PDF generation for Complex numbers 2 has been started.

Problems

Filters
Clear Filters
1987 Paper 1 Q1
D: 1500.0 B: 1500.0

Find the stationary points of the function \(\mathrm{f}\) given by \[ \mathrm{f}(x)=\mathrm{e}^{ax}\cos bx,\mbox{ }(a>0,b>0). \] Show that the values of \(\mathrm{f}\) at the stationary points with \(x>0\) form a geometric progression with common ratio \(-\mathrm{e}^{a\pi/b}\). Give a rough sketch of the graph of \(\mathrm{f}\).


Solution: Let \(f(x) = e^{ax} \cos bx\) then, \(f'(x) = ae^{ax} \cos bx - be^{ax} \sin bx = e^{ax} \l a\cos bx - b \sin bx \r\). Therefore the stationary points are where \(f'(x) = 0 \Leftrightarrow \tan bx = \frac{b}a\), ie \(x = \tan^{-1} \frac{a}{b} + \frac{n}{b} \pi, n \in \mathbb{Z}\). \begin{align*} f(\tan^{-1} \frac{a}{b} + \frac{n}{b} \pi) &= e^{a \tan^{-1} \frac{a}{b} + \frac{an}{b} \pi} \cos \l b \tan^{-1} \frac{a}{b} +n \pi\r \\ &= e^{a \tan^{-1} \frac{a}{b}} \cos \l b \tan^{-1} \frac{a}{b}\r \cdot e^{\frac{an}{b} \pi}(-1)^n \\ &= e^{a \tan^{-1} \frac{a}{b}} \cos \l b \tan^{-1} \frac{a}{b}\r \cdot (-e^{\frac{a}{b} \pi})^n \\ \end{align*} showing the form the desired geometric progression.

TikZ diagram

1987 Paper 1 Q2
D: 1500.0 B: 1500.0

TikZ diagram
\par
The region \(A\) between concentric circles of radii \(R+r\), \(R-r\) contains \(n\) circles of radius \(r\). Each circle of radius \(r\) touches both of the larger circles as well as its two neighbours of radius \(r\), as shown in the figure. Find the relationship which must hold between \(n,R\) and \(r\). Show that \(Y\), the total area of \(A\) outside the circle of radius \(r\) and adjacent to the circle of radius \(R-r\), is given by \[ Y=nr\sqrt{R^{2}-r^{2}}-\pi(R-r)^{2}-n\pi r^{2}\left(\frac{1}{2}-\frac{1}{n}\right). \] Find similar expressions for \(X\), the total area of \(A\) outside the circles of radius \(r\) and adjacent to the circle of radius \(R+r\), and for \(Z\), the total area inside the circle of radius \(r\). What value does \((X+Y)/Z\) approach when \(n\) becomes large?


Solution:

TikZ diagram
\par
The shown isoceles triangle has base \(2r\), and the two side lengths are \(R\). The angle at the center of the circle is \(\frac{2\pi}{n}\). The height of the triangle (by Pythagoras) is \(\sqrt{R^2-r^2}\) and so the area enclosed in the triangle is \(\frac12 2r \sqrt{R^2-r^2}\). The area in the three sectors are: \(\frac{\pi}{n}(R-r)^2\), two sets of \(\frac12(\frac12 \l \pi - \frac{2\pi}{n}\r)r^2 = \l\frac{1}{2} - \frac{1}{n} \r \frac12 \pi r^2\). Therefore the remaining area \(Y/n\) is \(r \sqrt{R^2-r^2} -\frac{\pi}{n}(R-r)^2 - \l\frac{1}{2} - \frac{1}{n} \r \pi r^2\). Multiplying this by \(n\) we get the desired result. For \(X\) we can look at the larger sector, which we obtain using the extension of this triangle. This has area \(\frac12 \frac{2 \pi}{n} (R+r)^2\). The areas to be removed are the area of the triangle: \(r \sqrt{R^2-r^2}\) and the areas of the two sectors, which have radii \(r\) and angles \(\pi - \l \frac12 -\frac1{n} \r\pi = \l \frac{1}{2} + \frac{1}{n} \r \pi\). Therefore the area for \(X/n\) is \(\frac{\pi}{n} (R+r)^2 - r \sqrt{R^2-r^2} - \l \frac{1}{2} + \frac{1}{n} \r \pi r^2\) and so \(X\) has area: \[ X = \pi (R+r)^2 - nr \sqrt{R^2-r^2} - n\pi r^2\l \frac{1}{2} +\frac{1}{n} \r \] \(Z = n\pi r^2\) \begin{align*} \frac{(X+Y)}{Z} &= \frac{\pi (R+r)^2 - nr \sqrt{R^2-r^2} - n\pi r^2\l \frac{1}{2} +\frac{1}{n} \r}{n \pi r^2 }\\ &= \qquad \frac{nr\sqrt{R^{2}-r^{2}}-\pi(R-r)^{2}-n\pi r^{2}\left(\frac{1}{2}-\frac{1}{n}\right)}{n \pi r^2} \\ &= \frac{4\pi R r - n \pi r^2}{n\pi r^2} \\ &= \frac{4R-nr}{n r} \\ &= \frac{4R}{nr} - 1 \end{align*} Since \(\frac{r}{R} = \sin \frac{\pi}{n}\) we have: \begin{align*} \frac{(X+Y)}{Z} &= \frac{4R}{nr} - 1 \\ &= \frac{4}{n \sin \frac{\pi}n} - 1 \\ & \to \frac{4}{\pi} - 1 \end{align*}

1987 Paper 1 Q3
D: 1500.0 B: 1500.0

By substituting \(y(x)=xv(x)\) in the differential equation \[ x^{3}\frac{\mathrm{d}v}{\mathrm{d}x}+x^{2}v=\frac{1+x^{2}v^{2}}{\left(1+x^{2}\right)v}, \] or otherwise, find the solution \(v(x)\) that satisfies \(v=1\) when \(x=1\). What value does this solution approach when \(x\) becomes large?


Solution: Let \(y = xv\) then \(y' = v + xv'\) and so \(x^2y' = x^2v + x^3v'\) Our differential equation is now: \begin{align*} && x^2 y' &= \frac{1+y^2}{(1+x^2)\frac{y}{x}} \\ \Rightarrow && xy' &= \frac{(1+y^2)}{(1+x^2)y} \\ \Rightarrow && \frac{y}{1+y^2} \frac{\d y}{\d x} &= \frac{1}{x(1+x^2)} \\ \Rightarrow && \frac{y}{1+y^2} \frac{\d y}{\d x} &= \frac{1}{x} - \frac{x}{1+x^2} \\ \Rightarrow && \frac12 \ln(1+y^2) &= \ln x - \frac12 \ln(1+x^2) + C \\ \Rightarrow && \frac12 \ln (1 + y^2) &= \frac12 \ln \l \frac{x^2}{1+x^2}\r + C \\ \Rightarrow && 1+y^2 &= \frac{Dx^2}{1+x^2} \\ \Rightarrow && D &= 4 \quad \quad: (x = 1, v = 1, y = 1) \\ \Rightarrow && 1 + x^2v^2&= \frac{4x^2}{1+x^2}\\ \Rightarrow && v^2 &= \frac{3x^2-1}{x^2(1+x^2)} \\ \Rightarrow && v &= \sqrt{\frac{3x^2-1}{x^2(1+x^2)}} \\ \end{align*} As \(x \to \infty\), \(v \to 0\)

1987 Paper 1 Q4
D: 1500.0 B: 1500.0

Show that the sum of the infinite series \[ \log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots \] is \[ \frac{1}{\ln(2\sqrt{2})}. \] {[}\(\log_{a}b=c\) is equivalent to \(a^{c}=b\).{]}


Solution: Let \(S = \log_{2}\mathrm{e}-\log_{4}\mathrm{e}+\log_{16}\mathrm{e}-\ldots+(-1)^{n}\log_{2^{2^{n}}}\mathrm{e}+\ldots\) then \begin{align*} S &= \sum_{n=0}^{\infty} (-1)^n \log_{2^{2^n}} e \\ &= \sum_{n=0}^{\infty} (-1)^n \frac{\log e}{\log {2^{2^n}}} \\ &= \sum_{n=0}^{\infty} (-1)^n \frac{\log e}{2^n\log {2}} \\ &= \frac{\log e}{\log 2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \\ &= \frac{1}{\log_e 2} \frac{1}{1+\frac12} \\ &= \frac{1}{\ln (2^{3/2})} \\ &= \frac{1}{\ln (2 \sqrt{2})} \end{align*}

1987 Paper 1 Q5
D: 1500.0 B: 1500.0

Using the substitution \(x=\alpha\cos^{2}\theta+\beta\sin^{2}\theta,\) show that, if \(\alpha<\beta\), \[ \int_{\alpha}^{\beta}\frac{1}{\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x=\pi. \] What is the value of the above integral if \(\alpha>\beta\)? Show also that, if \(0<\alpha<\beta\), \[ \int_{\alpha}^{\beta}\frac{1}{x\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x=\frac{\pi}{\sqrt{\alpha\beta}}. \]


Solution: Using the suggested substitution, we can find. \begin{align*} && x &=\alpha\cos^{2}\theta+\beta\sin^{2}\theta \\ && x-\alpha &=\alpha(\cos^{2}\theta-1)+\beta\sin^{2}\theta \\ &&& = (\beta - \alpha) \sin^2 \theta \\ && \beta - x &= -\alpha\cos^{2}\theta+\beta(1-\sin^{2}\theta) \\ &&&= (\beta-\alpha)\cos^2 \theta \\ && x &=\alpha\cos^{2}\theta+\beta\sin^{2}\theta \\ \Rightarrow && \frac{dx}{d\theta} &= (\beta - \alpha) 2 \cos \theta \sin\theta \\ \\ &&\int_{\alpha}^{\beta}\frac{1}{\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x &= \int_0^{\pi/2} \frac{1}{(\beta - \alpha)\sin\theta \cos \theta} (\beta - \alpha) 2 \cos \theta \sin \theta \, d \theta \\ &&&= \int_0^{\pi/2} \frac{1}{\bcancel{(\beta - \alpha)}\bcancel{\sin\theta \cos \theta}} \bcancel{(\beta - \alpha)} 2 \bcancel{\cos \theta \sin \theta} \, d \theta \\ &&&= \int_0^{\pi/2} 2 d \theta \\ && &= 2 \frac{\pi}{2} = \boxed{\pi} \end{align*} If \(\alpha > \beta\) we can rewrite the integral as: \begin{align*} \int_{\alpha}^{\beta}\frac{1}{\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x &= \int_{\alpha}^{\beta}\frac{1}{\sqrt{(x-\beta)(\alpha-x)}}\,\mathrm{d}x \\ &= -\int_{\beta}^{\alpha}\frac{1}{\sqrt{(x-\beta)(\alpha-x)}}\,\mathrm{d}x \\ &= -\pi \end{align*} Where the last step we are directly using the first integral with the use of \(\alpha\) and \(\beta\) reversed. Finally, using the substitution \(xt = 1\), we fortunately lose the \(\frac1{x}\) term: \begin{align*} && x &= \frac{1}{t} \\ && \frac{dx}{dt} &= -\frac1{t^2} \\ \\ && \int_{\alpha}^{\beta}\frac{1}{x\sqrt{(x-\alpha)(\beta-x)}}\,\mathrm{d}x &= \int_{\alpha}^{\beta}\frac{t}{\sqrt{(\frac{1}{t}-\alpha)(\beta-\frac{1}{t})}} \frac{-1}{t^2}\,\mathrm{d}t \\ && &= \int_{\frac1{\alpha}}^{\frac1\beta}\frac{-1}{\sqrt{(1-t\alpha)(t\beta-1)}}\,\mathrm{d}t \\ && &= \int_{\frac1{\alpha}}^{\frac1\beta}\frac{-1}{\sqrt{\alpha\beta}\sqrt{(\frac1{\alpha}-t)(t-\frac1{\beta})}}\,\mathrm{d}t \\ && &= \frac1{\sqrt{\alpha\beta}}\int_{\frac1{\alpha}}^{\frac1\beta}\frac{-1}{\sqrt{(\frac1{\alpha}-t)(t-\frac1{\beta})}}\,\mathrm{d}t \\ &&&= \boxed{\frac{\pi}{\sqrt{\alpha\beta}}} \end{align*} Where again the last step we are using the intermediate integral, with the roles of \(\alpha\) and \(\beta\) replaced with \(\frac{1}{\beta}\) and \(\frac1{\alpha}\)

1987 Paper 1 Q6
D: 1500.0 B: 1500.0

Let \(y=\mathrm{f}(x)\), \((0\leqslant x\leqslant a)\), be a continuous curve lying in the first quadrant and passing through the origin. Suppose that, for each non-negative value of \(y\) with \(0\leqslant y\leqslant\mathrm{f}(a)\), there is exactly one value of \(x\) such that \(\mathrm{f}(x)=y\); thus we may write \(x=\mathrm{g}(y)\), for a suitable function \(\mathrm{g}.\) For \(0\leqslant s\leqslant a,\) \(0\leqslant t\leqslant \mathrm{f}(a)\), define \[ \mathrm{F}(s)=\int_{0}^{s}\mathrm{f}(x)\,\mathrm{d}x,\qquad\mathrm{G}(t)=\int_{0}^{t}\mathrm{g}(y)\,\mathrm{d}y. \] By a geometrical argument, show that \[ \mathrm{F}(s)+\mathrm{G}(t)\geqslant st.\tag{*} \] When does equality occur in \((*)\)? Suppose that \(y=\sin x\) and that the ranges of \(x,y,s,t\) are restricted to \(0\leqslant x\leqslant s\leqslant\frac{1}{2}\pi,\) \(0\leqslant y\leqslant t\leqslant1\). By considering \(s\) such that the equality holds in \((*)\), show that \[ \int_{0}^{t}\sin^{-1}y\,\mathrm{d}y=t\sin^{-1}t-\left(1-\cos(\sin^{-1}t)\right). \] Check this result by differentiating both sides with respect to \(t\).


Solution:

TikZ diagram
The blue area is \(F(s)\) the red area is \(G(t)\), the dashed rectangle (which is a subset of the red and blue areas) has area \(st\) therefore \(F(s) + G(t) \geq st\). Equality holds if \(f(s) = t\). \begin{align*} && \int_0^t \sin^{-1} y \d y + \int_0^{\sin^{-1} t} \sin x \d x &= t \sin^{-1} t \\ \Rightarrow && \int_0^t \sin^{-1} y \d y &= t \sin^{-1} t - \left [ -\cos (x) \right]_0^{\sin^{-1} t} \\ &&&= t \sin^{-1} t - (1- \cos (\sin^{-1} t)) \end{align*} Let \(y = t \sin^{-1} t - (1- \cos (\sin^{-1} t))\) then, \begin{align*} \frac{\d y}{\d t} &= \sin^{-1} t +t \frac{\d}{\d t} \l \sin^{-1} (t) \r - \sin ( \sin^{-1} t) \frac{\d}{\d t} \l \sin^{-1} (t) \r \\ &= \sin^{-1} t \end{align*} as required

1987 Paper 1 Q7
D: 1500.0 B: 1500.0

Sum each of the series \[ \sin\left(\frac{2\pi}{23}\right)+\sin\left(\frac{6\pi}{23}\right)+\sin\left(\frac{10\pi}{23}\right)+\cdots+\sin\left(\frac{38\pi}{23}\right)+\sin\left(\frac{42\pi}{23}\right) \] and \[ \sin\left(\frac{2\pi}{23}\right)-\sin\left(\frac{6\pi}{23}\right)+\sin\left(\frac{10\pi}{23}\right)-\cdots-\sin\left(\frac{38\pi}{23}\right)+\sin\left(\frac{42\pi}{23}\right), \] giving each answer in terms of the tangent of a single angle. {[}No credit will be given for a numerical answer obtained purely by use of a calculator.{]}


Solution: \(\sin x = \frac{e^{ix} - e^{-ix}}{2i}\). Also let \(z = e^{ \frac{2\pi i}{23}}\) \begin{align*} \sum_{k=0}^{10} \sin \l \frac{(4k +2)\pi}{23} \r &= \sum_{k=0}^{10} \textrm{Im} \l \exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l \sum_{k=0}^{10} \exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l e^{ \frac{2\pi i}{23}} \sum_{k=0}^{10} z^{2k} \r \\ &= \textrm{Im} \l z \l \frac{z^{22}-1}{z^2-1} \r \r \\ &= \textrm{Im} \l z \l \frac{z^{11}(z^{11}-z^{-11})}{z(z-z^{-1})} \r \r \\ &= \textrm{Im} \l \frac{z^{11}2i \sin \frac{22 \pi}{23} }{2i \sin \frac{2 \pi}{23}} \r \r \\ &= \frac{\sin \frac{22 \pi}{23}}{\sin \frac{2 \pi}{23}} \textrm{Im} ( z^{11}) \\ &= \frac{\sin^2 \frac{22 \pi}{23}}{\sin \frac{2 \pi}{23}} \\ &= \frac{\sin^2 \frac{\pi}{23}}{2\sin \frac{\pi}{23}\cos \frac{\pi}{23}} \\ &= \frac12 \tan \frac{\pi}{23} \end{align*} Similarly, \begin{align*} \sum_{k=0}^{10} (-1)^k\sin \l \frac{(4k +2)\pi}{23} \r &= \sum_{k=0}^{10} \textrm{Im} \l (-1)^k\exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l \sum_{k=0}^{10} (-1)^k\exp\l \frac{(4k +2)\pi i}{23} \r \r \\ &= \textrm{Im} \l e^{ \frac{2\pi i}{23}} \sum_{k=0}^{10} (-1)^kz^{2k} \r \\ &= \textrm{Im} \l z \l \frac{z^{22}+1}{z^2+1} \r \r \\ &= \textrm{Im} \l z \l \frac{z^{11}(z^{11}+z^{-11})}{z(z+z^{-1})} \r \r \\ &= \textrm{Im} \l \frac{z^{11}2 \cos \frac{22 \pi}{23} }{2 \cos\frac{2 \pi}{23}} \r \r \\ &= \frac{\cos\frac{22 \pi}{23}}{\cos \frac{2 \pi}{23}} \textrm{Im} ( z^{11}) \\ &= \frac{\cos \frac{22 \pi}{23}\sin \frac{22 \pi}{23}}{\cos\frac{2 \pi}{23}} \\ &= \frac12 \frac{\sin \frac{44 \pi}{23}}{\cos\frac{2 \pi}{23}} \\ &= \frac12 \frac{-\sin \frac{2\pi}{23}}{\cos\frac{2 \pi}{23}} \\ &= -\frac12 \tan \frac{2\pi}{23} \end{align*}

1987 Paper 1 Q8
D: 1500.0 B: 1500.0

Explain why the use of the substitution \(x=\dfrac{1}{t}\) does not demonstrate that the integrals \[ \int_{-1}^{1}\frac{1}{(1+x^{2})^{2}}\,\mathrm{d}x\quad\mbox{ and }\quad\int_{-1}^{1}\frac{-t^{2}}{(1+t^{2})^{2}}\,\mathrm{d}t \] are equal. Evaluate both integrals correctly.


Solution: When we apply the substitution \(x = \frac1{t}\), \(t\) runs from \(-1 \to -\infty\) as \(x\) goes from \(-1 \to 0\). Then it runs from \(\infty \to 1\) as \(x\) runs from \(0 \to 1\). So we would be able to show that: \[ \int_{-1}^{1}\frac{1}{(1+x^{2})^{2}}\,\mathrm{d}x = \int_{-1}^{-\infty}\frac{-t^{2}}{(1+t^{2})^{2}}\,\mathrm{d}t + \int_{\infty}^1 \frac{-t^{2}}{(1+t^{2})^{2}}\,\mathrm{d}t \] Let \(x = \tan u, \d x = \sec^2 u \d u\) \begin{align*} \int_{-1}^1 \frac1{(1+x^2)^2} \d x &= \int_{u = -\pi/4}^{u = \pi/4} \frac{\sec^2 u}{(1+\tan^2 u)^2} \d u \\ &= \int_{u = -\pi/4}^{u = \pi/4} \frac{1}{\sec^2 u} \d u \\ &= \int_{-\pi/4}^{\pi/4} \cos^2 u \d u \\ &= \int_{-\pi/4}^{\pi/4} \frac{1 + \cos 2 u}{2} \d u \\ &= \left [ \frac{2u + \sin 2u}{4} \right]_{-\pi/4}^{\pi/4} \\ &= \frac{\pi}{4} + \frac{1}{2} \end{align*} Let \(t = \tan u, \d t = \sec^2 u \d u\) \begin{align*} \int_{-1}^1 \frac{-t^2}{(1+t^2)^2} \d x &= \int_{u = -\pi/4}^{u = \pi/4} \frac{-\tan^2 u \sec^2 u}{(1+\tan^2 u)^2} \d u \\ &= -\int_{u = -\pi/4}^{u = \pi/4} \frac{\tan^2 u}{\sec^2 u} \d u \\ &= -\int_{-\pi/4}^{\pi/4} \sin^2 u \d u \\ &= -\int_{-\pi/4}^{\pi/4} \frac{1 - \cos 2 u}{2} \d u \\ &= -\left [ \frac{2u - \sin 2u}{4} \right]_{-\pi/4}^{\pi/4} \\ &= \frac{1}{2}-\frac{\pi}{4} \end{align*}

1987 Paper 1 Q9
D: 1500.0 B: 1500.0

\(ABC\) is a triangle whose vertices have position vectors \(\mathbf{a,b,c}\)brespectively, relative to an origin in the plane \(ABC\). Show that an arbitrary point \(P\) on the segment \(AB\) has position vector \[ \rho\mathbf{a}+\sigma\mathbf{b}, \] where \(\rho\geqslant0\), \(\sigma\geqslant0\) and \(\rho+\sigma=1\). Give a similar expression for an arbitrary point on the segment \(PC\), and deduce that any point inside \(ABC\) has position vector \[ \lambda\mathbf{a}+\mu\mathbf{b}+\nu\mathbf{c}, \] where \(\lambda\geqslant0\), \(\mu\geqslant0\), \(\nu\geqslant0\) and \(\lambda+\mu+\nu=1\). Sketch the region of the plane in which the point \(\lambda\mathbf{a}+\mu\mathbf{b}+\nu\mathbf{c}\) lies in each of the following cases:

  1. \(\lambda+\mu+\nu=-1\), \(\lambda\leqslant0\), \(\mu\leqslant0\), \(\nu\leqslant0\);
  2. \(\lambda+\mu+\nu=1\), \(\mu\leqslant0\), \(\nu\leqslant0\).


Solution:

TikZ diagram
Suppose \(P\) is a fraction \(0 \leq k\leq 1\) along \(AB\), then \(\overrightarrow{OP} = \overrightarrow{OA} +\overrightarrow{AP} = \overrightarrow{OA} +k\overrightarrow{AB} = \mathbf{a} + k(\mathbf{b} - \mathbf{a}) = \lambda \mathbf{b} + (1-k) \mathbf{a}\), ie an arbitrary point on \(AB\) has the position vector where \((1-k) = \rho \geq 0\) and \(k= \sigma \geq 0\) and \((1-\lambda) + \lambda = 1\). Any point on the segment \(PC\) will be of the form \(l\mathbf{c} + (1-l) (k \mathbf{b} + (1-k) \mathbf{a})\) which has the form \(\lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}\) where \(\lambda + \mu + \nu = (1-l)(1-k) + (1-l)k + l = 1\) and all coefficients are positive.
  1. This is equivalent to the area inside the triangle where every point (\(\mathbf{a}, \mathbf{b}, \mathbf{c}\)) has been send to it's negative (\(-\mathbf{a}, -\mathbf{b}, -\mathbf{c}\)), ie
    TikZ diagram
  2. Writing points as: \begin{align*} \lambda\mathbf{a}+\mu\mathbf{b}+\nu\mathbf{c} &= (1-\mu - \nu)\mathbf{a}+\mu\mathbf{b}+\nu\mathbf{c} \\ &= \mathbf{a} + (-\mu)(\mathbf{a}-\mathbf{b}) + (-\nu)(\mathbf{a} - \mathbf{c}) \\ &= \mathbf{a} + (-\mu)(\mathbf{a}-\mathbf{b}) + (-\nu)(\mathbf{a} - \mathbf{c}) + (1+\mu+\nu)\mathbf{0}\\ \end{align*} So this is a translation of \(\mathbf{a}\) of the triangle with vertices at \(\mathbf{0}, \mathbf{a-b}, \mathbf{a-c}\), or a triangle with vertices \(\mathbf{a}, 2\mathbf{a-b}, 2\mathbf{a-c}\).
    TikZ diagram

1987 Paper 1 Q10
D: 1500.0 B: 1500.0

A rubber band band of length \(2\pi\) and modulus of elasticity \(\lambda\) encircles a smooth cylinder of unit radius, whose axis is horizontal. A particle of mass \(m\) is attached to the lowest point of the band, and hangs in equilibrium at a distance \(x\) below the axis of the cylinder. Obtain an expression in terms of \(x\) for the stretched length of the band in equilibrium. What is the value of \(\lambda\) if \(x=2\)?


Solution:

TikZ diagram
If \(\alpha\) is as labelled then \(\cos \alpha = \frac{1}{x}, \sin \alpha = \frac{\sqrt{x^2-1}}{x}, \tan \alpha = \sqrt{x^2-1}\). We also have the full length of the rubber band is \(2\pi - 2\alpha +2\tan \alpha\) so the extension is \(2 \l \sqrt{x^2-1} - \cos^{-1} \l \frac{1}{x}\r \r\) Therefore \(T = \frac{\l \sqrt{x^2-1} - \cos^{-1} \l \frac{1}{x}\r \r\lambda}{\pi}\). If \(x = 2\), \(T = \frac{\sqrt{3} - \frac{\pi}{3}}{\pi} \lambda, \sin \alpha = \frac{\sqrt{3}}{2}\) \begin{align*} \text{N2}(\uparrow): && 2T\sin \alpha - mg &= 0 \\ \Rightarrow && \frac{\sqrt{3} - \frac{\pi}{3}}{\pi} \lambda \sqrt{3} &= mg \\ \Rightarrow && \lambda &= \frac{\sqrt{3}\pi}{(3\sqrt{3}-\pi)}mg \end{align*}