Show that you can make up 10 pence in eleven ways using 10p, 5p, 2p and 1p coins. In how many ways can you make up 20 pence using 20p, 10p, 5p, 2p and 1p coins? You are reminded that no credit will be given for unexplained answers.
Solution: Writing out the possibilities in order of the largest coin used (and then second largest and so-on): \begin{align*} && 10 &= 10 \\ &&&= 5 + 5 \\ &&&= 5 + 2 + 2 + 1 \\ &&&= 5 + 2 + 1 + 1 + 1 \\ &&&= 5 + 1 + 1 + 1 + 1 + 1\\ &&&= 2 + 2 + 2 + 2 + 2 = 5 \cdot 2\\ &&&= 4 \cdot 2 + 2 \cdot 1 \\ &&&= 3 \cdot 2 + 4 \cdot 1\\ &&&= 2 \cdot 2 + 6\cdot 1\\ &&&= 1 \cdot 2 + 8\cdot 1 \\ &&&= 10 \cdot 1 \end{align*} For 20p, we have \begin{align*} && 20 &= 20 \\ &&&= 10 + \text{all 11 ways} \\ &&&= 4\cdot 5 \\ &&&= 3\cdot 5 +\text{3 ways} \\ &&&= 2\cdot5 + \text{6 ways} \\ &&&= 1\cdot 5 + \text{8 ways} \\ &&&= k\cdot 2 + (20-2k)\cdot 1 \quad \text{11 ways} \end{align*} ie 41 ways
Solution:
Let \(a_{1}=3\), \(a_{n+1}=a_{n}^{3}\) for \(n\geqslant 1\). (Thus \(a_{2}=3^{3}\), \(a_{3}=(3^{3})^{3}\) and so on.)
Solution:
Find all the solutions of the equation \[|x+1|-|x|+3|x-1|-2|x-2|=x+2.\]
Four rigid rods \(AB\), \(BC\), \(CD\) and \(DA\) are freely jointed together to form a quadrilateral in the plane. Show that if \(P\), \(Q\), \(R\), \(S\) are the mid-points of the sides \(AB\), \(BC\), \(CD\), \(DA\), respectively, then \[|AB|^{2}+|CD|^{2}+2|PR|^{2}=|AD|^{2}+|BC|^{2}+2|QS|^{2}.\] Deduce that \(|PR|^{2}-|QS|^{2}\) remains constant however the vertices move. (Here \(|PR|\) denotes the length of \(PR\).)
Find constants \(a_{0}\), \(a_{1}\), \(a_{2}\), \(a_{3}\), \(a_{4}\), \(a_{5}\), \(a_{6}\) and \(b\) such that \[x^{4}(1-x)^{4}=(a_{6}x^{6}+a_{5}x^{5}+a_{4}x^{4}+a_{3}x^{3}+ a_{2}x^{2}+a_{1}x+a_{0})(x^{2}+1)+b.\] Hence, or otherwise, prove that \[\int_{0}^{1}\frac{x^{4}(1-x)^{4}}{1+x^{2}}{\rm d}x =\frac{22}{7}-\pi.\] Evaluate \(\displaystyle{\int_{0}^{1}x^{4}(1-x)^{4}{\rm d}x}\) and deduce that \[\frac{22}{7}>\pi>\frac{22}{7}-\frac{1}{630}.\]
Solution: Plugging in \(x = i\) we obtain \((1-i)^4 = (-2i)^2 = -4 \Rightarrow b = -4\). \begin{align*} x^4(1-x)^4 &= x^4(1-4x+6x^2-4x^3+x^4) \\ &= x^8-4x^7+6x^6-4x^5+x^4 \\ &= x^6(x^2+1) - x^6 -4x^7+6x^6-4x^5+x^4 \\ &= x^6(x^2+1) -4x^5(x^2+1)+4x^5 +5x^6-4x^5+x^4 \\ &= (x^6-4x^5)(x^2+1) +5x^4(x^2+1)-5x^4+x^4 \\ &= (x^6-4x^5+5x^4)(x^2+1) -4x^2(x^2+1)+4x^2 \\ &= (x^6-4x^5+5x^4-4x^2)(x^2+1) +4(x^2+1)-4 \\ &= (x^6-4x^5+5x^4-4x^2+4)(x^2+1) -4 \\ \end{align*} So \begin{align*} \int_0^1 \frac{x^4(1-x)^4}{1+x^2} \d x &= \int_0^1 (x^6-4x^5+5x^4-4x^2+4) - \frac{4}{1+x^2} \d x \\ &= \frac17 - \frac46+1-\frac43+4 - \pi \\ &= \frac{22}7 - \pi \end{align*} \begin{align*} \int_0^1 x^4(1-x)^4 \d x &= B(5,5) \\ &= \frac{4!4!}{9!} \\ &= \frac1{630} \end{align*} Therefore since \(0 < \frac{x^4(1-x)^4}{1+x^2} < x^4(1-x)^4\) we must have that \begin{align*} && 0 &< \frac{22}7 - \pi \\ \Rightarrow && \pi & < \frac{22}{7} \\ && \frac{22}{7} - \pi &< \frac1{630} \\ \Rightarrow && \frac{22}{7} - \frac1{630} &< \pi \end{align*} which is what we wanted.
Find constants \(a_{1}\), \(a_{2}\), \(u_{1}\) and \(u_{2}\) such that, whenever \({\mathrm P}\) is a cubic polynomial, \[\int_{-1}^{1}{\mathrm P}(t)\,{\mathrm d}t =a_{1}{\mathrm P}(u_{1})+a_{2}{\mathrm P}(u_{2}).\]
Solution: Since this is true for all cubic polynomials, it must be true in particular for \(1, x, x^2, x^3\), therefore: \begin{align*} \int_{-1}^{1} 1 {\mathrm d}t &=a_{1}+a_{2} &=2\\ \int_{-1}^{1} x {\mathrm d}t &=a_{1}u_1+a_{2}u_2 &= 0 \\ \int_{-1}^{1} x^2 {\mathrm d}t &=a_{1}u_1^2+a_{2}u_2^2 &= \frac23\\ \int_{-1}^{1} x^3 {\mathrm d}t &=a_{1}u_1^3+a_{2}u_2^3 &= 0\\ \end{align*} \begin{align*} && \begin{cases} a_{1}+a_{2} &=2 \\ a_{1}u_1+a_{2}u_2 &= 0 \\ a_{1}u_1^2+a_{2}u_2^2 &= \frac23\\ a_{1}u_1^3+a_{2}u_2^3 &= 0\\ \end{cases} \\ \Rightarrow && \begin{cases} a_{1}(u_1^2 - \frac13) + a_{2}(u_2^2 - \frac13) &= 0 \\ a_{1}u_1(u_1^2 - \frac13) + a_{2}u_2(u_2^2 - \frac13) &= 0 \end{cases} \\ \Rightarrow && \begin{cases} u_i = \pm \frac1{\sqrt{3}} \\ a_i = 1\end{cases} \end{align*} Therefore we have: \[\int_{-1}^{1}{\mathrm P}(t)\,{\mathrm d}t ={\mathrm P} \l \frac1{\sqrt{3}} \r+{\mathrm P}\l -\frac1{\sqrt{3}} \r \] [Note: this question is actually asking about Gauss-Legendre polynomials, and could be done directly by appealing to standard results]
By considering the maximum of \(\ln x-x\ln a\), or otherwise, show that the equation \(x=a^{x}\) has no real roots if \(a > e^{1/e}\). How many real roots does the equation have if \(0 < a < 1\)? Justify your answer.
A single stream of cars, each of width \(a\) and exactly in line, is passing along a straight road of breadth \(b\) with speed \(V\). The distance between the successive cars is \(c\).
The point \(A\) is vertically above the point \(B\). A light inextensible string, with a smooth ring \(P\) of mass \(m\) threaded onto it, has its ends attached at \(A\) and \(B\). The plane \(APB\) rotates about \(AB\) with constant angular velocity \(\omega\) so that \(P\) describes a horizontal circle of radius \(r\) and the string is taut. The angle \(BAP\) has value \(\theta\) and the angle \(ABP\) has value \(\phi\). Show that \[\tan\frac{\phi-\theta}{2}=\frac{g}{r\omega^{2}}.\] Find the tension in the string in terms of \(m\), \(g\), \(r\), \(\omega\) and \(\sin\frac{1}{2}(\theta+\phi)\). Deduce from your results that if \(r\omega^2\) is small compared with \(g\), then the tension is approximately \(\frac{mg}{2}\)
Solution: None \begin{multicols}{2}