Problems

Filters
Clear Filters
2025 Paper 3 Q1
D: 1500.0 B: 1500.0

You need not consider the convergence of the improper integrals in this question. For \(p, q > 0\), define $$b(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1} \, dx$$

  1. Show that \(b(p,q) = b(q,p)\).
  2. Show that \(b(p+1,q) = b(p,q) - b(p,q+1)\) and hence that \(b(p+1,p) = \frac{1}{2}b(p,p)\).
  3. Show that $$b(p,q) = 2\int_0^{\pi/2} (\sin\theta)^{2p-1}(\cos\theta)^{2q-1} \, d\theta$$ Hence show that \(b(p,p) = \frac{1}{2^{2p-1}}b(p,\frac{1}{2})\).
  4. Show that $$b(p,q) = \int_0^\infty \frac{t^{p-1}}{(1+t)^{p+q}} \, dt$$
  5. Evaluate $$\int_0^\infty \frac{t^{3/2}}{(1+t)^6} \, dt$$


Solution:

  1. \begin{align*} && b(p,q) &= \int_0^1 x^{p-1}(1-x)^{q-1}\, \d x \\ u = 1-x, \d u = -\d x && &= \int_{u=1}^{u = 0} (1-u)^{p-1}u^{q-1} (-1) \, \d u \\ &&&= \int_0^1 (1-u)^{p-1}u^{q-1} \d u \\ &&&= \int_0^1 u^{q-1}(1-u)^{p-1} \d u \\ &&&= b(q,p) \end{align*}
  2. \begin{align*} b(p+1,q) + b(p,q+1) &= \int_0^1 x^p(1-x)^{q-1} \d x + \int_0^1 x^{p-1}(1-x)^{q} \d x \\ &= \int_0^1 \left (x^p(1-x)^{q-1} + x^{p-1}(1-x)^{q}\right) \d x \\ &= \int_0^1 x^{p-1}(1-x)^{q-1} \left (x + (1-x) \right) \d x \\ &= \int_0^1 x^{p-1}(1-x)^{q-1} \d x \\ &= b(p,q) \end{align*} Therefore \(b(p+1,q) = b(p,q) - b(p,q+1)\), in particular \(2b(p+1,p) = b(p+1,p)+b(p,p+1) = b(p,p) \Rightarrow b(p+1,p) = \frac12 b(p,p)\) as required.
  3. \begin{align*} && b(p,q) &= \int_0^1 x^{p-1} (1-x)^{q-1} \d x \\ x = \sin^2 \theta, \d x = 2 \sin \theta \cos \theta \d \theta && &= \int_{u=0}^{u = \pi/2} \sin^{2p-2} \theta (1-\sin^2 \theta)^{q-1} \cdot 2 \sin \theta \cos \theta \d \theta \\ &&&= 2 \int_0^{\pi/2} \sin^{2p-1} \theta \cos^{2q-2} \cos \theta \d \theta \\ &&&= 2 \int_0^{\pi/2} \sin^{2p-1} \theta \cos^{2q-1} \theta \d \theta \end{align*} \begin{align*} b(p,p) &= 2\int_0^{\pi/2} (\sin \theta)^{2p-1}(\cos \theta)^{2p-1} \d \theta \\ &= 2 \int_0^{\pi/2} \left (\frac12 \sin 2\theta \right)^{2p-1} \d \theta \\ &= \frac1{2^{2p-1}} 2 \int_0^{\pi/2} (\sin 2 \theta)^{2p-1} \d \theta \\ &= \frac1{2^{2p-1}} 2 \int_{x=0}^{x=\pi} (\sin x)^{2p-1} 2 \d x\\ &= \frac1{2^{2p-1}} 2 \int_{x=0}^{x=\pi/2} (\sin x)^{2p-1} \d x\\ &= \frac1{2^{2p-1}} 2 \int_{0}^{\pi/2} (\sin x)^{2p-1} (\cos x)^{0} \d x\\ &= \frac1{2^{2p-1}} b(p,\tfrac12) \end{align*}
  4. \begin{align*} &&b(p,q) &= \int_0^1 x^{p-1}(1-x)^{q-1} \d x \\ t = \frac{x}{1-x}, \d t = (1-x)^{-2} \d x &&&= \int_{t=0}^{t = \infty} \left ( \frac{t}{1+t} \right)^{p-1} \left ( 1-\frac{t}{1+t} \right)^{q+1} \d t\\ x = \frac{t}{1+t} && &=\int_0^\infty t^{p-1} (1+t)^{-(p-1)-(q+1)} \d t \\ &&&= \int_0^{\infty} \frac{t^{p-1}}{(1+t)^{p+q}} \d t \end{align*}
  5. \begin{align*} I &= \int_0^\infty \frac{t^{3/2}}{(1+t)^6} \, dt \\ &= b( \tfrac52, \tfrac72) \\ &= b( \tfrac52, \tfrac52+1) \\ &= \tfrac12 b( \tfrac52, \tfrac52) \\ &= \frac12 \cdot \frac1{2^{4}} b(\tfrac52, \tfrac12) \\ &= \frac{1}{2^5} \cdot 2 \int_0^{\pi/2} (\sin \theta)^{4} \d \theta \\ &= \frac1{2^4} \int_0^{\pi/2}\left (\frac{1-\cos 2 \theta}{2} \right)^2 \d \theta \\ &= \frac1{2^6} \int_0^{\pi/2}\left (1 - 2 \cos 2 \theta + \cos^{2} 2 \theta \right) \d \theta \\ &= \frac1{2^6} \int_0^{\pi/2}\left (1 - 2 \cos 2 \theta + \frac{\cos 4 \theta + 1}{2} \right) \d \theta \\ &= \frac1{2^6} \left [\frac32 \theta - \sin 2 \theta + \frac18 \sin 4 \theta \right]_0^{\pi/2} \\ &= \frac1{2^6} \frac{3 \pi}{4} \\ &= \frac{3 \pi}{2^8} \end{align*}

2025 Paper 3 Q2
D: 1500.0 B: 1500.0

Let \(f(x) = 7 - 2|x|\). A sequence \(u_0, u_1, u_2, \ldots\) is defined by \(u_0 = a\) and \(u_n = f(u_{n-1})\) for \(n > 0\).

    1. Sketch, on the same axes, the graphs with equations \(y = f(x)\) and \(y = f(f(x))\).
    2. Find all solutions of the equation \(f(f(x)) = x\).
    3. Find the values of \(a\) for which the sequence \(u_0, u_1, u_2, \ldots\) has period 2.
    4. Show that, if \(a = \frac{28}{5}\), then the sequence \(u_2, u_3, u_4, \ldots\) has period 2, but neither \(u_0\) or \(u_1\) is equal to either of \(u_2\) or \(u_3\).
    1. Sketch, on the same axes, the graphs with equations \(y = f(x)\) and \(y = f(f(f(x)))\).
    2. Consider the sequence \(u_0, u_1, u_2, \ldots\) in the cases \(a = 1\) and \(a = -\tfrac79\). Hence find all the solutions of the equation \(f(f(f(x))) = x\).
    3. Find a value of \(a\) such that the sequence \(u_3, u_4, u_5, \ldots\) has period 3, but where none of \(u_0, u_1\) or \(u_2\) is equal to any of \(u_3, u_4\) or \(u_5\).


Solution:

    1. TikZ diagram
    2. If \(a = 1\) then \(u_1 = f(a) = 7-2 = 5\), \(u_2 = f(5) = -3\), \(u_3 = f(-3) = 7-6 = 1\). Therefore it must be the case that \(f(f(f(x))) = x\) for \(x = 1, 5, -3\). Similarly, if \(a = -\tfrac79\) then \(u_1 = f(-\tfrac79) = \tfrac{49}{9}\), \(u_2 = f(\tfrac{49}{9}) = -\tfrac{35}{9}\) and \(u_3 = f(-\tfrac{35}{9}) = -\tfrac79\). Therefore we must also have roots \(x = -\tfrac79, \tfrac{49}{9}, -\tfrac{35}9\). We also have the roots \(x = -7, \tfrac73\) from the first part so we have found all \(8\) roots.
    3. We need \(f(f(f(x))) = 1\) but \(f(f(x)) \neq -3, f(x) \neq 5, x \neq 1\). Suppose \(f(y) = 1 \Rightarrow 7-2|y| = 1 \Rightarrow y = \pm 3\). So \(y = 3\), ie \(f(f(x)) = 3\). Suppose \(f(z) = 3 \Rightarrow 7-2|z| = 3 \Rightarrow z = \pm 2\). Finally we need \(f(x) = \pm 2\), so say \(7-2|x| = 2 \Rightarrow x = \tfrac52\), so we have the sequence \(\tfrac52, 2, 3, 1, 5, -3, 1, \cdots\)as required.

2025 Paper 3 Q3
D: 1500.0 B: 1500.0

Let \(f(x)\) be defined and positive for \(x > 0\). Let \(a\) and \(b\) be real numbers with \(0 < a < b\) and define the points \(A = (a, f(a))\) and \(B = (b, -f(b))\). Let \(X = (m,0)\) be the point of intersection of line \(AB\) with the \(x\)-axis.

  1. Find an expression for \(m\) in terms of \(a\), \(b\), \(f(a)\) and \(f(b)\).
  2. Show that, if \(f(x) = \sqrt{x}\), then \(m = \sqrt{ab}\). Find, in terms of \(n\), \(a\) function \(f(x)\) such that \(m = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}\).
  3. Let \(g_1(x)\) and \(g_2(x)\) be defined and positive for \(x > 0\). Let \(m = M_1\) when \(f(x) = g_1(x)\) and let \(m = M_2\) when \(f(x) = g_2(x)\). Show that if \(\frac{g_1(x)}{g_2(x)}\) is a decreasing function then \(M_1 > M_2\). Hence show that $$\frac{a+b}{2} > \sqrt{ab} > \frac{2ab}{a+b}$$
  4. Let \(p\) and \(c\) be chosen so that the curve \(y = p(c-x)^3\) passes through both \(A\) and \(B\). Show that $$\frac{c-a}{b-c} = \left(\frac{f(a)}{f(b)}\right)^{1/3}$$ and hence determine \(c\) in terms of \(a\), \(b\), \(f(a)\) and \(f(b)\). Show that if \(f\) is a decreasing function, then \(c < m\).


Solution:

  1. The line \(AB\) has equation: \begin{align*} && \frac{y+f(b)}{x-b} &= \frac{f(a)+f(b)}{a-b} \\ \Rightarrow && \frac{f(b)}{m-b} &= \frac{f(a)+f(b)}{a-b} \\ \Rightarrow && m &= \frac{a-b}{f(a)+f(b)}f(b) + b \\ &&&= \frac{af(b)+bf(a)}{f(a)+f(b)} \end{align*}
  2. Suppose \(f(x) = \sqrt{x}\) then \begin{align*} m &= \frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}} \\ &= \frac{\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}} \\ &= \sqrt{ab} \end{align*} Suppose \(f(x) = x^{-n}\) then \begin{align*} m &= \frac{a b^{-n}+ba^{-n}}{a^{-n}+b^{-n}} \\ &= \frac{a^{n+1}+b^{n+1}}{b^n + a^n} \\ \end{align*}
  3. Without loss of generality, we can scale \(g_1(x)\) and \(g_2(x)\) so that \(g_1(a) = g_2(a)\) and \(m\) won't change for either of them. Then since \(\frac{g_1(b)}{g_2(b)} < 1\) (this function is decreasing) our line connecting \((a,g_i(a))\) and \((b,-g_i(b))\) must interect the axis first for \(g_2\), in particular \(M_1 > M_2\). Suppose \(g_1(x) =1, g_2(x) = \sqrt{x}, g_3(x) = x^{-1}\), the notice that \(\frac{g_1(x)}{g_2(x)} =\frac{g_2(x)}{g_3(x)}= x^{-1/2}\) are decreasing, therefore: \begin{align*} \frac{a+b}{1+1} &> \sqrt{ab} > \frac{1+1}{a^{-1}+b^{-1}} \\ \frac{a+b}{2} &> \sqrt{ab} > \frac{2ab}{a+b} \\ \end{align*}
  4. We must have: \begin{align*} && p(c-a)^3 &= f(a) \\ && p(c-b)^3 &= -f(b) \\ \Rightarrow &&\left ( \frac{c-a}{c-b} \right)^3 &= -\frac{f(a)}{f(b)} \\ \Rightarrow && \frac{c-a}{b-c} &= \left (\frac{f(a)}{f(b)} \right)^{\tfrac13} \\ \Rightarrow && c-a &= \left (\frac{f(a)}{f(b)} \right)^{\tfrac13}(b-c)\\ \Rightarrow && c \left (1 + \left (\frac{f(a)}{f(b)} \right)^{\tfrac13} \right) &= \left (\frac{f(a)}{f(b)} \right)^{\tfrac13}b + a \\ \Rightarrow && c &= \frac{\left (\frac{f(a)}{f(b)} \right)^{\tfrac13}b + a}{1 + \left (\frac{f(a)}{f(b)} \right)^{\tfrac13}} \\ &&&= \frac{b[f(a)]^\tfrac13+a[f(b)]^\tfrac13}{[f(a)]^\tfrac13+[f(b)]^\tfrac13} \end{align*} We have that \(\frac{c-a}{b-c} = \left (\frac{f(a)}{f(b)} \right)^{\tfrac13} \) and \(\frac{m-a}{b-c} = \frac{f(a)}{f(b)}\). Since \(f\) is decreasing, \(\frac{f(a)}{f(b)} > 1\) and so \(\left (\frac{f(a)}{f(b)} \right)^{\tfrac13} < \frac{f(a)}{f(b)}\), therefore \(m > c\).

2025 Paper 3 Q4
D: 1500.0 B: 1500.0

  1. \(x_2\) and \(y_2\) are defined in terms of \(x_1\) and \(y_1\) by the equation $$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$ \(G_1\) is the graph with equation $$\frac{x^2}{9} + \frac{y^2}{4} = 1$$ and \(G_2\) is the graph with equation $$\frac{\left(\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}}\right)^2}{9} + \frac{\left(-\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}}\right)^2}{4} = 1$$ Show that, if \((x_1, y_1)\) is a point on \(G_1\), then \((x_2, y_2)\) is a point on \(G_2\). Show that \(G_2\) is an anti-clockwise rotation of \(G_1\) through \(45°\) about the origin.
    1. The matrix $$\begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix}$$ represents a reflection. Find the line of invariant points of this matrix.
    2. Sketch, on the same axes, the graphs with equations $$y = 2^x \text{ and } 0.8x + 0.6y = 2^{-0.6x+0.8y}$$
  2. Sketch, on the same axes, for \(0 \leq x \leq 2\pi\), the graphs with equations $$y = \sin x \text{ and } y = \sin(x - 2y)$$ You should determine the exact co-ordinates of the points on the graph with equation \(y = \sin(x - 2y)\) where the tangent is horizontal and those where it is vertical.


Solution:

  1. Suppose \begin{align*} && \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} &= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \\ \Rightarrow && \binom{x_1}{y_1} &= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \binom{x_2}{y_2} \end{align*} Therefore if \(\frac{x_1^2}9+\frac{y_1^2}{4} = 1\) we must have \begin{align*} \frac{(\frac{x_2}{\sqrt{2}}+\frac{y_2}{\sqrt{2}})^2 }{9} + \frac{(-\frac{x_2}{\sqrt{2}}+\frac{y_2}{\sqrt{2}})^2}{4} = 1 \end{align*} but this is precisely the statement that \((x_1, y_1)\) is on \(G_1\) is equivalent to \((x_2,y_2)\) being on the \(G_2\). Since the point \((x_2,y_2)\) is a \(45^{\circ}\) rotation of \((x_1,y_1)\) anticlockwise about the origin, this means \(G_2\) is a \(45^{\circ}\) anticlockwise rotation of \(G_1\).
    1. \begin{align*} && \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} x \\ y \end{pmatrix} \\ \Rightarrow && \begin{pmatrix} -0.6 x + 0.8y \\ 0.8x + 0.6y \end{pmatrix} &= \begin{pmatrix} x \\ y \end{pmatrix} \\ \Rightarrow && \begin{pmatrix} -1.6 x + 0.8y \\ 0.8x -0.4y \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \Rightarrow && y &=2 x \end{align*}
    2. TikZ diagram
  2. Consider the transformation \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\) which is a shear, leaving the \(x\)-axis invariant. Then we must have:
    TikZ diagram
    Since the shear leaves lines of the form \(y = k\) invariant, the points where \(\frac{\d y}{\d x} = 0\) must also map to points where this is true, ie \((\tfrac{\pi}{2}, 1), (\tfrac{3\pi}{2}, -1)\) map to points \((\tfrac{\pi}{2}+2,1), (\tfrac{3\pi}{2} -2,-1)\) where the tangent is horizontal. The line \(x = c\) map back to lines \(\begin{pmatrix} 1 & -2 \\ 0 & 1\end{pmatrix} \begin{pmatrix} c \\ t\end{pmatrix} = \begin{pmatrix}c - 2t \\ t \end{pmatrix}\), ie \(y = -\frac12 x- \frac{c}{2}\). Therefore we are interested in points on the original curve where the gradient is \(-\frac12\), ie \((\frac{2\pi}{3}, \frac{\sqrt{3}}{2}), (\frac{4\pi}{3}, -\frac{\sqrt{3}}{2})\), these map to \((\frac{2\pi}{3}+\sqrt{3},\frac{\sqrt{3}}{2}), (\frac{4\pi}{3}-\sqrt{3}, -\frac{\sqrt{3}}{2})\)

2025 Paper 3 Q5
D: 1500.0 B: 1500.0

Three points, \(A\), \(B\) and \(C\), lie in a horizontal plane, but are not collinear. The point \(O\) lies above the plane. Let \(\overrightarrow{OA} = \mathbf{a}\), \(\overrightarrow{OB} = \mathbf{b}\) and \(\overrightarrow{OC} = \mathbf{c}\). \(P\) is a point with \(\overrightarrow{OP} = \alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}\), where \(\alpha\), \(\beta\) and \(\gamma\) are all positive and \(\alpha + \beta + \gamma < 1\). Let \(k = 1 - (\alpha + \beta + \gamma)\).

  1. The point \(L\) is on \(OA\), the point \(X\) is on \(BC\) and \(LX\) passes through \(P\). Determine \(\overrightarrow{OX}\) in terms of \(\beta\), \(\gamma\), \(\mathbf{b}\) and \(\mathbf{c}\) and show that \(\overrightarrow{OL} = \frac{\alpha}{k+\alpha}\mathbf{a}\).
  2. Let \(M\) and \(Y\) be the unique pair of points on \(OB\) and \(CA\) respectively such that \(MY\) passes through \(P\), and let \(N\) and \(Z\) be the unique pair of points on \(OC\) and \(AB\) respectively such that \(NZ\) passes through \(P\). Show that the plane \(LMN\) is also horizontal if and only if \(OP\) intersects plane \(ABC\) at the point \(G\), where \(\overrightarrow{OG} = \frac{1}{3}(\mathbf{a} + \mathbf{b} + \mathbf{c})\). Where do points \(X\), \(Y\) and \(Z\) lie in this case?
  3. State what the condition \(\alpha + \beta + \gamma < 1\) tells you about the position of \(P\) relative to the tetrahedron \(OABC\).


Solution:

  1. \(\overrightarrow{OL} = \lambda \mathbf{a}\) and \(\overrightarrow{OX} = \mu \mathbf{b} + (1-\mu) \mathbf{c}\). Since \(LX\) passes through \(P\), and \(A,B,C\) not colinear we must have that \(s \lambda = \alpha, (1-s)\mu = \beta, (1-s)(1-\mu) = \gamma\)

2025 Paper 3 Q6
D: 1500.0 B: 1500.0

  1. Let \(a\), \(b\) and \(c\) be three non-zero complex numbers with the properties \(a + b + c = 0\) and \(a^2 + b^2 + c^2 = 0\). Show that \(a\), \(b\) and \(c\) cannot all be real. Show further that \(a\), \(b\) and \(c\) all have the same modulus.
  2. Show that it is not possible to find three non-zero complex numbers \(a\), \(b\) and \(c\) with the properties \(a + b + c = 0\) and \(a^3 + b^3 + c^3 = 0\).
  3. Show that if any four non-zero complex numbers \(a\), \(b\), \(c\) and \(d\) have the properties \(a + b + c + d = 0\) and \(a^3 + b^3 + c^3 + d^3 = 0\), then at least two of them must have the same modulus.
  4. Show, by taking \(c = 1\), \(d = -2\) and \(e = 3\) that it is possible to find five real numbers \(a\), \(b\), \(c\), \(d\) and \(e\) with distinct magnitudes and with the properties \(a + b + c + d + e = 0\) and \(a^3 + b^3 + c^3 + d^3 + e^3 = 0\).


Solution:

  1. If \(a,b,c\) were all real then \(a^2+b^2+c^2 = 0 \Rightarrow a,b,c = 0\) but they are non-zero. Therefore they cannot all be real. Since \((a+b+c)^2 = 0\) we must have \(ab+bc+ca = 0\). Therefore \(a,b,c\) must satisfy \(x^3 -abc = 0 \Rightarrow\) they all have the same modulus, since they are all cube roots of the same number.
  2. Notice that \(a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab-bc-ca) \Rightarrow abc = 0\) but therefore they cannot all be non-zero.
  3. Suppose \(a+b+c+d = 0\) then note that \(\displaystyle a^2+b^2+c^2+d^2 = (a+b+c+d)^2 - 2\sum_{sym} ab\) and \(\displaystyle a^3+b^3+c^3+d^3 = (a+b+c+d)^3 - 3(a+b+c+d)(ab+ac+ad+bc+bd+cd) + 3(abc+abd+acd+bcd) \Rightarrow abc+abd+acd+bcd = 0\). Therefore \(a,b,c,d\) are roots of a polynomial of the form \(x^4 -kx^2 + l = 0\), but this means they must come in pairs with the same modulus.
  4. Suppose \(c = 1, d = -2, e = 3\) so \(c+d+e = 2\) and \(c^3 + d^3 + e^3 = 1 - 8 + 27 = 20\), so we need to find \(a,b\) satisfying \(a+b = -2, a^2+b^2 = -20\), ie \(4 = (a+b)^2 = -20 + 2ab \Rightarrow ab = 12\), so we need the roots of \(x^2 +2x + 12= 0\) which clearly have different modulus.

2025 Paper 3 Q7
D: 1500.0 B: 1500.0

Let \(f(x) = \sqrt{x^2 + 1} - x\).

  1. Using a binomial series, or otherwise, show that, for large \(|x|\), \(\sqrt{x^2 + 1} \approx |x| + \frac{1}{2|x|}\). Sketch the graph \(y = f(x)\).
  2. Let \(g(x) = \tan^{-1} f(x)\) and, for \(x \neq 0\), let \(k(x) = \frac{1}{2}\tan^{-1}\frac{1}{x}\).
    1. Show that \(g(x) + g(-x) = \frac{1}{2}\pi\).
    2. Show that \(k(x) + k(-x) = 0\).
    3. Show that \(\tan k(x) = \tan g(x)\) for \(x > 0\).
    4. Sketch the graphs \(y = g(x)\) and \(y = k(x)\) on the same axes.
    5. Evaluate \(\int_0^1 k(x) \, dx\) and hence write down the value of \(\int_{-1}^0 g(x) \, dx\).


Solution:

  1. \begin{align*} \sqrt{x^2+1} &= |x|\sqrt{1+\frac{1}{x^2}} \\ &=|x| \left (1 + \frac12 \frac{1}{x^2} + \cdots \right) & \text{if } \left (\frac{1}{x^2} < 1 \right) \\ &= |x| + \frac12 \frac{1}{|x|} + \cdots \\ &\approx |x| + \frac{1}{2|x|} \end{align*}
    TikZ diagram
    1. \begin{align*} && \tan( g(x) + g(-x)) &= \tan \left ( \tan^{-1}(\sqrt{x^2+1}-x) + \tan^{-1}(\sqrt{x^2+1}+x) \right) \\ &&&= \frac{\sqrt{x^2+1}-x+\sqrt{x^2+1}+x}{1-1} \\ \Rightarrow && g(x) + g(-x) &\in \left \{\cdots, -\frac{\pi}{2}, \frac{\pi}{2}, \cdots \right\} \end{align*} But \(g(x), g(-x) > 0\) and \(g(x), g(-x) \in (-\frac{\pi}{2}, \frac{\pi}{2})\), therefore it must be \(\frac{\pi}{2}\).
    2. \begin{align*} && \tan(2(k(x) + k(-x))) &= \tan(\tan^{-1}x + \tan^{-1}(-x)) \\ &&&= 0 \\ \Rightarrow && k(x)+k(-x) &\in \left \{\cdots, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \cdots \right\} \\ \end{align*} But \(k(x) \in (-\frac{\pi}{4}, \frac{\pi}{4})\), therefore \(k(x) + k(-x) = 0\).
    3. Let \(t = \tan k(x)\). \begin{align*} && \tan \left ( \tan^{-1} \frac{1}{x} \right) &= \frac{2 \tan\left ( \frac12 \tan^{-1} \frac1x \right)}{ 1-\tan^2\left ( \frac12 \tan^{-1} \frac1x \right)} \\ \Rightarrow && \frac1x &= \frac{2t}{1-t^2} \\ \Rightarrow && 1-t^2 &= 2tx \\ \Rightarrow && 0 &= t^2+2tx - 1 \\ \Rightarrow && 0 &= (t+x)^2 - 1-x^2 \\ \Rightarrow && t &= -x \pm \sqrt{1+x^2} \end{align*} Since \(t > 0\), \(t = \sqrt{1+x^2}-x = f(x) = \tan g(x)\)
    4. TikZ diagram
    5. \begin{align*} \int_0^1 k(x) \d x &= \int_0^1 \frac12 \tan^{-1} \left ( \frac1x \right) \d x \\ &= \left [ \frac{x}{2} \tan^{-1}\left ( \frac1x \right) \right]_0^1 - \int_0^1 \frac{x}{2} \frac{-1/x^2}{1+1/x^2} \d x \\ &= \left [ \frac{x}{2} \tan^{-1}\left ( \frac1x \right) \right]_0^1 + \frac14 \int_0^1 \frac{2x}{1+x^2} \d x \\ &= \frac12 \frac{\pi}{4} + \frac14 \ln(2) \\ &= \frac{\pi + \ln 4}{8}\end{align*} Therefore \(\displaystyle \int_{-1}^0 g(x) \d x = -\frac{\pi + \ln 4}{8}\)

2025 Paper 3 Q8
D: 1500.0 B: 1500.0

  1. Show that $$z^{m+1} - \frac{1}{z^{m+1}} = \left(z - \frac{1}{z}\right)\left(z^m + \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right)$$ Hence prove by induction that, for \(n \geq 1\), $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ Find similarly \(z^{2n} - \frac{1}{z^{2n}}\) as a product of \((z + \frac{1}{z})\) and a sum.
    1. By choosing \(z = e^{i\theta}\), show that $$\sin 2n\theta = 2\sin\theta \sum_{r=1}^n \cos(2r-1)\theta$$
    2. Use this result, with \(n = 2\), to show that \(\cos\frac{2\pi}{5} = \cos\frac{\pi}{5} - \frac{1}{2}\).
    3. Use this result, with \(n = 7\), to show that \(\cos\frac{2\pi}{15} + \cos\frac{4\pi}{15} + \cos\frac{8\pi}{15} + \cos\frac{16\pi}{15} = \frac{1}{2}\).
  2. Show that \(\sin\frac{\pi}{14} - \sin\frac{3\pi}{14} + \sin\frac{5\pi}{14} = \frac{1}{2}\).


Solution:

  1. \begin{align*} RHS &= \left(z - \frac{1}{z}\right)\left(z^m + \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right) \\ &= z^{m+1} + \frac{1}{z^{m-1}} - z^{m-1} - \frac{1}{z^{m+1}} + z^{m-1} - \frac{1}{z^{m-1}} \\ &= z^{m+1} - \frac{1}{z^{m+1}} \\ &= LHS \end{align*}. Claim: For \(n \geq 1\), $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ Proof: (By Induction) Base Case: (\(n=1\)). \begin{align*} LHS &= z^2 - \frac{1}{z^2} \\ &= (z-\frac1z)(z + \frac{1}{z}) \\ &= (z - \frac1z) \sum_{r=1}^1 \left ( z + \frac{1}{z} \right) \\ &= (z - \frac1z) \sum_{r=1}^1 \left ( z^{2r-1} + \frac{1}{z^{2r-1}} \right) \\ &= RHS \end{align*} as required. Inductive step: Suppose our result is true for some \(n=k\), then consider \(n = k+1\). \begin{align*} RHS &= \left(z - \frac{1}{z}\right)\sum_{r=1}^{k+1} \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right) \\ &= \left(z - \frac{1}{z}\right)\sum_{r=1}^{k} \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right) + \left(z - \frac{1}{z}\right)\left(z^{2k+1} + \frac{1}{z^{2k+1}}\right) \\ &= z^{2k} - \frac{1}{z^{2k}} + \left(z - \frac{1}{z}\right)\left(z^{2k+1} + \frac{1}{z^{2k+1}}\right) \\ &= z^{2k+2} - \frac{1}{z^{2k+2}} \\ &= LHS \end{align*}. Therefore if our result is true for \(n=k\) is true, it is true for \(n=k+1\). Since it is also true for \(n=1\) it is true for all \(n \geq 1\) but the principle of mathematical induction. Since \(\displaystyle z^{m+1} - \frac{1}{z^{m+1}} = \left(z + \frac{1}{z}\right)\left(z^m - \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right)\), we must have \(\displaystyle z^{2n}-\frac{1}{z^{2n}} = \left ( z + \frac{1}{z} \right) \sum_{r=1}^n \left (z^{2r-1}-\frac{1}{z^{2r-1}} \right)\)
    1. Since $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ we have \begin{align*} && e^{2n\theta i} - e^{-2n\theta i} &= \left(e^{\theta i} - e^{-\theta i}\right)\sum_{r=1}^n \left(e^{(2r-1)\theta i} + e^{-(2r-1)\theta i}\right) \\ \Rightarrow && 2i \sin 2n \theta &= 2i \sin \theta \sum_{r=1}^n 2 \cos (2r-1) \theta \\ \Rightarrow && \sin 2n \theta &= 2\sin \theta \sum_{r=1}^n \cos (2r-1) \theta \end{align*}
    2. When \(n = 2, \theta = \frac{\pi}{5}\) we have: \begin{align*} &&\sin \frac{4\pi}{5} &= 2 \sin \frac{\pi}{5} (\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}) \\ &&\sin \frac{\pi}{5} &= 2 \sin \frac{\pi}{5} (\cos \frac{\pi}{5} - \cos \frac{2\pi}{5}) \\ &&\frac12 &= \cos \frac{\pi}{5} - \cos \frac{2 \pi}{5} \\ \Rightarrow && \cos \frac{2\pi}{5} &= \cos \frac{\pi}{5} - \frac12 \end{align*}
    3. When \(n = 7, \theta = \frac{\pi}{15}\) we have: \begin{align*} && \sin \frac{14 \pi}{15} &= 2 \sin \frac{\pi}{15} \sum_{r=1}^7 \cos (2r-1) \frac{\pi}{15} \\ \Rightarrow && \frac12 &= \cos \frac{\pi}{15} + \cos \frac{3 \pi}{15} + \cos \frac{5 \pi}{15}+ \cos \frac{7 \pi}{15}+ \cos \frac{9 \pi}{15}+ \cos \frac{11 \pi}{15}+ \cos \frac{13 \pi}{15} \\ &&&= -\cos \frac{16\pi}{15} + \cos \frac{3 \pi}{15} + \cos \frac{5 \pi}{15}- \cos \frac{8 \pi}{15}+ \cos \frac{9 \pi}{15}- \cos \frac{4 \pi}{15}- \cos \frac{2\pi}{15} \\ &&&= - \left ( \cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15}\right) + \cos \frac{\pi}{5} + \cos \frac{\pi}{3} + \cos \frac{3 \pi}{5} \\ &&&= - \left ( \cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15}\right) + \frac12 + \frac12 \\ \Rightarrow && \frac12 &= cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15} \end{align*}
  2. By using \(z = e^{i \theta}\) we have that: \begin{align*} && z^{2n}-\frac{1}{z^{2n}} &= \left ( z + \frac{1}{z} \right) \sum_{r=1}^n \left (z^{2r-1}-\frac{1}{z^{2r-1}} \right ) \\ \Rightarrow && e^{2n \theta i} - e^{-2n \theta i} &= (e^{\theta i} + e^{-\theta i}) \sum_{r=1}^n (e^{(2r-1)\theta i} - e^{(2r-1) \theta i}) \\ \Rightarrow && 2i \sin 2n \theta &= 2 \cos \theta \sum_{r=1}^n 2i \sin(2r-1) \theta \\ \Rightarrow && \sin 2n \theta &= 2 \cos \theta \sum_{r=1}^n \sin(2r-1) \theta \end{align*} When \(n = 3, \theta = \frac{\pi}{14}\) we must have: \begin{align*} &&\sin \frac{3 \pi}{7} &= 2 \cos \frac{\pi}{14}( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ &&&= 2 \sin \left (\frac{\pi}{2} - \frac{\pi}{14} \right)( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ &&&= 2 \sin \frac{3\pi}{7} ( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ \Rightarrow && \frac12 &= \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14} \end{align*} as required.

2025 Paper 3 Q9
D: 1500.0 B: 1500.0

In this question, \(n \geq 2\).

  1. A solid, of uniform density, is formed by rotating through \(360°\) about the \(y\)-axis the region bounded by the part of the curve \(r^{n-1}y = r^n - x^n\) with \(0 \leq x \leq r\), and the \(x\)- and \(y\)-axes. Show that the \(y\)-coordinate of the centre of mass of this solid is \(\frac{nr}{2(n+1)}\).
  2. Show that the normal to the curve \(r^{n-1}y = r^n - x^n\) at the point \((rp, r(1-p^n))\), where \(0 < p < 1\), meets the \(y\)-axis at \((0, Y)\), where \(Y = r\left(1 - p^n - \frac{1}{np^{n-2}}\right)\). In the case \(n = 4\), show that the greatest value of \(Y\) is \(\frac{1}{4}r\).
  3. A solid is formed by rotating through \(360°\) about the \(y\)-axis the region bounded by the curves \(r^3y = r^4 - x^4\) and \(ry = -(r^2 - x^2)\), both for \(0 \leq x \leq r\). \(A\) and \(B\) are the points \((0, -r)\) and \((0, r)\), respectively, on the surface of the solid. Show that the solid can rest in equilibrium on a horizontal surface with the vector \(\overrightarrow{AB}\) at three different, non-zero, angles to the upward vertical. You should not attempt to find these angles.


Solution:

  1. TikZ diagram
    By symmetry, the centre of mass will lie on the \(y\) axis. Notice that a single slice (when revolved around the \(y\)-axis) has volume \(y \cdot \pi \cdot ((x+ \delta x)^2 - x^2) = 2 \pi x y \delta x\), and COM at height \(\frac12 y\) so we can conclude: \[ \overline{y} \sum_{\delta x} 2 \pi x y \delta x = \sum_{\delta x} \pi xy^2 \delta x\] \begin{align*} && \overline{y} \int_0^r 2xy \d x &= \int_0^r y^2 x \d x \\ \Rightarrow && \overline{y} 2\int_0^r \left (r - \frac{x^n}{r^{n-1}} \right)x \d x &= \int_0^r \left (r - \frac{x^n}{r^{n-1}} \right)^2 x \d x \\ \Rightarrow && \overline{y} \left [r \frac{x^2}{2} - \frac{1}{r^{n-1}} \frac{x^{n+2}}{n+2} \right]_0^r &= \left [r^2 \frac{x^2}{2} - \frac{2}{r^{n-2}} \frac{x^{n+2}}{n+2} + \frac{1}{r^{2n-2}} \frac{x^{2n+2}}{2n+2} \right]_0^r \\ \Rightarrow && 2\overline{y} \left (\frac{r^3}{2} - \frac{r^3}{n+2} \right) &= \left (\frac12 r^4 - \frac{2}{n+2}r^4 + \frac{1}{2n+2}r^4 \right) \\ \Rightarrow && \overline{y}r^3 \frac{n}{(n+2)} &= r^4\frac{(n+1)(n+2)-2\cdot2\cdot(n+1)+(n+2)}{2(n+1)(n+2)} \\ \Rightarrow && \overline{y} \frac{n}{(n+2)} &= r \left ( \frac{n^2}{2(n+1)(n+2)} \right) \\ \Rightarrow && \overline{y} &= \frac{nr}{2(n+1)} \\ &&&= r \left (1 -p^n \right) \end{align*} as required.
  2. \begin{align*} && r^{n-1}y &= r^n - x^n \\ \frac{\d}{\d x}: && r^{n-1} \frac{\d y}{\d x} &= -n x^{n-1} \\ && \frac{\d y}{\d x} &= -np^{n-1} \end{align*} Therefor the normal has the equation: \begin{align*} && \frac{y-r(1-p^n)}{x-rp} &= \frac{1}{np^{n-1}} \\ \Rightarrow && Y &= \frac{-rp}{np^{n-1}} + r(1-p^n) \\ &&&= r \left (1 - p^n - \frac{1}{np^{n-2}} \right) \end{align*} If \(n = 4\) then \begin{align*} && Y &= r\left (1 - p^4 - \frac{1}{4p^{2}} \right) \\ \Rightarrow && \frac{\d Y}{\d p} &= r \left (-4p^3 + \frac{1}{2p^3} \right) \end{align*} Therefore there is a stationary point if \(p^6 = \frac18 \Rightarrow p =2^{-1/2}\). Clearly this will be a maximum (sketch or second derivative) therefore, \(Y = r(1 - \frac14 - \frac{2}{4}) = \frac14 r\)
  3. The centre of mass of this shape can be found using this table: \begin{array}{|c|c|c|} \hline \text{} & \overline{y} & \text{mass} \\ \hline r^3y = r^4 - x^4 & \frac{2r}{5} & \frac{4\pi r^3}{6} = \frac23 \pi r^3\\ ry = -(r^2 - x^2) & -\frac{r}{3}& \frac{2 \pi r^3}{4}=\frac12\pi r^3 \\ \text{combined} & \frac{(\frac25 \cdot \frac23-\frac13 \cdot \frac12)r^4}{\frac76 r^3} = \frac3{35}r & \frac76 \pi r^3\\ \hline \end{array} Normals to the surface through points on the upper surface will meet the \(y\)-axis between \((-\infty, \frac14 r)\), and since \(p = 0 \to -\infty\) and \(p = 1 \to -\frac14 r\), so normals will pass through \((0, \frac3{35}r)\) from two different points. Normals to the surface through points on the lower surface will go through \(-r(1 - p^2 - \frac12) =- r(\frac12 -p^2)\) which ranges monotonically from \(\frac12 r \to -\frac12 r\) so there will be one point where the normal goes through \(\frac3{35}r\). Therefore there are three angles where the vector \(\overrightarrow{AB}\) is not vertical but the normal to the surfaces runs through the centre of mass (ie the the solid can rest in equilibrium)

2025 Paper 3 Q10
D: 1500.0 B: 1500.0

A plank \(AB\) of length \(L\) initially lies horizontally at rest along the \(x\)-axis on a flat surface, with \(A\) at the origin. Point \(C\) on the plank is such that \(AC\) has length \(sL\), where \(0 < s < 1\). End \(A\) is then raised vertically along the \(y\)-axis so that its height above the horizontal surface at time \(t\) is \(h(t)\), while end \(B\) remains in contact with the flat surface and on the \(x\)-axis. The function \(h(t)\) satisfies the differential equation $$\frac{d^2h}{dt^2} = -\omega^2 h, \text{ with } h(0) = 0 \text{ and } \frac{dh}{dt} = \omega L \text{ at } t = 0$$ where \(\omega\) is a positive constant. A particle \(P\) of mass \(m\) remains in contact with the plank at point \(C\).

  1. Show that the \(x\)-coordinate of \(P\) is \(sL\cos\omega t\), and find a similar expression for its \(y\)-coordinate.
  2. Find expressions for the \(x\)- and \(y\)-components of the acceleration of the particle.
  3. \(N\) and \(F\) are the upward normal and frictional components, respectively, of the force of the plank on the particle. Show that $$N = mg(1 - k\sin\omega t)\cos\omega t$$ and that $$F = mgsk\frac{\omega^2}{g}\tan\omega t$$ where \(k = \frac{L\omega^2}{g}\).
  4. The coefficient of friction between the particle and the plank is \(\tan\alpha\), where \(\alpha\) is an acute angle. Show that the particle will not slip initially, provided \(sk < \tan\alpha\). Show further that, in this case, the particle will slip
    • while \(N\) is still positive,
    • when the plank makes an angle less than \(\alpha\) to the horizontal.


Solution:

  1. Since we have \(h'' + \omega^2 h = 0\) we must have that \(h(t) = A \cos \omega t + B \sin \omega t\). The initial conditions tell us that \(A = 0\) and \(B = L\), so \(h(t) = L \sin \omega t\).
    TikZ diagram
    Therefore we can see the angle at \(B\) is \(\omega t\) and so \(P\) has \(y\)-coordinate \((1-s)L \sin \omega t\) and \(x\)-coordinate \(sL \cos \omega t\)
  2. If the position is \(\binom{sL \cos \omega t}{(1-s) L \sin \omega t}\) then the acceleration is \(-\omega^2 \binom{sL \cos \omega t}{(1-s) L \sin \omega t}\)
  3. TikZ diagram
    \begin{align*} \text{N2}(\rightarrow): && - F\cos \omega t + N \sin \omega t &= -m\omega^2 sL \cos \omega t\\ \text{N2}(\uparrow): && -mg + F\sin \omega t + N \cos \omega t &= -m\omega^2 (1-s) L \sin \omega t \\ \Rightarrow && \begin{pmatrix} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{pmatrix} \begin{pmatrix} F \\ N \end{pmatrix} &= \begin{pmatrix} m\omega^2 s L \cos \omega t \\ mg - m\omega^2(1-s)L \sin \omega t \end{pmatrix} \\ \Rightarrow && \begin{pmatrix}F \\ N \end{pmatrix} &= \begin{pmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{pmatrix} \begin{pmatrix} m\omega^2 s L \cos \omega t \\ mg - m\omega^2(1-s)L \sin \omega t \end{pmatrix} \\ \Rightarrow && N &= m \omega^2 s L (-\sin \omega t \cos \omega t) + mg \cos \omega t - m \omega^2 (1-s)L \sin \omega t \cos \omega t \\ &&&=mg \cos \omega t - m \omega^2 L \sin \omega t \cos \omega t \\ &&&= mg \cos \omega t \left (1 - \frac{L \omega^2}{g} \sin \omega t \right) \\ &&&= mg (1 - k \sin \omega t) \cos \omega t \\ \Rightarrow && F &= m \omega^2 s L \cos^2 \omega t + mg \sin \omega t - m \omega^2 (1-s) L \sin ^2 \omega t \\ &&&= m \omega^2 s L + mg \sin \omega t - m \omega^2 L \sin^2 \omega t \\ &&&= mg \frac{\omega^2 L}{g} s + mg(1-\frac{\omega^2 L}{g} \sin \omega t)\sin \omega t \\ &&&= mg sk + mg(1-k \sin \omega t) \cos \omega t \tan \omega t \\ &&&= mgsk + N \tan \omega t \end{align*}
  4. The particle will not slip if \(F < \tan \alpha N\). When \(t = 0\), \(N = mg, F = mgsk\), but clearly \(sk < \tan \alpha \Rightarrow mgsk = F < \tan \alpha mg = \tan \alpha N\). The particle will slip when: \(F > \tan \alpha N\), but we have \(F = mgsk + N \tan \omega t\). Clearly when \(\omega t = \alpha\) we have reached a point where \(F > \tan \alpha N\). Therefore we must slip before we reach this point, ie at a point where the plank makes an angle of less than \(\alpha\) to the horizontal. Notice also that \(N\) changes sign when \(1-k \sin \omega t = 0\), however, to do this \(N\) must become very small, smaller than \(mgsk\), therefore we must slip before this point too. Since we slip before either condition occurs, we must be in a position when \(N\) is positive AND the plank still makes a shallow angle.