A positive integer with \(2n\) digits (the first of which must not be \(0\)) is called a balanced number if the sum of the first \(n\) digits equals the sum of the last \(n\) digits. For example, \(1634\) is a \(4\)-digit balanced number, but \(123401\) is not a balanced number.
Solution:
Solution:
Prove the identities \(\cos^4\theta -\sin^4\theta \equiv \cos 2\theta\) and $\cos^4 \theta + \sin^4 \theta \equiv 1 - {\frac12} \sin^2 2 \theta$. Hence or otherwise evaluate \[ \int_0^{\frac{1}{2}\pi} \cos^4 \theta \; \d \theta \;\;\;\; \mbox{and}\;\;\;\; \int_0^{\frac{1}{2}\pi} \sin^4 \theta \; \d \theta \,. \] Evaluate also \[ \int_0^{\frac{1}{2}\pi} \cos^6 \theta \; \d \theta \;\;\;\; \mbox{and}\;\;\;\; \int_0^{\frac{1}{2}\pi} \sin^6 \theta \; \d \theta \,. \]
Solution: \begin{align*} && \cos^4 \theta - \sin^4 \theta &= (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta) \\ &&&= \cos^2 \theta - \sin^2 \theta \\ &&&= \cos 2 \theta \\ \\ && 1&= (\cos^2 \theta + \sin^2 \theta)^2 \\ &&&= \cos^4 \theta + \sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta \\ &&&= \cos^4 \theta + \sin^4 \theta + \frac12 ( \sin^2 2 \theta) \\ \Rightarrow && \cos^4 \theta + \sin^4 \theta &= 1 - \tfrac12 \sin^2 2 \theta \end{align*} \begin{align*} && I &= \int_{0}^{\pi/2} \cos^4 \theta \d \theta \\ && J &= \int_0^{\pi/2} \sin^4 \theta \d \theta \\ && I-J &= \int_0^{\pi/2} \cos 2 \theta \d \theta = 0 \\ && I+J &= \int_0^{\pi/2} (1- \frac12 \sin^2 2 \theta) \d \theta \\ &&&= \frac{\pi}{2} - \frac14 \int_0^{\pi} \sin^2 \theta \d \theta \\ &&&= \frac{\pi}{2} - \frac{\pi}{8} \\ &&&= \frac{3\pi}{8} \\ \Rightarrow && I=J &= \frac{3\pi}{16} \end{align*} \begin{align*} && \cos^6 \theta + \sin^6 \theta &= (\cos^2 \theta + \sin^2 \theta)(\cos^4 \theta - \cos^2 \theta \sin^2 \theta + \sin^4 \theta) \\ &&&= 1-\tfrac12 \sin^2 2\theta - \tfrac14 \sin^2 2 \theta \\ &&&= 1 - \tfrac34 \sin^2 2 \theta \\ %&& \cos^6 \theta - \sin^6 \theta &= (\cos^2 \theta - \sin^2 \theta)(\cos^4 \theta + \cos^2 \theta \sin^2 \theta + \sin^4 \theta) \\ %&&&= \cos 2 \theta (1 - \tfrac12 \sin^2 2 \theta + \tfrac14 \sin^2 2 \theta) \\ %&&&= \cos 2 \theta (1 - \tfrac14 \sin^2 2 \theta) \\ \end{align*} \begin{align*} && I &= \int_{0}^{\pi/2} \cos^6 \theta \d \theta \\ && J &= \int_0^{\pi/2} \sin^6 \theta \d \theta \\ && I-J &= 0 \\ && I+J &= \int_0^{\pi/2} (1 - \tfrac34 \sin^2 2 \theta) \d \theta \\ &&&= \frac{\pi}{2} - \frac{3\pi}{16} = \frac{5\pi}{16} \\ \Rightarrow && I = J &= \frac{5\pi}{32} \end{align*}
Show that \(x^3-3xbc + b^3 + c^3\) can be written in the form \(\left( x+ b+ c \right) {\rm Q}( x)\), where \({\rm Q}( x )\) is a quadratic expression. Show that \(2{\rm Q }( x )\) can be written as the sum of three expressions, each of which is a perfect square. It is given that the equations \(ay^2 + by + c =0\) and \(by^2 + cy + a = 0\) have a common root \(k\). The coefficients \(a\), \(b\) and \(c\) are real, \(a\) and \(b\) are both non-zero, and \(ac \neq b^2\). Show that \[ \left( ac - b^2 \right) k = bc - a^2 \] and determine a similar expression involving \(k^2\). Hence show that \[ \left( ac - b^2 \right) \left(ab-c^2 \right) = \left( bc - a^2 \right)^2 \] and that \( a^3 -3abc + b^3 +c^3 = 0\,\). Deduce that either \(k=1\) or the two equations are identical.
Solution: \begin{align*} && x^3 - 3xbc+b^3 + c^3 &= (x+b+c)(x^2-x(b+c)+b^2+c^2-bc) \\ &&&= \tfrac12(x+b+c)((x-b)^2+(x-c)^2+(b-c)^2) \\ \end{align*} We must have: \begin{align*} && 0 &= ak^2 + bk+c \tag{1}\\ &&0 &= bk^2+ck+a \tag{2}\\ b*(1)&& 0 &= abk^2 + b^2k+cb \\ a*(2)&& 0 &= abk^2 + ack + a^2 \\ \Rightarrow && 0 &= k(ac-b^2)+a^2-bc \\ \Rightarrow && (ac-b^2)k &= bc-a^2 \\ \\ c*(1) && 0 &= ack^2+bck+c^2 \\ b*(2) && 0 &= b^2k^2+bck+ab \\ \Rightarrow && 0 &= (ac-b^2)k^2 +c^2-ab \\ \Rightarrow && (ac-b^2)k^2 &= ab-c^2 \\ \\ \Rightarrow && \frac{ab-c^2}{ac-b^2} &= k^2 = \left (\frac{bc-a^2}{ac-b^2} \right)^2 \\ \Rightarrow && (ab-c^2)(ac-b^2) &= (bc-a^2)^2 \\ \Rightarrow && a^2bc - ab^3-ac^3+b^2c^2 &= b^2c^2-2a^2bc+a^4 \\ \Rightarrow && 0 &= a^4+ab^3+ac^3-3a^2bc \\ &&&= a(a^3+b^3+c^3-3abc) \\ \underbrace{\Rightarrow}_{a \neq 0} && 0 &= a^3+b^3+c^3-3abc \\ &&&= (a+b+c)((a-b)^2+(b-c)^2+(c-a)^2) \end{align*} Therefore \(a+b+c = 0\). (Since otherwise \(a=b=c\) but \(ac \neq b^2\)). This means \(1\) is a root of our equations. Therefore, either \(k = 1\) or they have both roots in common, ie they are the same equation up to a scalar factor. ie \(b = la, c = lb, a= lc \Rightarrow l^3 = 1 \Rightarrow l = 1\). Therefore, they are the same equation.
Note: a regular octahedron is a polyhedron with eight faces each of which is an equilateral triangle.
Solution:
Solution:
A curve is given by the equation \[ y = ax^3 - 6ax^2+ \left( 12a + 12 \right)x - \left( 8a + 16 \right)\,, \tag{\(*\)} \] where \(a\) is a real number. Show that this curve touches the curve with equation \[ y=x^3 \tag{\(**\)} \] at \(\left( 2 \, , \, 8 \right)\). Determine the coordinates of any other point of intersection of the two curves.
Solution: \begin{align*} && y &= ax^3 - 6ax^2+ \left( 12a + 12 \right)x - \left( 8a + 16 \right) \\ && y(2) &= 8a-24a+24a+24-8a-16 \\ &&&= 8 \\ && y'(x) &= 3ax^2-12ax+(12a+12) \\ && y'(0) &= 12a-24a+12a+12 \\ &&&= 12 \end{align*} Therefore since our curve has the same value and gradient at \((2,8)\) as \(y = x^3\) they must touch at this point. Therefore \begin{align*} && ax^3 - 6ax^2+ \left( 12a + 12 \right)x - \left( 8a + 16 \right) - x^3 &= (x-2)^2((a-1)x-(2a+4)) \end{align*} Therefore if \(a \neq 1\), they touch again when \(x = \frac{2a+4}{a-1}\).
A particle of weight \(W\) is placed on a rough plane inclined at an angle of \(\theta\) to the horizontal. The coefficient of friction between the particle and the plane is \(\mu\). A horizontal force \(X\) acting on the particle is just sufficient to prevent the particle from sliding down the plane; when a horizontal force \(kX\) acts on the particle, the particle is about to slide up the plane. Both horizontal forces act in the vertical plane containing the line of greatest slope. Prove that \[ \left( k-1 \right) \left( 1 + \mu^2 \right) \sin \theta \cos \theta = \mu \left( k + 1 \right) \] and hence that $\displaystyle k \ge \frac{ \left( 1+ \mu \right)^2} { \left( 1 - \mu \right)^2}$ .
The Norman army is advancing with constant speed \(u\) towards the Saxon army, which is at rest. When the armies are \(d\) apart, a Saxon horseman rides from the Saxon army directly towards the Norman army at constant speed \(x\). Simultaneously a Norman horseman rides from the Norman army directly towards the Saxon army at constant speed \(y\), where $y > u$. The horsemen ride their horses so that \(y - 2x < u < 2y - x\). When each horseman reaches the opposing army, he immediately rides straight back to his own army without changing his speed. Represent this information on a displacement-time graph, and show that the two horsemen pass each other at distances \[ \frac{xd }{ x + y} \;\; \mbox{and} \;\; \frac{xd(2y -x-u)} {(u+x ) ( x + y )} \] from the Saxon army. Explain briefly what will happen in the cases (i) \(u > 2y - x\) and (ii) \(u < y - 2x\).