Today's date is June 26th 1992 and the day of the week is Friday. Find which day of the week was April 3rd 1905, explaining your method carefully. {[}30 days hath September, April, June and November. All the rest have 31, excepting February alone which has 28 days clear and 29 in each leap year.{]}
Solution: There are \(87\) years between 1905 and 1992. Of those years, every 4th is a leap years, starting with 1908, and ending with 1992, so there are 22 leap years. There are 30 days between Apr 3 and May 3, 31 days between May 3 and Jun 3 and a further 23 days to the 26th. Therefore \(87 \times 365 + 22 \cdot 1 + 61 + 23\) total days. \(\pmod{7}\) this is \(3 \times 1 + 1 + 5 + 2 = 3\), therefore it is \(4\) week days before Friday, ie Monday.
A \(3\times3\) magic square is a \(3\times3\) array \[ \begin{array}{ccc} a & b & c\\ d & e & f\\ g & h & k \end{array} \] whose entries are the nine distinct integers \(1,2,3,4,5,6,7,8,9\) and which has the property that all its rows, columns and main diagonals add up to the same number \(n\). (Thus \(a+b+c=d+e+f=g+h+k=a+d+g=b+e+h=c+f+k=a+e+k=c+e+g=n.)\)
Solution:
Evaluate
Solution:
Sketch the following subsets of the complex plane using Argand diagrams. Give reasons for your answers.
Solution:
Let \(\mathrm{p}_{0}(x)=(1-x)(1-x^{2})(1-x^{4}).\) Show that \((1-x)^{3}\) is a factor of \(\mathrm{p}_{0}(x).\) If \(\mathrm{p}_{1}(x)=x\mathrm{p}_{0}'(x)\) show, by considering factors of the polynomials involved, that \(\mathrm{p}_{0}'(1)=0\) and \(\mathrm{p}_{1}'(1)=0.\) By writing \(\mathrm{p}_{0}(x)\) in the form \[ \mathrm{p}_{0}(x)=c_{0}+c_{1}x+c_{2}x^{2}+c_{3}x^{3}+c_{4}x^{4}+c_{5}x^{5}+c_{6}x^{6}+c_{7}x^{7}, \] deduce that \begin{alignat*}{2} 1+2+4+7 & \quad=\quad & & 3+5+6\\ 1^{2}+2^{2}+4^{2}+7^{2} & \quad=\quad & & 3^{2}+5^{2}+6^{2}. \end{alignat*} Show that we can write the integers \(1,2,\ldots,15\) in some order as \(a_{1},a_{2},\ldots,a_{15}\) in such a way that \[ a_{1}^{r}+a_{2}^{r}+\cdots+a_{8}^{r}=a_{9}^{r}+a_{10}^{r}+\cdots+a_{15}^{r} \] for \(r=1,2,3.\)
Solution: \begin{align*} && p_0(x) &= (1-x)(1-x^2)(1-x^4) \\ &&&= (1-x)(1-x)(1+x)(1-x^2)(1+x^2) \\ &&&= (1-x)^2 (1+x)(1-x)(1+x)(1+x^2) \\ &&&= (1-x)^3 (1+x)^2 (1+x^2) \end{align*} \begin{align*} && p_0'(x) &= 3(1-x)^2(1+x)^2(1+x^2) + (1-x)^3 q(x) \\ \Rightarrow && p_0'(1) &= 3 \cdot 0 \cdots + 0 \cdots \\ &&&= 0 \\ && p_1'(x) &= p_0(x) + xp'_0(x) \\ \Rightarrow && p_1'(1) &= p_0(1) + 1\cdot p_0'(1) \\ &&&= 0 + 1 \cdot 0 \\ &&&= 0 \end{align*} Notice that \(p_0(x) = (1-x-x^2+x^3)(1-x^4) = 1-x-x^2+x^3-x^4+x^5+x^6-x^7\), so: \(p'_0(x) = -1-2x+3x^2-4x^3+5x^4+6x^5-7x^6 \Rightarrow p'_0(1) = 0 = -1 -2 -4 -7 + 3 + 5+6\). \((xp'_1(1))' = 0 = -1^2-2^2-4^2-7^2 + 3^2 + 5^2 + 6^2\). Consider \(q_0(x) = (1-x)(1-x^2)(1-x^4)(1-x^8)\), then \((1-x)^4\) is a factor, so in particular we know \(q_0(1), (xq_0(x))'|_{x=1} = 0,(x(xq_0(x))')'|_{x=1} = 0\), and so: \(q_0(x) = 1-x-x^2+x^3-x^4+x^5+x^6-x^7 - x^8+x^9+x^{10}-x^{11}+x^{12}-x^{13}-x^{14}+x^{15}\), and so: \(1^r+2^r+4^r+7^r+8^r+11^r+13^r+14^r = 3^r+5^r+6^r+9^r+10^r+12^r+15^r\) for \(r = 1,2,3\)
Explain briefly, by means of a diagram, or otherwise, why \[ \mathrm{f}(\theta+\delta\theta)\approx\mathrm{f}(\theta)+\mathrm{f}'(\theta)\delta\theta, \] when \(\delta\theta\) is small. Two powerful telescopes are placed at points \(A\) and \(B\) which are a distance \(a\) apart. A very distant point \(C\) is such that \(AC\) makes an angle \(\theta\) with \(AB\) and \(BC\) makes an angle \(\theta+\phi\) with \(AB\) produced. (A sketch of the arrangement is given in the diagram.) \noindent
Let \(\mathrm{g}(x)=ax+b.\) Show that, if \(\mathrm{g}(0)\) and \(\mathrm{g}(1)\) are integers, then \(\mathrm{g}(n)\) is an integer for all integers \(n\). Let \(\mathrm{f}(x)=Ax^{2}+Bx+C.\) Show that, if \(\mathrm{f}(-1),\mathrm{f}(0)\) and \(\mathrm{f}(1)\) are integers, then \(\mathrm{f}(n)\) is an integer for all integers \(n\). Show also that, if \(\alpha\) is any real number and \(\mathrm{f}(\alpha-1),\) \(\mathrm{f}(\alpha)\) and \(\mathrm{f}(\alpha+1)\) are integers, then \(\mathrm{f}(\alpha+n)\) is an integer for all integers \(n\).
Solution: If \(g(0) \in \mathbb{Z} \Rightarrow b \in \mathbb{Z}\). If \(g(1) \in \mathbb{Z} \Rightarrow a+b \in \mathbb{Z} \Rightarrow a \in \mathbb{Z}\), therefore \(a \cdot n + b \in \mathbb{Z}\), in particular \(g(n) \in \mathbb{Z}\) for all integers \(n\). \(f(0) \in \mathbb{Z} \Rightarrow C \in \mathbb{Z}\), \(f(1) \in \mathbb{Z} = A+ B + C \in \mathbb{Z} \Rightarrow A+ B \in \mathbb{Z}\) \(f(-1) \in \mathbb{Z} = A- B + C \in \mathbb{Z} \Rightarrow A- B \in \mathbb{Z}\) \(\Rightarrow 2A, 2B \in \mathbb{Z}\) \begin{align*} f(n) &= An^2 + Bn + C \\ &= An^2-An + An+Bn + C \\ &= 2A \frac{n(n-1)}2 + (A+B)n + C \\ &\in \mathbb{Z} \end{align*} Consider \(g(x) = f(x + \alpha)\), therefore \(g(0), g(1), g(-1) \in \mathbb{Z} \Rightarrow g(n) \in \mathbb{Z} \Rightarrow f(n+\alpha) \in \mathbb{Z}\)
Explain diagrammatically, or otherwise, why \[ \frac{\mathrm{d}}{\mathrm{d}x}\int_{a}^{x}\mathrm{f}(t)\,\mathrm{d}t=\mathrm{f}(x). \] Show that, if \[ \mathrm{f}(x)=\int_{0}^{x}\mathrm{f}(t)\,\mathrm{d}t+1, \] then \(\mathrm{f}(x)=\mathrm{e}^{x}.\) What is the solution of \[ \mathrm{f}(x)=\int_{0}^{x}\mathrm{f}(t)\,\mathrm{d}t? \] Given that \[ \int_{0}^{x}\mathrm{f}(t)\,\mathrm{d}t=\int_{x}^{1}t^{2}\mathrm{f}(t)\,\mathrm{d}t+x-\frac{x^{5}}{5}+C, \] find \(\mathrm{f}(x)\) and show that \(C=-2/15.\)
The diagram shows a coffee filter consisting of an inverted hollow right circular cone of height \(H\) cm and base radius \(a\) cm. \noindent
A projectile of mass \(m\) is fired horizontally from a toy cannon of mass \(M\) which slides freely on a horizontal floor. The length of the barrel is \(l\) and the force exerted on the projectile has the constant value \(P\) for so long as the projectile remains in the barrel. Initially the cannon is at rest. Show that the projectile emerges from the barrel at a speed relative to the ground of \[ \sqrt{\frac{2PMl}{m(M+m)}}. \]