Solution:
The number \(E\) is defined by $\displaystyle E= \int_0^1 \frac{\e^x}{1+x} \, \d x\,.$ Show that \[ \int_0^1 \frac{x \e^x}{1+x} \, \d x = \e -1 -E\, ,\] and evaluate \(\ds \int_0^1 \frac{x^2\e^x}{1+x} \, \d x\) in terms of \(\e\) and \(E\). Evaluate also, in terms of \(E\) and \(\rm e\) as appropriate:
Solution: \begin{align*} \int_0^1 \frac{x \e^x}{1+x} \, \d x &= \int_0^1 \frac{(x+1-1) \e^x}{1+x} \, \d x \\ &= \int_0^1 \left ( e^x -\frac{\e^x}{1+x} \right )\, \d x \\ &= \e-1-E \end{align*} \begin{align*} \int_0^1 \frac{x^2 \e^x}{1+x} \, \d x &= \int_0^1 \frac{(x^2+x-x) \e^x}{1+x} \, \d x \\ &= \int_0^1 \left ( xe^x -\frac{x\e^x}{1+x} \right )\, \d x \\ &= \left [xe^{x} \right]_0^1 - \int_0^1 e^x \, \d x -(\e-1-E) \\ &= \e-(\e-1)-(\e -1 -E) \\ &= 2-\e + E \end{align*}
Prove the identity \[ 4\sin\theta \sin(\tfrac13\pi-\theta) \sin (\tfrac13\pi+\theta)= \sin 3\theta\, . \tag{\(*\)}\]
The distinct points \(P\) and \(Q\), with coordinates \((ap^2,2ap)\) and \((aq^2,2aq)\) respectively, lie on the curve \(y^2=4ax\). The tangents to the curve at \(P\) and \(Q\) meet at the point \(T\). Show that \(T\) has coordinates \(\big(apq, a(p+q)\big)\). You may assume that \(p\ne0\) and \(q\ne0\). The point \(F\) has coordinates \((a,0)\) and \(\phi\) is the angle \(TFP\). Show that \[ \cos\phi = \frac{pq+1}{\sqrt{(p^2+1)(q^2+1)}\ } \] and deduce that the line \(FT\) bisects the angle \(PFQ\).
Given that \(0 < k < 1\), show with the help of a sketch that the equation \[ \sin x = k x \tag{\(*\)}\] has a unique solution in the range \(0 < x < \pi\). Let \[ I= \int_0^\pi \big\vert \sin x -kx\big\vert \, \d x\,. \] Show that \[ I= \frac{\pi^2 \sin\alpha }{2\alpha} -2\cos\alpha - \alpha \sin\alpha\,, \] where \(\alpha\) is the unique solution of \((*)\). Show that \(I\), regarded as a function of \(\alpha\), has a unique stationary value and that this stationary value is a minimum. Deduce that the smallest value of \(I\) is \[ -2 \cos \frac{\pi}{\sqrt2}\, .\]
Use the binomial expansion to show that the coefficient of \(x^r\) in the expansion of \((1-x)^{-3}\) is \(\frac12 (r+1)(r+2)\,\).
Solution: Notice that the coefficient of \(x^r\) is \((-1)^r\frac{(-3) \cdot (-3-1) \cdots (-3-r+1)}{r!} = (-1)^r \frac{(-1)(-2)(-3)(-4) \cdots (-(r+2))}{(-1)(-2)r!} = (-1)^r(-1)^{r+2}\frac{(r+2)!}{2r!} = \frac{(r+2)(r+1)}2\).
In this question, you may assume that \(\ln (1+x) \approx x -\frac12 x^2\) when \(\vert x \vert \) is small. The height of the water in a tank at time \(t\) is \(h\). The initial height of the water is \(H\) and water flows into the tank at a constant rate. The cross-sectional area of the tank is constant.
Solution:
A particle is projected at an angle \(\theta\) above the horizontal from a point on a horizontal plane. The particle just passes over two walls that are at horizontal distances \(d_1\) and \(d_2\) from the point of projection and are of heights \(d_2\) and \(d_1\), respectively. Show that \[ \tan\theta = \frac{d_1^2+d_\subone d_\subtwo +d_2^2}{d_\subone d_\subtwo}\,. \] Find (and simplify) an expression in terms of \(d_1\) and \(d_2\) only for the range of the particle.
A particle, \(A\), is dropped from a point \(P\) which is at a height \(h\) above a horizontal plane. A~second particle, \(B\), is dropped from \(P\) and first collides with \(A\) after \(A\) has bounced on the plane and before \(A\) reaches \(P\) again. The bounce and the collision are both perfectly elastic. Explain why the speeds of \(A\) and \(B\) immediately before the first collision are the same. The masses of \(A\) and \(B\) are \(M\) and \(m\), respectively, where \(M>3m\), and the speed of the particles immediately before the first collision is \(u\). Show that both particles move upwards after their first collision and that the maximum height of \(B\) above the plane after the first collision and before the second collision is \[ h+ \frac{4M(M-m)u^2}{(M+m)^2g}\,. \]