Problems

Filters
Clear Filters
2017 Paper 3 Q1
D: 1700.0 B: 1516.0

  1. Prove that, for any positive integers \(n\) and \(r\), \[ \frac{1}{^{n+r}\C_{r+1}} =\frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right). \] Hence determine \[ \sum_{n=1}^{\infty}{\frac{1}{^{n+r}\C_{r+1}}} \,, \] and deduce that \ \(\displaystyle \sum_{n=2}^\infty \frac 1 {^{n+2}\C_3} = \frac12\,\).
  2. Show that, for \(n \ge 3\,\), \[ \frac{3!}{n^3} < \frac{1}{^{n+1}\C_{3}} \ \ \ \ \ \text{and} \ \ \ \ \ \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} < \frac{5!}{n^3} \,. \] By summing these inequalities for \(n \ge 3\,\), show that \[ \frac{115}{96} < \sum_{n=1}^{\infty}{\frac{1}{n^3}} < \frac{116}{96} \, . \]
{\bf Note: } \(^n\C_r\) is another notation for \(\displaystyle \binom n r \).


Solution: \begin{align*} \frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right) &= \frac{r+1}{r} \l \frac{r!(n-1)!}{(n+r-1)!} - \frac{r!n!}{(n+r)!} \r \\ &= \frac{(r+1)!(n-1)!}{r(n+r-1)!} \l 1 - \frac{n}{n+r} \r \\ &= \frac{(r+1)!(n-1)!}{r(n+r-1)!} \frac{r}{n+r} \\ &= \frac{(r+1)!n!}{(n+r)!} \\ &= \frac{1}{^{n+r}\C_{r+1}} \end{align*} \begin{align*} \sum_{n=1}^{\infty}{\frac{1}{^{n+r}\C_{r+1}}} &= \sum_{n=1}^{\infty} \l \frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right) \r \\ &= \frac{r+1}{r} \sum_{n=1}^{\infty} \l \frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}} \r \\ &= \frac{r+1}{r} \lim_{N \to \infty} \sum_{n=1}^{N} \l \frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}} \r \\ &= \frac{r+1}{r} \lim_{N \to \infty} \l \frac{1}{^{1+r-1}\C_{r}} - \frac{1}{^{N+r}\C_{r}}\r \\ &= \frac{r+1}{r} \frac{1}{^{1+r-1}\C_{r}} \tag{since \(\frac{1}{^{N+r}\C_{r}} \to 0\)} \\ &= \frac{r+1}{r} \end{align*} When \(r = 2\), we have: \begin{align*} && \frac{3}{2} &= \sum_{n=1}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ && &=\frac{1}{^{1+2}\C_{3}} + \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ && &= 1 + \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ \Rightarrow && \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} &= \frac12 \end{align*} \begin{align*} \frac{1}{^{n+1}\C_{3}} &= \frac{3!}{(n+1)n(n-1)} \\ &= \frac{3!}{n^3-n} \\ &> \frac{3!}{n^3} \end{align*} \begin{align*} \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} &= \frac{5!}{(n+1)n(n-1)} - \frac{5!}{(n+2)(n+1)n(n-1)(n-2)} \\ &= \frac{5!}{n^3} \frac{n^2}{n^2-1}\l 1- \frac{1}{n^2-4} \r \\ &= \frac{5!}{n^3} \frac{n^2}{n^2-1}\l \frac{n^2-5}{n^2-4} \r \\ &= \frac{5!}{n^3} \frac{n^2(n^2-5)}{(n^2-1)(n^2-4)} \\ &< \frac{5!}{n^3} \end{align*} Since \(k(k-5) < (k-1)(k-4) \Leftrightarrow 0 < 4\), this only makes sense if \(n \geq 3\) \begin{align*} &&\frac{3!}{n^3} &< \frac{1}{^{n+1}\C_{3}} \tag{if \(n \geq 3\)} \\ \Rightarrow &&\sum_{n=3}^\infty \frac{3!}{n^3} &< \sum_{n=3}^\infty \frac{1}{^{n+1}\C_{3}} \\ \Rightarrow && \frac{6}{1^3} + \frac{6}{2^3} + \sum_{n=3}^\infty \frac{3!}{n^3} &< \frac{6}{1^3} + \frac{6}{2^3} + \sum_{n=3}^\infty \frac{1}{^{n+1}\C_{3}} \\ \Rightarrow && \sum_{n=1}^\infty \frac{3!}{n^3} &< 6 + \frac{3}{4} + \sum_{n=2}^\infty \frac{1}{^{n+2}\C_{2+1}} \\ \Rightarrow && \sum_{n=1}^\infty \frac{3!}{n^3} &< 6 + \frac{3}{4} + \frac{1}{2} = \frac{29}{4} \\ \Rightarrow && \sum_{n=1}^\infty \frac{1}{n^3} &< \frac{29}{24} = \frac{116}{96} \\ \end{align*} \begin{align*} && \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} &< \frac{5!}{n^3} \\ \Rightarrow && \sum_{n=3}^\infty \l \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} \r &< \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{20}{^{n+1}\C_3} - \sum_{n=3}^\infty \frac{1}{^{n+2}\C_{5}} &< \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=2}^\infty \frac{20}{^{n+2}\C_{2+1}} - \sum_{n=1}^\infty \frac{1}{^{n+4}\C_{4+1}} &< \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \frac{20}{2} - \frac{4+1}{4} &< \sum_{n=1}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{115}{96} &< \sum_{n=1}^\infty \frac{1}{n^3} \\ \end{align*}

2017 Paper 3 Q2
D: 1700.0 B: 1500.1

The transformation \(R\) in the complex plane is a rotation (anticlockwise) by an angle \(\theta\) about the point represented by the complex number \(a\). The transformation \(S\) in the complex plane is a rotation (anticlockwise) by an angle \(\phi\) about the point represented by the complex number \(b\).

  1. The point \(P\) is represented by the complex number~\(z\). Show that the image of \(P\) under \(R\) is represented by \[ \e^{{\mathrm i} \theta}z + a(1-\e^{{\rm i} \theta})\,. \]
  2. Show that the transformation \(SR\) (equivalent to \(R\) followed by \(S\)) is a rotation about the point represented by \(c\), where \[ %\textstyle c\,\sin \tfrac12 (\theta+\phi) = a\,\e^{ {\mathrm i}\phi/2}\sin \tfrac12\theta + b\,\e^{-{\mathrm i} \theta/2}\sin \tfrac12 \phi \,, \] provided \(\theta+\phi \ne 2n\pi\) for any integer \(n\). What is the transformation \(SR\) if \(\theta +\phi = 2\pi\)?
  3. Under what circumstances is \(RS =SR\)?


Solution:

  1. We can map \(a \mapsto 0\), rotate the whole plane, then shift the plane back to \(a\), so \(z \mapsto (z-a) \mapsto e^{i \theta}(z-a) \mapsto a + e^{i \theta}(z-a) = e^{i \theta}z + a(1 - e^{i\theta})\)
  2. \(z \mapsto e^{i \theta}z + a(1 - e^{i\theta}) \mapsto e^{i \phi} \l e^{i \theta}z + a(1 - e^{i\theta}) \r + b(1 - e^{i \phi})\) \begin{align*} e^{i \phi} \l e^{i \theta}z + a(1 - e^{i\theta}) \r + b(1 - e^{i \phi}) &= e^{i(\phi + \theta)}z + ae^{i\phi} - ae^{i (\theta + \phi)} + b(1 - e^{i \phi}) \\ \end{align*} Therefore this is rotation by angle \(\phi + \theta\) and about \begin{align*} \frac{ae^{i\phi} - ae^{i (\theta + \phi)} + b(1 - e^{i \phi})}{1 - e^{i(\phi + \theta)}} &= \frac{e^{-i\frac{(\phi + \theta)}{2}} \l ae^{i\phi} - ae^{i (\theta + \phi)} + b(1 - e^{i \phi}) \r}{e^{-i\frac{(\phi + \theta)}{2}} - e^{i\frac{(\phi + \theta)}2}} \\ &= \frac{\l ae^{i\frac{\phi-\theta}{2}} - ae^{i \frac{(\theta + \phi)}{2}} + b(e^{-i\frac{(\phi + \theta)}{2}} -e^{i\frac{(\phi - \theta)}{2}}) \r}{e^{-i\frac{(\phi + \theta)}{2}} - e^{i\frac{(\phi + \theta)}2}} \\ &= \frac{ae^{i\frac{\phi}{2}} 2i\sin(\frac{\theta}{2}) + be^{-i\frac{\theta}{2}}2i\sin\frac{\phi}{2} }{2i \sin(\frac{\phi + \theta}2)} \\ \end{align*} as required. If \(\phi + \theta = 2\pi\), then \(z \mapsto z + (b-a)(1 - e^{i\phi})\) which is a translation.
  3. If \(\phi + \theta \neq 2 \pi\) then \(RS = ST\) if \begin{align*} && a\,\e^{ {\mathrm i}\phi/2}\sin \tfrac12\theta + b\,\e^{-{\mathrm i} \theta/2}\sin \tfrac12 \phi &= b\,\e^{ {\mathrm i}\theta/2}\sin \tfrac12\phi + a\,\e^{-{\mathrm i} \phi/2}\sin \tfrac12 \theta \\ && a\,(\e^{ {\mathrm i}\phi/2}-\e^{-{\mathrm i}\phi/2})\sin \tfrac12\theta + b\,(\e^{-{\mathrm i} \theta/2}-\e^{+{\mathrm i} \theta/2})\sin \tfrac12 \phi &= 0 \\ && a \sin \frac{\phi}{2} \sin \frac{\theta}{2}-b \sin \frac{\theta}{2} \sin \frac{\phi}{2} &= 0 \\ \Leftrightarrow && a = b \text{ or } \sin \frac{\theta}{2} = 0 \text{ or } \sin \frac{\phi}{2} = 0 \\ \Leftrightarrow && a = b \text{ or } \theta = 0 \text{ or } \phi = 0 \\ \end{align*} If \(\phi + \theta \neq 2 \pi\) then \(RS = ST\) if \(b = a\) or \(e^{i\phi} = e^{i \theta}\) ie rotation through the same angle.

2017 Paper 3 Q3
D: 1700.0 B: 1500.0

Let \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\) be the roots of the quartic equation \[ x^4 +px^3 +qx^2 +r x +s =0 \,. \] You are given that, for any such equation, \(\,\alpha \beta + \gamma\delta\,\), \(\alpha\gamma+\beta\delta\,\) and \(\,\alpha \delta + \beta\gamma\,\) satisfy a cubic equation of the form \[ y^3+Ay^2+ (pr-4s)y+ (4qs-p^2s -r^2) =0 \,. \] Determine \(A\). Now consider the quartic equation given by \(p=0\,\), \(q= 3\,\), \(r=-6\,\) and \(s=10\,\).

  1. Find the value of \(\alpha\beta + \gamma \delta\), given that it is the largest root of the corresponding cubic equation.
  2. Hence, using the values of \(q\) and \(s\), find the value of \((\alpha +\beta)(\gamma+\delta)\,\) and the value of \(\alpha\beta\) given that \(\alpha\beta >\gamma\delta\,\).
  3. Using these results, and the values of \(p\) and \(r\), solve the quartic equation.


Solution: \begin{align*} A &= -(\alpha \beta + \gamma\delta + \alpha\gamma+\beta\delta+\alpha \delta + \beta\gamma) \\ &= -q \end{align*}

  1. The corresponding cubic equation is: \begin{align*} && 0 &= y^3 - 3y^2-40y+(120-36) \\ &&&= y^3 -3y^2 - 40y + 84 \\ &&&= (y-7)(y-2)(y+6) \end{align*} Therefore \(\alpha\beta + \gamma \delta = 7\)
  2. \begin{align*}(\alpha+\beta)(\gamma+\delta) &= \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta \\ &= 3 -(\alpha\beta + \gamma\delta) \\ &=3-7 = -4 \end{align*} Let \(\alpha\beta\) and \(\gamma\delta\) be the roots of a quadratic; then the quadratic will be \(t^2-7t+10 = 0 \Rightarrow t = 2,5\) so \(\alpha\beta = 5\)
  3. \(\alpha\beta = 5, \gamma\delta = 2\) Consider the quadratic with roots \(\alpha+\beta\) and \(\gamma+\delta\), then \(t^2-4 = 0 \Rightarrow t = \pm 2\). Suppose \(\alpha+\beta = 2, \gamma+\delta=-2\) then \(\alpha, \beta = 1 \pm 2i, \gamma,\delta = -1 \pm i\) \(\alpha \beta \gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta = 5\gamma + 2\beta + 2\alpha + 5\delta = -6 \neq 6\) Suppose \(\alpha+\beta = -2, \gamma+\delta=2\) then \(\alpha, \beta = -1 \pm 2i, \gamma,\delta = 1 \pm i\) \(\alpha \beta \gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta = 5\gamma + 2\beta + 2\alpha + 5\delta = 6\), therefore these are there roots. (In some order): \(1 \pm i, -1 \pm 2i\)

2017 Paper 3 Q4
D: 1700.0 B: 1484.0

For any function \(\f\) satisfying \(\f(x) > 0\), we define the {\em geometric mean}, F, by \[ \F(y) \; = \mbox{ \fontsize{12}{15.6}\selectfont \(\e\)} \mbox{ \fontsize{14}{15.6}\selectfont $ ^{\! \raisemath {3pt} {\frac{1}{y} \! \int_{\raisemath{-1pt}{0}}^{\raisemath{1pt}{y}} \ln \f(x) \, \d x} } $ } \ \ \ \ \ \ (y>0)\,. \]

  1. The function f satisfies \(\f(x) > 0\) and \(a\) is a positive number with \(a\ne1\). Prove that \[ \F(y) = \mbox{ \fontsize{12}{15.6}\selectfont \(a\)} \mbox{ \fontsize{14}{15.6}\selectfont $ ^{ \! \raisemath {3pt} {\frac{1}{y} \! \int_{\raisemath{-1pt}{0}}^{\raisemath{1pt}{y}} \log_a \f(x) \, \d x} } $ } . \]
  2. The functions f and g satisfy \(\f(x) > 0\) and \(\g(x) > 0\), and the function \(\h\) is defined by \(\h(x) = \f(x)\g(x)\). Their geometric means are F, G and H, respectively. Show that \(\H(y)= \F(y) \G(y)\,\).
  3. Prove that, for any positive number \(b\), the geometric mean of \(b^x\) is \(\sqrt{b^y}\,\).
  4. Prove that, if \(\f(x)>0\) and the geometric mean of \(\f(x)\) is \(\sqrt{\f(y)}\,\), then \(\f(x) = b^x\) for some positive number \(b\).

2017 Paper 3 Q5
D: 1700.0 B: 1484.0

The point with cartesian coordinates \((x,y)\) lies on a curve with polar equation \(r=\f(\theta)\,\). Find an expression for \(\dfrac{\d y}{\d x}\) in terms of \(\f(\theta)\), \(\f'(\theta)\) and \(\tan\theta\,\). Two curves, with polar equations \(r=\f(\theta)\) and \(r=\g(\theta)\), meet at right angles. Show that where they meet \[ \f'(\theta) \g'(\theta) +\f(\theta)\g(\theta) = 0 \,. \] The curve \(C\) has polar equation \(r=\f(\theta)\) and passes through the point given by \(r=4\), \(\theta = - \frac12\pi\). For each positive value of \(a\), the curve with polar equation \(r= a(1+\sin\theta)\) meets~\(C\) at right angles. Find \(\f(\theta)\,\). Sketch on a single diagram the three curves with polar equations \(r= 1+\sin\theta\,\), \ \(r= 4(1+\sin\theta)\) and \(r=\f(\theta)\,\).


Solution: \((x, y) = (f(\theta)\cos(\theta), f(\theta)\sin(\theta))\) so \begin{align*} \frac{dy}{d\theta} &= -f(\theta)\sin(\theta) + f'(\theta)\cos(\theta) \\ \frac{dx}{d\theta} &= f(\theta)\cos(\theta) + f'(\theta)\sin(\theta) \\ \frac{dy}{dx} &= \frac{-f(\theta)\sin(\theta) + f'(\theta)\cos(\theta)}{f(\theta)\cos(\theta) + f'(\theta)\sin(\theta) } \\ &= \frac{-f(\theta)\tan(\theta) + f'(\theta)}{f(\theta) + f'(\theta)\tan(\theta) } \end{align*} If the curves meet at right angles then the product of their gradients is \(-1\), ie \begin{align*} \frac{-f(\theta)\tan(\theta) + f'(\theta)}{f(\theta) + f'(\theta)\tan(\theta) } \cdot \frac{-g(\theta)\tan(\theta) + g'(\theta)}{g(\theta) + g'(\theta)\tan(\theta) } &= -1 \\ f(\theta)g(\theta)\tan^2 \theta - f(\theta)g'(\theta)\tan \theta - f'(\theta)g(\theta)\tan \theta + f'(\theta)g'(\theta) &= \\ \quad - \l f(\theta)g(\theta) + f(\theta)g'(\theta)\tan(\theta) + f'(\theta)g(\theta)\tan(\theta) + f'(\theta)g'(\theta)\tan^2 \theta \r \\ \tan^2\theta \l f(\theta)g(\theta) + f'(\theta)g'(\theta) \r + f'(\theta)g'(\theta) + f(\theta)g(\theta) &= 0 \\ (\tan^2\theta + 1) \l f(\theta)g(\theta) + f'(\theta)g'(\theta) \r &= 0 \\ f(\theta)g(\theta) + f'(\theta)g'(\theta) &= 0 \end{align*} \(g(\theta) = a(1+\sin\theta), g'(\theta) = a\cos\theta\) Therefore \(f'(\theta)a\cos \theta+f(\theta)a(1+\sin(\theta)) = 0\) \begin{align*} && \frac{f'(\theta)}{f(\theta)} &= -\sec(\theta) - \tan(\theta) \\ \Rightarrow && \ln(f(\theta)) &= -\ln |\tan(\theta) + \sec(\theta)| + \ln |\cos(\theta)| + C \\ \Rightarrow && f(\theta) &= A \frac{\cos \theta}{\tan \theta + \sec \theta} \\ &&&= A \frac{\cos^2 \theta}{\sin \theta + 1} \\ &&&= A \frac{1-\sin^2 \theta}{\sin \theta + 1} \\ &&&= A (1-\sin \theta) \end{align*} When \(\theta = -\frac12 \pi, r = 4\), so \(A = 2\).

TikZ diagram

2017 Paper 3 Q6
D: 1700.0 B: 1500.0

In this question, you are not permitted to use any properties of trigonometric functions or inverse trigonometric functions. The function \(\T\) is defined for \(x>0\) by \[ \T(x) = \int_0^x \! \frac 1 {1+u^2} \, \d u\,, \] and $\displaystyle T_\infty = \int_0^\infty \!\! \frac 1 {1+u^2} \, \d u\,$ (which has a finite value).

  1. By making an appropriate substitution in the integral for \(\T(x)\), show that \[\T(x) = \T_\infty - \T(x^{-1})\,.\]
  2. Let \(v= \dfrac{u+a}{1-au}\), where \(a\) is a constant. Verify that, for \(u\ne a^{-1}\), \[ \frac{\d v}{\d u} = \frac{1+v^2}{1+u^2} \,. \] Hence show that, for \(a>0\) and \(x< \dfrac1a\,\), \[ \T(x) = \T\left(\frac{x+a}{1-ax}\right) -\T(a) \,. \] Deduce that \[ \T(x^{-1}) = 2\T_\infty -\T\left(\frac{x+a}{1-ax}\right) -\T(a^{-1}) \] and hence that, for \(b>0\) and \(y>\dfrac1b\,\), \[ \T(y) =2\T_\infty - \T\left(\frac{y+b}{by-1}\right) - \T(b) \,. \]
  3. Use the above results to show that \(\T(\sqrt3)= \tfrac23 \T_\infty \,\) and \(\T(\sqrt2 -1)= \frac14 \T_\infty\,\).

2017 Paper 3 Q7
D: 1700.0 B: 1500.0

Show that the point \(T\) with coordinates \[ \left( \frac{a(1-t^2)}{1+t^2} \; , \; \frac{2bt}{1+t^2}\right) \tag{\(*\)} \] (where \(a\) and \(b\) are non-zero) lies on the ellipse \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \,. \]

  1. The line \(L\) is the tangent to the ellipse at \(T\). The point \((X,Y)\) lies on \(L\), and \(X^2\ne a^2\). Show that \[ (a+X)bt^2 -2aYt +b(a-X) =0 \,. \] Deduce that if \(a^2Y^2>(a^2-X^2)b^2\), then there are two distinct lines through \((X,Y)\) that are tangents to the ellipse. Interpret this result geometrically. Show, by means of a sketch, that the result holds also if \(X^2=a^2\,\).
  2. The distinct points \(P\) and \(Q\) are given by \((*)\), with \(t=p\) and \(t=q\), respectively. The tangents to the ellipse at \(P\) and \(Q\) meet at the point with coordinates \((X,Y)\), where \(X^2\ne a^2\,\). Show that \[ (a+X)pq = a-X\] and find an expression for \(p+q\) in terms of \(a\), \(b\), \(X\) and \(Y\). Given that the tangents meet the \(y\)-axis at points \((0,y_1)\) and \((0,y_2)\), where \(y_1+y_2 = 2b\,\), show that \[ \frac{X^2}{a^2} +\frac{Y}{b}= 1 \,. \]

2017 Paper 3 Q8
D: 1700.0 B: 1500.0

Prove that, for any numbers \(a_1\), \(a_2\), \(\ldots\)\,, and \(b_1\), \(b_2\), \(\ldots\)\,, and for \(n\ge1\), \[ \sum_{m=1}^n a_m(b_{m+1} -b_m) = a_{n+1}b_{n+1} -a_1b_1 -\sum_{m=1}^n b_{m+1}(a_{m+1} -a_m) \,. \]

  1. By setting \(b_m = \sin mx\), show that \[ \sum_{m=1}^n \cos (m+\tfrac12)x = \tfrac12 \big(\sin (n+1)x - \sin x \big) \cosec \tfrac12 x \,. \] {\bf Note:} $\sin A - \sin B = \displaystyle 2 \cos \big( \tfrac{{\displaystyle A+B\vphantom{_1}}} {\displaystyle 2\vphantom{^1}} \big)\, \sin\big( \tfrac{{\displaystyle A-B\vphantom{_1}}}{\displaystyle 2\vphantom{^1}} \big)\, $.
  2. Show that \[ \sum_{m=1}^n m\sin mx = \big (p \sin(n+1)x +q \sin nx\big) \cosec^2 \tfrac12 x \,, \] where \(p\) and \(q\) are to be determined in terms of \(n\). \vspace{3mm} {\bf Note:} \(2\sin A \sin B = \cos (A-B) - \cos (A+B)\,\); \\[2mm] \phantom {\bf Note:} \(2\cos A \sin B = \sin (A+B) - \sin (A-B)\,\).

2017 Paper 3 Q9
D: 1700.0 B: 1500.9

Two particles \(A\) and \(B\) of masses \(m\) and \(2 m\), respectively, are connected by a light spring of natural length \(a\) and modulus of elasticity \(\lambda\). They are placed on a smooth horizontal table with \(AB\) perpendicular to the edge of the table, and \(A\) is held on the edge of the table. Initially the spring is at its natural length. Particle \(A\) is released. At a time \(t\) later, particle \(A\) has dropped a distance \(y\) and particle \( B\) has moved a distance \(x\) from its initial position (where \(x < a\)). Show that \( y + 2x= \frac12 gt^2\). The value of \(\lambda\) is such that particle \(B\) reaches the edge of the table at a time \(T\) given by \(T= \sqrt{6a/g\,}\,\). By considering the total energy of the system (without solving any differential equations), show that the speed of particle \(B\) at this time is \(\sqrt{2ag/3\,}\,\).

2017 Paper 3 Q10
D: 1700.0 B: 1484.0

A uniform rod \(PQ\) of mass \(m\) and length \(3a\) is freely hinged at \(P\). The rod is held horizontally and a particle of mass \(m\) is placed on top of the rod at a distance~\(\ell\) from \(P\), where \(\ell <2a\). The coefficient of friction between the rod and the particle is \(\mu\). The rod is then released. Show that, while the particle does not slip along the rod, \[ (3a^2+\ell^2)\dot \theta^2 = g(3a+2\ell)\sin\theta \,, \] where \(\theta\) is the angle through which the rod has turned, and the dot denotes the time derivative. Hence, or otherwise, find an expression for \(\ddot \theta\) and show that the normal reaction of the rod on the particle is non-zero when~\(\theta\) is acute. Show further that, when the particle is on the point of slipping, \[ \tan\theta = \frac{\mu a (2a-\ell)}{2(\ell^2 + a\ell +a^2)} \,. \] What happens at the moment the rod is released if, instead, \(\ell>2a\)?


Solution:

TikZ diagram
By energy considerations, the initial energy is \(0\).
\begin{tabular}{l|c|c} & Inital & \@ \(\theta\) \\ \hline Rotational KE of rod & \(0\) & \(\frac{1}{2}I\dot{\theta}^2 = \frac{1}{2} \frac{1}{3} m (3a)^2 \dot{\theta}^2 = \frac32 m a^2 \dot{\theta}^2\)\\ KE of particle & \(0\) & \(\frac12 m \ell^2\dot{\theta}^2\)\\ GPE of rod & \(0\) & \(-\frac{3}{2}mga \sin \theta\)\\ GPE of particle & \(0\) & \(-mg \ell \sin \theta\) \\ \hline Total & \(0\) & \(\frac12m \l \l 3a^2 + \ell^2\r \dot{\theta}^2 - \l 3a + 2\ell \r g \sin \theta \r\) \end{tabular}
Therefore: \begin{align*} && \l 3a^2 + \ell^2\r \dot{\theta}^2 &= \l 3a + 2\ell \r g \sin \theta \\ \Rightarrow && \l 3a^2 + \ell^2\r 2\dot{\theta} \ddot{\theta} &= \l 3a + 2\ell \r g \cos\theta \dot{\theta} \tag{\(\frac{\d}{\d t}\)} \\ \Rightarrow && 2\l 3a^2 + \ell^2\r \ddot{\theta} &= \l 3a + 2\ell \r g \cos\theta \\ \Rightarrow && \ddot{\theta} &= \boxed{\frac{3a + 2\ell }{2(3a^2 + \ell^2)}g \cos\theta} \\ \end{align*} \begin{align*} \text{N}2(\perp PQ): && mg \cos \theta - R &= m \ell \ddot{\theta} \\ && R &= mg \cos \theta - m \ell \l \frac{3a + 2\ell }{2(3a^2 + \ell^2)}g \cos\theta \r \\ && &= mg\cos \theta \l 1 - \ell \frac{3a + 2\ell }{2(3a^2 + \ell^2)} \r \\ && &= mg \cos \theta \l \frac{6a^2 + 2\ell^2 - 3a\ell - 2\ell^2}{2(3a^2 + \ell^2)} \r \\ && &= mg \cos \theta \l \frac{3a(2a - \ell)}{2(3a^2 + \ell^2)} \r > 0 \tag{since \(2a > \ell\)} \end{align*} At limiting equilibrium, \(F = \mu R\). \begin{align*} \text{N}2(\parallel PQ): && \mu R - mg \sin \theta &= m \ell \dot{\theta}^2 \\ \Rightarrow && \mu mg \cos \theta \l \frac{3a(2a - \ell)}{2(3a^2 + \ell^2)} \r - mg \sin \theta &= m \ell \frac{(3a+2\ell)}{(3a^2+\ell^2)} g \sin \theta \\ \Rightarrow && \mu \l 3a(2a - \ell) \r - \l 2(3a^2 + \ell^2) \r \tan \theta &= 2\ell (3a+2\ell) \tan \theta \\ \Rightarrow && \mu \l 3a(2a - \ell) \r &= \l 6a\ell + 6a^2 + 6\ell^2 \r \tan \theta \\ \Rightarrow && \tan \theta &= \boxed{\frac{\mu a(2a-\ell)}{2(a^2 + a\ell + \ell^2)}} \end{align*} If \(\ell > 2a\), then the initial reaction force will be \(0\), ie the particle will have no contact with the rod. In other words, the rod will rotate faster than the particle will free-fall and the particle immediately loses contact with the rod.