Course Problems
Home
Problems
Assign Problems
Organize
Assign Problems
Add Problems
Solution Progress
TikZ Images
Compare
Difficulty
Banger Rating
PDF Management
Ctrl+S
Edit Problem
Year
Paper
Question Number
Course
-- Select Course --
LFM Pure
LFM Pure and Mechanics
LFM Stats And Pure
UFM Additional Further Pure
UFM Mechanics
UFM Pure
UFM Statistics
zNo longer examinable
Section
-- Select Section --
Coordinate Geometry
Simultaneous equations
Proof
Proof by induction
Introduction to trig
Modulus function
Matrices
Linear transformations
Invariant lines and eigenvalues and vectors
Trigonometry 2
Small angle approximation
Differentiation
Integration
Implicit equations and differentiation
Differential equations
3x3 Matrices
Exponentials and Logarithms
Arithmetic and Geometric sequences
Differentiation from first principles
Integration as Area
Vectors
Constant Acceleration
Non-constant acceleration
Newton's laws and connected particles
Pulley systems
Motion on a slope
Friction
Momentum and Collisions
Moments
Parametric equations
Projectiles
Quadratics & Inequalities
Curve Sketching
Polynomials
Binomial Theorem (positive integer n)
Functions (Transformations and Inverses)
Partial Fractions
Generalised Binomial Theorem
Complex Numbers (L8th)
Combinatorics
Measures of Location and Spread
Probability Definitions
Tree Diagrams
Principle of Inclusion/Exclusion
Independent Events
Conditional Probability
Discrete Probability Distributions
Uniform Distribution
Binomial Distribution
Geometric Distribution
Hypergeometric Distribution
Negative Binomial Distribution
Modelling and Hypothesis Testing
Hypothesis test of binomial distributions
Data representation
Continuous Probability Distributions and Random Variables
Continuous Uniform Random Variables
Geometric Probability
Normal Distribution
Approximating Binomial to Normal Distribution
Solving equations numerically
Newton-Raphson method
Sequences and Series
Number Theory
Vector Product and Surfaces
Groups
Reduction Formulae
Moments
Work, energy and Power 1
Momentum and Collisions 1
Centre of Mass 1
Circular Motion 1
Momentum and Collisions 2
Work, energy and Power 2
Centre of Mass 2
Circular Motion 2
Dimensional Analysis
Variable Force
Simple Harmonic Motion
Sequences and series, recurrence and convergence
Roots of polynomials
Polar coordinates
Conic sections
Taylor series
Hyperbolic functions
Integration using inverse trig and hyperbolic functions
Vectors
First order differential equations (integrating factor)
Complex numbers 2
Second order differential equations
Discrete Random Variables
Poisson Distribution
Approximating the Poisson to the Normal distribution
Approximating the Binomial to the Poisson distribution
Probability Generating Functions
Cumulative distribution functions
Exponential Distribution
Bivariate data
Linear regression
Moment generating functions
Linear combinations of normal random variables
Central limit theorem
Hypothesis test of a normal distribution
Hypothesis test of Pearson’s product-moment correlation coefficient
Hypothesis test of Spearman’s rank correlation coefficien
Hypothesis test of a Poisson distribution
The Gamma Distribution
Chi-squared distribution
Yates’ continuity correction
Non-parametric tests
Wilcoxon tests
Moments of inertia
Worksheet Citation (for copying)
Click the copy button or select the text to copy this citation for use in worksheets.
Problem Text
\begin{center} \begin{tikzpicture} % Setting up the same viewport/dimensions \clip (-0.45,1.84) rectangle (8.6,7.17); % Creating the filled polygons with opacity \filldraw[color=black, opacity=0.05] (1.82,3.17) -- (1.91,3.21) -- (2.04,3.27) -- (2.16,3.32) -- (2.28,3.36) -- (2.45,3.42) -- (2.58,3.45) -- (2.75,3.48) -- (2.93,3.51) -- (3.06,3.52) -- (3.24,3.53) -- (3.33,3.53) -- (3.23,3.54) -- (3.13,3.57) -- (2.99,3.62) -- (2.88,3.67) -- (2.76,3.75) -- (2.66,3.84) -- (2.56,3.95) -- (2.47,4.08) -- (2.41,4.19) -- (2.35,4.35) -- (2.38,4.16) -- (2.38,4.02) -- (2.36,3.92) -- (2.33,3.8) -- (2.3,3.71) -- (2.24,3.58) -- (2.18,3.49) -- (2.1,3.38) -- (2.02,3.3) -- (1.93,3.23) -- cycle; \filldraw[color=black, opacity=0.05] (4.51,4.24) -- (4.49,4.1) -- (4.48,3.99) -- (4.49,3.88) -- (4.5,3.76) -- (4.53,3.65) -- (4.58,3.52) -- (4.64,3.4) -- (4.7,3.3) -- (4.78,3.2) -- (4.85,3.12) -- (5.05,2.96) -- (4.83,3.1) -- (4.71,3.17) -- (4.51,3.26) -- (4.34,3.33) -- (4.19,3.39) -- (4.03,3.43) -- (3.89,3.46) -- (3.76,3.49) -- (3.67,3.5) -- (3.62,3.51) -- (3.4,3.52) -- (3.52,3.52) -- (3.68,3.54) -- (3.82,3.58) -- (3.95,3.64) -- (4.08,3.71) -- (4.18,3.79) -- (4.28,3.88) -- (4.38,4) -- (4.45,4.12) -- cycle; \filldraw[color=black, opacity=0.05] (0.77,5.07) -- (0.94,5.17) -- (1.14,5.27) -- (1.3,5.34) -- (1.47,5.41) -- (1.59,5.46) -- (1.74,5.51) -- (1.86,5.55) -- (2.02,5.6) -- (2.2,5.64) -- (2.35,5.68) -- (2.55,5.72) -- (2.7,5.74) -- (2.84,5.76) -- (2.97,5.77) -- (3.13,5.79) -- (3.27,5.8) -- (3.44,5.8) -- (3.34,5.79) -- (3.2,5.77) -- (3.09,5.74) -- (2.97,5.69) -- (2.87,5.64) -- (2.76,5.56) -- (2.66,5.48) -- (2.58,5.39) -- (2.5,5.29) -- (2.43,5.17) -- (2.37,5.03) -- (2.34,4.9) -- (2.32,4.77) -- (2.31,4.6) -- (2.34,4.41) -- (2.27,4.59) -- (2.21,4.7) -- (2.14,4.8) -- (2.04,4.9) -- (1.93,5) -- (1.84,5.05) -- (1.75,5.1) -- (1.62,5.15) -- (1.51,5.18) -- (1.37,5.2) -- (1.25,5.2) -- (1.16,5.2) -- (1.02,5.17) -- (0.89,5.13) -- cycle; \filldraw[color=black, opacity=0.05] (6.31,5.02) -- (6.1,5.15) -- (5.92,5.24) -- (5.77,5.31) -- (5.61,5.38) -- (5.39,5.46) -- (5.12,5.56) -- (4.88,5.62) -- (4.64,5.68) -- (4.49,5.71) -- (4.24,5.75) -- (4.02,5.78) -- (3.8,5.79) -- (3.6,5.8) -- (3.51,5.79) -- (3.67,5.77) -- (3.79,5.74) -- (3.9,5.7) -- (4.03,5.64) -- (4.13,5.57) -- (4.24,5.48) -- (4.36,5.34) -- (4.46,5.17) -- (4.52,5.05) -- (4.56,4.9) -- (4.58,4.75) -- (4.59,4.59) -- (4.57,4.43) -- (4.63,4.57) -- (4.71,4.7) -- (4.78,4.79) -- (4.9,4.9) -- (5.03,5) -- (5.16,5.08) -- (5.3,5.14) -- (5.43,5.17) -- (5.57,5.19) -- (5.69,5.2) -- (5.82,5.19) -- (5.97,5.17) -- (6.15,5.11) -- cycle; % Draw the curved lines (parametric plots) \draw (9,0.3) arc (0:180:5.5); % First parametric plot \draw (6.35,0.45) arc (0:180:3.08); % Second parametric plot % Circles \draw (1.29,4.12) circle (1.09); \draw (3.45,4.66) circle (1.14); \draw (5.69,3.99) circle (1.21); % Lines \draw (1.29,4.12) -- (2.35,4.38); \draw (3.45,4.66) -- (3.46,5.8); \draw (5.69,3.99) -- (4.93,3.04); % Arrows \draw[->] (2.14,6.66) -- (2.16,5.1); \draw[->] (4.72,6.7) -- (4.72,5.14); \draw[->] (2.56,2.5) -- (2.56,3.74); \draw[->] (4.4,2.42) -- (4.4,3.62); % Text labels \node at (1.9,7.1) [anchor=north west] {$X/n$}; \node at (4.5,7.1) [anchor=north west] {$X/n$}; \node at (2.34,2.43) [anchor=north west] {$Y/n$}; \node at (4.16,2.41) [anchor=north west] {$Y/n$}; \node at (3.7,5.2) [anchor=north west] {$r$}; \node at (5.54,3.53) [anchor=north west] {$r$}; \node at (1.74,4.1) [anchor=north west] {$r$}; \node at (7.55,4.43) [anchor=north west] {$R+r$}; \node at (5.95,2.41) [anchor=north west] {$R-r$}; \end{tikzpicture} \par\end{center} The region $A$ between concentric circles of radii $R+r$, $R-r$ contains $n$ circles of radius $r$. Each circle of radius $r$ touches both of the larger circles as well as its two neighbours of radius $r$, as shown in the figure. Find the relationship which must hold between $n,R$ and $r$. Show that $Y$, the total area of $A$ outside the circle of radius $r$ and adjacent to the circle of radius $R-r$, is given by \[ Y=nr\sqrt{R^{2}-r^{2}}-\pi(R-r)^{2}-n\pi r^{2}\left(\frac{1}{2}-\frac{1}{n}\right). \] Find similar expressions for $X$, the total area of $A$ outside the circles of radius $r$ and adjacent to the circle of radius $R+r$, and for $Z$, the total area inside the circle of radius $r$. What value does $(X+Y)/Z$ approach when $n$ becomes large?
Solution (Optional)
\begin{center} \begin{tikzpicture} % Setting up the same viewport/dimensions \clip (-0.45,1.84) rectangle (8.6,7.17); % Creating the filled polygons with opacity \filldraw[color=black, opacity=0.05] (1.82,3.17) -- (1.91,3.21) -- (2.04,3.27) -- (2.16,3.32) -- (2.28,3.36) -- (2.45,3.42) -- (2.58,3.45) -- (2.75,3.48) -- (2.93,3.51) -- (3.06,3.52) -- (3.24,3.53) -- (3.33,3.53) -- (3.23,3.54) -- (3.13,3.57) -- (2.99,3.62) -- (2.88,3.67) -- (2.76,3.75) -- (2.66,3.84) -- (2.56,3.95) -- (2.47,4.08) -- (2.41,4.19) -- (2.35,4.35) -- (2.38,4.16) -- (2.38,4.02) -- (2.36,3.92) -- (2.33,3.8) -- (2.3,3.71) -- (2.24,3.58) -- (2.18,3.49) -- (2.1,3.38) -- (2.02,3.3) -- (1.93,3.23) -- cycle; \filldraw[color=black, opacity=0.05] (4.51,4.24) -- (4.49,4.1) -- (4.48,3.99) -- (4.49,3.88) -- (4.5,3.76) -- (4.53,3.65) -- (4.58,3.52) -- (4.64,3.4) -- (4.7,3.3) -- (4.78,3.2) -- (4.85,3.12) -- (5.05,2.96) -- (4.83,3.1) -- (4.71,3.17) -- (4.51,3.26) -- (4.34,3.33) -- (4.19,3.39) -- (4.03,3.43) -- (3.89,3.46) -- (3.76,3.49) -- (3.67,3.5) -- (3.62,3.51) -- (3.4,3.52) -- (3.52,3.52) -- (3.68,3.54) -- (3.82,3.58) -- (3.95,3.64) -- (4.08,3.71) -- (4.18,3.79) -- (4.28,3.88) -- (4.38,4) -- (4.45,4.12) -- cycle; \filldraw[color=black, opacity=0.05] (0.77,5.07) -- (0.94,5.17) -- (1.14,5.27) -- (1.3,5.34) -- (1.47,5.41) -- (1.59,5.46) -- (1.74,5.51) -- (1.86,5.55) -- (2.02,5.6) -- (2.2,5.64) -- (2.35,5.68) -- (2.55,5.72) -- (2.7,5.74) -- (2.84,5.76) -- (2.97,5.77) -- (3.13,5.79) -- (3.27,5.8) -- (3.44,5.8) -- (3.34,5.79) -- (3.2,5.77) -- (3.09,5.74) -- (2.97,5.69) -- (2.87,5.64) -- (2.76,5.56) -- (2.66,5.48) -- (2.58,5.39) -- (2.5,5.29) -- (2.43,5.17) -- (2.37,5.03) -- (2.34,4.9) -- (2.32,4.77) -- (2.31,4.6) -- (2.34,4.41) -- (2.27,4.59) -- (2.21,4.7) -- (2.14,4.8) -- (2.04,4.9) -- (1.93,5) -- (1.84,5.05) -- (1.75,5.1) -- (1.62,5.15) -- (1.51,5.18) -- (1.37,5.2) -- (1.25,5.2) -- (1.16,5.2) -- (1.02,5.17) -- (0.89,5.13) -- cycle; \filldraw[color=black, opacity=0.05] (6.31,5.02) -- (6.1,5.15) -- (5.92,5.24) -- (5.77,5.31) -- (5.61,5.38) -- (5.39,5.46) -- (5.12,5.56) -- (4.88,5.62) -- (4.64,5.68) -- (4.49,5.71) -- (4.24,5.75) -- (4.02,5.78) -- (3.8,5.79) -- (3.6,5.8) -- (3.51,5.79) -- (3.67,5.77) -- (3.79,5.74) -- (3.9,5.7) -- (4.03,5.64) -- (4.13,5.57) -- (4.24,5.48) -- (4.36,5.34) -- (4.46,5.17) -- (4.52,5.05) -- (4.56,4.9) -- (4.58,4.75) -- (4.59,4.59) -- (4.57,4.43) -- (4.63,4.57) -- (4.71,4.7) -- (4.78,4.79) -- (4.9,4.9) -- (5.03,5) -- (5.16,5.08) -- (5.3,5.14) -- (5.43,5.17) -- (5.57,5.19) -- (5.69,5.2) -- (5.82,5.19) -- (5.97,5.17) -- (6.15,5.11) -- cycle; % Draw the curved lines (parametric plots) \draw (9,0.3) arc (0:180:5.5); % First parametric plot \draw (6.35,0.45) arc (0:180:3.08); % Second parametric plot % Circles \draw (1.29,4.12) circle (1.09); \draw (3.45,4.66) circle (1.14); \draw (5.69,3.99) circle (1.21); % Lines \draw (1.29,4.12) -- (2.35,4.38); % \draw (3.45,4.66) -- (3.46,5.8); \draw (5.69,3.99) -- (4.93,3.04); \draw (1.29,4.12) -- (2.35,4.38) -- (3.45,4.66) -- (3.1,0) -- cycle; % Arrows % \draw[->] (2.14,6.66) -- (2.16,5.1); % \draw[->] (4.72,6.7) -- (4.72,5.14); % \draw[->] (2.56,2.5) -- (2.56,3.74); % \draw[->] (4.4,2.42) -- (4.4,3.62); % Text labels % \node at (1.9,7.1) [anchor=north west] {$X/n$}; % \node at (4.5,7.1) [anchor=north west] {$X/n$}; % \node at (2.34,2.43) [anchor=north west] {$Y/n$}; % \node at (4.16,2.41) [anchor=north west] {$Y/n$}; % \node at (3.7,5.2) [anchor=north west] {$r$}; % \node at (5.54,3.53) [anchor=north west] {$r$}; \node at (1.74,4.1) [anchor=north west] {$r$}; \node at (7.55,4.43) [anchor=north west] {$R+r$}; \node at (5.95,2.41) [anchor=north west] {$R-r$}; \end{tikzpicture} \par\end{center} The shown isoceles triangle has base $2r$, and the two side lengths are $R$. The angle at the center of the circle is $\frac{2\pi}{n}$. The height of the triangle (by Pythagoras) is $\sqrt{R^2-r^2}$ and so the area enclosed in the triangle is $\frac12 2r \sqrt{R^2-r^2}$. The area in the three sectors are: $\frac{\pi}{n}(R-r)^2$, two sets of $\frac12(\frac12 \l \pi - \frac{2\pi}{n}\r)r^2 = \l\frac{1}{2} - \frac{1}{n} \r \frac12 \pi r^2$. Therefore the remaining area $Y/n$ is $r \sqrt{R^2-r^2} -\frac{\pi}{n}(R-r)^2 - \l\frac{1}{2} - \frac{1}{n} \r \pi r^2$. Multiplying this by $n$ we get the desired result. For $X$ we can look at the larger sector, which we obtain using the extension of this triangle. This has area $\frac12 \frac{2 \pi}{n} (R+r)^2$. The areas to be removed are the area of the triangle: $r \sqrt{R^2-r^2}$ and the areas of the two sectors, which have radii $r$ and angles $\pi - \l \frac12 -\frac1{n} \r\pi = \l \frac{1}{2} + \frac{1}{n} \r \pi$. Therefore the area for $X/n$ is $\frac{\pi}{n} (R+r)^2 - r \sqrt{R^2-r^2} - \l \frac{1}{2} + \frac{1}{n} \r \pi r^2$ and so $X$ has area: \[ X = \pi (R+r)^2 - nr \sqrt{R^2-r^2} - n\pi r^2\l \frac{1}{2} +\frac{1}{n} \r \] $Z = n\pi r^2$ \begin{align*} \frac{(X+Y)}{Z} &= \frac{\pi (R+r)^2 - nr \sqrt{R^2-r^2} - n\pi r^2\l \frac{1}{2} +\frac{1}{n} \r}{n \pi r^2 }\\ &= \qquad \frac{nr\sqrt{R^{2}-r^{2}}-\pi(R-r)^{2}-n\pi r^{2}\left(\frac{1}{2}-\frac{1}{n}\right)}{n \pi r^2} \\ &= \frac{4\pi R r - n \pi r^2}{n\pi r^2} \\ &= \frac{4R-nr}{n r} \\ &= \frac{4R}{nr} - 1 \end{align*} Since $\frac{r}{R} = \sin \frac{\pi}{n}$ we have: \begin{align*} \frac{(X+Y)}{Z} &= \frac{4R}{nr} - 1 \\ &= \frac{4}{n \sin \frac{\pi}n} - 1 \\ & \to \frac{4}{\pi} - 1 \end{align*}
Preview
Problem
Solution
Update Problem
Cancel
Current Ratings
Difficulty Rating:
1500.0
Difficulty Comparisons:
0
Banger Rating:
1500.0
Banger Comparisons:
0
Search Problems
Press Enter to search, Escape to close