PDF generation for Chi-squared distribution has been started.

Problems

Filters
Clear Filters
2003 Paper 1 Q1
D: 1484.0 B: 1484.0

It is given that \(\sum\limits_{r=-1}^ {n} r^2\) can be written in the form \(pn^3 +qn^2+rn+s\,\), where \(p\,\), \(q\,\), \(r\,\) and \(s\) are numbers. By setting \(n=-1\), \(0\), \(1\) and \(2\), obtain four equations that must be satisfied by \(p\,\), \(q\,\), \(r\,\) and \(s\) and hence show that \[ { \sum\limits_{r=0} ^n} r^2= {\textstyle \frac16} n(n+1)(2n+1)\;. \] Given that \(\sum\limits_{r=-2}^ nr^3\) can be written in the form \(an^4 +bn^3+cn^2+dn +e\,\), show similarly that \[ { \sum\limits_{r=0} ^n} r^3= {\textstyle \frac14} n^2(n+1)^2\;. \]


Solution: \begin{align*} n = -1: && (-1)^2 &= s - r+q -p \\ n = 0: && 1 + 0 &= s \\ n = 1: && 1 + 1 &= s + r + q + p \\ n = 2: && 2 + 2^2 &= s + 2r + 4q + 8p \\ \Rightarrow &&& \begin{cases} 1 &= s \\ 1 &= s - r + q - p \\ 2 &= s + r + q + p \\ 6 &= s + 2r + 4q + 8p \end{cases} \\ \Rightarrow && s &= 1 \\ && q &= \frac12 \\ &&& \begin{cases} \frac12 &= r + p \\ 3 &= 2r + 8p \end{cases} \\ \Rightarrow && r &= \frac16 \\ && p &= \frac13 \\ \Rightarrow && \sum_{r=0}^n r^2 &= 1 + \frac16 n + \frac12 n^2 + \frac13 n^3 - (-1)^2 \\ &&&= \frac{n}{6} \l 1 + 3n + 2n^2 \r \\ &&&= \frac{n(n+1)(2n+1)}{6} \end{align*} Similarly, \begin{align*} n = -2: && (-2)^3 &= e - 2d + 4c - 8b + 16a \\ n = -1: && -8 + (-1)^3 &= e -d+c-b+a \\ n = 0: && -9 + 0^3 &= e \\ n = 1: && -9 + 1^3 &= e+d+c+b+a \\ n = 2: && -8 + 2^3 &= e+2d+4c+8b+16a \\ \Rightarrow &&& \begin{cases} -9 &= e \\ -9 &= e - d+c -b + a \\ -8 &= e +d+c+b+a \\ -8 &= e-2d+4c-8b+16a \\ 0 &= e+2d+4c+8b+16a \\ \end{cases} \\ \Rightarrow && e &= -9 \\ \Rightarrow &&& \begin{cases} 1 &= 2c+2a \\ 10 &= 8c+32a \\ 1 &= 2d+2b \\ 8 &= 4d+16b \\ \end{cases} \\ \Rightarrow && a &= \frac14 \\ && c &= \frac14 \\ && b &= \frac12 \\ && d &= 0 \\ \\ \Rightarrow && \sum_{r=0}^n r^3 &= -9 + \frac14n^2 + \frac12 n^3+\frac14 n^4 -((-1)^3+(-2)^3) \\ &&&= \frac14n^2 \l1 + 2n+n^2\r \\ &&&= \frac{n^2(n+1)^2}{4} \end{align*} as required

2003 Paper 1 Q2
D: 1500.0 B: 1484.0

The first question on an examination paper is: \hspace*{3cm} Solve for \(x\) the equation \ \ \ $\ds \frac 1x = \frac 1 a + \frac 1b \;. $ \noindent where (in the question) \(a\) and \(b\) are given non-zero real numbers. One candidate writes \(x=a+b\) as the solution. Show that there are no values of \(a\) and \(b\) for which this will give the correct answer. The next question on the examination paper is: \hspace*{3cm} Solve for \(x\) the equation \ \ \ $\ds \frac 1x = \frac 1 a + \frac 1b +\frac 1c \;. $ \noindent where (in the question) \(a\,\), \(b\) and \(c\) are given non-zero numbers. The candidate uses the same technique, giving the answer as $\ds x = a + b +c \;. $ Show that the candidate's answer will be correct if and only if \(a\,\), \(b\) and \(c\) satisfy at least one of the equations \(a+b=0\,\), \(b+c=0\) or \(c+a=0\,\).

2003 Paper 1 Q3
D: 1500.0 B: 1484.0

  1. Show that \( 2\sin(\frac12\theta)=\sin \theta\) if and only if \(\sin(\frac12\theta)=0\,\).
  2. Solve the equation \(2\tan (\frac12\theta) = \tan\theta\,\).
  3. Show that \(2\cos(\frac12\theta)=\cos \theta\) if and only if \(\theta=(4n+2)\pi\pm 2\phi\) where \(\phi\) is defined by \(\cos \phi=\frac12(\sqrt 3-1)\;\), \(0\le \phi\le \frac{1}{2}\pi\), and \(n\) is any integer.


Solution:

  1. \(\,\) \begin{align*} && 2 \sin (\tfrac12 \theta) &= \sin \theta \\ \Leftrightarrow && 2 \sin (\tfrac12 \theta) &= 2\sin (\tfrac12 \theta) \cos (\tfrac12 \theta) \\ \Leftrightarrow && 0 &= 2\sin(\tfrac12\theta)(1-\cos(\tfrac12 \theta)) \\ \Leftrightarrow && 0 = \sin(\tfrac12 \theta) &\text{ or } 1 = \cos(\tfrac12 \theta) \\ \Leftrightarrow && 0 &= \sin(\tfrac12 \theta) \end{align*}
  2. Let \(= \tan(\tfrac12 \theta)\), then \begin{align*} && 2t &= \frac{2t}{1-t^2} \\ \Leftrightarrow && 0 &= \frac{2t(1-(1-t^2)}{1-t^2} \\ &&&= \frac{2t^3}{1-t^2} \\ \Leftrightarrow && t&= 0 \\ \Leftrightarrow && \frac12\theta &= n \pi \\ \Leftrightarrow && \theta &= 2n\pi \end{align*}
  3. Let \(c = \cos(\tfrac12 \theta)\), then \begin{align*} && 2c &= 2c^2 - 1 \\ && 0 &= 2c^2-2c-1 \\ \Leftrightarrow && c &= \frac{2 \pm \sqrt{4+8}}{4} \\ &&&= \frac{1 \pm \sqrt{3}}{2} \\ \Leftrightarrow && c &= \frac{1 - \sqrt{3}}{2} \\ \Leftrightarrow && \frac12 \theta &= \pm \cos^{-1} \frac{1 - \sqrt{3}}{2} + 2n \pi \\ &&&= \mp (\phi+\pi) + 2n \pi \\ \Leftrightarrow && \theta &= (4n+2)\pi \pm 2\phi \end{align*}

2003 Paper 1 Q4
D: 1500.0 B: 1500.0

Solve the inequality $$\frac{\sin\theta+1}{\cos\theta}\le1\;$$ where \(0\le\theta<2\pi\,\) and \(\cos\theta\ne0\,\).


Solution:

TikZ diagram
\(\theta \in \{0\} \cup (\frac{\pi}{2}, 2\pi]\). In \((0, \frac{\pi}{2})\) \(\cos \theta < 1 + \sin \theta\), and then it's either negative or greater than \(1+ \sin \theta\)

2003 Paper 1 Q5
D: 1500.0 B: 1500.6

  1. In the binomial expansion of \((2x+1/x^{2})^{6}\;\) for \(x\ne0\), show that the term which is independent of \(x\) is \(240\). Find the term which is independent of \(x\) in the binomial expansion of \((ax^3+b/x^{2})^{5n}\,\).
  2. Let \(\f(x) =(x^6+3x^5)^{1/2}\,\). By considering the expansion of \((1+3/x)^{1/2}\,\) show that the term which is independent of \(x\) in the expansion of \(\f(x)\) in powers of \(1/x\,\), for \( \vert x\vert>3\,\), is \(27/16\,\). Show that there is no term independent of \(x\,\) in the expansion of \(\f(x)\) in powers of \(x\,\), for \( \vert x\vert<3\,\).


Solution:

  1. The terms will all be of the form \(x^{6-3k}\), so we are looking for \(\binom{6}{2}2^{4} \cdot 1^2 = 6 \cdot 5 \cdot 8 = 240\) The terms will be \(x^{(5n-k)3 -2k} = x^{15n-5k}\), so we want \(k = 3n\), \(\binom{5n}{3n}a^{5n-3n}b^{5n-2n} = \binom{5n}{3n}a^{2n}b^{3n}\)
  2. Let \(f(x) = (x^6+3x^5)^{1/2}\) If \(|x| > 3\), then consider \begin{align*} && f(x) &= x^3(1+3/x)^{1/2} \\ &&&= x^3 \left (1 + \frac12 \frac{3}{x} +\frac{1}{2!} \frac12\cdot \frac{-1}{2} \left ( \frac{3}{x} \right)^2 + \frac{1}{3!} \frac{1}{2} \cdot \frac{-1}{2} \cdot \frac{-3}{2} \left (\frac{3}{x} \right)^3 + \cdots \right) \\ &&&= \cdots \frac{1}{6} \frac{3}{8} 27x^0 + \cdots \\ &&&= \cdots + \frac{27}{16} + \cdots \end{align*} If \(|x| < 3\) we can consider \(f(0) = 0\) and notice that there must be no term independent of \(x\)

2003 Paper 1 Q6
D: 1500.0 B: 1484.0

Evaluate the following integrals, in the different cases that arise according to the value of the positive constant \(a\,\):

  1. \[ \displaystyle \int_0^1 \frac 1 {x^2 + (a+2)x +2a} \; \d x \]
  2. \[\displaystyle \int _{1}^2\frac 1 {u^2 +au +a-1} \; \d u\]


Solution:

  1. \(\,\) \begin{align*} && I &= \int_0^1 \frac 1 {x^2 + (a+2)x +2a} \; \d x \\ &&&= \int_0^1 \frac{1}{(x+a)(x+2)} \d x\\ \end{align*} Case 1: \(a = 2\) \begin{align*} && I &= \int_0^1 \frac{1}{(x+2)^2} \d x \\ &&&= \left [ -(x+2)^{-1}\right]_0^1 = \frac12 - \frac13 = \frac16 \end{align*} Case 2: \(a \neq 2, a \not \in [0,1]\) \begin{align*} && I &=\frac{1}{a-2} \int_0^1 \left ( \frac{1}{x+2} - \frac{1}{x+a} \right) \d x \\ &&&= \frac{1}{a-2} \left [ \ln |x+2| - \ln |x + a|\right]_0^1 \\ &&&= \frac{1}{a-2} \left ( \ln \frac{3}{|1+a|} - \ln \frac{2}{|a|} \right) \\ &&&= \frac{1}{a-2} \ln \frac{3|a|}{2|a+1|} \end{align*} Case 3: \(a \in [0, 1]\), \(I\) does not converge
  2. \(\,\) \begin{align*} && J &= \int _{1}^2\frac 1 {u^2 +au +a-1} \; \d u \\ &&&= \int_1^2 \frac{1}{(u+a-1)(u+1)} \d u \\ x = u-1:&&&= \int_0^1 \frac{1}{(x+a)(x+2)} \d x \end{align*} So it's the same as the previous integral

2003 Paper 1 Q7
D: 1484.0 B: 1516.0

Let \(k\) be an integer satisfying \(0\le k \le 9\,\). Show that \(0\le 10k-k^2\le 25\) and that \(k(k-1)(k+1)\) is divisible by \(3\,\). For each \(3\)-digit number \(N\), where \(N\ge100\), let \(S\) be the sum of the hundreds digit, the square of the {tens} digit and the cube of the {units} digit. Find the numbers \(N\) such that \(S=N\). \noindent[Hint: write \(N=100a+10b+c\,\) where \(a\,\), \(b\,\) and \(c\) are the digits of \(N\,\).]

2003 Paper 1 Q8
D: 1516.0 B: 1484.0

A liquid of fixed volume \(V\) is made up of two chemicals \(A\) and \(B\,\). A reaction takes place in which \(A\) converts to \(B\,\). The volume of \(A\) at time \(t\) is \(xV\) and the volume of \(B\) at time \(t\) is \(yV\) where \(x\) and \(y\) depend on \(t\) and \(x+y=1\,\). The rate at which \(A\) converts into \(B\) is given by \(kVxy\,\), where \(k\) is a positive constant. Show that if both \(x\) and \(y\) are strictly positive at the start, then at time \(t\) \[ y= \frac {D\e^{kt}}{1+D \e^{kt}} \;, \] where \(D\) is a constant. Does \(A\) ever completely convert to \(B\,\)? Justify your answer.

2003 Paper 1 Q9
D: 1500.0 B: 1500.0

A particle is projected with speed \(V\) at an angle \(\theta\) above the horizontal. The particle passes through the point \(P\) which is a horizontal distance \(d\) and a vertical distance \(h\) from the point of projection. Show that \[ T^2 -2kT + \frac{2kh}{d}+1=0\;, \] where \(T=\tan\theta\) and \(\ds k= \frac{V^2}{gd}\,\). %Derive an equation relating \(\tan \theta\), \(V\), \(g\), \(d\) and \(h\). Show that, if \(\displaystyle {kd > h + \sqrt {h^2 + d^2}}\;\), there are two distinct possible angles of projection. Let these two angles be \(\alpha\) and \(\beta\). Show that \(\displaystyle \alpha + \beta = \pi - \arctan ( {d/ h}) \,\).

2003 Paper 1 Q10
D: 1500.0 B: 1500.0

\(ABCD\) is a uniform rectangular lamina and \(X\) is a point on \(BC\,\). The lengths of \(AD\), \(AB\) and \(BX\) are \(p\,\), \(q\) and \(r\) respectively. The triangle \(ABX\) is cut off the lamina. Let \((a,b)\) be the position of the centre of gravity of the lamina, where the axes are such that the coordinates of \(A\,\), \(D\) and \(C\) are \((0,0)\,\), \((p,0)\) and \((p,q)\) respectively. Derive equations for \(a\) and \(b\) in terms of \(p\,\), \(q\) and \(r\,\). When the resulting trapezium is freely suspended from the point \(A\,\), the side \(AD\) is inclined at \(45^\circ\) below the horizontal. Show that \(\displaystyle r = q - \sqrt{q^2 - 3pq + 3p^2}\,\). You should justify carefully the choice of sign in front of the square root.


Solution:

TikZ diagram
\begin{array}{c|c|c|c} & ABX & ABCD & AXCD \\ \hline \text{area} & \frac12 q r & pq & q(p - \frac12 r) \\ \text{com} & \binom{\frac{r}{3}}{\frac{2q}{3}} & \binom{p/2}{q/2} & \binom{a}{b} \end{array} \begin{align*} && q(p-\frac12 r) \binom{a}{b} &= pq\binom{p/2}{q/2} - \frac12 q r \binom{\frac{r}{3}}{\frac{2q}{3}} \\ \Rightarrow && \binom{a}{b} &= \frac{2}{2p-r}\binom{p^2/2-\frac16r^2}{pq/2-\frac13qr} \\ &&&= \binom{\frac{p^2-\frac13 r^2}{2p-r}}{\frac{pq-\frac23qr}{2p-r}} \end{align*}
TikZ diagram
We must have: \begin{align*} && 1 &= \frac{p^2-\frac13r^2}{pq-\frac23qr} \\ \Rightarrow && pq-\frac23qr &= p^2 - \frac13 r^2 \\ \Rightarrow && 0 &=r^2-2q r + 3p(q-p) \\ \Rightarrow && 0 &= (r-q)^2 -q^2+3pq-3p^2 \\ \Rightarrow && r&= q \pm \sqrt{q^2-3pq+3p^2} \end{align*} Suppose \(r > q\), then \(p > q > r\) and we have a shape which looks like this
TikZ diagram
which definitely wouldn't have \(G\) hanging below \(A\).