Problems

Filters
Clear Filters
1997 Paper 1 Q1
D: 1484.0 B: 1500.0

Show that you can make up 10 pence in eleven ways using 10p, 5p, 2p and 1p coins. In how many ways can you make up 20 pence using 20p, 10p, 5p, 2p and 1p coins? You are reminded that no credit will be given for unexplained answers.


Solution: Writing out the possibilities in order of the largest coin used (and then second largest and so-on): \begin{align*} && 10 &= 10 \\ &&&= 5 + 5 \\ &&&= 5 + 2 + 2 + 1 \\ &&&= 5 + 2 + 1 + 1 + 1 \\ &&&= 5 + 1 + 1 + 1 + 1 + 1\\ &&&= 2 + 2 + 2 + 2 + 2 = 5 \cdot 2\\ &&&= 4 \cdot 2 + 2 \cdot 1 \\ &&&= 3 \cdot 2 + 4 \cdot 1\\ &&&= 2 \cdot 2 + 6\cdot 1\\ &&&= 1 \cdot 2 + 8\cdot 1 \\ &&&= 10 \cdot 1 \end{align*} For 20p, we have \begin{align*} && 20 &= 20 \\ &&&= 10 + \text{all 11 ways} \\ &&&= 4\cdot 5 \\ &&&= 3\cdot 5 +\text{3 ways} \\ &&&= 2\cdot5 + \text{6 ways} \\ &&&= 1\cdot 5 + \text{8 ways} \\ &&&= k\cdot 2 + (20-2k)\cdot 1 \quad \text{11 ways} \end{align*} ie 41 ways

1997 Paper 1 Q2
D: 1516.0 B: 1484.0

  1. If \[{\mathrm f}(x)=\tan^{-1}x+\tan^{-1}\left(\frac{1-x}{1+x}\right),\] find \({\mathrm f}'(x)\). Hence, or otherwise, find a simple expression for \({\mathrm f}(x)\).
  2. Suppose that \(y\) is a function of \(x\) with \(0 < y < (\pi/2)^{1/2}\) and \[x=y\sin y^{2}\] for \(0 < x < (\pi/2)^{1/2}\). Show that (for this range of \(x\)) \[\frac{{\mathrm d}y}{{\mathrm d}x}= \frac{y}{x+2y^2\sqrt{y^{2}-x^{2}}}.\]


Solution:

  1. \begin{align*} && f(x)&=\tan^{-1}x+\tan^{-1}\left(\frac{1-x}{1+x}\right) \\ \Rightarrow && f'(x) &= \frac{1}{1+x^2} + \frac{1}{1+\l \frac{1-x}{1+x} \r^2} \cdot \l \frac{-2}{(1+x)^2}\r \\ &&&= \frac1{1+x^2}- \frac{2}{(1+x)^2+(1-x)^2} \\ &&&= \frac1{1+x^2} - \frac{2}{2+2x^2} \\ &&&= 0 \end{align*} Therefore $f(x) = \begin{cases} c_1 & \text{if } x < -1 \\ c_2 & \text{if } x > -1 \end{cases}$ \(f(0) = \tan^{-1} 0 + \tan^{-1} 1 = \frac{\pi}{4}\) \(\lim_{x \to \infty} f(x) = -\frac{\pi}{2} + \tan^{-1} -1 = -\frac{3\pi}{4}\) therefore $f(x) = \begin{cases} -\frac{3\pi}{4}& \text{if } x < -1 \\ \frac{\pi}{4} & \text{if } x > -1 \end{cases}$
  2. \begin{align*} && x &= y \sin y^2 \\ \Rightarrow && \frac{\d x}{\d y} &= \sin y^2 + 2y^2 \cos y^2 \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{1}{\sin y^2+2y^2 \cos y^2} \\ &&&=\frac{1}{\frac{x}{y}+2y^2 \sqrt{1-\sin^2y^2}} \\ &&&= \frac{y}{x + 2y^3 \sqrt{1-\frac{x^2}{y^2}}} \\ &&&= \frac{y}{x+2y^2 \sqrt{y^2-x^2}} \end{align*}

1997 Paper 1 Q3
D: 1484.0 B: 1501.4

Let \(a_{1}=3\), \(a_{n+1}=a_{n}^{3}\) for \(n\geqslant 1\). (Thus \(a_{2}=3^{3}\), \(a_{3}=(3^{3})^{3}\) and so on.)

  1. What digit appears in the unit place of \(a_{7}\)?
  2. Show that \(a_{7}\geqslant 10^{100}\).
  3. What is \(\dfrac{a_{7}+1}{2a_{7}}\) correct to two places of decimals? Justify your answer.


Solution:

  1. Notice that \(a_n = 3^{3^{n-1}}\) in particular, \(a_7 = 3^{3^6}\). Using Fermat's little theorem, we can see that \(3^4 \equiv 1 \pmod{5}\) and so we need to figure out \(3^6 \pmod{4}\), which is clearly \(1\). Therefore \(3^{3^6} \equiv 3^{4k+1} \equiv 3 \pmod{5}\). Therefore the units digit is \(3\).
  2. Notice that \(3^5 > 100\) and \(3^3 > 10\). Therefore \begin{align*} a_7 &= 3^{3^6} \\ &= (3^3)^{3^5} \\ &> 10^{3^5} \\ &> 10^{100} \end{align*}
  3. \begin{align*} \frac{a_7+1}{2a_7} &= \frac12 + \frac1{2a_7} \\ &= 0.5 + 0.\underbrace{000\cdots}_{\text{at least }99\text{ zeros}} \\ &= 0.50 \end{align*} Since \(a_7 > 10^{100}, \, \frac{1}{2a_7} < 10^{-100}\)

1997 Paper 1 Q4
D: 1500.0 B: 1500.0

Find all the solutions of the equation \[|x+1|-|x|+3|x-1|-2|x-2|=x+2.\]

1997 Paper 1 Q5
D: 1500.0 B: 1484.0

Four rigid rods \(AB\), \(BC\), \(CD\) and \(DA\) are freely jointed together to form a quadrilateral in the plane. Show that if \(P\), \(Q\), \(R\), \(S\) are the mid-points of the sides \(AB\), \(BC\), \(CD\), \(DA\), respectively, then \[|AB|^{2}+|CD|^{2}+2|PR|^{2}=|AD|^{2}+|BC|^{2}+2|QS|^{2}.\] Deduce that \(|PR|^{2}-|QS|^{2}\) remains constant however the vertices move. (Here \(|PR|\) denotes the length of \(PR\).)

1997 Paper 1 Q6
D: 1516.0 B: 1500.0

Find constants \(a_{0}\), \(a_{1}\), \(a_{2}\), \(a_{3}\), \(a_{4}\), \(a_{5}\), \(a_{6}\) and \(b\) such that \[x^{4}(1-x)^{4}=(a_{6}x^{6}+a_{5}x^{5}+a_{4}x^{4}+a_{3}x^{3}+ a_{2}x^{2}+a_{1}x+a_{0})(x^{2}+1)+b.\] Hence, or otherwise, prove that \[\int_{0}^{1}\frac{x^{4}(1-x)^{4}}{1+x^{2}}{\rm d}x =\frac{22}{7}-\pi.\] Evaluate \(\displaystyle{\int_{0}^{1}x^{4}(1-x)^{4}{\rm d}x}\) and deduce that \[\frac{22}{7}>\pi>\frac{22}{7}-\frac{1}{630}.\]


Solution: Plugging in \(x = i\) we obtain \((1-i)^4 = (-2i)^2 = -4 \Rightarrow b = -4\). \begin{align*} x^4(1-x)^4 &= x^4(1-4x+6x^2-4x^3+x^4) \\ &= x^8-4x^7+6x^6-4x^5+x^4 \\ &= x^6(x^2+1) - x^6 -4x^7+6x^6-4x^5+x^4 \\ &= x^6(x^2+1) -4x^5(x^2+1)+4x^5 +5x^6-4x^5+x^4 \\ &= (x^6-4x^5)(x^2+1) +5x^4(x^2+1)-5x^4+x^4 \\ &= (x^6-4x^5+5x^4)(x^2+1) -4x^2(x^2+1)+4x^2 \\ &= (x^6-4x^5+5x^4-4x^2)(x^2+1) +4(x^2+1)-4 \\ &= (x^6-4x^5+5x^4-4x^2+4)(x^2+1) -4 \\ \end{align*} So \begin{align*} \int_0^1 \frac{x^4(1-x)^4}{1+x^2} \d x &= \int_0^1 (x^6-4x^5+5x^4-4x^2+4) - \frac{4}{1+x^2} \d x \\ &= \frac17 - \frac46+1-\frac43+4 - \pi \\ &= \frac{22}7 - \pi \end{align*} \begin{align*} \int_0^1 x^4(1-x)^4 \d x &= B(5,5) \\ &= \frac{4!4!}{9!} \\ &= \frac1{630} \end{align*} Therefore since \(0 < \frac{x^4(1-x)^4}{1+x^2} < x^4(1-x)^4\) we must have that \begin{align*} && 0 &< \frac{22}7 - \pi \\ \Rightarrow && \pi & < \frac{22}{7} \\ && \frac{22}{7} - \pi &< \frac1{630} \\ \Rightarrow && \frac{22}{7} - \frac1{630} &< \pi \end{align*} which is what we wanted.

1997 Paper 1 Q7
D: 1516.0 B: 1500.0

Find constants \(a_{1}\), \(a_{2}\), \(u_{1}\) and \(u_{2}\) such that, whenever \({\mathrm P}\) is a cubic polynomial, \[\int_{-1}^{1}{\mathrm P}(t)\,{\mathrm d}t =a_{1}{\mathrm P}(u_{1})+a_{2}{\mathrm P}(u_{2}).\]


Solution: Since this is true for all cubic polynomials, it must be true in particular for \(1, x, x^2, x^3\), therefore: \begin{align*} \int_{-1}^{1} 1 {\mathrm d}t &=a_{1}+a_{2} &=2\\ \int_{-1}^{1} x {\mathrm d}t &=a_{1}u_1+a_{2}u_2 &= 0 \\ \int_{-1}^{1} x^2 {\mathrm d}t &=a_{1}u_1^2+a_{2}u_2^2 &= \frac23\\ \int_{-1}^{1} x^3 {\mathrm d}t &=a_{1}u_1^3+a_{2}u_2^3 &= 0\\ \end{align*} \begin{align*} && \begin{cases} a_{1}+a_{2} &=2 \\ a_{1}u_1+a_{2}u_2 &= 0 \\ a_{1}u_1^2+a_{2}u_2^2 &= \frac23\\ a_{1}u_1^3+a_{2}u_2^3 &= 0\\ \end{cases} \\ \Rightarrow && \begin{cases} a_{1}(u_1^2 - \frac13) + a_{2}(u_2^2 - \frac13) &= 0 \\ a_{1}u_1(u_1^2 - \frac13) + a_{2}u_2(u_2^2 - \frac13) &= 0 \end{cases} \\ \Rightarrow && \begin{cases} u_i = \pm \frac1{\sqrt{3}} \\ a_i = 1\end{cases} \end{align*} Therefore we have: \[\int_{-1}^{1}{\mathrm P}(t)\,{\mathrm d}t ={\mathrm P} \l \frac1{\sqrt{3}} \r+{\mathrm P}\l -\frac1{\sqrt{3}} \r \] [Note: this question is actually asking about Gauss-Legendre polynomials, and could be done directly by appealing to standard results]

1997 Paper 1 Q8
D: 1484.0 B: 1500.0

By considering the maximum of \(\ln x-x\ln a\), or otherwise, show that the equation \(x=a^{x}\) has no real roots if \(a > e^{1/e}\). How many real roots does the equation have if \(0 < a < 1\)? Justify your answer.

1997 Paper 1 Q9
D: 1500.0 B: 1484.0

A single stream of cars, each of width \(a\) and exactly in line, is passing along a straight road of breadth \(b\) with speed \(V\). The distance between the successive cars is \(c\).

\psset{xunit=0.9cm,yunit=0.9cm,algebraic=true,dotstyle=o,dotsize=3pt 0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-5.32,-1.36)(10.5,2.44) \psline(-5,2)(10,2) \psline(-5,-1)(10,-1) \psline(-4,1)(-4,0) \psline(-4,1)(-1,1) \psline(-1,1)(-1,0) \psline(-4,0)(-1,0) \psline(1,1)(1,0) \psline(1,1)(4,1) \psline(4,1)(4,0) \psline(4,0)(1,0) \psline(6,1)(6,0) \psline(6,1)(9,1) \psline(9,1)(9,0) \psline(9,0)(6,0) \psline{->}(-1,0.5)(1,0.5) \psline{->}(1,0.5)(-1,0.5) \psline{->}(4,0.5)(6,0.5) \psline{->}(6,0.5)(4,0.5) \psline{->}(-4.6,1)(-4.6,0) \psline{->}(-4.6,0)(-4.6,1) \psline{->}(10,2)(10,-1) \psline{->}(10,-1)(10,2) \rput[tl](-5,0.6){\(a\)} \rput[tl](-0.14,0.96){\(c\)} \rput[tl](4.86,0.98){\(c\)} \rput[tl](10.16,0.68){\(b\)} \end{pspicture*}
A chicken crosses the road in safety at a constant speed \(u\) in a straight line making an angle \(\theta\) with the direction of traffic. Show that \[u\geqslant \frac{Va}{c\sin\theta+a\cos\theta}.\] Show also that if the chicken chooses \(\theta\) and \(u\) so that it crosses the road at the least possible uniform speed, it crosses in time \[\frac{b}{V}\left(\frac{c}{a}+\frac{a}{c}\right) . \]

1997 Paper 1 Q10
D: 1516.0 B: 1484.0

The point \(A\) is vertically above the point \(B\). A light inextensible string, with a smooth ring \(P\) of mass \(m\) threaded onto it, has its ends attached at \(A\) and \(B\). The plane \(APB\) rotates about \(AB\) with constant angular velocity \(\omega\) so that \(P\) describes a horizontal circle of radius \(r\) and the string is taut. The angle \(BAP\) has value \(\theta\) and the angle \(ABP\) has value \(\phi\). Show that \[\tan\frac{\phi-\theta}{2}=\frac{g}{r\omega^{2}}.\] Find the tension in the string in terms of \(m\), \(g\), \(r\), \(\omega\) and \(\sin\frac{1}{2}(\theta+\phi)\). Deduce from your results that if \(r\omega^2\) is small compared with \(g\), then the tension is approximately \(\frac{mg}{2}\)


Solution: None \begin{multicols}{2}

TikZ diagram
\columnbreak \begin{align*} N2(\uparrow): && T \cos \theta - T \cos \phi - mg &= 0 \\ N2(\rightarrow): && T \sin \theta + T \sin \phi &= m r \omega^2 \\ \\ && T \cos \theta - T \cos \phi &= mg \tag{\(*\)}\\ && T \sin \theta + T \sin \phi &= m r \omega^2 \tag{{\(**\)}} \end{align*} \end{multicols} Dividing \((*)\) by \((**)\) we obtain: \begin{align*} \frac{g}{r\omega^2} &= \frac{\cos \theta - \cos \phi}{\sin \theta + \sin \phi} \\ &= \frac{2 \sin \left ( \frac{\theta + \phi}2 \right )\sin \left (\frac{\phi - \theta}2 \right )}{2 \sin \left ( \frac{\theta + \phi}2 \right )\cos \left (\frac{\phi - \theta}2 \right )} \\ &= \tan \left ( \frac{\phi - \theta}2 \right ) \end{align*} as required. Squaring and adding \((*)\) and \((**)\) we obtain: \begin{align*} && m^2(g^2 + r^2 \omega^4) &= T^2(2 + \sin \theta \sin \phi - \cos \theta \cos \phi) \\ && &= T^2(2 - 2\cos (\theta + \phi)) \\ && &= T^2(2 - 2(1 - 2 \sin^2 \left ( \frac{\theta + \phi}2 \right ) )) \\ && &= T^2(4 \sin^2 \left ( \frac{\theta + \phi}2 \right )) \\ \Rightarrow && T &= \frac{m\sqrt{g^2 + r^2 \omega^4}}{2 \sin \left ( \frac{\theta + \phi}2 \right )} \\ \Rightarrow && T &= \frac{mg\sqrt{1 + \frac{r^2 \omega^4}{g^2}}}{2 \sin \left ( \frac{\theta + \phi}2 \right )} \end{align*} If \(r \omega^2 \ll g\) then \(\tan \l \frac{\phi - \theta}2 \r\) is very large, so \(\phi - \theta \approx \pi\) and so \(\phi + \theta \approx \pi\). We can then say that \[ T \approx \frac{mg}{2}\]