sinh x + \frac13 x \sinh^2 x - x \cosh^2 x}{\cosh x^{\frac23} x \sinh^2 x} \\ &= \frac{3\cosh x \sinh x + x( \sinh^2 x - 3 \cosh^2 x)}{3\cosh x^{\frac23} x \sinh^2 x} \\ &= \frac{\frac32 \sinh 2x + x( -2\cosh 2x - 2)}{3\cosh x^{\frac23} x \sinh^2 x} \\ &= \frac{3 \sinh 2x -4x\cosh 2x - 4x}{6\cosh x^{\frac23} x \sinh^2 x} \\ \end{align*} which from the earlier part is always negative.
    TikZ diagram

    Showing 1-11 of 11 problems
    2025 Paper 3 Q7
    D: 1500.0 B: 1500.0

    Let \(f(x) = \sqrt{x^2 + 1} - x\).

    1. Using a binomial series, or otherwise, show that, for large \(|x|\), \(\sqrt{x^2 + 1} \approx |x| + \frac{1}{2|x|}\). Sketch the graph \(y = f(x)\).
    2. Let \(g(x) = \tan^{-1} f(x)\) and, for \(x \neq 0\), let \(k(x) = \frac{1}{2}\tan^{-1}\frac{1}{x}\).
      1. Show that \(g(x) + g(-x) = \frac{1}{2}\pi\).
      2. Show that \(k(x) + k(-x) = 0\).
      3. Show that \(\tan k(x) = \tan g(x)\) for \(x > 0\).
      4. Sketch the graphs \(y = g(x)\) and \(y = k(x)\) on the same axes.
      5. Evaluate \(\int_0^1 k(x) \, dx\) and hence write down the value of \(\int_{-1}^0 g(x) \, dx\).

    Show Solution
    1. \begin{align*} \sqrt{x^2+1} &= |x|\sqrt{1+\frac{1}{x^2}} \\ &=|x| \left (1 + \frac12 \frac{1}{x^2} + \cdots \right) & \text{if } \left (\frac{1}{x^2} < 1 \right) \\ &= |x| + \frac12 \frac{1}{|x|} + \cdots \\ &\approx |x| + \frac{1}{2|x|} \end{align*}
      TikZ diagram
      1. \begin{align*} && \tan( g(x) + g(-x)) &= \tan \left ( \tan^{-1}(\sqrt{x^2+1}-x) + \tan^{-1}(\sqrt{x^2+1}+x) \right) \\ &&&= \frac{\sqrt{x^2+1}-x+\sqrt{x^2+1}+x}{1-1} \\ \Rightarrow && g(x) + g(-x) &\in \left \{\cdots, -\frac{\pi}{2}, \frac{\pi}{2}, \cdots \right\} \end{align*} But \(g(x), g(-x) > 0\) and \(g(x), g(-x) \in (-\frac{\pi}{2}, \frac{\pi}{2})\), therefore it must be \(\frac{\pi}{2}\).
      2. \begin{align*} && \tan(2(k(x) + k(-x))) &= \tan(\tan^{-1}x + \tan^{-1}(-x)) \\ &&&= 0 \\ \Rightarrow && k(x)+k(-x) &\in \left \{\cdots, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \cdots \right\} \\ \end{align*} But \(k(x) \in (-\frac{\pi}{4}, \frac{\pi}{4})\), therefore \(k(x) + k(-x) = 0\).
      3. Let \(t = \tan k(x)\). \begin{align*} && \tan \left ( \tan^{-1} \frac{1}{x} \right) &= \frac{2 \tan\left ( \frac12 \tan^{-1} \frac1x \right)}{ 1-\tan^2\left ( \frac12 \tan^{-1} \frac1x \right)} \\ \Rightarrow && \frac1x &= \frac{2t}{1-t^2} \\ \Rightarrow && 1-t^2 &= 2tx \\ \Rightarrow && 0 &= t^2+2tx - 1 \\ \Rightarrow && 0 &= (t+x)^2 - 1-x^2 \\ \Rightarrow && t &= -x \pm \sqrt{1+x^2} \end{align*} Since \(t > 0\), \(t = \sqrt{1+x^2}-x = f(x) = \tan g(x)\)
      4. TikZ diagram
      5. \begin{align*} \int_0^1 k(x) \d x &= \int_0^1 \frac12 \tan^{-1} \left ( \frac1x \right) \d x \\ &= \left [ \frac{x}{2} \tan^{-1}\left ( \frac1x \right) \right]_0^1 - \int_0^1 \frac{x}{2} \frac{-1/x^2}{1+1/x^2} \d x \\ &= \left [ \frac{x}{2} \tan^{-1}\left ( \frac1x \right) \right]_0^1 + \frac14 \int_0^1 \frac{2x}{1+x^2} \d x \\ &= \frac12 \frac{\pi}{4} + \frac14 \ln(2) \\ &= \frac{\pi + \ln 4}{8}\end{align*} Therefore \(\displaystyle \int_{-1}^0 g(x) \d x = -\frac{\pi + \ln 4}{8}\)
    2014 Paper 3 Q2
    D: 1700.0 B: 1513.2

    1. Show, by means of the substitution \(u=\cosh x\,\), that \[ \int \frac{\sinh x}{\cosh 2x} \d x = \frac 1{2\sqrt2} \ln \left\vert \frac{\sqrt2 \cosh x - 1}{\sqrt2 \cosh x + 1 } \right\vert + C \,.\]
    2. Use a similar substitution to find an expression for \[ \int \frac{\cosh x}{\cosh 2x} \d x \,.\]
    3. Using parts (i) and (ii) above, show that \[ \int_0^1 \frac 1{1+u^4} \d u = \frac{\pi + 2\ln(\sqrt2 +1)}{4\sqrt2}\,. \]

    Show Solution
    1. \begin{align*} && \int \frac{\sinh x}{\cosh 2x} \d x &= \int \frac{\sinh x}{2\cosh^2 x -1} \d x \\ u = \cosh x, \d u = \sinh x \d x &&&= \int \frac{1}{2u^2 -1} \d u \\ &&&= \int\frac12 \left ( \frac{1}{\sqrt{2}u-1}-\frac{1}{\sqrt{2}u+1} \right) \d u \\ &&&= \frac1{2\sqrt{2}} \left (\ln (\sqrt{2}u-1) - \ln(\sqrt{2}u+1) \right) + C \\ &&&= \frac{1}{2\sqrt{2}} \ln \left ( \frac{\sqrt{2}\cosh x -1}{\sqrt{2}\cosh x +1} \right) + C \end{align*}
    2. \begin{align*} && \int \frac{\cosh x}{\cosh 2x} \d x &= \int \frac{\cosh x}{1+2\sinh^2 x} \d x \\ u = \sinh x && &= \int \frac{1}{1+2u^2} \d u \\ &&&=\frac{1}{\sqrt{2}} \tan^{-1} (\sqrt{2}u) + C \\ &&&= \frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2}\sinh x) + C \end{align*}
    3. \begin{align*} u = e^x : && \int_0^1 \frac{1}{1+u^4} \d u &= \int_{x=-\infty}^{x=0} \frac{1}{1+e^{4x}}e^{x} \d x \\ &&&= \int_{-\infty}^{0} \frac{e^{-x}}{e^{2x}+e^{-2x}} \d x \\ &&&= \int_{-\infty}^{0} \frac{\cosh x - \sinh x}{2\cosh 2x } \d x \\ &&&= \frac12 \int_{-\infty}^{0} \frac{\cosh x}{\cosh 2x} \d x - \frac12 \int_{-\infty}^{0} \frac{\sinh x}{\cosh 2x} \\ &&&= \frac12 \left [\frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2}\sinh x) \right]_{-\infty}^{0}-\frac12 \left [ \frac{1}{2\sqrt{2}}\ln \left ( \frac{\sqrt{2}\cosh x -1}{\sqrt{2}\cosh x +1} \right) \right]_{-\infty}^{0} \\ &&&= 0 - \frac1{2\sqrt{2}} \frac{-\pi}{2}-\left (\frac1{4\sqrt{2}} \ln \left (\frac{\sqrt{2}-1}{\sqrt{2}+1} \right) - 0 \right) \\ &&&= \frac{\pi - \ln((\sqrt{2}-1)^2)}{4\sqrt{2}} \\ &&&= \frac{\pi + 2 \ln(1+\sqrt{2})}{4\sqrt{2}} \end{align*}
    2011 Paper 3 Q6
    D: 1700.0 B: 1536.7

    The definite integrals \(T\), \(U\), \(V\) and \(X\) are defined by \begin{align*} T&= \int_{\frac13}^{\frac12} \frac{{\rm artanh}\, t}t \,\d t\,, & U&= \int _{\ln 2 }^{\ln 3 } \frac{u}{2\sinh u}\, \d u \,, \\[3mm] V&= - \int_{\frac13}^{\frac12} \frac{\ln v}{1-v^2} \,\d v \,, & X&= \int _{\frac12\ln2}^{\frac12\ln3} \ln ({\coth x})\, \d x\,. \end{align*} Show, without evaluating any of them, that \(T\), \(U\), \(V\) and \(X\) are all equal.

    Show Solution
    \begin{align*} && T &= \int_{\frac13}^{\frac12} \frac{{\rm artanh}\, t}t \,\d t \\ && &=\int_{\frac13}^{\frac12} \frac{1}{2t}\ln \left ( \frac{1+t}{1-t} \right) \,\d t \\ u = \tfrac{1+t}{1-t}, t= \tfrac{u-1}{u+1}, \d t = \tfrac{2}{(u+1)^2} \d t &&&= \int_{u=2}^{u=3} \frac{1}{2t} \ln u \frac{2}{(u+1)^2} \d u \\ &&&= \int_2^3 \frac{u+1}{u-1} \ln u \frac{1}{(u+1)^2} \d u \\ &&&= \int_2^3 \frac{1}{u^2-1} \ln u \d u \end{align*} \begin{align*} && U&= \int _{\ln 2 }^{\ln 3 } \frac{u}{2\sinh u}\, \d u \\ v = e^u, \d v = e^u \d u &&&= \int_{v=2}^{v=3} \frac{\ln v}{v - \frac{1}{v}} \frac{1}{v} \d v \\ &&&= \int_2^3 \frac{1}{v^2-1} \ln v \d v \end{align*} \begin{align*} &&V &= - \int_{\frac13}^{\frac12} \frac{\ln v}{1-v^2} \,\d v \\ u = \tfrac1v, \d u = -\tfrac1{v^2} \d v &&&= -\int_{u=3}^{u=2} \frac{-\ln u}{1 - \frac{1}{u^2}} \frac{-1}{u^2} \d u \\ &&&= -\int_3^2 \frac{\ln u}{u^2-1} \d u \\ &&&= \int_2^3 \frac{1}{u^2-1} \ln u \d u \end{align*} \begin{align*} &&X&= \int _{\frac12\ln2}^{\frac12\ln3} \ln ({\coth x})\, \d x \\ u = \coth x, \d u =(1-u^2) \d x &&&= \int_{u = 3}^{u=2} \ln u \frac{1}{1-u^2} \d u \\ &&&= \int_2^3 \frac{\ln u}{u^2-1} \d u \end{align*} Therefore all integrals are equal to the same integral, namely \(\displaystyle \int_2^3 \frac{\ln u}{u^2-1} \d u\)
    2011 Paper 3 Q4
    D: 1700.0 B: 1516.0

    The following result applies to any function \(\f\) which is continuous, has positive gradient and satisfies \(\f(0)=0\,\): \[ ab\le \int_0^a\f(x)\, \d x + \int_0^b \f^{-1}(y)\, \d y\,, \tag{\(*\)}\] where \(\f^{-1}\) denotes the inverse function of \(\f\), and \(a\ge 0\) and \(b\ge 0\).

    1. By considering the graph of \(y=\f(x)\), explain briefly why the inequality \((*)\) holds. In the case \(a>0\) and \(b>0\), state a condition on \(a\) and \(b\) under which equality holds.
    2. By taking \(\f(x) = x^{p-1}\) in \((*)\), where \(p>1\), show that if \(\displaystyle \frac 1p + \frac 1q =1\) then \[ ab \le \frac{a^p}p + \frac{b^q}q\,. \] Verify that equality holds under the condition you stated above.
    3. Show that, for \(0\le a \le \frac12 \pi\) and \(0\le b \le 1\), \[ ab \le b\arcsin b + \sqrt{1-b^2} \, - \cos a\,. \] Deduce that, for \(t\ge1\), \[ \arcsin (t^{-1}) \ge t - \sqrt{t^2-1}\,. \]

    2010 Paper 3 Q2
    D: 1700.0 B: 1485.5

    In this question, \(a\) is a positive constant.

    1. Express \(\cosh a\) in terms of exponentials. By using partial fractions, prove that \[ \int_0^1 \frac 1{ x^2 +2x\cosh a +1} \, \d x = \frac a {2\sinh a}\,. \]
    2. Find, expressing your answers in terms of hyperbolic functions, \[ \int_1^\infty \frac 1 {x^2 +2x \sinh a -1} \,\d x \, \] and \[ \int_0^\infty \frac 1 {x^4 +2x^2\cosh a +1} \,\d x \,.\]

    Show Solution
    1. \(\cosh a = \frac12 (e^a + e^{-a})\) \begin{align*} \int_0^1 \frac 1{ x^2 +2x\cosh a +1} \, \d x &= \int_0^1 \frac{1}{x^2+(e^a+e^{-a})x+e^ae^{-a}} \d x \\ &= \int_0^1 \frac{1}{e^a-e^{-a}}\left (\frac{1}{x+e^{-a}}-\frac{1}{x+e^a} \right)\d x \\ &= \frac{1}{2 \sinh a} \int_0^1 \left (\frac{1}{x+e^{-a}}-\frac{1}{x+e^a} \right)\d x \\ &= \frac{1}{2 \sinh a}\left [\ln(x+e^{-a})-\ln(x+e^a) \right]_0^1 \\ &= \frac{1}{2 \sinh a} \left (\ln(1+e^a)-\ln(1+e^{-a}) - (\ln e^{-a}-\ln e^a) \right) \\ &= \frac{1}{2\sinh a}\left (2a + \ln \frac{1+e^a}{1+e^{-a}}\right) \\ &= \frac1{2\sinh a} \left ( 2a -a \right) \\ &= \frac{a}{2 \sinh a} \end{align*}
    2. \begin{align*} \int_1^\infty \frac 1 {x^2 +2x \sinh a -1} \,\d x &= \int_1^{\infty} \frac{1}{(x+e^a)(x-e^{-a})} \d x \\ &= \int_1^{\infty} \frac{1}{e^a+e^{-a}} \left ( \frac{1}{x-e^{-a}} - \frac{1}{x+e^{a}} \right)\d x \\ &= \frac{1}{2\cosh a} \int_1^{\infty} \left ( \frac{1}{x-e^{-a}} - \frac{1}{x+e^{a}} \right)\d x \\ &= \frac{1}{2\cosh a} \left [\ln(x-e^{-a}) - \ln (x + e^{a} ) \right]_1^{\infty} \\ &= \frac1{2\cosh a} \left [ \ln \frac{x-e^{-a}}{x+e^{a}} \right]_1^{\infty} \\ &= \frac{1}{2\cosh a} \left ( 0 - \ln \frac{1-e^{-a}}{1+e^a}{}\right) \\ &= \frac{1}{2\cosh a} \ln \frac{1+e^a}{1-e^{-a}}\\ &= \frac{1}{2\cosh a} \left ( a + \ln \coth \frac{a}{2} \right) \end{align*} and \begin{align*} \int_0^\infty \frac 1 {x^4 +2x^2\cosh a +1} \,\d x &= \int_0^\infty\frac{1}{(x^2+e^a)(x^2+e^{-a})} \d x \\ &= \int_0^\infty \frac{1}{e^a-e^{-a}} \left ( \frac{1}{x^2+e^{-a}} - \frac{1}{x^2+e^{a}} \right) \d x \\ &= \frac{1}{2\sinh a} \left [ \frac{1}{e^{-a/2}} \tan^{-1} \frac{x}{e^{-a/2}} - \frac{1}{e^{a/2}}\tan^{-1} \frac{x}{e^{a/2}} \right]_0^{\infty} \\ &= \frac{1}{2\sinh a} \left (e^{a/2}\frac{\pi}{2}-e^{-a/2}\frac{\pi}{2} - 0 \right) \\ &= \frac{1}{2\sinh a} \pi \sinh \frac{a}{2} \\ &= \frac{\pi \sinh \tfrac{a}{2}}{2\sinh a} \\ &= \frac{\pi \sinh \tfrac{a}{2}}{4\sinh \tfrac{a}{2} \cosh \tfrac{a}{2}} \\ &= \frac{\pi}{4\cosh \tfrac{a}{2}} \end{align*}
    2008 Paper 3 Q4
    D: 1700.0 B: 1516.0

    1. Show, with the aid of a sketch, that \(y> \tanh (y/2)\) for \(y>0\) and deduce that \begin{equation} \textrm{arcosh} x > \dfrac{x-1}{\sqrt{x^2-1}} \text{ for } x>1. \tag{\(*\)} \end{equation}
    2. By integrating \((*)\), show that $\textrm{arcosh} x > 2 \dfrac{{x-1}}{\sqrt{x^2-1}} \( for \)x>1$.
    3. Show that $\textrm{arcosh} x >3 \dfrac{\sqrt{x^2-1}}{{x+2}} \( for \)x>1$.
    [Note: \(\textrm{arcosh} x \) is another notation for \(\cosh^{-1}x\).]

    Show Solution
    1. TikZ diagram
      If \(y = \textrm{arcosh} x \), then \(\tanh\textrm{arcosh} x/2 = \sqrt{\frac{\cosh \textrm{arcosh} x-1}{\cosh \textrm{arcosh} x+1}} = \sqrt{\frac{x-1}{x+1}} = \frac{x-1}{\sqrt{x^2-1}}\)
    2. \begin{align*} \int \textrm{arcosh} x \d x &= \left [x \textrm{arcosh} x \right] - \int \frac{x}{\sqrt{x^2-1}} \d x \\ &= x \textrm{arcosh} x - \sqrt{x^2-1}+C \\ \int \frac{x-1}{\sqrt{x^2-1}} &= \sqrt{x^2-1} - \textrm{arcosh} x +C \end{align*} Therefore \begin{align*} && \int_1^x \textrm{arcosh} t \d t &> \int_1^x \frac{t-1}{\sqrt{t^2-1}} \d t \\ \Rightarrow && x \textrm{arcosh} x - \sqrt{x^2-1} - 0 &> \sqrt{x^2-1} - \textrm{arcosh} x - 0 \\ \Rightarrow && (x+1) \textrm{arcosh} x &> 2\sqrt{x^2-1} \\ \Rightarrow && \textrm{arcosh} x & > 2\frac{\sqrt{x^2-1}}{x+1} \\ &&&= 2 \frac{\sqrt{x-1}}{\sqrt{x+1}} \\ &&&= 2 \frac{x-1}{\sqrt{x^2-1}} \end{align*}
    3. Integrating both sides again, \begin{align*} && \int_1^x \textrm{arcosh} t \d t &> 2 \int_1^x \frac{t-1}{\sqrt{t^2-1}} \d t \\ \Rightarrow && x \textrm{arcosh} x - \sqrt{x^2-1} &> 2\left (\sqrt{x^2-1} - \textrm{arcosh}x \right) \\ \Rightarrow && (x+2)\textrm{arcosh} x &> 3 \sqrt{x^2-1} \\ \Rightarrow && \textrm{arcosh} x &> 3 \frac{\sqrt{x^2-1}}{x+2} \end{align*}
    2005 Paper 3 Q7
    D: 1700.0 B: 1471.4

    Show that if \(\displaystyle \int\frac1{u \, \f(u)}\; \d u = \F(u) + c\;\), then \(\displaystyle \int\frac{m}{x \, \f(x^m)} \;\d x = \F(x^m) + c\;\), where \(m\ne0\). Find:

    1. \(\displaystyle\int\frac1{x^n-x} \, \d x\,\);
    2. \(\displaystyle\int\frac1 {\sqrt{x^n+x^2}}\, \d x\,\).

    Show Solution
    \begin{align*} u = x^m, \d u = m x^{m-1} && \int \frac{m}{x f(x^m)} \d x &= \int \frac{m x^{m-1}}{uf(u)} \d x \\ &&&= \int \frac{1}{u f(u)} \d u \\ &&&= F(u) + c \\ &&&= F(x^m) + c \end{align*}
    1. \begin{align*} && \int \frac{1}{u(u-1)} \d u &= \int \left ( \frac{1}{u-1}-\frac{1}{u} \right ) \d u \\ &&&= \ln \left ( \frac{u-1}{u} \right) + c \\ &&&= \ln \left ( 1 - \frac{1}{u} \right) + c \\ && \int \frac{1}{x^n - x} \d x &= \int \frac{1}{x (x^{n-1}-1)} \d x \\ f(u) = u - 1: && &= \frac{1}{n-1} \ln \left ( 1 - \frac{1}{x^{n-1}} \right) + c \end{align*}
    2. \begin{align*} v = \sqrt{u+1}, \d v = \tfrac12 (u+1)^{-1/2} \d u && \int \frac{1}{u\sqrt{u+1}} \d u &= \int \frac{1}{(v^2-1)} (u+1)^{-1/2} \d u \\ &&&= \int \frac{2}{v^2-1} \d v \\ &&&=\ln \frac{1-v}{1+v} + c \\ &&&= \ln \left (\frac{1-\sqrt{u+1}}{1+\sqrt{u+1}} \right)+ c \\ f(u) = \sqrt{x+1}:&& \int \frac{1}{\sqrt{x^n + x^2}} \d x &= \int \frac{1}{x\sqrt{x^{n-2}+1}} \d x \\ &&&= \frac{1}{n-2} \ln \left ( \frac{1-\sqrt{x^{n-2}+1}}{1+\sqrt{x^{n-2}+1}} \right)+c \end{align*}
    2004 Paper 3 Q1
    D: 1700.0 B: 1603.9

    Show that \[ \int_0^a \frac{\sinh x}{2\cosh^2 x -1} \, \mathrm{d} x = \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}\cosh a -1}{\sqrt{2}\cosh a +1}\r + \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}+1}{\sqrt{2}-1}\r \] and find \[ \int_0^a \frac{\cosh x}{1+2\sinh^2 x} \, \mathrm{d} x \, . \] Hence show that \[ \int_0^\infty \frac{\cosh x - \sinh x}{1+2\sinh^2 x} \, \mathrm{d} x = \frac{\pi}{2\sqrt{2}} - \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}+1}{\sqrt{2}-1}\r \, . \] By substituting \(u = \e^x\) in this result, or otherwise, find \[ \int_1^\infty \frac{1}{1+u^4} \, \mathrm{d} u \, . \]

    2003 Paper 3 Q1
    D: 1700.0 B: 1516.0

    Given that \(x+a>0\) and \(x+b>0\,\), and that \(b>a\,\), show that \[ \frac{\mathrm{d} \ }{\mathrm{d} x} \arcsin \left ( \frac{x + a }{ \ x + b} \right) = \frac{ \sqrt{\;b - a\;}} {( x + b ) \sqrt{ a + b + 2x} \ \ } \] and find $\displaystyle \frac{\mathrm{d} \ }{ \mathrm{d} x} \; \mathrm{arcosh} \left ( \frac{x + b }{ \ x + a} \right)$. Hence, or otherwise, integrate, for \(x > -1\,\),

    1. \[ \int \frac{1}{ ( x + 1) \sqrt{x + 3} } \mathrm{d} x \]
    2. \[ \int \frac{1} {( x + 3 ) \sqrt{x + 1} } \mathrm{d} x \] .
    [You may use the results \(\frac{\d \ }{\d x} \arcsin x = \frac 1 {\sqrt{1-x^2\;}\;}\) and \( \frac{\d \ }{\d x} \; {\rm arcosh } \; x = \frac 1 {\sqrt{x^2-1}\;}\;\). ]

    Show Solution
    \begin{align*} \frac{\mathrm{d} \ }{\mathrm{d} x} \arcsin \left ( \frac{x + a }{ \ x + b} \right ) &= \frac{1}{\sqrt{1-\left ( \frac{x + a }{ \ x + b} \right )^2}} \left ( \frac{b-a}{(x+b)^2} \right) \\ &= \frac{b-a}{(x+b)\sqrt{(x+b)^2-(x+a)^2}} \\ &= \frac{b-a}{(x+b)\sqrt{(b-a)(2x+b+a)}} \\ &= \frac{\sqrt{b-a}}{(x+b)\sqrt{a+b+2x}} \\ \\ \frac{\mathrm{d} \ }{ \mathrm{d} x} \; \mathrm{arcosh} \left ( \frac{x + b }{ \ x + a} \right) &= \frac{1}{\sqrt{\left ( \frac{x + b }{ \ x + a} \right)^2-1}} \left ( -\frac{b-a}{(x+a)^2} \right) \\ &= -\frac{b-a}{(x+a)\sqrt{(x+b)^2-(x+a)^2}} \\ &= -\frac{b-a}{(x+a)\sqrt{(b-a)(a+b+2x)}} \\ &= -\frac{\sqrt{b-a}}{(x+a)\sqrt{a+b+2x}} \end{align*}
    1. \begin{align*} \int \frac{1}{ ( x + 1) \sqrt{x + 3} } \mathrm{d} x &= \int \frac{1}{(x+1)\sqrt{\frac12 (2x+6)}} \d x\\ &= \int \frac{\sqrt{2}}{(x+1)\sqrt{2x+1+5}} \d x \\ &= \frac{\sqrt{2}}{2}\int \frac{\sqrt{5-1}}{(x+1)\sqrt{2x+1+5}} \d x \\ &= - \frac{\sqrt{2}}{2}\textrm{arcosh} \left ( \frac{x+5}{x+1} \right) + C \end{align*}
    2. \begin{align*} \int \frac{1}{(x+3)\sqrt{x+1}} \d x &= \int \frac{1}{(x+3)\sqrt{\tfrac12(2x+2)}} \d x + C \\ &= \int \frac{\sqrt{3-1}}{(x+3)\sqrt{2x+3-1}} \d x \\ &= \textrm{arcsin} \left ( \frac{x-1}{x+3} \right) \end{align*}
    2001 Paper 3 Q2
    D: 1700.0 B: 1484.0

    Show that \( \cosh^{-1} x = \ln ( x + \sqrt{x^2-1})\). Show that the area of the region defined by the inequalities \(\displaystyle y^2 \ge x^2-8\) and \(\displaystyle x^2\ge 25y^2 -16 \) is \((72/5) \ln 2\).

    Show Solution
    \begin{align*} && x &= \cosh y \\ \Rightarrow && x &= \tfrac12 (e^y + e^{-y} ) \\ \Rightarrow && 0 &= e^{2y} - 2xe^y + 1 \\ \Rightarrow && e^y &= \frac{2x \pm \sqrt{4x^2-4}}{2} \\ &&&= x \pm \sqrt{x^2-1} \\ \Rightarrow &&e^y &= x + \sqrt{x^2-1} \tag{by convention \(\cosh^{-1} > 0\)} \\ \Rightarrow && y &= \ln (x + \sqrt{x^2-1}) \end{align*}
    TikZ diagram
    \begin{align*} && A &= 4 \left ( \int_0^3 \frac15\sqrt{16+x^2} \d x - \int_{2\sqrt{2}}^3\sqrt{x^2-8} \d x \right) \\ \\ x = 4\sinh u: && \int_0^3 \sqrt{4^2+x^2} \d x &= \int_{u=0}^{u=\sinh^{-1}(3/4)} \sqrt{4^2 (1+\sinh^2 u)} 4 \cosh u \d u \\ &&&= \int_0^{\sinh^{-1}(3/4)} 16 \cosh^{2}u \d u \\ &&&= 8\int_0^{\sinh^{-1}(3/4)} (1+\cosh 2u) \d u \\ &&&= 8 \left[u + \frac12 \sinh 2u\right]_0^{\sinh^{-1}(3/4)} \\ &&&= 8 \left (\sinh^{-1}(3/4) + \frac12 \sinh \left ( 2 \sinh^{-1}(3/4) \right) \right) \\ \\ && \sinh^{-1}(3/4) &= \ln\left ( \frac34 + \sqrt{\left ( \frac{3}{4} \right)^2 + 1} \right) \\ &&&= \ln \left ( \frac34 +\frac{5}{4} \right) \\ &&&= \ln 2 \\ \\ \Rightarrow && \int_0^3 \sqrt{4^2+x^2} \d x &= 8 \ln 2 + 4 \left ( \frac{e^{2 \ln 2} - e^{-2\ln2}}{2} \right) \\ &&&= 8 \ln 2 + 2 \cdot 4 - 2\cdot \frac{1}{4} \\ &&&= 8 \ln 2 + \frac{15}{2} \end{align*} \begin{align*} x = 2\sqrt{2} \cosh u: && \int_{2\sqrt{2}}^3\sqrt{x^2-8} \d x &= \int_{u=0}^{u = \cosh^{-1} \frac{3}{2\sqrt{2}}} \sqrt{8(\cosh^2 u - 1)} 2 \sqrt{2} \sinh u \d u \\ &&&= \int_0^{ \cosh^{-1} \frac{3}{2\sqrt{2}}} 8\sinh^2 u \d u \\ &&&= 4 \int_0^{ \cosh^{-1} \frac{3}{2\sqrt{2}}} 2\sinh^2 u \d u \\ &&&= 4 \int_0^{ \cosh^{-1} \frac{3}{2\sqrt{2}}} \cosh 2 u -1 \d u \\ &&&= 4 \left [\frac12 \sinh 2u - u \right]_0^{ \cosh^{-1} \frac{3}{2\sqrt{2}}} \\ \\ && \cosh^{-1} \frac{3}{2\sqrt{2}} &= \ln \left ( \frac{3}{2\sqrt{2}} + \sqrt{\left ( \frac{3}{2\sqrt{2}} \right)^2-1} \right) \\ &&&= \ln \left ( \frac{3}{2\sqrt{2}} + \sqrt{\frac{9}{8} - 1} \right) \\ &&&= \ln \left ( \frac{3}{2\sqrt{2}} + \sqrt{\frac{1}{8} } \right) \\ &&&= \ln \frac{4}{2\sqrt{2}} \\ &&&= \frac12 \ln 2 \\ \\ && \int_{2\sqrt{2}}^3\sqrt{x^2-8} \d x &= 4 \left ( \frac12 \frac{e^{\ln2} - e^{-\ln2}}{2} - \frac12 \ln 2\right) \\ &&&= 2 - \frac12 -2 \ln 2 \\ &&&= \frac32 - 2 \ln 2 \end{align*} \begin{align*} A &= 4 \left (\frac15\left(8\ln 2 + \frac{15}2 \right)- \left ( \frac32 - 2 \ln 2\right)\right) \\ &=4\cdot \left( \frac{8}{5} + 2 \right) \ln 2 \\ &= \frac{72}{5} \ln 2 \end{align*}
    1992 Paper 2 Q8
    D: 1600.0 B: 1484.0

    Calculate the following integrals

    1. \({\displaystyle \int\frac{x}{(x-1)(x^{2}-1)}\,\mathrm{d}x}\);
    2. \({\displaystyle \int\frac{1}{3\cos x+4\sin x}\,\mathrm{d}x}\);
    3. \({\displaystyle \int\frac{1}{\sinh x}\,\mathrm{d}x}.\)

    Show Solution
    1. \begin{align*} \int\frac{x}{(x-1)(x^{2}-1)}\,\mathrm{d}x &= \int \frac{x}{(x-1)^2 (x+1)} \d x \\ &= \int \frac{1}{2(x-1)^2} + \frac{1}{4(x-1)} - \frac{1}{4(x+1)} \d x \\ &= -\frac12 (x-1)^{-1} + \frac14 \ln(x-1) - \frac14 \ln (x+1) + C \end{align*}
    2. \begin{align*} \int \frac{1}{3 \cos x + 4 \sin x } \d x &= \int \frac{1}{5 \cos (x - \cos^{-1}(3/5))} \d x \\ &= \frac15 \int \sec (x - \cos^{-1}(3/5)) \d x\\ &= \frac15 \left (\ln | \sec (x - \cos^{-1}(3/5)) + \tan (x - \cos^{-1}(3/5)) | \right) + C \end{align*}
    3. \begin{align*} \int \frac{1}{\sinh x} \d x &= \int \frac{2}{e^x - e^{-x}} \\ &= \int \frac{2e^x}{e^{2x}-1} \d x \\ &=\int \frac{e^x}{e^x-1} - \frac{e^x}{e^x+1} \d x \\ &= \ln (e^x - 1) + \ln (e^x+1) + C \end{align*}

    Scalar product, equation of plane, angles, vector product, shortest distances (point and line, point and plane, two lines)

    Showing 1-25 of 26 problems
    2019 Paper 1 Q5
    D: 1500.0 B: 1500.0

    1. The four points \(P\), \(Q\), \(R\) and \(S\) are the vertices of a plane quadrilateral. What is the geometrical shape of \(PQRS\) if \(\vec{PQ} = \vec{SR}\)? What is the geometrical shape of \(PQRS\) if \(\vec{PQ} = \vec{SR}\) and \(|\vec{PQ}| = |\vec{PS}|\)?
    2. A cube with edges of unit length has opposite vertices at \((0,0,0)\) and \((1,1,1)\). The points $$P(p,0,0), \quad Q(1,q,0), \quad R(r,1,1) \quad \text{and} \quad S(0,s,1)$$ lie on edges of the cube. Given that the four points lie in the same plane, show that $$rq = (1-s)(1-p).$$
      1. Show that \(\vec{PQ} = \vec{SR}\) if and only if the centroid of the quadrilateral \(PQRS\) is at the centre of the cube. Note: the centroid of the quadrilateral \(PQRS\) is the point with position vector $$\frac{1}{4}(\vec{OP} + \vec{OQ} + \vec{OR} + \vec{OS}),$$ where \(O\) is the origin.
      2. Given that \(\vec{PQ} = \vec{SR}\) and \(|\vec{PQ}| = |\vec{PS}|\), express \(q\), \(r\) and \(s\) in terms of \(p\). Show that $$\cos PQR = \frac{4p-1}{5-4p+8p^2}.$$ Write down the values of \(p\), \(q\), \(r\) and \(s\) if \(PQRS\) is a square, and show that the length of each side of this square is greater than \(\frac{21}{20}\).

    Show Solution
    1. If \(\vec{PQ} = \vec{SR}\) we have a parallelogram. \(\vec{PQ} = \vec{SR}\) and \(|\vec{PQ}| = |\vec{PS}|\) then we have a rhombus.
    2. If the four points lie in a plane then \((\vec{RS} \times \vec{RP}) \cdot \vec{RQ} =0\), so \begin{align*} && 0 &=\left ( \begin{pmatrix}-r\\ s-1 \\ 0 \end{pmatrix} \times \begin{pmatrix}p-r\\ -1 \\ -1 \end{pmatrix}\right) \cdot \begin{pmatrix}1-r\\ q-1 \\ -1 \end{pmatrix} \\ && &= \begin{pmatrix}1-s \\ -r \\r+(p-r)(1-s) \end{pmatrix} \cdot \begin{pmatrix}1-r\\ q-1 \\ -1 \end{pmatrix} \\ &&&= (1-s)(1-r)-r(q-1)-r-(p-r)(1-s) \\ &&&=(1-s)(1-r-p+r)-rq \\ \Rightarrow && rq &= (1-s)(1-p) \end{align*}
      1. \(\,\) \begin{align*} && \vec{PQ} &= \vec{SR} \\ \Leftrightarrow && \begin{pmatrix}1-p\\q \\ 0 \end{pmatrix} &= \begin{pmatrix}r\\1-s \\ 0 \end{pmatrix} \\ \Leftrightarrow && 1-p = r & \quad ; \quad q = 1-s\\ \Leftrightarrow && 1= r+p & \quad ; \quad 1 = q+s\\ \end{align*} The centroid is \(\frac14 (p+1+r, q+s+1, 2)\) which is clearly \(\frac12(1,1,1)\) iff those equations are true.
      2. \(\,\) \begin{align*} && |\vec{PQ}| &= |\vec{PS}| \\ \Leftrightarrow && (1-p)^2+q^2+ 0^2 &= p^2+s^2+1)\\ \Leftrightarrow && 1-2p+p^2+q^2 &= p^2 + s^2 + 1 \\ \Leftrightarrow && -2p+q^2 &= s^2 \end{align*} From the previous equations we have \(r = 1-p\), and \(-2p+(1-s)^2 = s^2 \Rightarrow -2p + 1 -2s = 0 \Rightarrow s = \frac12 - p\) and \(q = \frac12 + p\) \begin{align*} && \cos PQR &= \frac{\vec{QP}\cdot \vec{QR}}{|\vec{QP}||\vec{QR}|} \\ &&&= \frac{ \begin{pmatrix}p-1\\ -q \\ 0 \end{pmatrix} \cdot \begin{pmatrix}r-1\\ 1-q \\ 1 \end{pmatrix}}{\sqrt{(p-1)^2+q^2}\sqrt{(r-1)^2+(1-q)^2+1^2}} \\ &&&= \frac{ \begin{pmatrix}p-1\\ -\frac12-p \\ 0 \end{pmatrix} \cdot \begin{pmatrix}-p\\ \frac12-p \\ 1 \end{pmatrix}}{\sqrt{(p-1)^2+(-\frac12-p)^2}\sqrt{p^2+(\frac12-p)^2+1^2}} \\ &&&= \frac{ p-p^2-\frac14+p^2}{\sqrt{p^2-2p+1+\frac14+p+p^2}\sqrt{p^2+\frac14-p+p^2+1}} \\ &&&= \frac{4p-1}{\sqrt{8p^2-4p+5}\sqrt{8p^2-4p+5}}\\ &&&= \frac{4p-1}{8p^2-4p+5}\\ \end{align*} For \(PQRS\) to be a square \(\cos PQR = 0\), ie \(p = \frac14\) and so \((p,q,r,s) = (\frac14, \frac34, \frac34, \frac14)\) and \(|PQ| = \sqrt{(1-p)^2+q^2} = \sqrt{\left ( \frac34 \right)^2 + \left ( \frac34 \right)^2 } = \frac{3\sqrt{2}}4\), notice that \(\left ( \frac{21}{20} \right)^2 = \frac{441}{400} < \frac{9}{8}\) (\(441 < 450\)) therefore the sides are at least as long as \(\frac{21}{20}\)
    2018 Paper 2 Q7
    D: 1600.0 B: 1500.0

    The points \(O\), \(A\) and \(B\) are the vertices of an acute-angled triangle. The points \(M\) and \(N\) lie on the sides \(OA\) and \(OB\) respectively, and the lines \(AN\) and \(BM\) intersect at \(Q\). The position vector of \(A\) with respect to \(O\) is \(\bf a\), and the position vectors of the other points are labelled similarly. Given that \(\vert MQ \vert = \mu \vert QB\vert \), and that \(\vert NQ \vert = \nu \vert QA\vert \), where \(\mu\) and \(\nu\) are positive and \(\mu \nu <1\), show that \[ {\bf m} = \frac {(1+\mu)\nu}{1+\nu} \, {\bf a} \,. \] The point \(L\) lies on the side \(OB\), and \(\vert OL \vert = \lambda \vert OB \vert \,\). Given that \(ML\) is parallel to \(AN\), express~\(\lambda\) in terms of \(\mu\) and \(\nu\). What is the geometrical significance of the condition \(\mu\nu<1\,\)?

    2017 Paper 2 Q8
    D: 1600.0 B: 1500.0

    All vectors in this question lie in the same plane. The vertices of the non-right-angled triangle \(ABC\) have position vectors \(\bf a\), \(\bf b\) and \(\bf c\), respectively. The non-zero vectors \(\bf u\) and \(\bf v\) are perpendicular to \(BC\) and \(CA\), respectively. Write down the vector equation of the line through \(A\) perpendicular to \(BC\), in terms of \(\bf u\),~\(\bf a\) and a parameter \(\lambda \). The line through \(A\) perpendicular to \(BC\) intersects the line through \(B\) perpendicular to \(CA\) at \(P\). Find the position vector of \(P\) in terms of \(\bf a\),~\(\bf b\), \(\bf c\) and \(\bf u\). Hence show that the line \(CP\) is perpendicular to the line \(AB\).

    2016 Paper 1 Q6
    D: 1500.0 B: 1484.7

    The sides \(OA\) and \(CB\) of the quadrilateral \(OABC\) are parallel. The point \(X\) lies on \(OA\), between \(O\) and \(A\). The position vectors of \(A\), \(B\), \(C\) and \(X\) relative to the origin \(O\) are \(\bf a\), \(\bf b\), \(\bf c\) and \(\bf x\), respectively. Explain why \(\bf c\) and \(\bf x\) can be written in the form \[ {\bf c} = k {\bf a} + {\bf b} \text{ \ \ \ \ and \ \ \ \ } {\bf x} = m {\bf a}\,, \] where \(k\) and \(m\) are scalars, and state the range of values that each of \(k\) and \(m\) can take. %

    1. The lines \(OB\) and \(AC\) intersect at \(D\), the lines \(XD\) and \(BC\) intersect at \(Y\) and the lines \(OY\) and \(AB\) intersect at \(Z\). Show that the position vector of \(Z\) relative to \(O\) can be written as \[ \frac{ {\bf b} + mk {\bf a}}{mk+1}\,. \] %
    The lines \(DZ\) and \(OA\) intersect at \(T\). Show that \[ OT \times OA = OX\times TA \text{ \ \ \ \ and \ \ \ \ } \frac 1 {OT} = \frac 1 {OX} + \frac 1 {OA} \,, \] where, for example, \(OT\) denotes the length of the line joining \(O\) and \(T\).

    2015 Paper 2 Q8
    D: 1600.0 B: 1500.0

    \noindent

    \psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-2.94,-1.87)(7.07,3.86) \pscircle(0,1){1.25} \pscircle(3,0){0.55} \rput[tl](5.33,-0.41){\(P\)} \psline(-2.44,-0.03)(6.18,-0.85) \psline(-2.04,3.71)(6.55,-1.48) \rput[tl](-0.18,1.1){\(C_1\)} \rput[tl](2.85 ,0.15){\(C_2\)} \rput[tl](-0.65,3.29){\(L'\)} \rput[tl](-1.5,-0.34){\(L\)} \end{pspicture*}
    The diagram above shows two non-overlapping circles \(C_1\) and \(C_2\) of different sizes. The lines \(L\) and \(L'\) are the two common tangents to \(C_1\) and \(C_2\) such that the two circles lie on the same side of each of the tangents. The lines \(L\) and \(L'\) intersect at the point \(P\) which is called the {\em focus} of \(C_1\) and \(C_2\).
    1. Let \({\bf x}_1\) and \({\bf x}_2\) be the position vectors of the centres of \(C_1\) and \(C_2\), respectively. Show that the position vector of \(P\) is \[ \frac{r_1 {\bf x}_2- r_2 {\bf x}_1}{r_1-r_2} \,, \] where \(r_1\) and \(r_2\) are the radii of \(C_1\) and \(C_2\), respectively.
    2. The circle \(C_3\) does not overlap either \(C_1\) or \(C_2\) and its radius, \(r_3\), satisfies \(r_1 \ne r_3 \ne r_2\). The focus of \(C_1\) and \(C_3\) is \(Q\), and the focus of \(C_2\) and \(C_3\) is \(R\). Show that \(P\), \(Q\) and~\(R\) lie on the same straight line.
    3. Find a condition on \(r_1\), \(r_2\) and \(r_3\) for \(Q\) to lie half-way between \(P\) and \(R\).

    2014 Paper 3 Q7
    D: 1700.0 B: 1484.0

    The four distinct points \(P_i\) (\(i=1\), \(2\), \(3\), \(4\)) are the vertices, labelled anticlockwise, of a cyclic quadrilateral. The lines \(P_1P_3\) and \(P_2P_4\) intersect at \(Q\).

    1. By considering the triangles \(P_1QP_4\) and \(P_2QP_3\) show that \((P_1Q)( QP_3) = (P_2Q) (QP_4)\,\).
    2. Let \(\+p_i\) be the position vector of the point \(P_i\) (\(i=1\), \(2\), \(3\), \(4\)). Show that there exist numbers \(a_i\), not all zero, such that \begin{equation} \sum\limits_{i=1}^4 a_i =0 \qquad\text{and}\qquad \sum\limits_{i=1}^4 a_i \+p_i ={\bf 0} \,. \tag{\(*\)} \end{equation}
    3. Let \(a_i\) (\(i=1\),~\(2\), \(3\),~\(4\)) be any numbers, not all zero, that satisfy~\((*)\). Show that \(a_1+a_3\ne 0\) and that the lines \(P_1P_3\) and \(P_2P_4\) intersect at the point with position vector \[ \frac{a_1 \+p_1 + a_3 \+p_3}{a_1+a_3} \,. \] Deduce that \(a_1a_3 (P_1P_3)^2 = a_2a_4 (P_2P_4)^2\,\).

    2014 Paper 1 Q7
    D: 1516.0 B: 1500.0

    In the triangle \(OAB\), the point \(D\) divides the side \(BO\) in the ratio \(r:1\) (so that \(BD = rDO\)), and the point \(E\) divides the side \(OA\) in the ratio \(s:1\) (so that \(OE =s EA\)), where \(r\) and \(s\) are both positive.

    1. The lines \(AD\) and \(BE\) intersect at \(G\). Show that \[ \+g= \frac{rs}{1+r+rs} \, \+a + \frac 1 {1+r+rs} \, \+b \,, \] where \+a, \+b and \+g are the position vectors with respect to \(O\) of \(A\), \(B\) and \(G\), respectively.
    2. The line through \(G\) and~\(O\) meets \(AB\) at \(F\). Given that \(F\) divides \(AB\) in the ratio \(t:1\), find an expression for~\(t\) in terms of \(r\) and~\(s\).

    2013 Paper 3 Q3
    D: 1700.0 B: 1516.0

    The four vertices \(P_i\) (\(i= 1, 2, 3, 4\)) of a regular tetrahedron lie on the surface of a sphere with centre at \(O\) and of radius 1. The position vector of \(P_i\) with respect to \(O\) is \({\bf p}_i\) (\(i= 1, 2, 3, 4\)). Use the fact that \({\bf p}_1+ {\bf p}_2+{\bf p}_3+{\bf p}_4={\bf 0}\,\) to show that \({\bf p}_i \,.\, {\bf p}_j =-\frac13\,\) for \(i\ne j\). Let \(X\) be any point on the surface of the sphere, and let \(XP_i\) denote the length of the line joining \(X\) and \(P_i\) (\(i= 1, 2, 3, 4\)).

    1. By writing \((XP_i) ^2\) as \(({\bf p}_i- {\bf x)}\,.\,({\bf p}_i- {\bf x})\), where \({\bf x}\) is the position vector of \(X\) with respect to \(O\), show that \[ \sum_{i=1}^4(XP_i) ^2 =8\,. \]
    2. Given that \(P_1\) has coordinates \((0,0,1)\) and that the coordinates of \(P_2\) are of the form \((a,0,b)\), where \(a>0\), show that \(a=2\sqrt2/3\) and \(b=-1/3\), and find the coordinates of \(P_3\) and \(P_4\).
    3. Show that \[ \sum_{i=1}^4 (XP_i)^4 = 4 \sum_{i=1}^4 (1- {\bf x}\,.\,{\bf p}_i)^2\,. \] By letting the coordinates of \(X\) be \( (x,y,z)\), show further that $ \sum\limits_{i=1}^4 (XP_i)^4\( is independent of the position of \)X$.

    2012 Paper 2 Q7
    D: 1600.0 B: 1516.0

    Three distinct points, \(X_1\), \(X_2\) and \(X_3\), with position vectors \({\bf x}_1\), \({\bf x}_2\) and \({\bf x}_3\) respectively, lie on a circle of radius 1 with its centre at the origin \(O\). The point \(G\) has position vector \(\frac13({\bf x}_1+{\bf x}_2+{\bf x}_3)\). The line through \(X_1\) and \(G\) meets the circle again at the point \(Y_1\) and the points \(Y_2\) and \(Y_3\) are defined correspondingly. Given that \(\overrightarrow{GY_1} =-\lambda_1\overrightarrow{GX_1}\), where \(\lambda_1\) is a positive scalar, show that \[ \overrightarrow{OY_1}= \tfrac13 \big( (1-2\lambda_1){\bf x}_1 +(1+\lambda_1)({\bf x}_2+{\bf x}_3)\big) \] and hence that \[ \lambda_1 = \frac {3-\alpha-\beta-\gamma} {3+\alpha -2\beta-2\gamma} \,,\] where \(\alpha = {\bf x}_2 \,.\, {\bf x}_3\), \(\beta = {\bf x}_3\,.\, {\bf x}_1\) and \(\gamma = {\bf x}_1\,.\, {\bf x}_2\). Deduce that $\dfrac {GX_1}{GY_1} + \dfrac {GX_2}{GY_2} + \dfrac {GX_3}{GY_3} =3 \,$.

    Show Solution
    TikZ diagram
    \begin{align*} && \mathbf{y}_1 &= \overrightarrow{OG}+\overrightarrow{GY_1} \\ &&&= \frac13(\mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3) -\lambda_1 \left (\mathbf{x}_1 - \frac13(\mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3)\right) \\ &&&= \frac13 \left ( (1-2\lambda_1)\mathbf{x}_1+(1+\lambda_1)(\mathbf{x}_2+\mathbf{x}_3)\right) \\ && 1 &= \mathbf{y}_1 \cdot \mathbf{y}_1 \\ &&&= \frac13 \left ( (1-2\lambda_1)\mathbf{x}_1+(1+\lambda_1)(\mathbf{x}_2+\mathbf{x}_3)\right) \cdot \frac13 \left ( (1-2\lambda_1)\mathbf{x}_1+(1+\lambda_1)(\mathbf{x}_2+\mathbf{x}_3)\right) \\ &&&= \frac19\left ( (1-2\lambda_1)^2+2(1+\lambda_1)^2 + 2(1-2\lambda_1)(1+\lambda_1)(\mathbf{x}_1 \cdot \mathbf{x}_2+\mathbf{x}_1 \cdot \mathbf{x}_3) + 2(1+\lambda_1)^2 \mathbf{x}_2 \cdot \mathbf{x}_3 \right) \\ \Rightarrow && 9 &= (1-2\lambda_1)^2+2(1+\lambda_1)^2 + 2(1-2\lambda_1)(1+\lambda_1)(\beta+\gamma) + 2(1+\lambda_1)^2 \alpha \\ &&&= 3+6\lambda_1^2+2(\beta+\gamma)-2(\beta+\gamma)\lambda_1 - 4\lambda_1^2(\beta+\gamma) + 2\alpha+4\lambda_1\alpha + 2\lambda_1^2 \alpha \\ && 0 &= (-6+2(\alpha+\beta+\gamma))+2(2\alpha-(\beta+\gamma))\lambda_1 + (6+2(\alpha-2(\beta+\gamma)))\lambda_1^2 \\ \Rightarrow && 0 &= ((\alpha+\beta+\gamma)-3)+(2\alpha-(\beta+\gamma))\lambda_1 + (3+\alpha-2(\beta+\gamma))\lambda_1^2 \\ &&&= (\lambda_1+1)((3+\alpha-2(\beta+\gamma))\lambda_1+ ((\alpha+\beta+\gamma)-3)) \\ \Rightarrow && \lambda_1 &= \frac{3-(\alpha+\beta+\gamma)}{3+\alpha-2(\beta+\gamma)} \end{align*} as required. Since \(\dfrac {GX_1}{GY_1} = \frac1{\lambda_1}\) we must have, \begin{align*} && \frac {GX_1}{GY_1} + \frac {GX_2}{GY_2} + \frac {GX_3}{GY_3} &= \frac1{\lambda_1}+\frac1{\lambda_2}+\frac1{\lambda_3} \\ &&&= \frac{(3+\alpha-2\beta-2\gamma)+(3+\beta-2\gamma-2\alpha)+3+\gamma-2\alpha-2\beta)}{3-\alpha-\beta-\gamma} \\ &&&= \frac{9-3(\alpha+\beta+\gamma)}{3-(\alpha+\beta+\gamma)} \\ &&&= 3 \end{align*}
    2011 Paper 2 Q5
    D: 1600.0 B: 1484.0

    The points \(A\) and \(B\) have position vectors \(\bf a \) and \(\bf b\) with respect to an origin \(O\), and \(O\), \(A\)~and~\(B\) are non-collinear. The point \(C\), with position vector \(\bf c\), is the reflection of \(B\) in the line through \(O\) and \(A\). Show that \(\bf c\) can be written in the form \[ \bf c = \lambda \bf a -\bf b \] where \(\displaystyle \lambda = \frac{2\,{\bf a .b}}{{\bf a.a}}\). The point \(D\), with position vector \(\bf d\), is the reflection of \(C\) in the line through \(O\) and \(B\). Show that \(\bf d\) can be written in the form \[ \bf d = \mu\bf b - \lambda \bf a \] for some scalar \(\mu\) to be determined. Given that \(A\), \(B\) and \(D\) are collinear, find the relationship between \(\lambda\) and \(\mu\). In the case \(\lambda = -\frac12\), determine the cosine of \(\angle AOB\) and describe the relative positions of \(A\), \(B\) and \(D\).

    2010 Paper 2 Q5
    D: 1600.0 B: 1500.0

    The points \(A\) and \(B\) have position vectors \(\bf i +j+k\) and \(5{\bf i} - {\bf j} -{\bf k}\), respectively, relative to the origin \(O\). Find \(\cos2\alpha\), where \(2\alpha\) is the angle \(\angle AOB\).

    1. The line \(L _1\) has equation \({\bf r} =\lambda(m{\bf i}+n {\bf j} + p{\bf k})\). Given that \(L _1\) is inclined equally to \(OA\) and to \(OB\), determine a relationship between \(m\), \(n\) and~\(p\). Find also values of \(m\), \(n\) and~\(p\) for which \(L _1\) is the angle bisector of \(\angle AOB\).
    2. The line \(L _2\) has equation \({\bf r} =\mu(u{\bf i}+v {\bf j} + w{\bf k})\). Given that \( L _2\) is inclined at an angle \(\alpha\) to \(OA\), where \(2\alpha = \angle AOB\), determine a relationship between \(u\), \(v\) and \(w\). Hence describe the surface with Cartesian equation \(x^2+y^2+z^2 =2(yz+zx+xy)\).

    2010 Paper 1 Q7
    D: 1484.0 B: 1500.0

    Relative to a fixed origin \(O\), the points \(A\) and \(B\) have position vectors \(\bf{a}\) and \(\bf{b}\), respectively. (The points \(O\), \(A\) and \(B\) are not collinear.) The point \(C\) has position vector \(\bf c\) given by \[ {\bf c} =\alpha {\bf a}+ \beta {\bf b}\,, \] where \(\alpha\) and \(\beta\) are positive constants with \(\alpha+\beta<1\,\). The lines \(OA\) and \(BC\) meet at the point \(P\) with position vector \(\bf p\) and the lines \(OB\) and \(AC\) meet at the point \(Q\) with position vector \(\bf q\). Show that \[ {\bf p} =\frac{\alpha {\bf a} }{1-\beta}\,, \] and write down \(\bf q\) in terms of \(\alpha,\ \beta\) and \(\bf {b}\). Show further that the point \(R\) with position vector \(\bf r\) given by \[ {\bf r} =\frac{\alpha {\bf a} + \beta {\bf b}}{\alpha + \beta}\,, \] lies on the lines \(OC\) and \(AB\). The lines \(OB\) and \(PR\) intersect at the point \(S\). Prove that $ \dfrac{OQ}{BQ} = \dfrac{OS}{BS}\,$.

    2009 Paper 2 Q8
    D: 1600.0 B: 1484.8

    The non-collinear points \(A\), \(B\) and \(C\) have position vectors \(\bf a\), \(\bf b\) and \(\bf c\), respectively. The points \(P\) and \(Q\) have position vectors \(\bf p\) and \(\bf q\), respectively, given by \[ {\bf p}= \lambda {\bf a} +(1-\lambda){\bf b} \text{ \ \ \ and \ \ \ } {\bf q}= \mu {\bf a} +(1-\mu){\bf c} \] where \(0<\lambda<1\) and \(\mu>1\). Draw a diagram showing \(A\), \(B\), \(C\), \(P\) and \(Q\). Given that \(CQ\times BP = AB\times AC\), find \(\mu\) in terms of \(\lambda\), and show that, for all values of \(\lambda\), the the line \(PQ\) passes through the fixed point \(D\), with position vector \({\bf d}\) given by \({\bf d= -a +b +c}\,\). What can be said about the quadrilateral \(ABDC\)?

    2008 Paper 2 Q8
    D: 1600.0 B: 1484.0

    The points \(A\) and \(B\) have position vectors \(\bf a\) and \(\bf b\), respectively, relative to the origin \(O\). The points \(A\), \(B\) and \(O\) are not collinear. The point \(P\) lies on \(AB\) between \(A\) and \(B\) such that \[ AP : PB = (1-\lambda):\lambda\,. \] Write down the position vector of \(P\) in terms of \(\bf a\), \(\bf b\) and \(\lambda\). Given that \(OP\) bisects \(\angle AOB\), determine \(\lambda\) in terms of \(a\) and \(b\), where \(a=\vert \bf a\vert\) and $b=\vert \bb\vert$. The point \(Q\) also lies on \(AB\) between \(A\) and \(B\), and is such that \(AP=BQ\). Prove that $$OQ^2-OP^2=(b-a)^2\,.$$

    2007 Paper 2 Q8
    D: 1600.0 B: 1529.3

    The points \(B\) and \(C\) have position vectors \(\mathbf{b}\) and \(\mathbf{c}\), respectively, relative to the origin \(A\), and \(A\), \(B\) and \(C\) are not collinear.

    1. The point \(X\) has position vector \(s \mathbf{b}+t\mathbf{c}\). Describe the locus of \(X\) when \(s+t=1\).
    2. The point \(P\) has position vector \(\beta \mathbf{b}+\gamma\mathbf{c}\), where \(\beta\) and \(\gamma\) are non-zero, and \(\beta+\gamma\ne1\). The line \(AP\) cuts the line \(BC\) at \(D\). Show that \(BD:DC=\gamma:\beta\).
    3. The line \(BP\) cuts the line \(CA\) at \(E\), and the line \(CP\) cuts the line \(AB\) at \(F\). Show that \[ \frac{AF}{FB} \times \frac{BD}{DC} \times \frac{CE}{EA}=1\,. \]

    Show Solution
    1. \(X\) lies on the line including \(B\) and \(C\).
    2. points on the line \(AP\) have the form \(\lambda(\beta \mathbf{b}+\gamma\mathbf{c})\), and the point \(D\) will be the point where \(\lambda\beta + \lambda \gamma = 1\). \begin{align*} && \frac{|BD|}{|DC|} &= \frac{|\mathbf{b} -\lambda(\beta \mathbf{b}+\gamma\mathbf{c})| }{|\lambda(\beta \mathbf{b}+\gamma\mathbf{c})- \mathbf{c}|} \\ &&&= \frac{|(1-\lambda \beta)\mathbf{b} - \lambda \gamma \mathbf{c}|}{|\lambda \beta \mathbf{b}+(\lambda \gamma -1)\mathbf{c}|}\\ &&&= \frac{|\lambda \gamma\mathbf{b} - \lambda \gamma \mathbf{c}|}{|\lambda \beta \mathbf{b}-(\lambda \beta)\mathbf{c}|} \\ &&&= \frac{\gamma}{\beta} \end{align*}
    3. The line \(BP\) is \(\mathbf{b} + \mu(\beta \mathbf{b}+\gamma\mathbf{c})\) and will meet \(CA\) when \(1+\mu\beta = 0\), ie \(\mu = -\frac{1}{\beta}\), therefore \(E\) is \(-\frac{\gamma}{\beta}\mathbf{c}\), and so \(\frac{|CE|}{|EA|} = \frac{1+\gamma/\beta}{\gamma/\beta} = \frac{\beta+\gamma}{\gamma}\). Similarly, \(F\) is \(-\frac{\beta}{\gamma}\mathbf{b}\) and \(\frac{|AF|}{|FB|} = \frac{\beta/\gamma}{1+\frac{\beta}{\gamma}} = \frac{\beta}{\gamma+\beta}\), and so \[\frac{AF}{FB} \times \frac{BD}{DC} \times \frac{CE}{EA} = \frac{\beta}{\gamma+\beta} \frac{\gamma}{\beta} \frac{\beta+\gamma}{\gamma} = 1 \]
    2007 Paper 1 Q7
    D: 1500.0 B: 1500.0

    1. The line \(L_1\) has vector equation $\displaystyle {\bf r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} \hphantom{-} 2 \\ \hphantom{-} 2 \\ -3 \end{pmatrix} $. The line \(L_2\) has vector equation $\displaystyle {\bf r} = \begin{pmatrix} \hphantom{-} 4 \\ -2 \\ \hphantom{-} 9 \end{pmatrix} + \mu \begin{pmatrix} \hphantom{-} 1 \\ \hphantom{-} 2 \\ -2 \end{pmatrix} . $ Show that the distance \(D\) between a point on \(L_1\) and a point on \(L_2\) can be expressed in the form \[ D^2 = \left(3\mu -4 \lambda-5 \right)^2 + \left( \lambda -1 \right)^2 + 36\,. \] Hence determine the minimum distance between these two lines and find the coordinates of the points on the two lines that are the minimum distance apart.
    2. The line \(L_3\) has vector equation ${\bf r} = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} . $ The line \(L_4\) has vector equation $ {\bf r} = \begin{pmatrix} \hphantom{-} 3 \\ \hphantom{-} 3 \\ -2 \end{pmatrix} + \beta \begin{pmatrix} \, 4k\\ 1-k \\ \!\!\! -3k \end{pmatrix} . $ Determine the minimum distance between these two lines, explaining geometrically the two different cases that arise according to the value of \(k\).

    2006 Paper 2 Q8
    D: 1600.0 B: 1500.0

    Show that the line through the points with position vectors \(\bf x\) and \(\bf y\) has equation \[{\bf r} = (1-\alpha){\bf x} +\alpha {\bf y}\,, \] where \(\alpha\) is a scalar parameter. The sides \(OA\) and \(CB\) of a trapezium \(OABC\) are parallel, and \(OA>CB\). The point \(E\) on \(OA\) is such that \(OE : EA = 1:2\), and \(F\) is the midpoint of \(CB\). The point \(D\) is the intersection of \(OC\) produced and \(AB\) produced; the point \(G\) is the intersection of \(OB\) and \(EF\); and the point \(H\) is the intersection of \(DG\) produced and \(OA\). Let \(\bf a\) and \(\bf c\) be the position vectors of the points \(A\) and \(C\), respectively, with respect to the origin \(O\).

    1. Show that \(B\) has position vector \(\lambda {\bf a} + {\bf c}\) for some scalar parameter \(\lambda\).
    2. Find, in terms of \(\bf a\), \(\bf c\) and \(\lambda\) only, the position vectors of \(D\), \(E\), \(F\), \(G\) and \(H\). Determine the ratio \(OH:HA\).

    2005 Paper 2 Q7
    D: 1600.0 B: 1501.0

    The position vectors, relative to an origin \(O\), at time \(t\) of the particles \(P\) and \(Q\) are $$\cos t \; {\bf i} + \sin t\;{\bf j} + 0 \; {\bf k} \text{ and } \cos (t+\tfrac14{\pi})\, \big[{\tfrac32}{\bf i} + { \tfrac {3\sqrt{3}}2} {\bf k}\big] + 3\sin(t+\tfrac14{\pi}) \; {\bf j}\;,$$ respectively, where \(0\le t \le 2\pi\,\).

    1. Give a geometrical description of the motion of \(P\) and \(Q\).
    2. Let \(\theta\) be the angle \(POQ\) at time \(t\) that satisfies \(0\le\theta\le\pi\,\). Show that \[ \cos\theta = \tfrac{3\surd2}{8} -\tfrac14 \cos( 2t +\tfrac14 \pi)\;. \]
    3. Show that the total time for which \(\theta \ge \frac14 \pi\) is \(\tfrac32 \pi\,\).

    Show Solution
    1. \(P\) is travelling in a unit circle about the origin in the \(\mathbf{i}-\mathbf{j}\) plane. \(Q\) is travelling in a circle (also about the origin, but in a different plane with radius \(3\)).
    2. \(\,\) \begin{align*} && \mathbf{p}\cdot \mathbf{q} &= |\mathbf{p}||\mathbf{q}| \cos \theta \\ \Rightarrow && \cos \theta &= \frac{\tfrac32\cos t \cos(t + \tfrac{\pi}4)+3\sin t \sin (t + \tfrac{\pi}{4})}{3} \\ &&&= \tfrac12\cos t \cos(t + \tfrac{\pi}4)+\sin t \sin (t + \tfrac{\pi}{4}) \\ &&&= \tfrac14 (\cos (2t + \tfrac{\pi}{4}) + \cos(\tfrac{\pi}{4} ))+\tfrac12(\cos(\tfrac{\pi}{4})-\cos(2t + \tfrac{\pi}{4})) \\ &&&= \tfrac{3\sqrt{2}}8 - \tfrac14 \cos ( 2t +\tfrac{\pi}{4}) \end{align*}
    3. If \(\theta \geq \frac14\pi\), then \(\cos \theta \leq \frac{\sqrt{2}}2\) \begin{align*} && \frac{\sqrt{2}}2 & \geq \frac{3\sqrt{2}}8 - \frac14 \cos ( 2t +\tfrac{\pi}{4}) \\ \Rightarrow && \frac{\sqrt{2}}2 &\geq -\cos(2t + \tfrac{\pi}{4}) \\ \Rightarrow && \cos(2t + \tfrac{\pi}{4}) &\geq -\frac{1}{\sqrt{2}} \\ \Rightarrow && 2t + \tfrac{\pi}{4} &\not\in (\tfrac{3\pi}{4},\tfrac{5\pi}{4}) \cup (\tfrac{11\pi}{4},\tfrac{13\pi}{4}) \\ \Rightarrow && t &\not\in (\tfrac{\pi}{4}, \tfrac{\pi}{2})\cup (\tfrac{5\pi}{4}, \tfrac{3\pi}{2}) \end{align*} which is is a time of \(\frac{\pi}{2}\), therefore the left over time is \(\frac32\pi\)
    2000 Paper 3 Q5
    D: 1700.0 B: 1500.0

    Given two non-zero vectors $\mathbf{a}=\begin{pmatrix}a_{1}\\ a_{2} \end{pmatrix}\( and \)\mathbf{b}=\begin{pmatrix}b_{1}\\ b_{2} \end{pmatrix}$ \mbox{define \(\Delta\!\! \left( \bf a, \bf b \right)\) by \(\Delta\!\! \left( \bf a, \bf b \right) = a_1 b_2 - a_2 b_1\).} Let \(A\), \(B\) and \(C\) be points with position vectors \(\bf a\), \(\bf b\) and \(\bf c\), respectively, no two of which are parallel. Let \(P\), \(Q\) and \(R\) be points with position vectors \(\bf p\), \(\bf q\) and \(\bf r\), respectively, none of which are parallel.

    1. Show %, by considering first the case %\(\displaystyle \bf a = \pmatrix{\!a_1\!\cr 0 \cr}\), %or otherwise, that there exists a \(2 \times 2\) matrix \(\bf M\) such that \(P\) and \(Q\) are the images of \(A\) and \(B\) under the transformation represented by \(\bf M\).
    2. Show that $ \Delta\!\! \left( \bf a, \bf b \right) \bf c + \Delta\!\! \left( \bf c, \bf a \right) \bf b + \Delta\!\! \left( \bf b, \bf c \right) \bf a = 0. $ Hence, or otherwise, prove that a necessary and sufficient condition for the points \(P\), \(Q\), and \(R\) to be the images of points \(A\), \(B\) and \(C\) under the transformation represented by some \(2 \times 2\) matrix \(\bf M\) is that \[ \Delta\!\! \left( \bf a, \bf b \right) : \Delta\!\! \left( \bf b, \bf c \right) : \Delta\!\! \left( \bf c, \bf a \right) = \Delta\!\! \left( \bf p, \bf q \right) : \Delta\!\! \left( \bf q, \bf r \right) : \Delta\!\! \left( \bf r, \bf p \right). \]

    2000 Paper 2 Q7
    D: 1600.0 B: 1486.1

    The line \(l\) has vector equation \({\bf r} = \lambda {\bf s}\), where \[ {\bf s} = (\cos\theta+\sqrt3\,) \; {\bf i} +(\surd2\;\sin\theta)\;{\bf j} +(\cos\theta-\sqrt3\,)\;{\bf k} \] and \(\lambda\) is a scalar parameter. Find an expression for the angle between \(l\) and the line \mbox{\({\bf r} = \mu(a\, {\bf i} + b\,{\bf j} +c\, {\bf k})\)}. Show that there is a line \(m\) through the origin such that, whatever the value of \(\theta\), the acute angle between \(l\) and \(m\) is \(\pi/6\). A plane has equation \(x-z=4\sqrt3\). The line \(l\) meets this plane at \(P\). Show that, as \(\theta\) varies, \(P\) describes a circle, with its centre on \(m\). Find the radius of this circle.

    1998 Paper 3 Q8
    D: 1700.0 B: 1484.0

    1. [(i)] Consider the sphere of radius \(a\) and centre the origin. %Show that the line through the point with position vector %\({\bf b}\) and parallel to a unit %vector \({\bf m}\) intersects the sphere at two points if %$$ %a^2 > {\bf b}.{\bf b} -({\bf b}.{\bf m})^2 \,. %$$ %What is the corresponding condition for there to be precisely one %point of intersection? %If this point has position vector \({\bf p}\), show that the line %is perpendicular to \({\bf p}\).
    2. Show that the line \({\bf r} ={\bf b} + \lambda {\bf m}\), where \(\bf m\) is a unit vector, intersects the sphere \({\bf r}\cdot {\bf r} = a^2\) at two points if $$ a^2 > {\bf b}\cdot{\bf b} -({\bf b}\cdot{\bf m})^2 \,. $$ Write down the corresponding condition for there to be precisely one point of intersection. If this point has position vector \({\bf p}\), show that \({\bf m}\cdot{\bf p}=0\).
    3. Now consider a second sphere of radius \(a\) and a plane perpendicular to a unit vector~\({\bf n}\). The centre of the sphere has position vector \({\bf d}\) and the minimum distance from the origin to the plane is \(l\). What is the condition for the plane to be tangential to this second sphere?
    4. Show that the first and second spheres intersect at right angles ({\em i.e.\ }the two radii to each point of intersection are perpendicular) if $$ {\bf d}\cdot{\bf d} = 2 a^2 \,. $$

    1995 Paper 3 Q8
    D: 1700.0 B: 1500.0

    A plane \(\pi\) in 3-dimensional space is given by the vector equation \(\mathbf{r}\cdot\mathbf{n}=p,\) where \(\mathbf{n}\) is a unit vector and \(p\) is a non-negative real number. If \(\mathbf{x}\) is the position vector of a general point \(X\), find the equation of the normal to \(\pi\) through \(X\) and the perpendicular distance of \(X\) from \(\pi\). The unit circles \(C_{i},\) \(i=1,2,\) with centres \(\mathbf{r}_{i},\) lie in the planes \(\pi_{i}\) given by \(\mathbf{r}\cdot\mathbf{n}_{i}=p_{i},\) where the \(\mathbf{n}_{i}\) are unit vectors, and \(p_{i}\) are non-negative real numbers. Prove that there is a sphere whose surface contains both circles only if there is a real number \(\lambda\) such that \[ \mathbf{r}_{1}+\lambda\mathbf{n}_{1}=\mathbf{r}_{2}\pm\lambda\mathbf{n}_{2}. \] Hence, or otherwise, deduce the necessary conditions that \[ (\mathbf{r}_{1}-\mathbf{r}_{2})\cdot(\mathbf{n}_{1}\times\mathbf{n}_{2})=0 \] and that \[ (p_{1}-\mathbf{n}_{1}\cdot\mathbf{r}_{2})^{2}=(p_{2}-\mathbf{n}_{2}\cdot\mathbf{r}_{1})^{2}. \] Interpret each of these two conditions geometrically.

    Show Solution
    The equation of the normal to \(\pi\) through \(X\) is \(\mathbf{x} + \lambda \mathbf{n}\). The distance is \(|\mathbf{x}\cdot \mathbf{n}-p|\) We know that the centre of the sphere must lie above the centre of the circle following the normal, ie \(\mathbf{c} = \mathbf{r}_1+\lambda_1 \mathbf{n}_1 = \mathbf{r}_2+\lambda_2 \mathbf{n}_2\)
    TikZ diagram
    We can also see that \(R^2 = 1 + \lambda_1^2 = 1 + \lambda_2^2 \Rightarrow \lambda_1 = \pm \lambda_2 \), from which we obtain the desired result. Therefore the condition is \begin{align*} && \mathbf{r}_1+\lambda \mathbf{n}_1 &= \mathbf{r}_2 \pm \lambda \mathbf{n}_2 \tag{1}\\ && \mathbf{r}_1 - \mathbf{r}_2 &= \lambda(\pm \mathbf{n}_1 - \mathbf{n}_2) \\ \Rightarrow && (\mathbf{r}_{1}-\mathbf{r}_{2})\cdot(\mathbf{n}_{1}\times\mathbf{n}_{2}) &= (\lambda(\pm \mathbf{n}_1 - \mathbf{n}_2))\cdot(\mathbf{n}_{1}\times\mathbf{n}_{2}) \\ &&&= \lambda \left (\pm \mathbf{n}_1 \cdot ( \mathbf{n}_{1}\times\mathbf{n}_{2}) - \mathbf{n}_2 \cdot (\mathbf{n}_{1}\times\mathbf{n}_{2})\right) \\ &&&= 0 \\ \\ \mathbf{n}_1 \cdot (1)&& \mathbf{r}_1 \cdot \mathbf{n}_1+\lambda \mathbf{n}_1 \cdot \mathbf{n}_1 &= \mathbf{r}_2 \cdot \mathbf{n}_1 \pm \lambda \mathbf{n}_2 \cdot \mathbf{n}_1 \\ && p_1 + \lambda &= \mathbf{r}_2 \cdot \mathbf{n}_1 \pm \lambda \mathbf{n}_2 \cdot \mathbf{n}_1 \\ \\ \mathbf{n}_2 \cdot (1)&& \mathbf{r}_1 \cdot \mathbf{n}_2+\lambda \mathbf{n}_1 \cdot \mathbf{n}_2 &= \mathbf{r}_2 \cdot \mathbf{n}_2 \pm \lambda \mathbf{n}_2 \cdot \mathbf{n}_2 \\ && \mathbf{r}_1 \cdot \mathbf{n}_2+\lambda \mathbf{n}_1 \cdot \mathbf{n}_2 &= p_2 \pm \lambda \\ && \pm \lambda -\lambda \mathbf{n}_1\cdot\mathbf{n}_2 &= \mathbf{r}_1 \cdot \mathbf{n}_2 - p_2 \\ &&&= \pm (\mathbf{r}_2\cdot \mathbf{n}_1 - p_1) \\ \Rightarrow && (p_{1}-\mathbf{n}_{1}\cdot\mathbf{r}_{2})^{2}&=(p_{2}-\mathbf{n}_{2}\cdot\mathbf{r}_{1})^{2} \end{align*} The first condition means the line between the centres lies in the plane spanned by the normal of the two planes \(\pi_1\) and \(\pi_2\). The second condition means that the distance of the center to the other plane is the same for both centres/planes.
    1993 Paper 2 Q4
    D: 1600.0 B: 1470.3

    Two non-parallel lines in 3-dimensional space are given by \(\mathbf{r}=\mathbf{p}_{1}+t_{1}\mathbf{m}_{1}\) and \(\mathbf{r}=\mathbf{p}_{2}+t_{2}\mathbf{m}_{2}\) respectively, where \(\mathbf{m}_{1}\) and \(\mathbf{m}_{2}\) are unit vectors. Explain by means of a sketch why the shortest distance between the two lines is \[ \frac{\left|(\mathbf{p}_{1}-\mathbf{p}_{2})\cdot(\mathbf{m}_{1}\times\mathbf{m}_{2})\right|}{\left|(\mathbf{m}_{1}\times\mathbf{m}_{2})\right|}. \]

    1. Find the shortest distance between the lines in the case \[ \mathbf{p}_{1}=(2,1,-1)\qquad\mathbf{p}_{2}=(1,0,-2)\qquad\mathbf{m}_{1}=\tfrac{1}{5}(4,3,0)\qquad\mathbf{m}_{2}=\tfrac{1}{\sqrt{10}}(0,-3,1). \]
    2. Two aircraft, \(A_{1}\) and \(A_{2},\) are flying in the directions given by the unit vectors \(\mathbf{m}_{1}\) and \(\mathbf{m}_{2}\) at constant speeds \(v_{1}\) and \(v_{2}.\) At time \(t=0\) they pass the points \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\), respectively. If \(d\) is the shortest distance between the two aircraft during the flight, show that \[ d^{2}=\frac{\left|\mathbf{p}_{1}-\mathbf{p}_{2}\right|^{2}\left|v_{1}\mathbf{m}_{1}-v_{2}\mathbf{m}_{2}\right|^{2}-[(\mathbf{p}_{1}-\mathbf{p}_{2})\cdot(v_{1}\mathbf{m}_{1}-v_{2}\mathbf{m}_{2})]^{2}}{\left|v_{1}\mathbf{m}_{1}-v_{2}\mathbf{m}_{2}\right|^{2}}. \]
    3. Suppose that \(v_{1}\) is fixed. The pilot of \(A_{2}\) has chosen \(v_{2}\) so that \(A_{2}\) comes as close as possible to \(A_{1}.\) How close is that, if \(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{m}_{1}\) and \(\mathbf{m}_{2}\) are as in (i)?

    1992 Paper 2 Q9
    D: 1600.0 B: 1515.9

    Let \(\mathbf{a},\mathbf{b}\) and \(\mathbf{c}\) be the position vectors of points \(A,B\) and \(C\) in three-dimensional space. Suppose that \(A,B,C\) and the origin \(O\) are not all in the same plane. Describe the locus of the point whose position vector \(\mathbf{r}\) is given by \[ \mathbf{r}=(1-\lambda-\mu)\mathbf{a}+\lambda\mathbf{b}+\mu\mathbf{c}, \] where \(\lambda\) and \(\mu\) are scalar parameters. By writing this equation in the form \(\mathbf{r}\cdot\mathbf{n}=p\) for a suitable vector \(\mathbf{n}\) and scalar \(p\), show that \[ -(\lambda+\mu)\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})+\lambda\mathbf{b}\cdot(\mathbf{c}\times\mathbf{a})+\mu\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b})=0 \] for all scalars \(\lambda,\mu.\) Deduce that \[ \mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=\mathbf{b}\cdot(\mathbf{c}\times\mathbf{a})=\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b}). \] Say briefly what happens if \(A,B,C\) and \(O\) are all in the same plane.

    Show Solution
    \(\mathbf{r}=(1-\lambda-\mu)\mathbf{a}+\lambda\mathbf{b}+\mu\mathbf{c} = \mathbf{a} + \lambda(\mathbf{b}-\mathbf{a})+\mu(\mathbf{c}-\mathbf{a})\) Therefore it is the plane through \(\mathbf{a}\) with direction vectors \(\mathbf{b}-\mathbf{a}\) and \(\mathbf{c}-\mathbf{a}\), ie it is the plane through \(\mathbf{a},\mathbf{b},\mathbf{c}\). The normal to this plane will be \((\mathbf{b}-\mathbf{a} ) \times (\mathbf{c}-\mathbf{a}) = \mathbf{b}\times \mathbf{c}-\mathbf{a} \times \mathbf{c}-\mathbf{b}\times \mathbf{a}\), so we must have: \begin{align*} && \mathbf{r} \cdot \left (\mathbf{b}\times \mathbf{c}-\mathbf{a} \times \mathbf{c}-\mathbf{b}\times \mathbf{a} \right) &= \mathbf{a} \cdot \left (\mathbf{b}\times \mathbf{c}-\mathbf{a} \times \mathbf{c}-\mathbf{b}\times \mathbf{a} \right) \\ &&&= \mathbf{a} \cdot (\mathbf{b}\times \mathbf{c}) \end{align*} Therefore, \begin{align*} && \mathbf{a} \cdot (\mathbf{b}\times \mathbf{c}) &= \mathbf{r} \cdot \left (\mathbf{b}\times \mathbf{c}-\mathbf{a} \times \mathbf{c}-\mathbf{b}\times \mathbf{a} \right) \\ &&&= \left ( (1-\lambda-\mu)\mathbf{a}+\lambda\mathbf{b}+\mu\mathbf{c} \right)\cdot \left (\mathbf{b}\times \mathbf{c}-\mathbf{a} \times \mathbf{c}-\mathbf{b}\times \mathbf{a} \right) \\ &&&= (1-\lambda- \mu) \mathbf{a}\cdot (\mathbf{b} \times \mathbf{c})-\lambda \mathbf{b}\cdot(\mathbf{a} \times \mathbf{c})-\mu \mathbf{c}\cdot(\mathbf{b} \times \mathbf{a}) \\ \Rightarrow && 0 &= (-\lambda- \mu) \mathbf{a}\cdot (\mathbf{b} \times \mathbf{c})-\lambda \mathbf{b}\cdot(\mathbf{a} \times \mathbf{c})-\mu \mathbf{c}\cdot(\mathbf{b} \times \mathbf{a}) \\ &&&= -(\lambda+ \mu) \mathbf{a}\cdot (\mathbf{b} \times \mathbf{c})+\lambda \mathbf{b}\cdot(\mathbf{c} \times \mathbf{a})+\mu \mathbf{c}\cdot(\mathbf{a} \times \mathbf{b}) \\ \end{align*} The result follows from setting \(\mu = 0, \lambda = 1\) and \(\mu = 1, \lambda = 0\). If they all lie in the same plane then the plane described is through the origin, and those values are all the same, but equal to \(0\).
    1989 Paper 3 Q2
    D: 1700.0 B: 1484.0

    The points \(A,B\) and \(C\) lie on the surface of the ground, which is an inclined plane. The point \(B\) is 100m due north of \(A,\) and \(C\) is 60m due east of \(B\). The vertical displacements from \(A\) to \(B,\) and from \(B\) to \(C\), are each 5m downwards. A plane coal seam lies below the surface and is to be located by making vertical bore-holes at \(A,B\) and \(C\). The bore-holes strike the coal seam at 95m, 45m and 76m below \(A,B\) and \(C\) respectively. Show that the coal seam is inclined at \(\cos^{-1}(\frac{4}{5})\) to the horizontal. The coal seam comes to the surface along a line. Find the bearing of this line.

    Show Solution
    Set up a coordinate system so that \(x\) is E-W, \(y\) is N-S and \(z\) is the vertical direction. Also assume \(B\) is the origin, then, \(A = \begin{pmatrix} 0 \\ -100 \\ 5\end{pmatrix}, B = \begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}, C= \begin{pmatrix} 60 \\ 0\\ -5\end{pmatrix},\). The coal seam has points: \(\begin{pmatrix} 0 \\ -100 \\ -90\end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -45\end{pmatrix}, \begin{pmatrix} 60 \\ 0\\ -81\end{pmatrix},\) Therefore we can find the normal to the coal seam: \begin{align*} \mathbf{n} &= \left (\begin{pmatrix} 0 \\ -100 \\ -90\end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ -45\end{pmatrix}\right ) \times \left ( \begin{pmatrix} 60 \\ 0\\ -81\end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ -45\end{pmatrix}\right ) \\ &= \begin{pmatrix} 0 \\ - 100 \\ -45\end{pmatrix} \times \begin{pmatrix} 60 \\ 0 \\ -36\end{pmatrix} \\ &= \begin{pmatrix} 3600 \\ -60 \cdot 45 \\ 60 \cdot 100 \end{pmatrix} \\ &= 300\begin{pmatrix} 12 \\ -9 \\ 20\end{pmatrix} \end{align*} To measure the incline \(\theta\) to the horizontal we can take a dot with \(\hat{\mathbf{k}}\), to see: \begin{align*} \cos \theta &= \frac{20}{\sqrt{12^2+(-9)^2+20^2} \sqrt{1^2+0^2+0^2}} \\ &= \frac{20}{25} \\ &= \frac{4}{5} \end{align*} Therefore the angle is \(\cos^{-1} \tfrac 45\) The equation of the seam is \(12x - 9y + 20z = -900\). The equation of the surface is \(5x + 3y + 60z = 0\) We can compute the direction of the overlap again with a cross product: \begin{align*} \mathbf{d} &= \begin{pmatrix} 12 \\ -9 \\ 20\end{pmatrix} \times \begin{pmatrix} 5 \\ 3 \\ 60\end{pmatrix} \\ &= \begin{pmatrix} -600 \\ -620 \\ 81 \end{pmatrix} \end{align*} To get the bearing of this vector we just need to look at the \(x\) and \(y\) components, so it will be \(\tan^{-1} \frac{600}{620} = \tan^{-1} \frac{30}{31}\)

    Showing 1-11 of 11 problems
    1987 Paper 1 Q3
    D: 1500.0 B: 1500.0

    By substituting \(y(x)=xv(x)\) in the differential equation \[ x^{3}\frac{\mathrm{d}v}{\mathrm{d}x}+x^{2}v=\frac{1+x^{2}v^{2}}{\left(1+x^{2}\right)v}, \] or otherwise, find the solution \(v(x)\) that satisfies \(v=1\) when \(x=1\). What value does this solution approach when \(x\) becomes large?

    Show Solution
    Let \(y = xv\) then \(y' = v + xv'\) and so \(x^2y' = x^2v + x^3v'\) Our differential equation is now: \begin{align*} && x^2 y' &= \frac{1+y^2}{(1+x^2)\frac{y}{x}} \\ \Rightarrow && xy' &= \frac{(1+y^2)}{(1+x^2)y} \\ \Rightarrow && \frac{y}{1+y^2} \frac{\d y}{\d x} &= \frac{1}{x(1+x^2)} \\ \Rightarrow && \frac{y}{1+y^2} \frac{\d y}{\d x} &= \frac{1}{x} - \frac{x}{1+x^2} \\ \Rightarrow && \frac12 \ln(1+y^2) &= \ln x - \frac12 \ln(1+x^2) + C \\ \Rightarrow && \frac12 \ln (1 + y^2) &= \frac12 \ln \l \frac{x^2}{1+x^2}\r + C \\ \Rightarrow && 1+y^2 &= \frac{Dx^2}{1+x^2} \\ \Rightarrow && D &= 4 \quad \quad: (x = 1, v = 1, y = 1) \\ \Rightarrow && 1 + x^2v^2&= \frac{4x^2}{1+x^2}\\ \Rightarrow && v^2 &= \frac{3x^2-1}{x^2(1+x^2)} \\ \Rightarrow && v &= \sqrt{\frac{3x^2-1}{x^2(1+x^2)}} \\ \end{align*} As \(x \to \infty\), \(v \to 0\)
    2018 Paper 2 Q8
    D: 1600.0 B: 1484.0

    1. Use the substitution \(v= \sqrt y\) to solve the differential equation \[ \frac{\d y}{\d t} = \alpha y^{\frac12} - \beta y \ \ \ \ \ \ \ \ \ \ (y\ge0, \ \ t\ge0) \,, \] where \(\alpha\) and \(\beta\) are positive constants. Find the non-constant solution \(y_1(x)\) that satisfies \(y_1(0)=0\,\).
    2. Solve the differential equation \[ \frac{\d y}{\d t} = \alpha y^{\frac23} - \beta y \ \ \ \ \ \ \ \ \ \ (y\ge0, \ \ t\ge0) \,, \] where \(\alpha\) and \(\beta\) are positive constants. Find the non-constant solution \(y_2(x)\) that satisfies \(y_2(0)=0\,\).
    3. In the case \(\alpha=\beta\), sketch \(y_1(x)\) and \(y_2(x)\) on the same axes, indicating clearly which is \(y_1(x)\) and which is \(y_2(x)\). You should explain how you determined the positions of the curves relative to each other.

    2014 Paper 2 Q5
    D: 1600.0 B: 1486.1

    Given that \(y=xu\), where \(u\) is a function of \(x\), write down an expression for \(\dfrac {\d y}{\d x}\).

    1. Use the substitution \(y=xu\) to solve \[ \frac {\d y}{\d x} = \frac {2y+x}{y-2x} \] given that the solution curve passes through the point \((1,1)\). Give your answer in the form of a quadratic in \(x\) and \(y\).
    2. Using the substitutions \(x=X+a\) and \(y=Y+b\) for appropriate values of \(a\) and \(b\), or otherwise, solve \[ \frac {\d y}{\d x} = \frac {x-2y-4} {2x+y-3}\,, \] given that the solution curve passes through the point \((1,1)\).

    Show Solution
    \begin{align*} \frac{\d y}{\d x} &= \frac{\d }{\d x} \l y \r \\ &= \frac{\d }{\d x} \l xu \r \\ &\underbrace{=}_{\text{product rule}} \frac{\d}{\d x} \l x \r u + x \frac{\d}{\d x} \l u \r \\ &= u + x \frac{\d u}{\d x} \end{align*} \begin{questionparts} \item \begin{align*} && \frac{\d y}{\d x} &= \frac{2y + x}{y - 2x} \\ && u + x \frac{\d u}{\d x} &= \frac{2u + 1}{u - 2} \\ && x \frac{\d u}{\d x} &= \frac{2u-1-u^2+2u}{u-2} \\ \Rightarrow && \int \frac{2-u}{u^2-4u+1} \d u &= \int \frac{1}{x} \d x \\ && \int \frac{2-u}{(u-2)^2-5} \d u &= \int \frac1x \d x \\ && -\frac12\ln| (u-2)^2 - 5| &= \ln x + C \\ (x,y) = (1,1): && - \ln 2 &= C \\ \Rightarrow && \ln x^2 &= \ln 4 - \ln |5 - (u-2)^2| \\ \Rightarrow && x^2 &= \frac{4}{5- (u-2)^2} \\ \Rightarrow && 4 & = x^2(5 - (\frac{y}{x} - 2)^2) \\ &&&= 5x^2 - (y-2x)^2 \\ &&&= x^2+4xy-y^2 \end{align*} \item It would be convienient if \(x-2y -4 = X-2Y\) and \(2x+y-3 = 2X+Y\), ie \(a-2b = 4\) and \(2a+b = 3\), ie \(a = 2, b = -1\). Now our differential equation is: \begin{align*} && \frac{\d Y}{\d X} &= \frac{X - 2Y}{2X+Y} \\ && \frac{\d X}{\d Y} &= \frac{2X + Y}{X-2Y} \end{align*} This is the same differential equation we have already solved, just with the roles of \(x\) and \(y\) interchanged with \(Y\) and \(X\) and with the point \((0,3)\) being on the curve, ie: \(Y^2 + 4XY-X^2 = c\) and \(c = 9\), therefore our equation is: \[ (y-1)^2 + 4(y-1)(x+2)-(x+2)^2 = 9\]
    2012 Paper 1 Q8
    D: 1516.0 B: 1484.0

    1. Show that substituting \(y=xv\), where \(v\) is a function of \(x\), in the differential equation \[ xy \frac{\d y}{\d x} +y^2- 2x^2 =0 \quad (x\ne0) \] leads to the differential equation \[ xv\frac{\d v}{\d x} +2v^2 -2=0\,. \] Hence show that the general solution can be written in the form \[ x^2(y^2 -x^2) = C \,,\] where \(C\) is a constant.
    2. Find the general solution of the differential equation \[ y \frac{\d y}{\d x} +6x +5y=0\, \quad (x\ne0). \]

    Show Solution
    1. \(\,\) \begin{align*} && y &= xv \\ && y' &= v + xv' \\ \Rightarrow && 0 &= x^2 v \left ( v + x\frac{\d v}{\d x} \right) +(x^2v^2) - 2x^2 \\ &&&= 2x^2v^2 + x^3 v \frac{\d v}{\d x} - 2x^2 \\ \Rightarrow && 0 &= xv \frac{\d v}{\d x} + 2v^2-2 \\ \\ \Rightarrow && \frac{v}{1-v^2} \frac{\d v}{\d x} &= \frac{2}{x} \\ \Rightarrow && \int \frac{v}{1-v^2} \d v &=2 \ln |x| \\ \Rightarrow && -\frac12\ln |1-v^2| &= 2\ln |x| + C \\ \Rightarrow && 4\ln |x| + \ln |1-v^2| &= K \\ \Rightarrow && x^4(1-v^2) &= K \\ \Rightarrow && x^2(x^2-y^2) &= K \end{align*}
    2. \(\,\) \begin{align*} && 0 &= xv \left (v +x \frac{\d v}{\d x} \right) + 6x + 5xv \\ &&&= x^2 v \frac{\d v}{\d x} +xv^2 + 6x+5xv \\ \Rightarrow && 0 &= xv\frac{\d v}{\d x} +v^2 +5v+6 \\ \Rightarrow && -\int \frac{1}{x} \d x &=\int \frac{v}{v^2+5v+6} \d v \\ \Rightarrow && -\ln |x| &= \int \frac{v}{(v+2)(v+3)} \d v \\ &&&= \int \left (\frac{3}{v+3} - \frac{2}{v+2} \right) \d v \\ \Rightarrow && -\ln |x| &= 3\ln |v+3| - 2 \ln |v+2| + C\\ \Rightarrow && -\ln |x| &= \ln \frac{|v+3|^3}{|v+2|^2} + C \\ \Rightarrow && \frac{1}{|x|}|v+2|^2 &= A|v+3|^3 \\ \Rightarrow && \frac{1}{|x|}|\frac{y}{x} + 2|^2&= A|\frac{y}{x} + 3|^3 \\ \Rightarrow && \frac{1}{|x|^3} |y +2x|^2 &= \frac{A}{|x|^3}|y + 3x|^3 \\ \Rightarrow && (y+2x)^2 &= A|y+3x|^3 \end{align*}
    2004 Paper 3 Q8
    D: 1700.0 B: 1484.0

    Show that if \[ {\mathrm{d}y \over \mathrm{d} x}=\f(x)y + {\g(x) \over y} \] then the substitution \(u = y^2\) gives a linear differential equation for \(u(x)\,\). Hence or otherwise solve the differential equation \[ {\mathrm{d}y \over \mathrm{d} x}={y \over x} - {1 \over y}\;. \] Determine the solution curves of this equation which pass through \((1 \,, 1)\,\), \((2\, , 2)\) and \((4 \, , 4)\) and sketch graphs of all three curves on the same axes.

    Show Solution
    \begin{align*} && \frac{\d y}{\d x} &= f(x) y + \frac{g(x)}{y} \\ && y \frac{\d y}{\d x} &= f(x) y^2 + g(x) \\ u = y^2: && \frac12 \frac{\d u}{\d x} &= f(x) u + g(x) \end{align*} Which is a linear differential equation for \(u\). \begin{align*} && \frac12 u' &= \frac1x u -1 \\ \Rightarrow && u' - \frac2xu &= -1 \\ \Rightarrow && \frac{1}{x^2} u' - \frac{2}{x^3} u &= -\frac{1}{x^2} \\ \Rightarrow && (\frac{u}{x^2})' &= - \frac{1}{x^2} \\ \Rightarrow && \frac{u}{x^2} &= \frac1x + C \\ \Rightarrow && u &= Cx^2 + x \\ \Rightarrow && y^2 &= Cx^2 + x \end{align*} If \((1,1)\) is on the curve then \(1 = C + 1 \Rightarrow C = 0 \Rightarrow y^2 = x\). If \((2,2)\) is on the curve then \(4 = 4C + 2 \Rightarrow C = \frac12 \Rightarrow y^2 = x + \frac12 x^2\). If \((3,3)\) is on the curve then \(9 = 9C + 3 \Rightarrow C = \frac23 \Rightarrow y^2 = x + \frac23 x^2\)
    TikZ diagram
    2003 Paper 3 Q8
    D: 1700.0 B: 1516.0

    1. Show that the gradient at a point \(\l x\,, \, y \r\) on the curve \[ \l y + 2x \r^3 \l y - 4x \r = c\;, \] where \(c\) is a constant, is given by \[ \frac{\d y}{\d x} = \frac{16 x -y}{2y-5x} \;. \]
    2. By considering the derivative with respect to \(x\) of \(\l y + ax \r^n \l y + bx \r\,\), or otherwise, find the general solution of the differential equation \[ \frac{\mathrm{d}y}{ \mathrm{d}x} = \frac{10x - 4y}{ 3x - y}\;. \]

    Show Solution
    1. \begin{align*} && c &= \left (y+2x \right)^3\left (y-4x \right) \\ \Rightarrow && 0 &= 3\left (y+2x \right)^2\left (y-4x \right)\left ( \frac{\d y}{\d x} + 2 \right) + \left (y+2x \right)^3 \left ( \frac{\d y}{\d x} - 4 \right) \\ \Rightarrow && 0 &= 3(y-4x)\left ( \frac{\d y}{\d x} + 2 \right) + \left (y+2x \right) \left ( \frac{\d y}{\d x} - 4 \right) \\ \Rightarrow &&&= \frac{\d y}{\d x} \left (3(y-4x) + (y+2x) \right) + 6(y-4x)-4(y+2x) \\ &&&= \frac{\d y}{\d x} \left ( 4y-10x\right) + 2y-32x \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{16x-y}{2y-5x} \end{align*}
    2. \begin{align*} && c &= \left ( y + ax \right)^n \left ( y + bx \right) \\ \Rightarrow && 0 &= n\left ( y + ax \right)^{n-1} \left ( y + bx \right)\left ( \frac{\d y}{ \d x}+a \right) + \left ( y + ax \right)^{n} \left ( \frac{\d y}{ \d x}+b \right) \\ \Rightarrow && 0 &= n \left ( y + bx \right)\left ( \frac{\d y}{ \d x}+a \right) + \left ( y + ax \right) \left ( \frac{\d y}{ \d x}+b \right) \\ &&&= \frac{\d y}{\d x} \left ( (n+1)y + (nb+a)x \right) + an(y+bx) + by+bax \\ &&&= \frac{\d y}{\d x} \left ( (n+1)y + (nb+a)x \right) + (an+b)y+ab(n+1)x \\ \Rightarrow && \frac{\d y}{\d x} &= -\frac{(an+b)y+ab(n+1)x}{(n+1)y+(nb+a)x} \end{align*} We must have \(ab = 10, a+b = -7\) so say \(a=-5,b=-2,n=2\) and we have \((y-5x)^2(y-2) = c\) is our general solution to the differential equation
    2000 Paper 2 Q8
    D: 1600.0 B: 1500.1

    1. Let \(y\) be the solution of the differential equation \[ \frac{\d y}{\d x} + 4x\e^{-x^2} {(y+3)}^{\frac12} = 0 \qquad (x \ge 0), \] that satisfies the condition \(y=6\) when \(x=0\). Find \(y\) in terms of \(x\) and show that \(y\to1\) as \(x \to \infty\).
    2. Let \(y\) be any solution of the differential equation \[ \frac{\d y}{\d x} -x\e^{6 x^2} (y+3)^{1-k} = 0 \qquad (x \ge 0). \] %that satisfies the condition \(y=6\) %when \(x=0\). Find a value of \(k\) such that, as \(x \to \infty\), \(\e^{-3x^2}y\) tends to a finite non-zero limit, which you should determine.
    \noindent [The approximations, valid for small \(\theta\), \(\sin\theta \approx \theta\) and \(\cos\theta \approx 1-{\textstyle\frac12}\,\theta^2\) may be assumed.]

    1995 Paper 2 Q8
    D: 1600.0 B: 1500.8

    If there are \(x\) micrograms of bacteria in a nutrient medium, the population of bacteria will grow at the rate \((2K-x)x\) micrograms per hour. Show that, if \(x=K\) when \(t=0\), the population at time \(t\) is given by \[ x(t)=K+K\frac{1-\mathrm{e}^{-2Kt}}{1+\mathrm{e}^{-2Kt}}. \] Sketch, for \(t\geqslant0\), the graph of \(x\) against \(t\). What happens to \(x(t)\) as \(t\rightarrow\infty\)? Now suppose that the situation is as described in the first paragraph, except that we remove the bacteria from the nutrient medium at a rate \(L\) micrograms per hour where \(K^{2}>L\). We set \(\alpha=\sqrt{K^{2}-L}.\) Write down the new differential equation for \(x\). By considering a new variable \(y=x-K+\alpha,\) or otherwise, show that, if \(x(0)=K\) then \(x(t)\rightarrow K+\alpha\) as \(t\rightarrow\infty\).

    1990 Paper 3 Q8
    D: 1700.0 B: 1484.7

    Let \(P,Q\) and \(R\) be functions of \(x\). Prove that, for any function \(y\) of \(x\), the function \[ Py''+Qy'+Ry \] can be written in the form \(\dfrac{\mathrm{d}}{\mathrm{d}x}(py'+qy),\) where \(p\) and \(q\) are functions of \(x\), if and only if \(P''-Q'+R=0.\) Solve the differential equation \[ (x-x^{4})y''+(1-7x^{3})y'-9x^{2}y=(x^{3}+3x^2)\mathrm{e}^{x}, \] given that when \(x=2,y=2\mathrm{e}^{2}\) and \(y'=0.\)

    Show Solution
    Suppose \(Py'' + Qy' + Ry = \frac{\d}{\d x}(p y' + qy)\), then \begin{align*} Py'' + Qy' + Ry &= \frac{\d}{\d x}(p y' + qy) \\ &= py'' + p'y' + qy' + q' y \\ &= py'' + (p'+q)y' + q' y \end{align*} Therefore \(P = p, Q = p'+q, R = q'\), Therefore \(q = Q-P'\) and \(R = Q'-P''\) or \(P'' -Q'+R = 0\). \((\Rightarrow)\) Suppose it can be written in that form, then the logic we have applied shows that equation is true. \((\Leftarrow)\) Suppose \(P''-Q'+R = 0\), then letting \(p = P, q = Q-P'\) we find functions of the form which will be expressed correctly. Notice that if \(P = x-x^4, Q = (1-7x^3), R = -9x^2\) then: \begin{align*} P'' - Q' + R &= -12x^2+21x^2-9x^2 \\ &= 0 \end{align*} Therefore we can write our second order ODE as: \begin{align*} && (x^{3}+3x)\mathrm{e}^{x} &= \frac{\d}{\d x} \left ( (x-x^4) y' +(1-7x^3-(1-4x^3))y \right) \\ &&&= \frac{\d}{\d x} \left ( (x-x^4) y' -3x^3y \right) \end{align*} Suppose \(z = (x-x^4)y' - 3x^2y\), then \(z = (2-2^4) \cdot 0 - 3 \cdot 2^2 \cdot 2e^2 = -24e^2\) when \(x = 2\). and we have: \begin{align*} && \frac{\d z}{\d x} &= (x^3+3x^2)e^x \\ \Rightarrow && z &= \int (x^3+3x^2)e^x \d x \\ &&&= x^3 e^x+c \\ \Rightarrow && -48e^2 &= e^2(8) + c \\ \Rightarrow && c &= -56e^2 \\ \Rightarrow && z &= e^x(x^3)-56e^2 \\ \end{align*} So our differential equation is: \begin{align*} && (x-x^4)y'-3x^3 y &= x^3e^x -5 6e^2 \\ \Rightarrow && (1-x^3)y' -3x^2y &= x^2 e^x - \frac{6e^2}{x} \\ \Rightarrow && \frac{\d }{\d x} \left ( (1-x^3)y \right) &= x^2e^x - \frac{56e^2}{x} \\ \Rightarrow && (1-x^3)y &= (x^2-2x+2)e^x - 56e^2 \ln x + k \\ \underbrace{\Rightarrow}_{x=2} && (1-2^3)2e^2 &= (2^2-2\cdot2 + 2)e^2 -56e^2 \ln 2 + k \\ \Rightarrow && k &= -16e^2+56 \ln 2 \cdot e^2 \\ \Rightarrow && y &= \frac{(x^2-2x+2)e^x - 56e^2 \ln x -16e^2+56 \ln 2 \cdot e^2}{(1-x^3)} \end{align*}
    1990 Paper 1 Q7
    D: 1500.0 B: 1500.0

    Let \(y,u,v,P\) and \(Q\) all be functions of \(x\). Show that the substitution \(y=uv\) in the differential equation \[ \frac{\mathrm{d}y}{\mathrm{d}x}+Py=Q \] leads to an equation for \(\dfrac{\mathrm{d}v}{\mathrm{d}x}\) in terms of \(x,Q\) and \(u\), provided that \(u\) satisfies a suitable first order differential equation. Hence or otherwise solve \[ \frac{\mathrm{d}y}{\mathrm{d}x}-\frac{2y}{x+1}=\left(x+1\right)^{\frac{5}{2}}, \] given that \(y(1)=0\). For what set of values of \(x\) is the solution valid?

    Show Solution
    Suppose \(y = uv\) then and suppose \(\frac{\d u}{\d x} + P u = 0\) then \begin{align*} && \frac{\d y}{\d x} + Py &= Q \\ && uv' + u'v + Puv &= Q \\ && uv' &= Q \\ && \frac{\d v}{\d x} &= \frac{Q}{u} \end{align*} Consider \begin{align*} && 0 &= \frac{\d u}{\d x} - \frac{2u}{x+1} \\ \Rightarrow && \ln u &= 2\ln (1 + x) + C \\ \Rightarrow && u &= A(1+x)^2 \end{align*} and \begin{align*} && \frac{\d v}{\d x} &= \frac1{A}(x+1)^{\frac12} \\ \Rightarrow && v &= \frac2{3A}(x+1)^{\frac32} + k \\ \Rightarrow && y &= \frac23(x+1)^\frac72 + k(x+1)^2 \\ && 0 &= y(1) \\ &&&= \frac23 2^{7/2}+k2^2 \\ \Rightarrow && k &= -\frac{2^{5/2}}{3} \\ \Rightarrow && y &= \frac23 (x+1)^{7/2} - \frac{2^{5/2}}{3}(x+1)^2 \end{align*}
    1989 Paper 2 Q9
    D: 1600.0 B: 1515.3

    The matrix \(\mathbf{F}\) is defined by \[ \mathbf{F}=\mathbf{I}+\sum_{n=1}^{\infty}\frac{1}{n!}t^{n}\mathbf{A}^{n}, \] where $\mathbf{A}=\begin{pmatrix}-3 & -1\\ 8 & 3 \end{pmatrix} \( and \) t \( is a variable scalar. Evaluate \)\mathbf{A}^{2}$, and show that \[ \mathbf{F}=\mathbf{I}\cosh t+\mathbf{A}\sinh t. \] Show also that \(\mathbf{F}^{-1}=\mathbf{I}\cosh t-\mathbf{A}\sinh t\), and that \(\dfrac{\mathrm{d}\mathbf{F}}{\mathrm{d}t}=\mathbf{FA}\). The vector $\mathbf{r}=\begin{pmatrix}x(t)\\ y(t) \end{pmatrix}$ satisfies the differential equation \[ \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}+\mathbf{A}\mathbf{r}=\mathbf{0}, \] with \(x=\alpha\) and \(y=\beta\) at \(t=0.\) Solve this equation by means of a suitable matrix integrating factor, and hence show that \begin{alignat*}{1} x(t) & =\alpha\cosh t+(3\alpha+\beta)\sinh t\\ y(t) & =\beta\cosh t-(8\alpha+3\beta)\sinh t. \end{alignat*}

    Show Solution
    \begin{align*} \begin{pmatrix} -3 & -1 \\ 8 & 3 \end{pmatrix}^2 &= \begin{pmatrix} 9-8 & 3-3 \\ -24+24 & -8+9 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \mathbf{I} \end{align*} Therefore: \begin{align*} \mathbf{F} &= \mathbf{I}+\sum_{n=1}^{\infty}\frac{1}{n!}t^{n}\mathbf{A}^{n} \\ &= \mathbf{I} + \sum_{n=1}^{\infty} \frac{1}{(2n)!}t^{2n} \mathbf{I} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}t^{2n+1} \mathbf{A} \\ &= \cosh t \mathbf{I} + \sinh t \mathbf{A} \end{align*} Notice that \begin{align*} \mathbf{F} (\mathbf{I}\cosh t-\mathbf{A}\sinh t) &= (\mathbf{I}\cosh t+\mathbf{A}\sinh t)(\mathbf{I}\cosh t-\mathbf{A}\sinh t) \\ &= \mathbf{I}^2 \cosh^2 t+\mathbf{A}(\sinh t \cosh t - \cosh t \sinh t) - \mathbf{A}^2\sinh^2 t \\ &= \mathbf{I} \cosh^2 t - \mathbf{I} \sinh^2 t \\ &= \mathbf{I} \end{align*} Therefore \(\mathbf{F}^{-1} = \mathbf{I}\cosh t-\mathbf{A}\sinh t\) \begin{align*} \frac{\d \mathbf{F}}{\d t} &= \frac{\d }{\d t} \left [ \mathbf{I}+\sum_{n=1}^{\infty}\frac{1}{n!}t^{n}\mathbf{A}^{n}\right] \\ &= \sum_{n=1}^{\infty} \frac{1}{(n-1)!}t^{n-1} \mathbf{A}^n \\ &= \left ( \sum_{n=1}^{\infty} \frac{1}{(n-1)!}t^{n-1} \mathbf{A}^{n-1} \right) \mathbf{A} \\ &= \mathbf{F}\mathbf{A} \end{align*} \begin{align*} && \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}+\mathbf{A}\mathbf{r}&=\mathbf{0} \\ \Rightarrow && \mathbf{F} \frac{\d \mathbf{r}}{\d t} + \mathbf{FAr} &= \mathbf{0} \\ && \frac{\d }{\d t} \left ( \mathbf{F} \mathbf{r}\right) &= 0 \\ \Rightarrow && \mathbf{Fr} &= \mathbf{c} \\ \Rightarrow && \mathbf{r} &= \mathbf{F}^{-1}\mathbf{c} \\ &&&= ( \mathbf{I}\cosh t-\mathbf{A}\sinh t)\mathbf{c} \\ t = 0: && \binom{\alpha}{\beta} &= \mathbf{c} \\ \Rightarrow && \mathbf{r} &= ( \mathbf{I}\cosh t-\mathbf{A}\sinh t)\binom{\alpha}{\beta} \\ &&&= \binom{\alpha \cosh t}{\beta \cosh t} - \binom{-3\alpha-\beta}{8\alpha + 3\beta}\sinh t \\ &&&= \binom{\alpha \cosh t + (3\alpha + \beta) \sinh t}{\beta \cosh t -(8\alpha + 3\beta)\sinh t} \end{align*} as required

    Eulers formulae, de moivre, roots of unity

    Showing 1-25 of 27 problems
    2025 Paper 3 Q8
    D: 1500.0 B: 1500.0

    1. Show that $$z^{m+1} - \frac{1}{z^{m+1}} = \left(z - \frac{1}{z}\right)\left(z^m + \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right)$$ Hence prove by induction that, for \(n \geq 1\), $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ Find similarly \(z^{2n} - \frac{1}{z^{2n}}\) as a product of \((z + \frac{1}{z})\) and a sum.
      1. By choosing \(z = e^{i\theta}\), show that $$\sin 2n\theta = 2\sin\theta \sum_{r=1}^n \cos(2r-1)\theta$$
      2. Use this result, with \(n = 2\), to show that \(\cos\frac{2\pi}{5} = \cos\frac{\pi}{5} - \frac{1}{2}\).
      3. Use this result, with \(n = 7\), to show that \(\cos\frac{2\pi}{15} + \cos\frac{4\pi}{15} + \cos\frac{8\pi}{15} + \cos\frac{16\pi}{15} = \frac{1}{2}\).
    2. Show that \(\sin\frac{\pi}{14} - \sin\frac{3\pi}{14} + \sin\frac{5\pi}{14} = \frac{1}{2}\).

    Show Solution
    1. \begin{align*} RHS &= \left(z - \frac{1}{z}\right)\left(z^m + \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right) \\ &= z^{m+1} + \frac{1}{z^{m-1}} - z^{m-1} - \frac{1}{z^{m+1}} + z^{m-1} - \frac{1}{z^{m-1}} \\ &= z^{m+1} - \frac{1}{z^{m+1}} \\ &= LHS \end{align*}. Claim: For \(n \geq 1\), $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ Proof: (By Induction) Base Case: (\(n=1\)). \begin{align*} LHS &= z^2 - \frac{1}{z^2} \\ &= (z-\frac1z)(z + \frac{1}{z}) \\ &= (z - \frac1z) \sum_{r=1}^1 \left ( z + \frac{1}{z} \right) \\ &= (z - \frac1z) \sum_{r=1}^1 \left ( z^{2r-1} + \frac{1}{z^{2r-1}} \right) \\ &= RHS \end{align*} as required. Inductive step: Suppose our result is true for some \(n=k\), then consider \(n = k+1\). \begin{align*} RHS &= \left(z - \frac{1}{z}\right)\sum_{r=1}^{k+1} \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right) \\ &= \left(z - \frac{1}{z}\right)\sum_{r=1}^{k} \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right) + \left(z - \frac{1}{z}\right)\left(z^{2k+1} + \frac{1}{z^{2k+1}}\right) \\ &= z^{2k} - \frac{1}{z^{2k}} + \left(z - \frac{1}{z}\right)\left(z^{2k+1} + \frac{1}{z^{2k+1}}\right) \\ &= z^{2k+2} - \frac{1}{z^{2k+2}} \\ &= LHS \end{align*}. Therefore if our result is true for \(n=k\) is true, it is true for \(n=k+1\). Since it is also true for \(n=1\) it is true for all \(n \geq 1\) but the principle of mathematical induction. Since \(\displaystyle z^{m+1} - \frac{1}{z^{m+1}} = \left(z + \frac{1}{z}\right)\left(z^m - \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right)\), we must have \(\displaystyle z^{2n}-\frac{1}{z^{2n}} = \left ( z + \frac{1}{z} \right) \sum_{r=1}^n \left (z^{2r-1}-\frac{1}{z^{2r-1}} \right)\)
      1. Since $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ we have \begin{align*} && e^{2n\theta i} - e^{-2n\theta i} &= \left(e^{\theta i} - e^{-\theta i}\right)\sum_{r=1}^n \left(e^{(2r-1)\theta i} + e^{-(2r-1)\theta i}\right) \\ \Rightarrow && 2i \sin 2n \theta &= 2i \sin \theta \sum_{r=1}^n 2 \cos (2r-1) \theta \\ \Rightarrow && \sin 2n \theta &= 2\sin \theta \sum_{r=1}^n \cos (2r-1) \theta \end{align*}
      2. When \(n = 2, \theta = \frac{\pi}{5}\) we have: \begin{align*} &&\sin \frac{4\pi}{5} &= 2 \sin \frac{\pi}{5} (\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}) \\ &&\sin \frac{\pi}{5} &= 2 \sin \frac{\pi}{5} (\cos \frac{\pi}{5} - \cos \frac{2\pi}{5}) \\ &&\frac12 &= \cos \frac{\pi}{5} - \cos \frac{2 \pi}{5} \\ \Rightarrow && \cos \frac{2\pi}{5} &= \cos \frac{\pi}{5} - \frac12 \end{align*}
      3. When \(n = 7, \theta = \frac{\pi}{15}\) we have: \begin{align*} && \sin \frac{14 \pi}{15} &= 2 \sin \frac{\pi}{15} \sum_{r=1}^7 \cos (2r-1) \frac{\pi}{15} \\ \Rightarrow && \frac12 &= \cos \frac{\pi}{15} + \cos \frac{3 \pi}{15} + \cos \frac{5 \pi}{15}+ \cos \frac{7 \pi}{15}+ \cos \frac{9 \pi}{15}+ \cos \frac{11 \pi}{15}+ \cos \frac{13 \pi}{15} \\ &&&= -\cos \frac{16\pi}{15} + \cos \frac{3 \pi}{15} + \cos \frac{5 \pi}{15}- \cos \frac{8 \pi}{15}+ \cos \frac{9 \pi}{15}- \cos \frac{4 \pi}{15}- \cos \frac{2\pi}{15} \\ &&&= - \left ( \cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15}\right) + \cos \frac{\pi}{5} + \cos \frac{\pi}{3} + \cos \frac{3 \pi}{5} \\ &&&= - \left ( \cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15}\right) + \frac12 + \frac12 \\ \Rightarrow && \frac12 &= cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15} \end{align*}
    2. By using \(z = e^{i \theta}\) we have that: \begin{align*} && z^{2n}-\frac{1}{z^{2n}} &= \left ( z + \frac{1}{z} \right) \sum_{r=1}^n \left (z^{2r-1}-\frac{1}{z^{2r-1}} \right ) \\ \Rightarrow && e^{2n \theta i} - e^{-2n \theta i} &= (e^{\theta i} + e^{-\theta i}) \sum_{r=1}^n (e^{(2r-1)\theta i} - e^{(2r-1) \theta i}) \\ \Rightarrow && 2i \sin 2n \theta &= 2 \cos \theta \sum_{r=1}^n 2i \sin(2r-1) \theta \\ \Rightarrow && \sin 2n \theta &= 2 \cos \theta \sum_{r=1}^n \sin(2r-1) \theta \end{align*} When \(n = 3, \theta = \frac{\pi}{14}\) we must have: \begin{align*} &&\sin \frac{3 \pi}{7} &= 2 \cos \frac{\pi}{14}( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ &&&= 2 \sin \left (\frac{\pi}{2} - \frac{\pi}{14} \right)( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ &&&= 2 \sin \frac{3\pi}{7} ( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ \Rightarrow && \frac12 &= \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14} \end{align*} as required.
    1987 Paper 3 Q3
    D: 1500.0 B: 1500.0

    1. If \(z=x+\mathrm{i}y,\) with \(x,y\) real, show that \[ \left|x\right|\cos\alpha+\left|y\right|\sin\alpha\leqslant\left|z\right|\leqslant\left|x\right|+\left|y\right| \] for all real \(\alpha.\)
    2. By considering \((5-\mathrm{i})^{4}(1+\mathrm{i}),\) show that \[ \frac{\pi}{4}=4\tan^{-1}\left(\frac{1}{5}\right)-\tan^{-1}\left(\frac{1}{239}\right). \] Prove similarly that \[ \frac{\pi}{4}=3\tan^{-1}\left(\frac{1}{4}\right)+\tan^{-1}\left(\frac{1}{20}\right)+\tan^{-1}\left(\frac{1}{1985}\right). \]

    Show Solution
    1. If \(z=x+iy\) then \(|z|^2 = x^2 + y^2 \leq x^2 + y^2 + 2|x||y| \leq (|x|+|y|)^2\). The LHS is Cauchy-Schwarz with the vectors \(\begin{pmatrix} |x| \\ |y| \end{pmatrix}\) and \(\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}\), although that's not in the spirit of the question. Consider \(e^{i \alpha}z = (\cos \alpha x - \sin \alpha y) + i(\sin \alpha x + \cos \alpha y)\) then \(\left | \textrm{Re}(e^{i \alpha} z) \right | \leq |z|\) for all values of \(\alpha\) and in particular we can choose \(\alpha\) to match the signs of the \(x\) and \(y\) to prove the result in question.
    2. Consider \((5-\mathrm{i})^{4}(1+\mathrm{i})\), then \begin{align*} \arg \l (5-\mathrm{i})^{4}(1+\mathrm{i}) \r &= \arg (5-i)^4 + \arg (1+i) \\ &= 4 \arg (5-i) + \arg (1+i) \\ &= -4 \tan^{-1} \frac{1}{5} + \tan^{-1} 1 \\ \\ &= \arg ( (24 - 10i)^2 (1+i)) \\ &= \arg (4 (12 - 5i)^2(1+i)) \\ &= \arg ((119 - 120i)(1+i)) \\ &= \arg (239 - i) \\ &= -\tan^{-1} \frac{1}{239} \end{align*} Therefore \(\displaystyle \frac{\pi}{4} =4 \tan^{-1} \frac{1}{5}- \tan^{-1} \frac{1}{239}\) Consider \((4-i)^3(1+i)(20-i)\) then \begin{align*} \arg \l(4-i)^3(1+i)(20-i) \r &= -3 \tan^{-1} \frac14 + \tan^{-1} 1 -\tan^{-1} \frac1{20} \\ \\ &= \arg \l(15-8i)(4-i)(1+i)(20-i) \r \\ &= \arg \l (52 - 47i)(1+i)(20-i) \r \\ &= \arg \l (99 + 5i)(20-i) \r \\ &= \arg (1985+i) \\ &= \tan^{-1} \frac1{1985} \end{align*} Therefore \(\displaystyle \frac{\pi}{4}=3\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{1}{20}+\tan^{-1}\frac{1}{1985}\)
    1987 Paper 2 Q4
    D: 1500.0 B: 1500.0

    Explain the geometrical relationship between the points in the Argand diagram represented by the complex numbers \(z\) and \(z\mathrm{e}^{\mathrm{i}\theta}.\) Write down necessary and sufficient conditions that the distinct complex numbers \(\alpha,\beta\) and \(\gamma\) represent the vertices of an equilateral triangle taken in anticlockwise order. Show that \(\alpha,\beta\) and \(\gamma\) represent the vertices of an equilateral triangle (taken in any order) if and only if \[ \alpha^{2}+\beta^{2}+\gamma^{2}-\beta\gamma-\gamma\alpha-\alpha\beta=0. \] Find necessary and sufficient conditions on the complex coefficients \(a,b\) and \(c\) for the roots of the equation \[ z^{3}+az^{2}+bz+c=0 \] to lie at the vertices of an equilateral triangle in the Argand digram.

    Show Solution
    The point \(ze^{i\theta}\) is obtained by rotating the point \(z\) about \(0\) by an angle \(\theta\) anticlockwise. The complex numbers \(\alpha, \beta\) and \(\gamma\) will form an equilateral triangle iff the angles between each side are \(\frac{\pi}{3}\), ie \begin{align*} \begin{cases}{\gamma - \beta} &= e^{i \frac{\pi}{3}}({\beta - \alpha}) \\ {\alpha- \gamma} &= e^{i \frac{\pi}{3}}({\gamma- \beta}) \\ {\beta- \alpha} &= e^{i \frac{\pi}{3}}({\alpha- \gamma})\end{cases} \end{align*} We don't need all these equations, since the first two are equivalent to the third. Combining the first two equations, we have \begin{align*} && \frac{\gamma - \beta}{\beta-\alpha} &= \frac{\alpha-\gamma}{\gamma - \beta} \\ \Leftrightarrow && (\gamma - \beta)^2 &= (\alpha-\gamma)(\beta-\alpha) \\ \Leftrightarrow && \gamma^2 +\beta^2 - 2\gamma \beta &= \alpha\beta-\alpha^2-\gamma\beta+\gamma\alpha \\ \Leftrightarrow && \alpha^{2}+\beta^{2}+\gamma^{2}-\beta\gamma-\gamma\alpha-\alpha\beta&=0 \end{align*} as required. If the roots of \(z^{3}+az^{2}+bz+c=0\) are \(\alpha, \beta, \gamma\) then \(\alpha+\beta+\gamma = -a\) and \(\beta\gamma+\gamma\alpha+\alpha\beta = b\). We also have that \(a^2 - 2b = \alpha^2+\beta^2+\gamma^2\). Therefore there roots will lie at the vertices of an equilateral triangle iff \(a^2-3b = 0\)
    1987 Paper 1 Q7
    D: 1500.0 B: 1500.0

    Sum each of the series \[ \sin\left(\frac{2\pi}{23}\right)+\sin\left(\frac{6\pi}{23}\right)+\sin\left(\frac{10\pi}{23}\right)+\cdots+\sin\left(\frac{38\pi}{23}\right)+\sin\left(\frac{42\pi}{23}\right) \] and \[ \sin\left(\frac{2\pi}{23}\right)-\sin\left(\frac{6\pi}{23}\right)+\sin\left(\frac{10\pi}{23}\right)-\cdots-\sin\left(\frac{38\pi}{23}\right)+\sin\left(\frac{42\pi}{23}\right), \] giving each answer in terms of the tangent of a single angle. {[}No credit will be given for a numerical answer obtained purely by use of a calculator.{]}

    Show Solution
    \(\sin x = \frac{e^{ix} - e^{-ix}}{2i}\). Also let \(z = e^{ \frac{2\pi i}{23}}\) \begin{align*} \sum_{k=0}^{10} \sin \l \frac{(4k +2)\pi}{23} \r &= \sum_{k=0}^{10} \textrm{Im} \l \exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l \sum_{k=0}^{10} \exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l e^{ \frac{2\pi i}{23}} \sum_{k=0}^{10} z^{2k} \r \\ &= \textrm{Im} \l z \l \frac{z^{22}-1}{z^2-1} \r \r \\ &= \textrm{Im} \l z \l \frac{z^{11}(z^{11}-z^{-11})}{z(z-z^{-1})} \r \r \\ &= \textrm{Im} \l \frac{z^{11}2i \sin \frac{22 \pi}{23} }{2i \sin \frac{2 \pi}{23}} \r \r \\ &= \frac{\sin \frac{22 \pi}{23}}{\sin \frac{2 \pi}{23}} \textrm{Im} ( z^{11}) \\ &= \frac{\sin^2 \frac{22 \pi}{23}}{\sin \frac{2 \pi}{23}} \\ &= \frac{\sin^2 \frac{\pi}{23}}{2\sin \frac{\pi}{23}\cos \frac{\pi}{23}} \\ &= \frac12 \tan \frac{\pi}{23} \end{align*} Similarly, \begin{align*} \sum_{k=0}^{10} (-1)^k\sin \l \frac{(4k +2)\pi}{23} \r &= \sum_{k=0}^{10} \textrm{Im} \l (-1)^k\exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l \sum_{k=0}^{10} (-1)^k\exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l e^{ \frac{2\pi i}{23}} \sum_{k=0}^{10} (-1)^kz^{2k} \r \\ &= \textrm{Im} \l z \l \frac{z^{22}+1}{z^2+1} \r \r \\ &= \textrm{Im} \l z \l \frac{z^{11}(z^{11}+z^{-11})}{z(z+z^{-1})} \r \r \\ &= \textrm{Im} \l \frac{z^{11}2 \cos \frac{22 \pi}{23} }{2 \cos\frac{2 \pi}{23}} \r \r \\ &= \frac{\cos\frac{22 \pi}{23}}{\cos \frac{2 \pi}{23}} \textrm{Im} ( z^{11}) \\ &= \frac{\cos \frac{22 \pi}{23}\sin \frac{22 \pi}{23}}{\cos\frac{2 \pi}{23}} \\ &= \frac12 \frac{\sin \frac{44 \pi}{23}}{\cos\frac{2 \pi}{23}} \\ &= \frac12 \frac{-\sin \frac{2\pi}{23}}{\cos\frac{2 \pi}{23}} \\ &= -\frac12 \tan \frac{2\pi}{23} \end{align*}
    2018 Paper 3 Q7
    D: 1700.0 B: 1516.0

    1. Use De Moivre's theorem to show that, if \(\sin\theta\ne0\)\,, then \[ \frac{ \left(\cot \theta + \rm{i}\right)^{2n+1} -\left(\cot \theta - \rm{i}\right)^{2n+1}}{2\rm{i}} = \frac{\sin \left(2n+1\right)\theta} {\sin^{2n+1}\theta} \,, \] for any positive integer \(n\). Deduce that the solutions of the equation \[ \binom{2n+1}{1}x^{n}-\binom{2n+1}{3}x^{n-1} +\cdots + \left(-1\right)^{n}=0 \] are \[x=\cot^{2}\left(\frac{m\pi}{2n+1}\right) \] where \( m=1\), \(2\), \(\ldots\) , \(n\,\).
    2. Hence show that \[ \sum_{m=1}^n \cot^{2}\left(\frac{m\pi}{2n+1}\right) =\frac{n\left(2n-1\right)}{3}. \]
    3. Given that \(0<\sin \theta <\theta <\tan \theta\) for \(0 < \theta < \frac{1}{2}\pi\), show that \[ \cot^{2}\theta<\frac{1}{\theta^{2}}<1+\cot^{2}\theta. \] Hence show that \[ \sum^\infty_{m=1} \frac{1}{m^2}= \frac{\pi^2}{6}\,.\]

    Show Solution
    1. \begin{align*} \frac{\left(\cot \theta + i\right)^{2n+1} -\left(\cot \theta - i\right)^{2n+1}}{2i} &= \frac{1}{\sin^{2n+1} \theta}\frac{\left(\cos \theta + i \sin \theta \right)^{2n+1} -\left(\cos\theta - i\sin \theta\right)^{2n+1}}{2i} \\ &= \frac{1}{\sin^{2n+1} \theta} \frac{e^{i(2n+1) \theta} - e^{-i(2n+1) \theta} }{2i} \\ &=\frac{\sin (2n+1) \theta}{\sin^{2n+1} \theta} \end{align*} Notice that: \begin{align*} (\cot \theta + i)^{2n+1} - (\cot \theta - i)^{2n+1} &= \sum_{k=0}^{2n+1} \binom{2n+1}{k}(i)^k \cdot \cot^{2n+1-k} \theta - \sum_{k=0}^{2n+1} \binom{2n+1}{k}(-i)^k \cdot \cot^{2n+1-k} \theta \\ &= \sum_{k=0}^{2n+1} \binom{2n+1}{k} \l i^k - (-i)^k \r \cdot \cot^{2n+1-k} \theta \\ &= \sum_{l=0}^{n} \binom{2n+1}{2l+1} \l i^{2l+1} - (-i)^{2l+1} \r \cdot \cot^{2n+1-(2l+1)} \theta \\ &= \sum_{l=0}^{n} \binom{2n+1}{2l+1} 2i \cdot \cot^{2(n-l)} \theta \\ &= 2i\sum_{l=0}^{n} \binom{2n+1}{2l+1} \cot^{2(n-l)} \theta \\ \end{align*} Therefore if \(\theta\) satisfies \(\frac{\sin (2n+1) \theta}{\sin^{2n+1} \theta} = 0\) then \(z = \cot^2 \theta\) satisfies the equation. But \(\theta = \frac{m \pi}{2n+1}, m = 1, 2, \ldots, n\) are \(n\) distinct all the roots must be \(\cot^2 \frac{m \pi}{2n+1}\).
    2. Notice that the sum of the roots will be \(\displaystyle \frac{\binom{2n+1}{3}}{\binom{2n+1}{1}} = \frac{(2n+1)\cdot 2n \cdot (2n-1)}{3! \cdot (2n+1)} = \frac{n \cdot (2n-1)}{3}\) and so \[ \sum_{m=1}^n \cot^{2}\left(\frac{m\pi}{2n+1}\right) =\frac{n\left(2n-1\right)}{3}. \]
    3. For \(0 < \theta < \frac{1}{2}\pi\), \begin{align*} && 0 < \sin \theta < \theta < \tan \theta \\ \Leftrightarrow && 0 < \cot \theta < \frac{1}{\theta} < \frac{1}{\sin \theta} \\ \Leftrightarrow && 0 < \cot^2 \theta < \frac{1}{\theta^2} < \cosec^2 \theta = 1 + \cot^2 \theta\\ \end{align*} Therefore \begin{align*} && \sum_{n=1}^N \cot^2 \frac{n \pi}{2N+1} < \sum_{n=1}^N \frac{(2N+1)^2}{n^2 \pi^2} < N + \sum_{n=1}^N \cot^2 \frac{n \pi}{2N+1} \\ \Rightarrow && \frac{1}{(2N+1)^2} \frac{N(2N-1)}{3} < \sum_{n=1}^N \frac{1}{n^2 \pi^2} < \frac{1}{(2N+1)^2} \l \frac{N(2N-1)}{3} + 1 \r \\ \Rightarrow && \lim_{N \to \infty}\frac{1}{(2N+1)^2} \frac{N(2N-1)}{3} < \lim_{N \to \infty}\sum_{n=1}^N \frac{1}{n^2 \pi^2} < \lim_{N \to \infty}\frac{1}{(2N+1)^2} \l \frac{N(2N-1)}{3} + 1 \r \\ \Rightarrow && \frac{1}{6} \leq \lim_{N \to \infty}\sum_{n=1}^N \frac{1}{n^2 \pi^2} \leq \frac16 \\ \Rightarrow && \sum_{n=1}^N \frac{1}{n^2} = \frac{\pi^2}{6} \end{align*}
    2017 Paper 3 Q2
    D: 1700.0 B: 1500.1

    The transformation \(R\) in the complex plane is a rotation (anticlockwise) by an angle \(\theta\) about the point represented by the complex number \(a\). The transformation \(S\) in the complex plane is a rotation (anticlockwise) by an angle \(\phi\) about the point represented by the complex number \(b\).

    1. The point \(P\) is represented by the complex number~\(z\). Show that the image of \(P\) under \(R\) is represented by \[ \e^{{\mathrm i} \theta}z + a(1-\e^{{\rm i} \theta})\,. \]
    2. Show that the transformation \(SR\) (equivalent to \(R\) followed by \(S\)) is a rotation about the point represented by \(c\), where \[ %\textstyle c\,\sin \tfrac12 (\theta+\phi) = a\,\e^{ {\mathrm i}\phi/2}\sin \tfrac12\theta + b\,\e^{-{\mathrm i} \theta/2}\sin \tfrac12 \phi \,, \] provided \(\theta+\phi \ne 2n\pi\) for any integer \(n\). What is the transformation \(SR\) if \(\theta +\phi = 2\pi\)?
    3. Under what circumstances is \(RS =SR\)?

    Show Solution
    1. We can map \(a \mapsto 0\), rotate the whole plane, then shift the plane back to \(a\), so \(z \mapsto (z-a) \mapsto e^{i \theta}(z-a) \mapsto a + e^{i \theta}(z-a) = e^{i \theta}z + a(1 - e^{i\theta})\)
    2. \(z \mapsto e^{i \theta}z + a(1 - e^{i\theta}) \mapsto e^{i \phi} \l e^{i \theta}z + a(1 - e^{i\theta}) \r + b(1 - e^{i \phi})\) \begin{align*} e^{i \phi} \l e^{i \theta}z + a(1 - e^{i\theta}) \r + b(1 - e^{i \phi}) &= e^{i(\phi + \theta)}z + ae^{i\phi} - ae^{i (\theta + \phi)} + b(1 - e^{i \phi}) \\ \end{align*} Therefore this is rotation by angle \(\phi + \theta\) and about \begin{align*} \frac{ae^{i\phi} - ae^{i (\theta + \phi)} + b(1 - e^{i \phi})}{1 - e^{i(\phi + \theta)}} &= \frac{e^{-i\frac{(\phi + \theta)}{2}} \l ae^{i\phi} - ae^{i (\theta + \phi)} + b(1 - e^{i \phi}) \r}{e^{-i\frac{(\phi + \theta)}{2}} - e^{i\frac{(\phi + \theta)}2}} \\ &= \frac{\l ae^{i\frac{\phi-\theta}{2}} - ae^{i \frac{(\theta + \phi)}{2}} + b(e^{-i\frac{(\phi + \theta)}{2}} -e^{i\frac{(\phi - \theta)}{2}}) \r}{e^{-i\frac{(\phi + \theta)}{2}} - e^{i\frac{(\phi + \theta)}2}} \\ &= \frac{ae^{i\frac{\phi}{2}} 2i\sin(\frac{\theta}{2}) + be^{-i\frac{\theta}{2}}2i\sin\frac{\phi}{2} }{2i \sin(\frac{\phi + \theta}2)} \\ \end{align*} as required. If \(\phi + \theta = 2\pi\), then \(z \mapsto z + (b-a)(1 - e^{i\phi})\) which is a translation.
    3. If \(\phi + \theta \neq 2 \pi\) then \(RS = ST\) if \begin{align*} && a\,\e^{ {\mathrm i}\phi/2}\sin \tfrac12\theta + b\,\e^{-{\mathrm i} \theta/2}\sin \tfrac12 \phi &= b\,\e^{ {\mathrm i}\theta/2}\sin \tfrac12\phi + a\,\e^{-{\mathrm i} \phi/2}\sin \tfrac12 \theta \\ && a\,(\e^{ {\mathrm i}\phi/2}-\e^{-{\mathrm i}\phi/2})\sin \tfrac12\theta + b\,(\e^{-{\mathrm i} \theta/2}-\e^{+{\mathrm i} \theta/2})\sin \tfrac12 \phi &= 0 \\ && a \sin \frac{\phi}{2} \sin \frac{\theta}{2}-b \sin \frac{\theta}{2} \sin \frac{\phi}{2} &= 0 \\ \Leftrightarrow && a = b \text{ or } \sin \frac{\theta}{2} = 0 \text{ or } \sin \frac{\phi}{2} = 0 \\ \Leftrightarrow && a = b \text{ or } \theta = 0 \text{ or } \phi = 0 \\ \end{align*} If \(\phi + \theta \neq 2 \pi\) then \(RS = ST\) if \(b = a\) or \(e^{i\phi} = e^{i \theta}\) ie rotation through the same angle.
    2016 Paper 3 Q7
    D: 1700.0 B: 1516.0

    Let \(\omega = \e^{2\pi {\rm i}/n}\), where \(n\) is a positive integer. Show that, for any complex number \(z\), \[ (z-1)(z-\omega) \cdots (z - \omega^{n-1}) = z^n -1\,. \] The points \(X_0\), \(X_1\), \ldots\,, \(X_{n-1}\) lie on a circle with centre \(O\) and radius 1, and are the vertices of a regular polygon.

    1. The point \(P\) is equidistant from \(X_0\) and \(X_1\). Show that, if \(n\) is even, \[ |PX_0| \times |PX_1 |\times \,\cdots\, \times |PX_{n-1}| = |OP|^n +1\, ,\] where \(|PX_ k|\) denotes the distance from \(P\) to \(X_k\). Give the corresponding result when \(n\) is odd. (There are two cases to consider.)
    2. Show that \[ |X_0 X_1|\times |X_0 X_2|\times \,\cdots\, \times |X_0 X_{n-1}| =n\,. \]

    2015 Paper 3 Q4
    D: 1700.0 B: 1516.0

    1. If \(a\), \(b\) and \(c\) are all real, show that the equation \[ z^3+az^2+bz+c=0 \tag{\(*\)} \] has at least one real root.
    2. Let \[ S_1= z_1+z_2+z_3, \ \ \ \ S_2= z_1^2 + z_2^2 + z_3^2, \ \ \ \ S_3= z_1^3 + z_2^3 + z_3^3\,, \] where \(z_1\), \(z_2\) and \(z_3\) are the roots of the equation \((*)\). Express \(a\) and \(b\) in terms of \(S_1\) and \(S_2\), and show that \[ 6c =- S_1^3 + 3 S_1S_2 - 2S_3\,. \]
    3. The six real numbers \(r_k\) and \(\theta_k\) (\(k=1, \ 2, \ 3\)), where \(r_k>0\) and \(-\pi < \theta_k <\pi\), satisfy \[ \textstyle \sum\limits _{k=1}^3 r_k \sin (\theta_k) = 0\,, \ \ \ \ \textstyle \sum\limits _{k=1}^3 r_k^2 \sin (2\theta_k) = 0\,, \ \ \ \ \ \textstyle \sum\limits _{k=1}^3 r_k^3 \sin (3\theta_k) = 0\, . \] Show that \(\theta_k=0\) for at least one value of \(k\). Show further that if \(\theta_1=0\) then \(\theta_2 = - \theta_3\,\).

    Show Solution
    1. Let \(z \in \mathbb{R}\) and let \(z \to \pm \infty\) then \(z^3 + az^2 + bz + c\) changes sign, therefore somewhere it must have a real root.
    2. \begin{align*} &&z^3 + az^2 + bz + c &= (z-z_1)(z-z_2)(z-z_3) \\ && &= z^3 - (z_1+z_2+z_3)z^2 + (z_1z_2 + z_2z_3+z_3z_1)z - (z_1z_2z_3) \\ \\ \Rightarrow && S_1 &= z_1+z_2+z_3 \\ &&&= -a \\ \\ \Rightarrow && S_2 &= z_1^2+z_2^2+z_3^2 \\ &&&= (z_1+z_2+z_3)^2 - 2(z_1z_2 + z_2z_3+z_3z_1) \\ &&&= a^2 - 2b \\ \Rightarrow && a &= -S_1 \\ && b &= \frac12 \l S_1^2 - S_2\r \\ \\ && 0 &= z_i^3 + az_i^2+bz_i+c \\ \Rightarrow && 0 &= S_3 + aS_2+bS_1+3c \\ &&&= S_3 -S_1S_2 + \frac12 \l S_1^2 - S_2\r S_1 + 3c \\ \Rightarrow && 0 &= 2S_3 - 3S_1S_2 + S_1^3 + 6c \end{align*}
    3. Let \(z_k= r_ke^{i \theta_k}\), then we have \(\textrm{Im}(S_k) = 0\) and so the polynomial with roots \(z_k\) has real coefficients, and therefore at least one root is real. This root will have \(\theta_k = 0\). Moreover, since if \(w\) is a root of a real polynomial \(\overbar{w}\) is also a root, and therefore if \(\theta_1 = 0\), we must have that \(z_2\) and \(z_3\) are complex conjugate, ie \(\theta_2 = - \theta_3\)
    2013 Paper 3 Q8
    D: 1700.0 B: 1484.0

    Evaluate \(\displaystyle \sum_{r=0}^{n-1} \e^{2i(\alpha + r\pi/n)}\) where \(\alpha\) is a fixed angle and \(n\ge2\). The fixed point \(O\) is a distance \(d\) from a fixed line \(D\). For any point \(P\), let \(s\) be the distance from \(P\) to \(D\) and let \(r\) be the distance from \(P\) to \(O\). Write down an expression for \(s\) in terms of \(d\), \(r\) and the angle \(\theta\), where \(\theta\) is as shown in the diagram below.

    TikZ diagram
    The curve \(E\) shown in the diagram is such that, for any point \(P\) on \(E\), the relation \(r = k s\) holds, where \(k\) is a fixed number with \(0< k <1\). Each of the \(n\) lines \(L_1\), \(\ldots\,\), \(L_n\) passes through \(O\) and the angle between adjacent lines is \(\frac \pi n\). The line \(L_j\) (\(j=1\), \(\ldots\,\), \(n\)) intersects \(E\) in two points forming a chord of length \(l_j\). Show that, for \(n\ge2\), \[ \sum_{j=1}^n \frac 1 {l_j} = \frac {(2-k^2)n} {4kd}\,. \]

    Show Solution
    \begin{align*} \sum_{r=0}^{n-1} \e^{2i(\alpha + r\pi/n)} &= e^{2i\alpha} \sum_{r=0}^{n-1} \left (\e^{2i\pi/n} \right)^r \\ &= e^{2i\alpha} \frac{1-\left (\e^{2i\pi/n} \right)^n}{1-\e^{2i\pi/n} } \\ &= 0 \end{align*} \(d = s + r \cos \theta\) ie \(s = d - r \cos \theta\) Therefore \(d = \frac{r}{k} + r \cos \theta \Rightarrow r = \frac{kd}{1+k \cos \theta}\). The \(l_j\) will come from \(r(\alpha + \frac{j \pi}{n} )+r(\alpha + \pi + \frac{j \pi}{n} )\) \begin{align*} && l_j &= r(\alpha + \frac{(j-1) \pi}{n} )+r(\alpha + \pi + \frac{(j-1) \pi}{n} ) \\ &&&= \frac{kd}{1+k \cos \left ( \alpha + \frac{(j-1) \pi}{n}\right)}+\frac{kd}{1+k \cos \left ( \alpha+\pi+ \frac{(j-1) \pi}{n}\right)}\\ &&&= \frac{kd}{1+k \cos \left ( \alpha + \frac{(j-1) \pi}{n}\right)}+\frac{kd}{1-k \cos \left ( \alpha+ \frac{(j-1) \pi}{n}\right)}\\ &&&= \frac{2kd}{1-k^2 \cos^2 \left ( \alpha + \frac{(j-1) \pi}{n}\right)}\\ \Rightarrow && \sum_{j=1}^n \frac 1 {l_j} &= \sum_{j=0}^{n-1} \frac{1-k^2 \cos^2 \left ( \alpha + \frac{j \pi}{n}\right)}{2kd} \\ &&&= \frac{n}{2kd}-\frac{k^2}{2kd} \sum_{j=0}^{n-1} \cos^2 \left ( \alpha + \frac{j \pi}{n}\right) \\ &&&= \frac{n}{2kd}-\frac{k^2}{2kd} \sum_{j=0}^{n-1} \frac{1+ \cos \left ( 2\alpha + \frac{2j \pi}{n}\right)}{2} \\ &&&= \frac{n}{2kd}-\frac{nk^2}{2kd}-\frac{k^2}{4kd} \sum_{j=0}^{n-1}\cos \left ( 2\alpha + \frac{2j \pi}{n}\right) \\ &&&= \frac{n}{2kd}-\frac{nk^2}{2kd}-\frac{k^2}{4kd} \underbrace{\textrm{Re} \left ( \sum_{j=0}^{n-1}e^{ 2i(\alpha + \frac{j \pi}{n})} \right)}_{=0} \\ &&&= \frac{n}{2kd} - \frac{nk^2}{4kd} \\ &&&= \frac{n(2-k^2)}{4kd} \end{align*}
    2013 Paper 3 Q4
    D: 1700.0 B: 1516.0

    Show that \((z-\e^{i\theta})(z-\e^{-i\theta})=z^2 -2z\cos\theta +1\,\). Write down the \((2n)\)th roots of \(-1\) in the form \(\e^{i\theta}\), where \(-\pi <\theta \le \pi\), and deduce that \[ z^{2n} +1 = \prod_{k=1}^n \left(z^2-2z \cos\left( \tfrac{(2k-1)\pi}{2n}\right) +1\right) \,. \] Here, \(n\) is a positive integer, and the \(\prod\) notation denotes the product.

    1. By substituting \(z=i\) show that, when \(n\) is even, \[ \cos \left(\tfrac \pi {2n}\right) \cos \left(\tfrac {3\pi} {2n}\right) \cos \left(\tfrac {5\pi} {2n}\right) \cdots \cos \left(\tfrac{(2n-1) \pi} {2n}\right) = {(-1\vphantom{\dot A})}^{\frac12 n} 2^{1-n} \,. \]
    2. Show that, when \(n\) is odd, \[ \cos^2 \left(\tfrac \pi {2n}\right) \cos ^2 \left(\tfrac {3\pi} {2n}\right) \cos ^2 \left(\tfrac {5\pi} {2n}\right) \cdots \cos ^2 \left(\tfrac{(n-2) \pi} {2n}\right) = n 2^{1-n} \,. \] You may use without proof the fact that \(1+z^{2n}= (1+z^2)(1-z^2+z^4 - \cdots + z^{2n-2})\,\) when \(n\) is odd.

    Show Solution
    \begin{align*} && (z-e^{i \theta})(z-e^{-i\theta}) &= z^2 - (e^{i\theta}+e^{-i\theta})z + 1 \\ &&&= z^2-2\cos \theta z + 1 \end{align*} The \(2n\)th roots of \(-1\) are \(e^{\frac{i (2k+1)\pi}{2n}}, k \in \{-n, \cdots, n-1 \}\) or \(e^{\frac{i k \pi}{2n}}, k \in \{-2n+1, -2n+3, \cdots, 2n-3, 2n-1 \}\) \begin{align*} && z^{2n}+1 &= (z-e^{-i(2n-1)/2n})\cdot (z-e^{-i(2n-3)/2n})\cdots (z-e^{i(2n-3)/2n})\cdot (z-e^{i(2n-1)/2n}) \\ &&&= \prod_{k=1}^n \left (z - e^{i \frac{2k-1}{2n}\pi} \right)\left (z - e^{-i \frac{2k-1}{2n}\pi} \right)\\ &&&= \prod_{k=1}^n \left (z^2 - 2z \cos \left ( \frac{(2k-1)\pi}{2n}\right) + 1 \right) \end{align*}
    1. \begin{align*} && i^{2n} + 1 &= \prod_{k=1}^n \left (i^2 - 2i \cos \left ( \frac{(2k-1)\pi}{2n}\right) + 1 \right) \\ \Rightarrow && (-1)^n + 1 &= (-1)^n2^ni^n\prod_{k=1}^n \cos \left ( \frac{(2k-1)\pi}{2n}\right) \\ \Rightarrow && \prod_{k=1}^n \cos \left ( \frac{(2k-1)\pi}{2n}\right) &= 2^{1-n}(-1)^{n/2} \tag{if \(n\equiv 0\pmod{2}\)} \end{align*}
    2. When \(n\) is odd, we notice that two of the roots are \(i\) and \(-i\), if we exclude those, (ie by factoring out \(z^2+1\), we see that \begin{align*} && 1-z^2+z^4-\cdots + z^{2n-2} &= \prod_{k=1, 2k-1\neq n}^n \left (z^2-2z \cos \left ( \frac{(2k-1)\pi}{2n} \right)+1 \right) \\ &&&= \prod_{k=1}^{(n-1)/2} \left (z^2-2z \cos \left ( \frac{(2k-1)\pi}{2n} \right)+1 \right) \prod_{k=(n+1)/2}^{n} \left (z^2-2z \cos \left ( \frac{(2k-1)\pi}{2n} \right)+1 \right)\\ &&&= \prod_{k=1}^{(n-1)/2} \left (z^2-2z \cos \left ( \frac{(2k-1)\pi}{2n} \right)+1 \right) \prod_{k=1}^{(n-1)/2} \left (z^2+2z \cos \left ( \frac{(2k-1)\pi}{2n} \right)+1 \right)\\ \Rightarrow && 1-i^2 + i^4 + \cdots + i^{2n-2} &= \prod_{k=1}^{(n-1)/2} \left (2 \cos \left ( \frac{(2k-1)\pi}{2n} \right) \right) \prod_{k=1}^{(n-1)/2} \left (2 \cos \left ( \frac{(2k-1)\pi}{2n} \right) \right)\\ \Rightarrow && n &= 2^{n-1} \prod_{k=1}^{(n-1)/2}\cos^2 \left ( \frac{(2k-1)\pi}{2n} \right) \\ \Rightarrow && \prod_{k=1}^{(n-1)/2}\cos^2 \left ( \frac{(2k-1)\pi}{2n} \right) &= n2^{1-n} \end{align*}
    2011 Paper 3 Q3
    D: 1700.0 B: 1484.0

    Show that, provided \(q^2\ne 4p^3\), the polynomial \[ \hphantom{(p\ne0, \ q\ne0)\hspace{2cm}} x^3-3px +q \hspace {2cm} (p\ne0, \ q\ne0) \] can be written in the form \[ a(x-\alpha)^3 + b(x-\beta)^3\,, \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(pt^2 -qt +p^2=0\), and \(a\) and \(b\) are constants which you should express in terms of \(\alpha\) and \(\beta\). Hence show that one solution of the equation \(x^3-24x+48=0\,\) is \[ x= \frac{2 (2-2^{\frac13})}{1-2^{\frac13}} \] and obtain similar expressions for the other two solutions in terms of \(\omega\), where \(\omega = \mathrm{e}^{2\pi\mathrm{i}/3}\,\). Find also the roots of \(x^3-3px +q=0\) when \(p=r^2\) and \(q= 2r^3\) for some non-zero constant \(r\).

    2010 Paper 3 Q3
    D: 1700.0 B: 1545.2

    For any given positive integer \(n\), a number \(a\) (which may be complex) is said to be a primitive \(n\)th root of unity if \(a^n=1\) and there is no integer \(m\) such that \(0 < m < n\) and \(a^m = 1\). Write down the two primitive 4th roots of unity. Let \({\rm C}_n(x)\) be the polynomial such that the roots of the equation \({\rm C}_n(x)=0\) are the primitive \(n\)th roots of unity, the coefficient of the highest power of \(x\) is one and the equation has no repeated roots. Show that \({\rm C}_4(x) = x^2+1\,\).

    1. Find \({\rm C}_1(x)\), \({\rm C}_2(x)\), \({\rm C}_3(x)\), \({\rm C}_5(x)\) and \({\rm C}_6(x)\), giving your answers as unfactorised polynomials.
    2. Find the value of \(n\) for which \({\rm C}_n(x) = x^4 + 1\).
    3. Given that \(p\) is prime, find an expression for \({\rm C}_p(x)\), giving your answer as an unfactorised polynomial.
    4. Prove that there are no positive integers \(q\), \(r\) and \(s\) such that \({\rm C}_q(x) \equiv {\rm C}_r(x) {\rm C}_s(x)\,\).

    Show Solution
    The primitive 4th roots of unity are \(i\) and \(-i\). (Since the other two roots of \(x^4-1\) are also roots of \(x^2-1\) \({\rm C}_4(x) = (x-i)(x+i) = x^2+1\) as required.
    1. \(\,\) \begin{align*} && {\rm C}_1 (x) &= x-1 \\ && {\rm C}_2 (x) &= x+1 \\ && {\rm C}_3 (x) &= x^2+x+1 \\ && {\rm C}_5 (x) &= x^4+x^3+x^2+x+1 \\ && {\rm C}_6 (x) &= x^2-x+1 \\ \end{align*}
    2. Since \((x^4+1)(x^4-1) = x^8-1\) we must have \(n \mid 8\). But \(n \neq 1,2,4\) so \(n = 8\).
    3. \({\rm C}_p(x) = x^{p-1} +x^{p-2}+\cdots+x+1\)
    4. Suppose \({\rm C_q}(x) \equiv {\rm C}_r(x){\rm C}_s(x)\), then if \(\omega\) is a primitive \(q\)th root of unity we must \({\rm C}_q(\omega) = 0\), but that means that one of \({\rm C}_r(\omega)\), \({\rm C}_s(\omega)\) is \(0\). But that's only possible if \(r\) or \(s\) \(=q\). If this were the case, then what would the other value be? There are no possible values, hence it's not possible.
    2009 Paper 3 Q6
    D: 1700.0 B: 1473.1

    Show that $\big\vert \e^{\i\beta} -\e^{\i\alpha}\big\vert = 2\sin\frac12 (\beta-\alpha)\,\( for \)0<\alpha<\beta<2\pi\,$. Hence show that \[ \big\vert \e^{\i\alpha} -\e^{\i\beta}\big\vert \; \big\vert \e^{\i\gamma} -\e^{\i\delta}\big\vert + \big\vert \e^{\i\beta} -\e^{\i\gamma}\big\vert \; \big\vert \e^{\i\alpha} -\e^{\i\delta}\big\vert = \big\vert \e^{\i\alpha} -\e^{\i\gamma}\big\vert \; \big\vert \e^{\i\beta} -\e^{\i\delta}\big\vert \,, \] where \(0<\alpha<\beta<\gamma<\delta<2\pi\). Interpret this result as a theorem about cyclic quadrilaterals.

    2005 Paper 3 Q6
    D: 1700.0 B: 1516.0

    In this question, you may use without proof the results \[ 4 \cosh^3 y - 3 \cosh y = \cosh (3y) \ \ \ \ \text{and} \ \ \ \ \mathrm{arcosh} \, y = \ln ( y+\sqrt{y^2-1}). \] \noindent[ {\bf Note: } \(\mathrm{arcosh}y\) is another notation for \(\cosh^{-1}y\,\)] Show that the equation \(x^3 - 3a^2x = 2a^3 \cosh T\) is satisfied by \( 2a \cosh \l \frac13 T \r\) and hence that, if \(c^2\ge b^3>0\), one of the roots of the equation \(x^3-3bx=2c\) is \(\ds u+\frac{b}{u}\), where \(u = (c+\sqrt{c^2-b^3})^{\frac13}\;\). Show that the other two roots of the equation \(x^3-3bx=2c\) are the roots of the quadratic equation \[\ds x^2 + \Big( u+\frac{b}{u}\Big) x + u^2+\frac{b^2}{u^2}-b=0\, ,\] and find these roots in terms of \(u\), \(b\) and \(\omega\), where \(\omega = \frac{1}{2}(-1 + \mathrm{i}\sqrt{3})\). Solve completely the equation \(x^3-6x=6\,\).

    2000 Paper 3 Q3
    D: 1700.0 B: 1484.0

    Given that \(\alpha = \e^{\mathrm{i} \pi/3}\) , prove that \(1 + \alpha^2 = \alpha\). A triangle in the Argand plane has vertices \(A\), \(B\), and \(C\) represented by the complex numbers \(p\), \(q\alpha^2\) and \(- r\alpha\) respectively, where \(p\), \(q\) and \(r\) are positive real numbers. Sketch the triangle~\(ABC\). Three equilateral triangles \(ABL\), \(BCM\) and \(CAN\) (each lettered clockwise) are erected on sides \(AB\), \(BC\) and \(CA\) respectively. Show that the complex number representing \(N\) is \mbox{\(( 1 - \alpha) p- \alpha^2 r\)} and find similar expressions for the complex numbers representing \(L\) and \(M\). Show that lines \(LC\), \(MA\) and \(NB\) all meet at the origin, and that these three line segments have the common length \(p+q+r\).

    2000 Paper 2 Q4
    D: 1600.0 B: 1500.0

    Prove that \[ (\cos\theta +\mathrm{i}\sin\theta) (\cos\phi +\mathrm{i}\sin\phi) = \cos(\theta+\phi) +\mathrm{i}\sin(\theta+\phi) \] and that, for every positive integer \(n\), $$ {(\cos {\theta} + \mathrm{i}\sin {\theta})}^n = \cos{n{\theta}} + \mathrm{i}\sin{n{\theta}}. $$ By considering \((5-\mathrm{i})^2(1+\mathrm{i})\), or otherwise, prove that \[ \arctan\left(\frac{7}{17}\right)+2\arctan\left(\frac{1}{5}\right)=\frac{\pi}{4}\,. \] Prove also that \[ 3\arctan\left(\frac{1}{4}\right)+\arctan\left(\frac{1}{20}\right)+\arctan\left(\frac{1}{1985}\right)=\frac{\pi}{4}\,. \] [Note that \(\arctan\theta\) is another notation for \(\tan^{-1}\theta\).]

    1997 Paper 3 Q3
    D: 1700.0 B: 1504.6

    By considering the solutions of the equation \(z^n-1=0\), or otherwise, show that \[(z-\omega)(z-\omega^2)\dots(z-\omega^{n-1})=1+z+z^2+\dots+z^{n-1},\] where \(z\) is any complex number and \(\omega={\rm e}^{2\pi i/n}\). Let \(A_1,A_2,A_3,\dots,A_n\) be points equally spaced around a circle of radius \(r\) centred at \(O\) (so that they are the vertices of a regular \(n\)-sided polygon). Show that \[\overrightarrow{OA_1}+\overrightarrow{OA_2}+\overrightarrow{OA_3} +\dots+\overrightarrow{OA_n}=\mathbf0.\] Deduce, or prove otherwise, that \[\sum_{k=1}^n|A_1A_k|^2=2r^2n.\]

    1996 Paper 3 Q5
    D: 1700.0 B: 1516.0

    Show, using de Moivre's theorem, or otherwise, that \[ \tan7\theta=\frac{t(t^{6}-21t^{4}+35t^{2}-7)}{7t^{6}-35t^{4}+21t^{2}-1}\,, \] where \(t=\tan\theta.\)

    1. By considering the equation \(\tan7\theta=0,\) or otherwise, obtain a cubic equation with integer coefficients whose roots are \[ \tan^{2}\left(\frac{\pi}{7}\right),\ \tan^{2}\left(\frac{2\pi}{7}\right)\ \mbox{ and }\tan^{2}\left(\frac{3\pi}{7}\right) \] and deduce the value of \[ \tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{3\pi}{7}\right)\,. \]
    2. Find, without using a calculator, the value of \[ \tan^{2}\left(\frac{\pi}{14}\right)+\tan^{2}\left(\frac{3\pi}{14}\right)+\tan^{2}\left(\frac{5\pi}{14}\right)\,. \]

    1995 Paper 2 Q6
    D: 1600.0 B: 1516.0

    If \(u\) and \(v\) are the two roots of \(z^{2}+az+b=0,\) show that \(a=-u-v\) and \(b=uv.\) Let \(\alpha=\cos(2\pi/7)+\mathrm{i}\sin(2\pi/7).\) Show that \(\alpha\) is a root of \(z^{6}-1=0\) and express the roots in terms of \(\alpha.\) The number \(\alpha+\alpha^{2}+\alpha^{4}\) is a root of a quadratic equation \[ z^{2}+Az+B=0 \] where \(A\) and \(B\) are real. By guessing the other root, or otherwise, find the numerical values of \(A\) and \(B\). Show that \[ \cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{8\pi}{7}=-\frac{1}{2}, \] and evaluate \[ \sin\frac{2\pi}{7}+\sin\frac{4\pi}{7}+\sin\frac{8\pi}{7}, \] making it clear how you determine the sign of your answer.

    Show Solution
    \begin{align*} 0 &= z^2+az+b \\ &= (z-u)(z-v) \\ &= z^2-(u+v)z+uv \end{align*} Therefore by comparing coefficients, \(a = -u-v\) and \(b = uv\). Suppose \(\alpha = \cos(2\pi/7) + i \sin (2\pi/7)\), then by De Moivre, \(\alpha^7 = \cos(2\pi) + i \sin (2\pi) = 1\), ie \(\alpha^7-1 = 0\). Notice that \((\alpha+\alpha^2 + \alpha^4) + (\alpha^3+\alpha^5+\alpha^6) = -1\) and \begin{align*} P &= (\alpha+\alpha^2 + \alpha^4)(\alpha^3+\alpha^5+\alpha^6) \\ &= \alpha^4 + \alpha^6 + \alpha^7 + \alpha^5 + \alpha^7 + \alpha^8 + \alpha^{7}+\alpha^{9}+\alpha^{10} \\ &= 3 + \alpha+ \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 \\ &= 2 \end{align*} Therefore it is a root of \(x^2+x+2 = 0 \Rightarrow x = \frac{-1 \pm i\sqrt{7}}{2}\) Therefore $\cos\frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{8\pi}{7} = \textrm{Re}(\alpha + \alpha^2 + \alpha^4) = -\frac12$ And \(\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7} = \textrm{Im}(\alpha + \alpha^2 + \alpha^4) = \pm\frac{\sqrt{7}}2\) since it is positive it is \(\frac{\sqrt{7}}{2}\)
    1995 Paper 1 Q4
    D: 1484.0 B: 1500.0

    By applying de Moivre's theorem to \(\cos5\theta+\mathrm{i}\sin5\theta,\) expanding the result using the binomial theorem, and then equating imaginary parts, show that \[ \sin5\theta=\sin\theta\left(16\cos^{4}\theta-12\cos^{2}\theta+1\right). \] Use this identity to evaluate \(\cos^{2}\frac{1}{5}\pi\), and deduce that \(\cos\frac{1}{5}\pi=\frac{1}{4}(1+\sqrt{5}).\)

    Show Solution
    \begin{align*} && (\cos \theta + i \sin \theta)^n &= \cos n \theta + i \sin n \theta \\ n = 5: && \cos 5 \theta + i \sin 5 \theta &= (\cos \theta + i \sin \theta)^5 \\ \textrm{Im}: && \sin 5 \theta &= \binom{5}{1}\cos^4 \theta \sin \theta + \binom{5}{3} \cos^2 \theta (- \sin^3 \theta) + \binom{5}{5} \sin^5 \theta \\ &&&= \sin \theta (5\cos^4 \theta-10\cos^2 \theta \sin^2 \theta+\sin^4 \theta) \\ &&&= \sin \theta (5\cos^4 \theta-10\cos^2 \theta (1-\cos^2 \theta)+(1-\cos^2 \theta)^2) \\ &&&= \sin \theta((5+10+1)\cos^4 \theta +(-10-2)\cos^2 \theta + 1) \\ &&&= \sin \theta(16\cos^4 \theta -12\cos^2 \theta + 1) \\ \end{align*} Suppose \(\theta= \frac{\pi}{5}\), then \(\sin 5 \theta = 0, \sin \theta \neq 0\), therefore if \(c = \cos \theta\) we must have \begin{align*} && 0 &= 16c^4-12c^2+1 \\ \Rightarrow && c^2 &= \frac{3 \pm \sqrt{5}}{8} \\ &&&= \frac{6\pm 2\sqrt{5}}{16} \\ &&&= \frac{(1 \pm \sqrt{5})^2}{16} \\ \Rightarrow && c &= \pm \frac{1 \pm \sqrt{5}}{4} \end{align*} Since \(c > 0\) we either have \(\cos \frac15 \pi = \frac{1+\sqrt{5}}4\) or \(\cos \frac15 \pi = \frac{\sqrt{5}-1}4\), however \(\sqrt{5}-1 < 1.5\) and so \(\frac{\sqrt{5}-1}{4} < \frac12 = \cos \frac13 \pi\) we must have \(\cos \frac15 \pi = \frac{1+\sqrt{5}}4\)
    1992 Paper 3 Q8
    D: 1700.0 B: 1515.1

    Show that \[ \sin(2n+1)\theta=\sin^{2n+1}\theta\sum_{r=0}^{n}(-1)^{n-r}\binom{2n+1}{2r}\cot^{2r}\theta, \] where \(n\) is a positive integer. Deduce that the equation \[ \sum_{r=0}^{n}(-1)^{r}\binom{2n+1}{2r}x^{r}=0 \] has roots \(\cot^{2}(k\pi/(2n+1))\) for \(k=1,2,\ldots,n\). Show that

    • sep}{3mm}
    • [\bf (i)] \({\displaystyle \sum_{k=1}^{n}\cot^{2}\left(\frac{k\pi}{2n+1}\right)=\frac{n(2n-1)}{3}},\)
    • [\bf (ii)] \({\displaystyle \sum_{k=1}^{n}\tan^{2}\left(\frac{k\pi}{2n+1}\right)=n(2n+1)},\)
    • [\bf (iii)] \({\displaystyle \sum_{k=1}^{n}\mathrm{cosec}^{2}\left(\frac{k\pi}{2n+1}\right)=\frac{2n(n+1)}{3}}.\)

    1991 Paper 1 Q3
    D: 1516.0 B: 1500.0

    A path is made up in the Argand diagram of a series of straight line segments \(P_{1}P_{2},\) \(P_{2}P_{3},\) \(P_{3}P_{4},\ldots\) such that each segment is \(d\) times as long as the previous one, \((d\neq1)\), and the angle between one segment and the next is always \(\theta\) (where the segments are directed from \(P_{j}\) towards \(P_{j+1}\), and all angles are measured in the anticlockwise direction). If \(P_{j}\) represents the complex number \(z_{j},\) express \[ \frac{z_{n+1}-z_{n}}{z_{n}-z_{n-1}} \] as a complex number (for each \(n\geqslant2\)), briefly justifying your answer. If \(z_{1}=0\) and \(z_{2}=1\), obtain an expression for \(z_{n+1}\) when \(n\geqslant2\). By considering its imaginary part, or otherwise, show that if \(\theta=\frac{1}{3}\pi\) and \(d=2\), then the path crosses the real axis infinitely often.

    Show Solution
    \begin{align*} && | \frac{z_{n+1}-z_{n}}{z_{n}-z_{n-1}} | &= d \\ && \arg \left ( \frac{z_{n+1}-z_{n}}{z_{n}-z_{n-1}} \right) &= \arg (z_{n+1}-z_{n}) - \arg(z_{n}-z_{n-1}) \\ &&&= \theta \\ \Rightarrow && \frac{z_{n+1}-z_{n}}{z_{n}-z_{n-1}} &= d e^{i \theta} \end{align*} \begin{align*} && z_1 &= 0 \\ && z_2 &= 1 \\ && \frac{z_3-z_2}{z_2-z_1} &= de^{i \theta} \\ \Rightarrow && z_3 &= de^{i \theta} + 1 \\ && \frac{z_4-z_3}{z_3-z_2} &= de^{i \theta} \\ \Rightarrow && z_4 &= (d e^{i \theta})^2 + d e^{i \theta} + 1\\ \Rightarrow && z_{n+1} &= \frac{(de^{i \theta})^{n}-1}{de^{i \theta}-1} \end{align*} If \(d = 2, \theta = \tfrac13 \pi\), then, \(2e^{i \tfrac13 \pi} = 1 + \sqrt{3}i\) \begin{align*} \textrm{Im}(z_{n+1})) &= \textrm{Im} \left ( \frac{(2e^{i \tfrac13 \pi})^{n}-1}{2e^{i \tfrac13 \pi}-1}\right) \\ &= \textrm{Im} \left ( \frac{(2e^{i \tfrac13 \pi})^{n}-1}{\sqrt{3}i}\right) \\ &= -\frac{1}{\sqrt{3}}\textrm{Re} \left (2^n e^{i \frac{n}{3} \pi} \right) + \frac{1}{\sqrt{3}} \end{align*} Which clearly changes sign infinitely many times, ie crosses the origin infinitely many times.
    1990 Paper 3 Q4
    D: 1700.0 B: 1516.0

    Given that \(\sin\beta\neq0,\) sum the series \[ \cos\alpha+\cos(\alpha+2\beta)+\cdots+\cos(\alpha+2r\beta)+\cdots+\cos(\alpha+2n\beta) \] and \[ \cos\alpha+\binom{n}{1}\cos(\alpha+2\beta)+\cdots+\binom{n}{r}\cos(\alpha+2r\beta)+\cdots+\cos(\alpha+2n\beta). \] Given that \(\sin\theta\neq0,\) prove that \[ 1+\cos\theta\sec\theta+\cos2\theta\sec^{2}\theta+\cdots+\cos r\theta\sec^{r}\theta+\cdots+\cos n\theta\sec^{n}\theta=\frac{\sin(n+1)\theta\sec^{n}\theta}{\sin\theta}. \]

    Show Solution
    \begin{align*} \sum_{r = 0}^n \cos (\alpha + 2r \beta) &= \sum_{r = 0}^n \textrm{Re} \left ( \exp(i(\alpha + 2r \beta)) \right) \\ &= \textrm{Re} \left (\sum_{r = 0}^n \exp(i(\alpha + 2r \beta)) \right) \\ &= \textrm{Re} \left (e^{i \alpha} \sum_{r = 0}^n \ (e^{i 2 \beta})^r\right) \\ &= \textrm{Re} \left (e^{i \alpha} \frac{e^{2(n+1)\beta i}-1}{e^{2\beta i}-1} \right) \\ &= \textrm{Re} \left (e^{i \alpha} \frac{e^{(n+1)\beta i} (e^{(n+1)\beta i}-e^{-(n+1)\beta i})}{e^{\beta i}(e^{\beta i}-e^{-\beta i})} \right) \\ &= \textrm{Re} \left (\frac{e^{i \alpha} e^{(n+1)\beta i}}{e^{\beta i}} \frac{\sin (n+1) \beta}{\sin \beta} \right) \\ &= \textrm{Re} \left ( e^{i(\alpha + n \beta)}\frac{\sin (n+1) \beta}{\sin \beta} \right) \\ &= \frac{\cos (\alpha + n \beta)\sin (n+1) \beta}{\sin \beta} \end{align*} \begin{align*} \sum_{r = 0}^n \binom{n}{r} \cos (\alpha + 2r \beta) &= \sum_{r = 0}^n \textrm{Re} \left ( \binom{n}{r}\exp(i(\alpha + 2r \beta)) \right) \\ &= \textrm{Re} \left (\sum_{r = 0}^n \binom{n}{r} \exp(i(\alpha + 2r \beta)) \right) \\ &= \textrm{Re} \left (e^{i \alpha}(e^{2\beta i}+1)^n \right) \\ &= \textrm{Re} \left (e^{i \alpha}e^{n\beta i}(e^{\beta i}+e^{-\beta i})^n \right) \\ &= \textrm{Re} \left (e^{i \alpha}e^{n\beta i}2^n \cos^n \beta \right) \\ &= 2^n \cos(\alpha + n \beta) \cos ^n \beta \end{align*} \begin{align*} \sum_{r = 0}^n \cos r \theta \sec^r \theta &= \sum_{r = 0}^n \textrm{Re} ( e^{i r \theta})\sec^r \theta \\ &= \textrm{Re} \left ( \sum_{r=0}^n e^{i r \theta} \sec^r \theta\right) \\ &= \textrm{Re} \left ( \frac{e^{i (n+1) \theta}\sec^{n+1} \theta -1}{e^{i \theta}\sec \theta -1} \right) \\ &= \textrm{Re} \left ( \frac{e^{i (n+1) \theta}\sec^{n} \theta -\cos \theta}{e^{i \theta} -\cos \theta} \right) \\ &= \textrm{Re} \left ( \frac{e^{i (n+1) \theta}\sec^{n} \theta -\cos \theta}{i \sin \theta} \right) \\ &= \frac{1}{\sin \theta} \textrm{Im} \left ( e^{i (n+1) \theta}\sec^{n} \theta -\cos \theta \right) \\ &= \frac{\sin(n+1) \theta \sec^{n} \theta}{\sin \theta} \end{align*}
    1990 Paper 3 Q1
    D: 1700.0 B: 1516.0

    Show, using de Moivre's theorem, or otherwise, that \[ \tan9\theta=\frac{t(t^{2}-3)(t^{6}-33t^{4}+27t^{2}-3)}{(3t^{2}-1)(3t^{6}-27t^{4}+33t^{2}-1)},\qquad\mbox{ where }t=\tan\theta. \] By considering the equation \(\tan9\theta=0,\) or otherwise, obtain a cubic equation with integer coefficients whose roots are \[ \tan^{2}\left(\frac{\pi}{9}\right),\qquad\tan^{2}\left(\frac{2\pi}{9}\right)\qquad\mbox{ and }\qquad\tan^{2}\left(\frac{4\pi}{9}\right). \] Deduce the value of \[ \tan\left(\frac{\pi}{9}\right)\tan\left(\frac{2\pi}{9}\right)\tan\left(\frac{4\pi}{9}\right). \] Show that \[ \tan^{6}\left(\frac{\pi}{9}\right)+\tan^{6}\left(\frac{2\pi}{9}\right)+\tan^{6}\left(\frac{4\pi}{9}\right)=33273. \]

    Show Solution
    Writing \(c = \cos \theta, s = \sin \theta\) then de Moivre states that: \begin{align*} && \cos 9 \theta + i \sin 9 \theta &= (c +i s)^9 \\ &&&= c^9 + 9ic^8s - 36c^7s^2-84ic^6s^3+126c^5s^4 + 126ic^4s^5 -84c^3s^6 -36ic^2s^7+9cs^8+is^9 \\ &&&= (c^9-36c^7s^2+126c^5s^3-84c^3s^6+8cs^8)+i(9c^8s-75c^6s^3+126c^4s^5-36c^2s^7+s^9) \\ \Rightarrow && \tan 9\theta &= \frac{(9c^8s-75c^6s^3+126c^4s^5-36s^2c^7+s^9)}{(c^9-36c^7s^2+126c^5s^4-84c^3s^6+8cs^8)} \\ &&&= \frac{9t-75t^3+126s^5-36t^7+t^9}{1-36t^2+126t^4-84t^6+8t^8} \\ &&&= \frac{t(t^{2}-3)(t^{6}-33t^{4}+27t^{2}-3)}{(3t^{2}-1)(3t^{6}-27t^{4}+33t^{2}-1)} \end{align*} If we consider \(\tan 9\theta = 0\) it will have the roots \(\theta = \frac{n \pi}{9}, n \in \mathbb{Z}\), in particular, the numerator of our fraction for \(\tan 9 \theta\) will be zero for \(t = 0, \tan \frac{\pi}{9}, \tan \frac{2\pi}{9}, \tan \frac{3\pi}{9}, \tan \frac{4 \pi}{9}, \tan \frac{5\pi}{9}, \tan \frac{6 \pi}{9}, \tan \frac{7 \pi}{9}, \tan \frac{8\pi}{9}\). It's worth noting all other values of \(\theta\) will repeat these values. Also note that \(0,\tan \frac{\pi}{3}, \tan \frac{2\pi}{3}\) are the roots of \(t\) and \(t^2-3\) respectively. Therefore the other values are the roots of our sextic. However, also note that \(\tan \frac{8\pi}{9} = - \tan \frac{\pi}{9}\) and similar, therefore we can notice that all the roots in pairs can be mapped to \(\tan \frac{\pi}{9}, \tan \frac{2 \pi}{9}\) and \(\tan \frac{4 \pi}{9}\) and all those values are squared, so the roots of: \(x^3 - 33x^2+27x-3\) will be \(\tan^2 \frac{\pi}{9}, \tan^2 \frac{2 \pi}{9}\) and \(\tan^2 \frac{4 \pi}{9}\). The product of the roots will be \(3\), so \begin{align*} && \tan^2 \frac{\pi}{9} \tan^2 \frac{2 \pi}{9} \tan^2 \frac{4 \pi}{9} &= 3 \\ \Rightarrow && \tan \frac{\pi}{9} \tan \frac{2 \pi}{9} \tan \frac{4 \pi}{9} &= \pm \sqrt{3} \\ \underbrace{\Rightarrow}_{\text{all positive}} && \tan \frac{\pi}{9} \tan \frac{2 \pi}{9} \tan \frac{4 \pi}{9} &= \sqrt{3} \\ \end{align*} Notice that \(x^3 + y^3 +z^3 - 3xyz = (x+y+z)((x+y+z)^2-3(xy+yz+zx))\) Therefore \begin{align*} \tan^{6}\left(\frac{\pi}{9}\right)+\tan^{6}\left(\frac{2\pi}{9}\right)+\tan^{6}\left(\frac{4\pi}{9}\right) &= 33(33^2-3\cdot27) + 3 \cdot 3 \\ &= 33\,273 \end{align*}
    1990 Paper 1 Q2
    D: 1500.0 B: 1516.0

    Let \(\omega=\mathrm{e}^{2\pi\mathrm{i}/3}.\) Show that \(1+\omega+\omega^{2}=0\) and calculate the modulus and argument of \(1+\omega^{2}.\) Let \(n\) be a positive integer. By evaluating \((1+\omega^{r})^{n}\) in two ways, taking \(r=1,2\) and \(3\), or otherwise, prove that \[ \binom{n}{0}+\binom{n}{3}+\binom{n}{6}+\cdots+\binom{n}{k}=\frac{1}{3}\left(2^{n}+2\cos\left(\frac{n\pi}{3}\right)\right), \] where \(k\) is the largest multiple of \(3\) less than or equal to \(n\). Without using a calculator, evaluate \[ \binom{25}{0}+\binom{25}{3}+\cdots+\binom{25}{24} \] and \[ \binom{24}{2}+\binom{24}{5}+\cdots+\binom{24}{23}\,. \] {[}\(2^{25}=33554432.\){]}

    Show Solution
    Since \(\omega^3 = 1\) and \(\omega \neq 1\) we must have that \((\omega-1)(1 + \omega + \omega^2) = 0\) but by dividing by \(\omega - 1\) we obtain the desired result. \(1+\omega^2 = -\omega\) so \(|1 + \omega^2| = |-\omega| = 1\) and \(\arg ( 1 + \omega^2) = \arg(-\omega) = \pi - \frac{2\pi}{3} = \frac{\pi}{3}\) \begin{align*} && (1 + 1)^n &= \sum_{k=0}^n \binom{n}{k}\\ && (1+ \omega)^n &= \sum_{k=0}^n \binom{n}{k} \omega^{k} \\ && (1+ \omega^2)^n &= \sum_{k=0}^n \binom{n}{k} \omega^{2k} \\ \Rightarrow && 2^n+(-\omega^2)^n + (-\omega)^n &= \sum_{k=0, k \equiv 0 \pmod{3}}^n (1+1+1)\binom{n}{k} + \sum_{k=0, k \equiv 1 \pmod{3}}^n (1 + \omega + \omega^2) \binom{n}{k} + \sum_{k=0, k \equiv 2 \pmod{3}}^n (1 + \omega^2 + \omega) \binom{n}{k} \\ \Rightarrow && 2^n +((-\omega)^n)^{-1}+(-\omega)^n &= \sum_{k=0, k \equiv 0 \pmod{3}}^n \binom{n}{k} \end{align*} \(2^n +((-\omega)^n)^{-1}+(-\omega)^n = 2^n + 2 \textrm{Re}(-\omega^n) = 2^n + 2 \cos \frac{n\pi}{3}\) Therefore our answer follows. \begin{align*} \binom{25}{0}+\binom{25}{3}+\cdots+\binom{25}{24} &= \frac13 \l 2^{25} + 2\cos (\frac{25 \pi}{3}) \r \\ &= \frac13 \l 2^{25} + 2 \cos \frac{\pi}{3} \r \\ &= \frac13 \l 2^{25} + 1 \r \\ &= \frac13 \l (4096 \cdot 4096 \cdot 2) + 1 \r \\ &= 11\,184\,811 \end{align*} Notice that \(S_2 = \binom{24}{2} + \cdots +\binom{24}{23} = \binom{24}{1} + \cdots + \binom{24}{22} = S_1\) and \(S_0 = \binom{24}0 + \cdots + \binom{24}{21} = \frac13 \l 2^{24} + 2 \r\) Therefore since \(S_0 + 2 \cdot S_2 = 2^{24}\) we must have \begin{align*} S_2 &= \frac12 \l 2^{24} - \frac13 \l 2^{24} + 2 \r \r \\ &= \frac13 \l 2^{24} - 1 \r \\ &= \frac13 \l 16777216- 1 \r \\ &= \frac13 \cdot 16777215 \\ &= 5\,592\,405 \end{align*}

    Showing 1-25 of 27 problems
    2025 Paper 2 Q7
    D: 1500.0 B: 1500.0

    The differential equation \[\frac{d^2x}{dt^2} = 2x\frac{dx}{dt}\] describes the motion of a particle with position \(x(t)\) at time \(t\). At \(t = 0\), \(x = a\), where \(a > 0\).

    1. Solve the differential equation in the case where \(\frac{dx}{dt} = a^2\) when \(t = 0\). What happens to the particle as \(t\) increases from 0?
    2. Solve the differential equation in the case where \(\frac{dx}{dt} = a^2 + p\) when \(t = 0\), where \(p > 0\). What happens to the particle as \(t\) increases from 0?
    3. Solve the differential equation in the case where \(\frac{dx}{dt} = a^2 - q^2\) when \(t = 0\), where \(q > 0\). What happens to the particle as \(t\) increases from 0? Give conditions on \(a\) and \(q\) for the different cases which arise.

    Show Solution
    Let \(v = \frac{\d x}{\d t}\) and notice that \(\frac{\d}{\d t} \left ( \frac{\d x}{\d t} \right) = \frac{\d }{\d x} \left ( v \right) \frac{\d x}{\d t} = v \frac{\d v}{\d x}\). Also notice that: \begin{align*} && v \frac{\d v}{\d x} &= 2x v \\ \Rightarrow && \frac{\d v}{\d x} &= 2x \\ \Rightarrow && v &= x^2 + C \\ \Rightarrow && \frac{\d x}{\d t} &= x^2 + C \\ \end{align*}
    1. When \(t = 0, \frac{\d x}{\d t} = a^2\) so \(C = 0\), therefore \(\frac{\d x}{\d t} = x^2 \Rightarrow t = -x^{-1} + k\) and so \(k = a^{-1}\) and \(x = \frac{a}{1-at}\). As \(t\) increases from \(0\) the particle heads to infinity at an increasing rate, `reaching' infinity around \(t=\frac{1}{a}\)
    2. When \(t = 0, \frac{\d x}{\d t} = a^2 + p\) so \(C = p\). Therefore \(\frac{\d x}{\d t} = x^2 + p \Rightarrow t = \frac{1}{\sqrt{p}} \tan^{-1} \left ( \frac{x}{\sqrt{p}} \right) + c\). When \(c = - \frac{1}{\sqrt{p}} \tan^{-1} \left ( \frac{a}{\sqrt{p}} \right)\), so \begin{align*} && t &= \frac{1}{\sqrt{p}} \tan^{-1} \left ( \frac{x}{\sqrt{p}} \right) - \frac{1}{\sqrt{p}} \tan^{-1} \left ( \frac{a}{\sqrt{p}} \right) \\ &&&= \frac{1}{\sqrt{p}} \tan^{-1} \left ( \frac{\sqrt{p}(x-a)}{\sqrt{p}-ax} \right) \\ \Rightarrow && \frac{\sqrt{p}(x-a)}{\sqrt{p}-ax} &= \tan (\sqrt{p} t) \\ \Leftrightarrow && \sqrt{p}(x-a) &= \tan (\sqrt{p} t)(\sqrt{p}-ax) \\ \Leftrightarrow && x(\sqrt{p}+a\tan (\sqrt{p} t)) &= \sqrt{p} (\tan(\sqrt{p}t) + a) \\ \Leftrightarrow && x &= \frac{\sqrt{p} (\tan(\sqrt{p}t) + a)}{\sqrt{p}+a\tan (\sqrt{p} t)} \end{align*} The particle heads to \(\frac{\sqrt{p}}{a}\).
    3. When \(t = 0, \frac{\d x}{\d t} = a^2-q^2\) so \(C = -q^2\). Therefore \begin{align*} && \frac{\d x}{\d t} &= x^2 -q^2 \\ \Rightarrow && \int \d t &= \int \frac{1}{(x-q)(x+q)} \d x \\ &&&= \frac{1}{2q} \int \left ( \frac{1}{x-q}- \frac{1}{x+q} \right )\d x \\ &&&= \frac{1}{2q} \left ( \ln (x-q) - \ln(x+q) \right) \\ &&&= \frac{1}{2q} \ln \left ( \frac{x-q}{x+q} \right)\\ \Rightarrow && \frac{x-q}{x+q} &= Ae^{2qt} \\ \underbrace{\Rightarrow}_{t= 0} && A &= \frac{a-q}{a+q} \\ \Rightarrow && x-q &= \frac{a-q}{a+q}e^{2qt}(x+q) \\ \Leftrightarrow && x\left (1-\frac{a-q}{a+q}e^{2qt} \right) &= q\left (1 + \frac{a-q}{a+q}e^{2qt} \right) \\ \Leftrightarrow && x &= q \frac{1 + \frac{a-q}{a+q}e^{2qt}}{1-\frac{a-q}{a+q}e^{2qt}} \end{align*}
    2019 Paper 3 Q1
    D: 1500.0 B: 1500.0

    The coordinates of a particle at time \(t\) are \(x\) and \(y\). For \(t \geq 0\), they satisfy the pair of coupled differential equations \[ \begin{cases} \dot{x} &= -x -ky \\ \dot{y} &= x - y \end{cases}\] where \(k\) is a constant. When \(t = 0\), \(x = 1\) and \(y = 0\).

    1. Let \(k = 1\). Find \(x\) and \(y\) in terms of \(t\) and sketch \(y\) as a function of \(t\). Sketch the path of the particle in the \(x\)-\(y\) plane, giving the coordinates of the point at which \(y\) is greatest and the coordinates of the point at which \(x\) is least.
    2. Instead, let \(k = 0\). Find \(x\) and \(y\) in terms of \(t\) and sketch the path of the particle in the \(x\)-\(y\) plane.

    Show Solution
    1. Let \(k = 1\), then \begin{align*} \dot{x} &= - x - y \\ \dot{y} &= x - y \\ \dot{x}-\dot{y} &= -2x \\ \ddot{x} &= -\dot{x}-\dot{y} \\ &= -\dot{x} - (\dot{x}+2x) \\ &= -2\dot{x}- 2x \\ \dot{x}+\dot{y} &= -2y \\ \ddot{y} &= \dot{x}-\dot{y} \\ &= -2y-2\dot{y} \end{align*} So we have an auxiliary equation for \(x\) and \(y\) which is \(\lambda^2 + 2 \lambda+2 = 0 \Rightarrow \lambda = -1 \pm i\). Therefore \(x = Ae^{-t} \cos t + B e^{-t} \sin t, y = Ce^{-t}\cos t + De^{-t} \sin t\). We also must have that, \(A = 1, C = 0\), so \(x = e^{-t} \cos t + Be^{-t} \sin t\) and \(y = De^{-t} \sin x\). \begin{align*} \dot{y} &= -De^{-t} \sin t +De^{-t} \cos t \\ &= e^{-t} \cos x + Be^{-t} \sin t- De^{-t} \sin t \\ \end{align*} therefore \(B = 0, D = 1\) and \(x = e^{-t} \cos t, y = e^{-t} \sin t\)
      TikZ diagram
      \begin{align*} y &= e^{-t} \sin t \\ \dot{y} &= -e^{-t} \sin t + e^{-t} \cos t \\ \dot{x} &= e^{-t} \cos t -e^{-t} \sin t \end{align*}
      TikZ diagram
    2. \begin{align*} \dot{x} = -x \\ \dot{y} = x-y \end{align*} So \(x = e^{-t}\). \(\dot{y} + y = e^{-t}\) so \(y = (t+B)e^{-t}\) and so \(y =te^{-t}\).
      TikZ diagram
    1987 Paper 3 Q6
    D: 1500.0 B: 1500.0

    The functions \(x(t)\) and \(y(t)\) satisfy the simultaneous differential equations \begin{alignat*}{1} \dfrac{\mathrm{d}x}{\mathrm{d}t}+2x-5y & =0\\ \frac{\mathrm{d}y}{\mathrm{d}t}+ax-2y & =2\cos t, \end{alignat*} subject to \(x=0,\) \(\dfrac{\mathrm{d}y}{\mathrm{d}t}=0\) at \(t=0.\) Solve these equations for \(x\) and \(y\) in the case when \(a=1\). Without solving the equations explicitly, state briefly how the form of the solutions for \(x\) and \(y\) if \(a>1\) would differ from the form when \(a=1.\)

    Show Solution
    Letting \(\mathbf{x} =\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}\) and \(\mathbf{A} = \begin{pmatrix} -2 & 5 \\ -a & 2 \end{pmatrix}\) then our differential equation is \(\mathbf{x}' = \mathbf{Ax} + \begin{pmatrix} 0 \\2 \cos t \end{pmatrix}\). Looking at the eigenvalues of \(\mathbf{A}\), we find: \begin{align*} && \det \begin{pmatrix} -2-\lambda & 5 \\ -a & 2 -\lambda \end{pmatrix} &= (\lambda^2-4)+5a\\ &&&= \lambda^2 +5a-4 \end{align*} Therefore if \(a = 1\), \(\lambda = \pm i\). In which case we should expect the complementary solutions to be of the form \(\mathbf{x} = \begin{pmatrix} A \sin t + B \cos t \\ C \sin t + D \cos t \end{pmatrix}\). The first equation tells us that \((A-5D+B)\cos t + (-B+5C)\sin t=0\) so the complementary solution is:\(\mathbf{x} = \begin{pmatrix} 5(D-C) \sin t + 5C \cos t \\ C \sin t + D \cos t \end{pmatrix}\). Looking for a particular integral, we should expect to try something like \(\mathbf{x} = \begin{pmatrix} Et\cos t+Ft\sin t\\ Gt\cos t+Ht \sin t\end{pmatrix}\) and we find
    2018 Paper 3 Q3
    D: 1700.0 B: 1500.0

    Show that the second-order differential equation \[ x^2y''+(1-2p) x\, y' + (p^2-q^2) \, y= \f(x) \,, \] where \(p\) and \(q\) are constants, can be written in the form \[ x^a \big(x^b (x^cy)'\big)' = \f(x) \,, \tag{\(*\)} \] where \(a\), \(b\) and \(c\) are constants.

    1. Use \((*)\) to derive the general solution of the equation \[ x^{2}y''+(1-2p)xy'+(p^2-q^{2})y=0 \] in the different cases that arise according to the values of \(p\) and \(q\).
    2. Use \((*)\) to derive the general solution of the equation \[ x^{2}y''+(1-2p)xy'+p^2y=x^{n} \] in the different cases that arise according to the values of \(p\) and \(n\).

    Show Solution
    Consider $x^a \big(x^b (x^cy)'\big)'$ then \begin{align*} x^a \big(x^b (x^cy)'\big)' &= x^a \big (bx^{b-1}(x^c y)'+x^b(x^cy)'' \big ) \\ &= x^a \big (bx^{b-1} (cx^{c-1}y + x^c y') + x^b(c(c-1)x^{c-2}y + 2cx^{c-1}y' + x^cy'') \\ &= x^{a+b+c}y'' + (2cx^{c-1+b+a}+bx^{c+b-1+a})y'+(c(b+c-1))x^{a+b+c-2} y \end{align*} So we need: \begin{align*} &&& \begin{cases} a+b+c &= 2 \\ 2c+b &= 1-2p \\ c(b+c-1) &= p^2-q^2 \end{cases} \\ \Rightarrow && c((1-2p)-2c+c-1) &=p^2-q^2 \\ \Rightarrow && c^2+2pc &= q^2-p^2 \end{align*}
    2014 Paper 3 Q10
    D: 1700.0 B: 1473.3

    Two particles \(X\) and \(Y\), of equal mass \(m\), lie on a smooth horizontal table and are connected by a light elastic spring of natural length \(a\) and modulus of elasticity \(\lambda\). Two more springs, identical to the first, connect \(X\) to a point \(P\) on the table and \(Y\) to a point \(Q\) on the table. The distance between \(P\) and \(Q\) is \(3a\). Initially, the particles are held so that \(XP=a\), \(YQ= \frac12 a\,\), and \(PXYQ\) is a straight line. The particles are then released. At time \(t\), the particle \(X\) is a distance \(a+x\) from \(P\) and the particle \(Y\) is a distance \(a+y\) from \(Q\). Show that \[ m \frac{\.d ^2 x}{\.d t^2} = -\frac\lambda a (2x+y) \] and find a similar expression involving \(\dfrac{\.d^2 y}{\.d t^2}\). Deduce that \[ x-y = A\cos \omega t +B \sin\omega t \] where \(A\) and \(B\) are constants to be determined and \(ma\omega^2=\lambda\). Find a similar expression for \(x+y\). Show that \(Y\) will never return to its initial position.

    2013 Paper 3 Q9
    D: 1700.0 B: 1484.8

    A sphere of radius \(R\) and uniform density \(\rho_{\text{s}}\) is floating in a large tank of liquid of uniform density \(\rho\). Given that the centre of the sphere is a distance \(x\) above the level of the liquid, where \(x < R\), show that the volume of liquid displaced is \[ \frac \pi 3 (2R^3-3R^2x +x^3)\,. \] The sphere is acted upon by two forces only: its weight and an upward force equal in magnitude to the weight of the liquid it has displaced. Show that \[ 4 R^3\rho_{\text{s}} (g+\ddot x) = (2R^3 -3R^2x +x^3)\rho g\,. \] Given that the sphere is in equilibrium when \(x=\frac12 R\), find \(\rho_{\text{s}}\) in terms of \(\rho\). Find, in terms of \(R\) and \(g\), the period of small oscillations about this equilibrium position.

    2013 Paper 3 Q7
    D: 1700.0 B: 1500.0

    1. Let \(y(x)\) be a solution of the differential equation \( \dfrac {\d^2 y}{\d x^2}+y^3=0\) with \(y = 1\) and \(\dfrac{\d y}{\d x} =0\) at \(x=0\), and let \[ {\rm E} (x)= \left ( \frac {\d y}{\d x}\right)^{\!\!2} + \tfrac 12 y^4\,. \] Show by differentiation that \({\rm E}\) is constant and deduce that \( \vert y(x) \vert \le 1\) for all \(x\).
    2. Let \(v(x)\) be a solution of the differential equation $ \dfrac{\d^2 v}{\d x^2} + x \dfrac {\d v}{\d x} +\sinh v =0 $ with \(v = \ln 3\) and \(\dfrac{\d v}{\d x} =0\) at \(x=0\), and let \[ {\rm E} (x)= \left ( \frac {\d v}{\d x}\right)^{\!\!2} + 2 \cosh v\,. \] Show that \(\dfrac{\d{\rm E}}{\d x}\le 0\) for \(x\ge0\) and deduce that \(\cosh v(x) \le \frac53\) for \(x\ge0\).
    3. Let \(w(x)\) be a solution of the differential equation \[ \frac{\d^2 w}{\d x^2} + (5\cosh x - 4 \sinh x -3) \frac{\d w}{\d x} + (w\cosh w + 2 \sinh w) =0 \] with \(\dfrac{\d w }{\d x}=\dfrac 1 { \sqrt 2 }\) and \(w=0\) at \(x=0\). Show that \(\cosh w(x) \le \frac54\) for \(x\ge0\).

    2012 Paper 3 Q7
    D: 1700.0 B: 1484.0

    A pain-killing drug is injected into the bloodstream. It then diffuses into the brain, where it is absorbed. The quantities at time \(t\) of the drug in the blood and the brain respectively are \(y(t)\) and \(z(t)\). These satisfy \[ \dot y = - 2(y-z)\,, \ \ \ \ \ \ \ \dot z = - \dot y -3z\, , \] where the dot denotes differentiation with respect to \(t\). Obtain a second order differential equation for \(y\) and hence derive the solution \[ y= A\e^{-t} + B\e ^{-6t}\,, \ \ \ \ \ \ \ z= \tfrac12 A \e^{-t} - 2 B \e^{-6t}\,, \] where \(A\) and \(B\) are arbitrary constants. \begin{questionparts} \item Obtain the solution that satisfies \(z(0)=0\) and \(y(0)= 5\). The quantity of the drug in the brain for this solution is denoted by \(z_1(t)\). \item Obtain the solution that satisfies $ z(0)=z(1)= c$, where \(c\) is a given constant. %\[ %C=2(1-\e^{-1})^{-1} - 2(1-\e^{-6})^{-1}\,. %\] The quantity of the drug in the brain for this solution is denoted by \(z_2(t)\). \item Show that for \(0\le t \le 1\), \[ z_2(t) = \sum _{n=-\infty}^{0} z_1(t-n)\,, \] provided \(c\) takes a particular value that you should find. \end {questionparts}

    2012 Paper 3 Q1
    D: 1700.0 B: 1500.0

    Given that \(\displaystyle z = y^n \left( \frac{\d y}{\d x}\right)^{\!2}\), show that \[ \frac{\d z}{\d x} = y^{n-1} \frac{\d y}{\d x} \left( n \left(\frac{\d y}{\d x}\right)^{\!2} + 2y \frac{\d^2y}{\d x^2}\right) . \]

    1. Use the above result to show that the solution to the equation \[ \left(\frac{\d y}{\d x}\right)^{\!2} + 2y \frac{\d^2y}{\d x^2} = \sqrt y \ \ \ \ \ \ \ \ \ \ (y>0) \] that satisfies \(y=1\) and \(\dfrac{\d y}{\d x}=0\) when \(x=0\) is \(y= \big ( \frac38 x^2+1\big)^{\frac23}\).
    2. Find the solution to the equation \[ \left(\frac{\d y}{\d x}\right)^{\!2} -y \frac{\d^2y}{\d x^2} + y^2=0 \] that satisfies \(y=1\) and \(\dfrac{\d y}{\d x}=0\) when \(x=0\).

    Show Solution
    \begin{align*} &&z &= y^n \left( \frac{\d y}{\d x}\right)^{2} \\ \Rightarrow && \frac{\d z}{\d x} &= ny^{n-1}\left( \frac{\d y}{\d x}\right)^{3} + y^{n} \cdot 2 \left( \frac{\d y}{\d x}\right) \left( \frac{\d^2 y}{\d x^2}\right) \\ &&&= y^{n-1} \left( \frac{\d y}{\d x}\right) \left (n \left( \frac{\d y}{\d x}\right)^2 + 2y \frac{\d^2 y}{\d x^2} \right) \end{align*}
    1. Let \(z = y (y')^2\), then \begin{align*} && \frac{\d z}{\d x} &= y' \sqrt{y} \\ &&&= \sqrt{z} \\ \Rightarrow && \int z^{-1/2} \d z &= x+C \\ \Rightarrow && 2\sqrt{z} &= x + C \\ x = 0, z=0: && C &= 0 \\ \Rightarrow && y(y')^2 &= \frac14 x^2 \\ \Rightarrow &&\sqrt{y} \frac{\d y}{\d x} &= \frac{1}{2}x\\ \Rightarrow && \int \sqrt{y} \d y &= \int \frac{1}{2}x\d x \\ \Rightarrow && \frac23y^{3/2} &=\frac14x^2 + K \\ x = 0, y = 1: && K &= \frac23 \\ \Rightarrow && y &= \left (\frac38 x^2 + 1 \right)^{2/3} \end{align*}
    2. Let \(z = y^{-2} (y')^2\) \begin{align*} && \frac{\d z}{\d x} &= y^{-3} \frac{\d y}{\d x} \left (-2 \left( \frac{\d y}{\d x}\right) + 2y \frac{\d^2 y}{\d x^2} \right) \\ &&&= y^{-3} \frac{\d y}{\d x} 2y^2 \\ &&&= 2y^{-1}(y') = 2 \sqrt{z} \\ \Rightarrow && 2\sqrt{z} &= 2x + C \\ x = 0, z = 0: && C&= 0 \\ \Rightarrow && z &= x^2 \\ \Rightarrow && \frac{\d y}{\d x} &= xy \\ \Rightarrow && \ln |y| &= \frac12 x^2 + K \\ x =0 , y =1; && K &= 0 \\ \Rightarrow && y &= e^{\frac12 x^2} \end{align*}
    2011 Paper 3 Q1
    D: 1700.0 B: 1500.0

    1. Find the general solution of the differential equation \[ \frac{\d u}{\d x} - \left(\frac { x +2}{x+1}\right)u =0\,. \]
    2. Show that substituting\(y=z\e^{-x}\) (where \(z\) is a function of \(x\)) into the second order differential equation \[ (x+1) \frac{\d ^2 y}{\d x^2} + x \frac{\d y}{\d x} -y = 0 \tag{\(*\)} \] leads to a first order differential equation for \(\dfrac{\d z}{\d x}\,\). Find \(z\) and hence show that the general solution of \((*)\) is \[ y= Ax + B\e^{-x}\,, \] where \(A\) and \(B\) are arbitrary constants.
    3. Find the general solution of the differential equation \[ (x+1) \frac{\d ^2 y}{\d x^2} + x \frac{\d y}{\d x} -y = (x+1)^2 . \]

    Show Solution
    1. \begin{align*} && 0 &= \frac{\d u}{\d x} - \left ( \frac{x+2}{x+1} \right)u \\ \Rightarrow && \int \frac1u \d u &= \int 1 + \frac1{x+1} \d x \\ \Rightarrow && \ln |u| &= x + \ln |x+1| + C \\ \Rightarrow && u &= A(x+1)e^x \end{align*}
    2. If \(y = ze^{-x}\), \(y' = (z'-z)e^{-x}\), \(y'' = (z''-2z'+z)e^{-x}\) \begin{align*} && 0 &= (x+1) \frac{\d ^2 y}{\d x^2} + x \frac{\d y}{\d x} -y \\ y = ze^{-x}: && 0 &= (x+1) \left ( \frac{\d^2 z}{\d x^2} - 2\frac{\d z}{\d x} +z\right)e^{-x} +x \left ( \frac{\d z}{\d x} -z\right)e^{-x} - ze^{-x} \\ &&&= (x+1) \frac{\d^2 z}{\d x^2} -(x+2)\frac{\d z}{\d x} \\ \Rightarrow && \frac{\d}{\d x} \left ( \frac{\d z}{\d x}\right) &= \left ( \frac{x+2}{x+1}\right) \frac{\d z}{\d x} \end{align*} Therefore \(\frac{\d z}{\d x} = A(x+1)e^x \) and so \begin{align*} z &= A \int (x+1)e^{x} \d x \\ &= A \left ( \left [ (x+1)e^x\right] - \int e^x \d x \right) \\ &= A(x+1)e^x - Ae^x + B \\ y &= Ax + Be^{-x} \end{align*}
    3. We have found the complementary solution. To find a particular integral consider \(y = ax^2 + bx + c\), then \(y' = 2ax+b, y'' = 2a\) and we have \begin{align*} && x^2+2x+1 &= 2a(x+1) + x(2ax+b) - (ax^2+bx+c) \\ \Rightarrow && x^2+2x+1 &= ax^2+ 2ax + 2a-c \\ \Rightarrow && a = 1, &c=1 \end{align*} so the general solution should be \[ y = Ax + Be^{-x} + x^2+1 \]
    2010 Paper 3 Q10
    D: 1700.0 B: 1500.0

    A small bead \(B\), of mass \(m\), slides without friction on a fixed horizontal ring of radius \(a\). The centre of the ring is at \(O\). The bead is attached by a light elastic string to a fixed point \(P\) in the plane of the ring such that \(OP = b\), where \(b > a\). The natural length of the elastic string is \(c\), where \(c < b - a\), and its modulus of elasticity is \(\lambda\). Show that the equation of motion of the bead is \[ ma\ddot \phi = -\lambda\left( \frac{a\sin\phi}{c\sin\theta}-1\right)\sin(\theta+\phi) \,, \] where \(\theta=\angle BPO\) and \(\phi=\angle BOP\). Given that \(\theta\) and \(\phi\) are small, show that $a(\theta+\phi)\approx b\theta$. Hence find the period of small oscillations about the equilibrium position \(\theta=\phi =0\).

    2010 Paper 1 Q6
    D: 1500.0 B: 1516.0

    Show that, if \(y=\e^x\), then \[ (x-1) \frac{\d^2 y}{\d x^2} -x \frac{\d y}{\d x} +y=0\,. \tag{\(*\)} \] In order to find other solutions of this differential equation, now let \(y=u\e^x\), where \(u\) is a function of \(x\). By substituting this into \((*)\), show that \[ (x-1) \frac{\d^2 u}{\d x^2} + (x-2) \frac{\d u}{\d x} =0\,. \tag{\(**\)} \] By setting \( \dfrac {\d u}{\d x}= v\) in \((**)\) and solving the resulting first order differential equation for \(v\), find~\(u\) in terms of \(x\). Hence show that \(y=Ax + B\e^x\) satisfies \((*)\), where \(A\) and \(B\) are any constants.

    2009 Paper 3 Q10
    D: 1700.0 B: 1484.0

    A light spring is fixed at its lower end and its axis is vertical. When a certain particle \(P\) rests on the top of the spring, the compression is \(d\). When, instead, \(P\) is dropped onto the top of the spring from a height \(h\) above it, the compression at time \(t\) after \(P\) hits the top of the spring is \(x\). Obtain a second-order differential equation relating \(x\) and \(t\) for \(0\le t \le T\), where \(T\) is the time at which \(P\) first loses contact with the spring. Find the solution of this equation in the form \[ x= A + B\cos (\omega t) + C\sin(\omega t)\,, \] where the constants \(A\), \(B\), \(C\) and \(\omega\) are to be given in terms of \(d\), \(g\) and \(h\) as appropriate. Show that \[ T = \sqrt{d/g\;} \left (2 \pi - 2 \arctan \sqrt{2h/d\;}\;\right)\,. \]

    2009 Paper 3 Q7
    D: 1700.0 B: 1485.5

    1. The functions \(\f_n(x)\) are defined for \(n=0\), \(1\), \(2\), \(\ldots\)\, , by \[ \f_0(x) = \frac 1 {1+x^2}\, \qquad \text{and}\qquad \f_{n+1}(x) =\frac{\d \f_n(x)}{\d x}\,. \] Prove, for \(n\ge1\), that \[ (1+x^2)\f_{n+1}(x) + 2(n+1)x\f_n(x) + n(n+1)\f_{n-1}(x)=0\,. \]
    2. The functions \(\P_n(x)\) are defined for \(n=0\), \(1\), \(2\), \(\ldots\)\, , by \[ \P_n(x) = (1+x^2)^{n+1}\f_n(x)\,. \] Find expressions for \(\P_0(x)\), \(\P_1(x)\) and \(\P_2(x)\). Prove, for \(n\ge0\), that \[ \P_{n+1}(x) -(1+x^2)\frac {\d \P_n(x)}{\d x}+ 2(n+1)x \P_n(x)=0\,, \] and that \(\P_n(x)\) is a polynomial of degree \(n\).

    2009 Paper 3 Q2
    D: 1700.0 B: 1484.0

    1. Let \(\displaystyle y= \sum_{n=0}^\infty a_n x^n\,\), where the coefficients \(a_n\) are independent of \(x\) and are such that this series and all others in this question converge. Show that \[ \displaystyle y'= \sum_{n=1}^\infty na_n x^{n-1}\,, \] and write down a similar expression for \(y''\). Write out explicitly each of the three series as far as the term containing \(a_3\).
    2. It is given that \(y\) satisfies the differential equation \[ xy''-y'+4x^3y =0\,. \] By substituting the series of part (i) into the differential equation and comparing coefficients, show that \(a_1=0\). Show that, for \(n\ge4\), \[ a_n =- \frac{4}{n(n-2)}\, a_{n-4}\,, \] and that, if \(a_0=1\) and \(a_2=0\), then \( y=\cos (x^2)\,\). Find the corresponding result when \(a_0=0\) and \(a_2=1\).

    Show Solution
    1. Let \(\displaystyle y= \sum_{n=0}^\infty a_n x^n\,\) then \begin{align*} y' &= \frac{\d}{\d x} \l \sum_{n=0}^\infty a_n x^n \r \\ &= \sum_{n=0}^\infty \frac{\d}{\d x} \l a_n x^n \r \\ &= \sum_{n=0}^\infty n a_n x^{n-1} \\ &= \sum_{n=1}^\infty n a_n x^{n-1} \\ \\ y'' &= \frac{\d}{\d x} \l\sum_{n=1}^\infty n a_n x^{n-1} \r \\ &= \sum_{n=1}^\infty \frac{\d}{\d x} \l n a_n x^{n-1} \r \\ &= \sum_{n=1}^\infty n(n-1) a_n x^{n-2} \\ &= \sum_{n=2}^\infty n(n-1) a_n x^{n-2} \\ \\ y &= a_0 + a_1 x+ a_2x^2 + a_3x^3 + \cdots \\ y'&= a_1 + 2a_2x+3a_3x^2 + \cdots \\ y'' &= 2a_2 + 6a_3x + \cdots \end{align*}
    2. \begin{align*} && 0 &= xy''-y'+4x^3y \\ &&&= x\sum_{n=2}^\infty n(n-1) a_n x^{n-2} - \sum_{n=1}^\infty n a_n x^{n-1} + 4x^3 \sum_{n=0}^\infty a_n x^n \\ &&&= \sum_{n=2}^\infty n(n-1) a_n x^{n-1} - \sum_{n=1}^\infty n a_n x^{n-1} + \sum_{n=0}^\infty 4a_n x^{n+3} \\ &&&= \sum_{n=2}^\infty n(n-1) a_n x^{n-1} - \sum_{n=1}^\infty n a_n x^{n-1} + \sum_{n=4}^\infty 4a_{n-4} x^{n-1} \\ &&&= \sum_{n=4}^{\infty} \l n(n-1) a_n- n a_n +4a_{n-4} \r x^{n-1} + 2a_2x + 6a_3x^2-a_1-2a_2x-3a_3x^2 \\ &&&= \sum_{n=4}^{\infty} \l n(n-2) a_n +4a_{n-4} \r x^{n-1}+ 3a_3x^2-a_1 \\ \end{align*} Therefore since all coefficients are \(0\), \(a_1 = 0\), \(a_3 = 0\) and \(\displaystyle a_n = -\frac{4}{n(n-2)}a_{n-4}\). If \(a_0 = 1, a_2 = 0\), and since \(a_1 = 0, a_3 = 0\) the only values which will take non-zero value are \(a_{4k}\). We can compute these values as: \(a_{4k} = -\frac{4}{(4k)(4k-2)} a_{4k-4} = \frac{1}{2k(2k-1)}a_{4k-r}\) so \(a_{4k} = \frac{(-1)^k}{(2k)!}\), which are precisely the coefficients in the expansion \(\cos x^2\). If \(a_0 = 0, a_2 = 1\) then since \(a_1 = 0, a_3 = 0\) the only values which take non-zero values are \(a_{4k+2}\) we can compute these values as: \(a_{4k+2} = -\frac{4}{(4k+2)(4k)}a_{4k-2} = -\frac{1}{(2k+1)2k}a_{4k-2}\) so we can see that \(a_{4k+2}= \frac{(-1)^k}{(2k+1)!}\) precisely the coefficients of \(\sin x^2\)
    2008 Paper 3 Q6
    D: 1700.0 B: 1500.0

    In this question, \(p\) denotes \(\dfrac{\d y}{\d x}\,\).

    1. Given that \[ y=p^2 +2 xp\,, \] show by differentiating with respect to \(x\) that \[ \frac{\d x}{\d p} = -2 - \frac {2x} p . \] Hence show that \(x = -\frac23p +Ap^{-2}\,,\) where \(A\) is an arbitrary constant. Find \(y\) in terms of \(x\) if \(p=-3\) when \(x=2\).
    2. Given instead that \[ y=2xp +p \ln p\,,\] and that \(p=1\) when \(x=-\frac14\), show that \(x=-\frac12 \ln p - \frac14\,\) and find \(y\) in terms of \(x\).

    2007 Paper 3 Q8
    D: 1700.0 B: 1487.5

    1. Find functions \({\rm a}(x)\) and \({\rm b}(x)\) such that \(u=x\) and \(u=\e^{-x}\) both satisfy the equation $$\dfrac{\d^2u}{\d x^2} +{\rm a}(x) \dfrac{\d u}{\d x} + {\rm b} (x)u=0\,.$$ For these functions \({\rm a}(x)\) and \({\rm b}(x)\), write down the general solution of the equation. Show that the substitution \(y= \dfrac 1 {3u} \dfrac {\d u}{\d x}\) transforms the equation \[ \frac{\d y}{\d x} +3y^2 + \frac {x} {1+x} y = \frac 1 {3(1+x)} \tag{\(*\)} \] into \[ \frac{\d^2 u}{\d x^2} +\frac x{1+x} \frac{\d u}{\d x} - \frac 1 {1+x} u=0 \] and hence show that the solution of equation (\(*\)) that satisfies \(y=0\) at \(x=0\) is given by \(y = \dfrac{1-\e^{-x}}{3(x+\e^{-x})}\).
    2. Find the solution of the equation $$ \frac{\d y}{\d x} +y^2 + \frac x {1-x} y = \frac 1 {1-x} $$ that satisfies \(y=2\) at \(x=0\).

    2001 Paper 1 Q8
    D: 1500.0 B: 1487.5

    Given that \(y=x\) and \(y=1-x^2\) satisfy the differential equation $$ \frac{\d^2 {y}}{\d x^2} + \p(x) \frac{\d {y}}{\d x} + \q(x) {y}=0\;, \tag{*} $$ show that \(\p(x)= -2x(1+x^2)^{-1}\) and \(\q(x) = 2(1+x^2)^{-1}\). Show also that \(ax+b(1-x^2)\) satisfies the differential equation for any constants \(a\) and \(b\). Given instead that \(y=\cos^2(\frac{1}{2}x^2)\) and \(y=\sin^2(\frac{1}{2}x^2)\) satisfy the equation \((*)\), find \(\p(x)\) and \(\q(x)\).

    Show Solution
    \begin{align*} && y &= x \\ && y' &= 1 \\ && y'' &= 0 \\ \Rightarrow && 0 &= 0 + p(x) + xq(x) \tag{1} \\ \\ && y &= 1-x^2 \\ && y' &= -2x \\ && y'' &= -2 \\ \Rightarrow && 0 &= -2 -2x p(x)+(1-x^2)q(x) \tag{2}\\ \\ 2x*(1) +(2): && 2 &= (2x^2+1-x^2) q(x) \\ \Rightarrow && q(x) &= 2(1+x^2)^{-1} \\ \Rightarrow && p(x) &= -2x(1+x^2)^{-1} \tag{by (1)} \end{align*} \begin{align*} && \frac{\d^2}{\d x^2} \left (a x + b(1-x^2) \right) + p(x) \frac{\d}{\d x} \left (a x + b(1-x^2) \right)+q(x) \left (a x + b(1-x^2) \right) \\ &&= a \frac{\d^2 x}{\d x^2} + b \frac{\d^2}{\d x^2} \left ( 1- x^2 \right) + ap(x) \frac{\d x}{ \d x} + bp(x) \frac{\d }{\d x} \left ( 1- x^2 \right) + aq(x) x + bq(x)(1-x^2) \\ &&= a \left (\frac{\d^2 x}{\d x^2}+ p(x) \frac{\d x}{ \d x} +q(x)x\right)+b \left ( \frac{\d^2}{\d x^2} \left ( 1- x^2 \right)+ p(x) \frac{\d }{\d x} \left ( 1- x^2 \right)+q(x)(1-x^2)\right) &= 0 \end{align*} \begin{align*} && y &= \cos^2(\tfrac12 x^2) = \frac12 \left (1 + \cos(x^2) \right) \\ && y' &= -x \sin(x^2) \\ && y'' &= -2x^2 \cos(x^2)-\sin(x^2) \\ \Rightarrow && 0 &= -2x^2 \cos(x^2)-\sin(x^2)+p(x)(-x \sin(x^2)) +\frac12 \left (1 + \cos(x^2) \right)q(x) \\ \Rightarrow && 2x^2\cos(x^2)+\sin(x^2) &= -x \sin(x^2) p(x) + \frac12(1 + \cos(x^2)) q(x) \tag{3}\\ \\ && y &= \sin^2(\tfrac12 x^2) = \frac12 \left ( 1 - \cos (x^2) \right) \\ && y' &= x\sin(x^2) \\ && y'' &= 2x^2 \cos(x^2)+\sin(x^2) \\ \Rightarrow && 0 &= 2x^2 \cos(x^2)+\sin(x^2) +p(x) x \sin(x^2) + \frac12 \left ( 1 - \cos (x^2) \right)q(x)\\ \Rightarrow && -2x^2 \cos(x^2)-\sin(x^2) &= p(x) x \sin(x^2) + \frac12 \left ( 1 - \cos (x^2) \right)q(x) \tag{4}\\ (3)+(4): && 0 &= q(x) \\ \Rightarrow && p(x) &= -\frac{2x^2 \cos(x^2)+\sin(x^2)}{x \sin(x^2)} \end{align*}
    1999 Paper 3 Q8
    D: 1700.0 B: 1516.0

    The function \(y(x)\) is defined for \(x\ge0\) and satisfies the conditions \[ y=0 \mbox{ \ \ and \ \ } \frac{\d y}{\d x}=1 \mbox{ \ \ at \(x=0\)}. \] When \(x\) is in the range \(2(n-1)\pi< x <2n\pi\), where \(n\) is a positive integer, \(y(t)\) satisfies the differential equation $$ {\d^2y \over \d x^2} + n^2 y=0. $$ Both \(y\) and \(\displaystyle \frac{\d y}{\d x} \) are continuous at \(x=2n\pi\) for \(n=0,\; 1,\;2,\; \ldots\;\).

    1. Find \(y(x)\) for \(0\le x \le 2\pi\).
    2. Show that \(y(x) = \frac12 \sin 2x \) for \(2\pi\le x\le 4\pi\), and find \(y(x)\) for all \(x\ge0\).
    3. Show that $$ \int_0^\infty y^2 \,\d x = \pi \sum_{n=1}^\infty {1\over n^2} \,. $$

    1999 Paper 1 Q7
    D: 1500.0 B: 1516.0

    Show that \(\sin(k\sin^{-1} x)\), where \(k\) is a constant, satisfies the differential equation $$ (1-x^{2})\frac {\d^2 y}{\d x^2} -x\frac{\d y}{\d x} +k^{2}y=0. \eqno(*) $$ In the particular case when \(k=3\), find the solution of equation \((*)\) of the form \[ y=Ax^{3}+Bx^{2}+Cx+D, \] that satisfies \(y=0\) and \(\displaystyle \frac{\d y}{\d x}=3\) at \(x=0\). Use this result to express \(\sin 3\theta\) in terms of powers of \(\sin\theta\).

    1997 Paper 3 Q6
    D: 1700.0 B: 1516.0

    Suppose that \(y_n\) satisfies the equations \[(1-x^2)\frac{{\rm d}^2y_n}{{\rm d}x^2}-x\frac{{\rm d}y_n}{{\rm d}x}+n^2y_n=0,\] \[y_n(1)=1,\quad y_n(x)=(-1)^ny_n(-x).\] If \(x=\cos\theta\), show that \[\frac{{\rm d}^2y_n}{{\rm d}\theta^2}+n^2y_n=0,\] and hence obtain \(y_n\) as a function of \(\theta\). Deduce that for \(|x|\leqslant1\) \[y_0=1,\quad y_1=x,\] \[y_{n+1}-2xy_n+y_{n-1}=0.\]

    1996 Paper 2 Q8
    D: 1600.0 B: 1485.5

    Suppose that \[{\rm f}''(x)+{\rm f}(-x)=x+3\cos 2x\] and \({\rm f}(0)=1\), \({\rm f}'(0)=-1\). If \({\rm g}(x)={\rm f}(x)+{\rm f}(-x)\), find \({\rm g}(0)\) and show that \({\rm g}'(0)=0\). Show that \[{\rm g}''(x)+{\rm g}(x)=6\cos 2x,\] and hence find \({\rm g}(x)\). Similarly, if \({\rm h}(x)={\rm f}(x)-{\rm f}(-x)\), find \({\rm h}(x)\) and show that \[{\rm f}(x)=2\cos x -\cos2x-x.\]

    Show Solution
    \begin{align*} && g(0) &= f(0)+f(-0) = 2f(0) = 2 \\ && g'(x) &= f'(x) - f'(-x) \\ && g'(0) &= f'(0) - f'(-0) = 0 \\ && g''(x) &= f''(x) +f''(-x) \\ \Rightarrow && g''(x) + g(x) &= f''(x) +f''(-x) + f(x) + f(-x) \\ &&&= f''(x)+ f(-x) +f''(-x) + f(x) \\ &&&= x + 3 \cos 2x + (-x + 3 \cos (-2x) ) \\ &&&= 6 \cos 2x \\ \end{align*} Considering the homogeneous part, we should expected a solution of the form \(g(x) = A \sin x + B \cos x\). Seeking an integrating factor of the form \(g(x) = C \cos 2x\) we see that \(-4C \cos 2x + C \cos 2x = 6 \cos 2x \Rightarrow -3C = 6 \Rightarrow C = -2\). Therefore the general solution is \begin{align*} && g(x) &= A\sin x + B \cos x - 2\cos 2x \\ && g(0) &= B - 2 = 2\\ && g'(0) &= A = 0 \\ \Rightarrow && g(x) &= 4\cos x - 2\cos 2x \\ \end{align*} \begin{align*} && h(0) &= f(0) - f(-0) = 0 \\ && h'(x) &= f'(x) + f'(-x) \\ && h'(0) &= f'(0) + f'(-0) = -2 \\ && h''(x) &= f''(x) - f''(-x) \\ \Rightarrow && h''(x) - h(x) &= f''(x) - f''(-x) -( f(x) - f(-x)) \\ &&&= f''(x) +f(-x)- (f''(-x) + f(x)) \\ &&&= x + 3\cos 2x - (-x + 3 \cos(-2x)) \\ &&&= 2x \end{align*} Considering the homogeneous part, we should expect a solution of the form \(Ae^x + Be^{-x}\). For a specific integral, we can take \(-2x\), ie \begin{align*} && h(x) &= Ae^x + Be^{-x} - 2x \\ && h(0) &= A+B =0 \\ && h'(0) &= A-B-2 =-2 \\ \Rightarrow && A &=B = 0 \\ \Rightarrow && h(x) &= -2x \end{align*} Therefore \(f(x) = \frac12(f(x) + f(-x)) + \frac12(f(x) -f(-x)) = 2\cos x - \cos 2x -x\)
    1995 Paper 3 Q5
    D: 1700.0 B: 1500.0

    Show that \(y=\sin^{2}(m\sin^{-1}x)\) satisfies the differential equation \[ (1-x^{2})y^{(2)}=xy^{(1)}+2m^{2}(1-2y), \] and deduce that, for all \(n\geqslant1,\) \[ (1-x^{2})y^{(n+2)}=(2n+1)xy^{(n+1)}+(n^{2}-4m^{2})y^{(n)}, \] where \(y^{(n)}\) denotes the \(n\)th derivative of \(y\). Derive the Maclaurin series for \(y\), making it clear what the general term is.

    1995 Paper 3 Q3
    D: 1700.0 B: 1500.0

    What is the general solution of the differential equation \[ \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}+2k\frac{\mathrm{d}x}{\mathrm{d}t}+x=0 \] for each of the cases: (i) \(k>1;\) (ii) \(k=1\); (iii) \(0 < x < 1\)? In case (iii) the equation represents damped simple harmonic motion with damping factor \(k\). Let \(x(0)=0\) and let \(x_{1},x_{2},\ldots,x_{n},\ldots\) be the sequence of successive maxima and minima, so that if \(x_{n}\) is a maximum then \(x_{n+1}\) is the next minimum. Show that \(\left|x_{n+1}/x_{n}\right|\) takes a value \(\alpha\) which is independent of \(n\), and that \[ k^{2}=\frac{(\ln\alpha)^{2}}{\pi^{2}+(\ln\alpha)^{2}}. \]

    1995 Paper 1 Q8
    D: 1500.0 B: 1532.8

    Find functions \(\mathrm{f,g}\) and \(\mathrm{h}\) such that \[ \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}+\mathrm{f}(x)\frac{\mathrm{d}y}{\mathrm{d}x}+\mathrm{g}(x)y=\mathrm{h}(x)\tag{\ensuremath{*}} \] is satisfied by all three of the solutions \(y=x,y=1\) and \(y=x^{-1}\) for \(0 < x < 1.\) If \(\mathrm{f,g}\) and \(\mathrm{h}\) are the functions you have found in the first paragraph, what condition must the real numbers \(a,b\) and \(c\) satisfy in order that \[ y=ax+b+\frac{c}{x} \] should be a solution of \((*)\)?