Find the integer, \(n\), that satisfies \(n^2 < 33\,127< (n+1)^2\). Find also a small integer \(m\) such that \((n+m)^2-33\,127\) is a perfect square. Hence express \(33\,127\) in the form \(pq\), where \(p\) and \(q\) are integers greater than \(1\). By considering the possible factorisations of \(33\, 127\), show that there are exactly two values of \(m\) for which \((n+m)^2 -33\,127\) is a perfect square, and find the other value.
Solution: \begin{align*} 180^2 &= 32400 \\ 181^2 &= 32761 \\ 182^2 &= 33124 \\ 183^2 &= 33489 \\ 184^2 &= 33856 \end{align*} Therefore \(182^2 < 33\,127 < (182+1)^2\). and \((182+2)^2 - 33\,127 = 729 = 27^2\). Therefore \(33\,127 = 184^2 - 27^2 = 211 \times 157\). (Note both of these numbers are prime). Suppose \((n+m)^2 - 33\,127 = k^2\) then \(33\,127 = (n+m)^2-k^2 = (n+m-k)(n+m+k)\). Since there are only two factorisations of \(33\,127\) into positive integer factors with one factor larger than the other, the other factorisation must be: \(n+m+k = 33\,127, n+m-k = 1 \Rightarrow k = \frac{33\, 126}{2} = 16563\), ie \(16564^2 - 33\,127 = 16563^2\)
A small goat is tethered by a rope to a point at ground level on a side of a square barn which stands in a large horizontal field of grass. The sides of the barn are of length \(2a\) and the rope is of length \(4a\). Let \(A\) be the area of the grass that the goat can graze. Prove that \(A\le14\pi a^2\) and determine the minimum value of \(A\).
Solution:
In this question \(b\), \(c\), \(p\) and \(q\) are real numbers.
Solution:
By sketching on the same axes the graphs of \(y=\sin x\) and \(y=x\), show that, for \(x>0\):
Solution:
Solution:
{\it Note that the volume of a tetrahedron is equal to \(\frac1 3\) \(\times\) the area of the base \(\times\) the height.} The points \(O\), \(A\), \(B\) and \(C\) have coordinates \((0,0,0)\), \((a,0,0)\), \((0,b,0)\) and \((0,0,c)\), respectively, where \(a\), \(b\) and \(c\) are positive.
A block of mass \(4\,\)kg is at rest on a smooth, horizontal table. A smooth pulley \(P\) is fixed to one edge of the table and a smooth pulley \(Q\) is fixed to the opposite edge. The two pulleys and the block lie in a straight line. Two horizontal strings are attached to the block. One string runs over pulley \(P\); a particle of mass \(x\,\)kg hangs at the end of this string. The other string runs over pulley \(Q\); a particle of mass \(y\,\)kg hangs at the end of this string, where \(x > y\) and \(x + y = 6\,\). The system is released from rest with the strings taut. When the \(4\,\)kg block has moved a distance \(d\), the string connecting it to the particle of mass \(x\,\)kg is cut. Show that the time taken by the block from the start of the motion until it first returns to rest (assuming that it does not reach the edge of the table) is \(\sqrt{d/(5g)\,} \,\f(y)\), where \[ \f(y)= \frac{10}{ \sqrt{6-2y}}+ \left(1 + \frac{4}{ y} \right) \sqrt {6 -2y}. \] Calculate the value of \(y\) for which \(\f'(y)=0\).
A particle \(P\) is projected in the \(x\)-\(y\) plane, where the \(y\)-axis is vertical and the \(x\)-axis is horizontal. The particle is projected with speed \(V\) from the origin at an angle of \(45 ^\circ\) above the positive \(x\)-axis. Determine the equation of the trajectory of \(P\). The point of projection (the origin) is on the floor of a barn. The roof of the barn is given by the equation \(y= x \tan \alpha +b\,\), where \(b>0\) and \(\alpha\) is an acute angle. Show that, if the particle just touches the roof, then \(V(-1+ \tan\alpha) =-2 \sqrt{bg}\); you should justify the choice of the negative root. If this condition is satisfied, find, in terms of \(\alpha\), \(V\) and \(g\), the time after projection at which touching takes place. A particle \(Q\) can slide along a smooth rail fixed, in the \(x\)-\(y\) plane, to the under-side of the roof. It is projected from the point \((0,b)\) with speed \(U\) at the same time as \(P\) is projected from the origin. Given that the particles just touch in the course of their motions, show that \[ 2 \sqrt 2 \, U \cos \alpha = V \big(2 + \sin\alpha\cos\alpha -\sin^2\alpha) . \]