Solution: \begin{align*} \frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right) &= \frac{r+1}{r} \l \frac{r!(n-1)!}{(n+r-1)!} - \frac{r!n!}{(n+r)!} \r \\ &= \frac{(r+1)!(n-1)!}{r(n+r-1)!} \l 1 - \frac{n}{n+r} \r \\ &= \frac{(r+1)!(n-1)!}{r(n+r-1)!} \frac{r}{n+r} \\ &= \frac{(r+1)!n!}{(n+r)!} \\ &= \frac{1}{^{n+r}\C_{r+1}} \end{align*} \begin{align*} \sum_{n=1}^{\infty}{\frac{1}{^{n+r}\C_{r+1}}} &= \sum_{n=1}^{\infty} \l \frac{r+1}{r} \left(\frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}}\right) \r \\ &= \frac{r+1}{r} \sum_{n=1}^{\infty} \l \frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}} \r \\ &= \frac{r+1}{r} \lim_{N \to \infty} \sum_{n=1}^{N} \l \frac{1}{^{n+r-1}\C_{r}}-\frac{1}{^{n+r}\C_{r}} \r \\ &= \frac{r+1}{r} \lim_{N \to \infty} \l \frac{1}{^{1+r-1}\C_{r}} - \frac{1}{^{N+r}\C_{r}}\r \\ &= \frac{r+1}{r} \frac{1}{^{1+r-1}\C_{r}} \tag{since \(\frac{1}{^{N+r}\C_{r}} \to 0\)} \\ &= \frac{r+1}{r} \end{align*} When \(r = 2\), we have: \begin{align*} && \frac{3}{2} &= \sum_{n=1}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ && &=\frac{1}{^{1+2}\C_{3}} + \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ && &= 1 + \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} \\ \Rightarrow && \sum_{n=2}^{\infty}{\frac{1}{^{n+2}\C_{3}}} &= \frac12 \end{align*} \begin{align*} \frac{1}{^{n+1}\C_{3}} &= \frac{3!}{(n+1)n(n-1)} \\ &= \frac{3!}{n^3-n} \\ &> \frac{3!}{n^3} \end{align*} \begin{align*} \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} &= \frac{5!}{(n+1)n(n-1)} - \frac{5!}{(n+2)(n+1)n(n-1)(n-2)} \\ &= \frac{5!}{n^3} \frac{n^2}{n^2-1}\l 1- \frac{1}{n^2-4} \r \\ &= \frac{5!}{n^3} \frac{n^2}{n^2-1}\l \frac{n^2-5}{n^2-4} \r \\ &= \frac{5!}{n^3} \frac{n^2(n^2-5)}{(n^2-1)(n^2-4)} \\ &< \frac{5!}{n^3} \end{align*} Since \(k(k-5) < (k-1)(k-4) \Leftrightarrow 0 < 4\), this only makes sense if \(n \geq 3\) \begin{align*} &&\frac{3!}{n^3} &< \frac{1}{^{n+1}\C_{3}} \tag{if \(n \geq 3\)} \\ \Rightarrow &&\sum_{n=3}^\infty \frac{3!}{n^3} &< \sum_{n=3}^\infty \frac{1}{^{n+1}\C_{3}} \\ \Rightarrow && \frac{6}{1^3} + \frac{6}{2^3} + \sum_{n=3}^\infty \frac{3!}{n^3} &< \frac{6}{1^3} + \frac{6}{2^3} + \sum_{n=3}^\infty \frac{1}{^{n+1}\C_{3}} \\ \Rightarrow && \sum_{n=1}^\infty \frac{3!}{n^3} &< 6 + \frac{3}{4} + \sum_{n=2}^\infty \frac{1}{^{n+2}\C_{2+1}} \\ \Rightarrow && \sum_{n=1}^\infty \frac{3!}{n^3} &< 6 + \frac{3}{4} + \frac{1}{2} = \frac{29}{4} \\ \Rightarrow && \sum_{n=1}^\infty \frac{1}{n^3} &< \frac{29}{24} = \frac{116}{96} \\ \end{align*} \begin{align*} && \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} &< \frac{5!}{n^3} \\ \Rightarrow && \sum_{n=3}^\infty \l \frac{20}{^{n+1}\C_3} - \frac{1}{^{n+2}\C_{5}} \r &< \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{20}{^{n+1}\C_3} - \sum_{n=3}^\infty \frac{1}{^{n+2}\C_{5}} &< \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=2}^\infty \frac{20}{^{n+2}\C_{2+1}} - \sum_{n=1}^\infty \frac{1}{^{n+4}\C_{4+1}} &< \frac{120}{1^3} + \frac{120}{2^3} + \sum_{n=3}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{120}{1^3} + \frac{120}{2^3} + \frac{20}{2} - \frac{4+1}{4} &< \sum_{n=1}^\infty \frac{5!}{n^3} \\ \Rightarrow && \frac{115}{96} &< \sum_{n=1}^\infty \frac{1}{n^3} \\ \end{align*}
The transformation \(R\) in the complex plane is a rotation (anticlockwise) by an angle \(\theta\) about the point represented by the complex number \(a\). The transformation \(S\) in the complex plane is a rotation (anticlockwise) by an angle \(\phi\) about the point represented by the complex number \(b\).
Solution:
Let \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\) be the roots of the quartic equation \[ x^4 +px^3 +qx^2 +r x +s =0 \,. \] You are given that, for any such equation, \(\,\alpha \beta + \gamma\delta\,\), \(\alpha\gamma+\beta\delta\,\) and \(\,\alpha \delta + \beta\gamma\,\) satisfy a cubic equation of the form \[ y^3+Ay^2+ (pr-4s)y+ (4qs-p^2s -r^2) =0 \,. \] Determine \(A\). Now consider the quartic equation given by \(p=0\,\), \(q= 3\,\), \(r=-6\,\) and \(s=10\,\).
Solution: \begin{align*} A &= -(\alpha \beta + \gamma\delta + \alpha\gamma+\beta\delta+\alpha \delta + \beta\gamma) \\ &= -q \end{align*}
For any function \(\f\) satisfying \(\f(x) > 0\), we define the {\em geometric mean}, F, by \[ \F(y) \; = \mbox{ \fontsize{12}{15.6}\selectfont \(\e\)} \mbox{ \fontsize{14}{15.6}\selectfont $ ^{\! \raisemath {3pt} {\frac{1}{y} \! \int_{\raisemath{-1pt}{0}}^{\raisemath{1pt}{y}} \ln \f(x) \, \d x} } $ } \ \ \ \ \ \ (y>0)\,. \]
The point with cartesian coordinates \((x,y)\) lies on a curve with polar equation \(r=\f(\theta)\,\). Find an expression for \(\dfrac{\d y}{\d x}\) in terms of \(\f(\theta)\), \(\f'(\theta)\) and \(\tan\theta\,\). Two curves, with polar equations \(r=\f(\theta)\) and \(r=\g(\theta)\), meet at right angles. Show that where they meet \[ \f'(\theta) \g'(\theta) +\f(\theta)\g(\theta) = 0 \,. \] The curve \(C\) has polar equation \(r=\f(\theta)\) and passes through the point given by \(r=4\), \(\theta = - \frac12\pi\). For each positive value of \(a\), the curve with polar equation \(r= a(1+\sin\theta)\) meets~\(C\) at right angles. Find \(\f(\theta)\,\). Sketch on a single diagram the three curves with polar equations \(r= 1+\sin\theta\,\), \ \(r= 4(1+\sin\theta)\) and \(r=\f(\theta)\,\).
Solution: \((x, y) = (f(\theta)\cos(\theta), f(\theta)\sin(\theta))\) so \begin{align*} \frac{dy}{d\theta} &= -f(\theta)\sin(\theta) + f'(\theta)\cos(\theta) \\ \frac{dx}{d\theta} &= f(\theta)\cos(\theta) + f'(\theta)\sin(\theta) \\ \frac{dy}{dx} &= \frac{-f(\theta)\sin(\theta) + f'(\theta)\cos(\theta)}{f(\theta)\cos(\theta) + f'(\theta)\sin(\theta) } \\ &= \frac{-f(\theta)\tan(\theta) + f'(\theta)}{f(\theta) + f'(\theta)\tan(\theta) } \end{align*} If the curves meet at right angles then the product of their gradients is \(-1\), ie \begin{align*} \frac{-f(\theta)\tan(\theta) + f'(\theta)}{f(\theta) + f'(\theta)\tan(\theta) } \cdot \frac{-g(\theta)\tan(\theta) + g'(\theta)}{g(\theta) + g'(\theta)\tan(\theta) } &= -1 \\ f(\theta)g(\theta)\tan^2 \theta - f(\theta)g'(\theta)\tan \theta - f'(\theta)g(\theta)\tan \theta + f'(\theta)g'(\theta) &= \\ \quad - \l f(\theta)g(\theta) + f(\theta)g'(\theta)\tan(\theta) + f'(\theta)g(\theta)\tan(\theta) + f'(\theta)g'(\theta)\tan^2 \theta \r \\ \tan^2\theta \l f(\theta)g(\theta) + f'(\theta)g'(\theta) \r + f'(\theta)g'(\theta) + f(\theta)g(\theta) &= 0 \\ (\tan^2\theta + 1) \l f(\theta)g(\theta) + f'(\theta)g'(\theta) \r &= 0 \\ f(\theta)g(\theta) + f'(\theta)g'(\theta) &= 0 \end{align*} \(g(\theta) = a(1+\sin\theta), g'(\theta) = a\cos\theta\) Therefore \(f'(\theta)a\cos \theta+f(\theta)a(1+\sin(\theta)) = 0\) \begin{align*} && \frac{f'(\theta)}{f(\theta)} &= -\sec(\theta) - \tan(\theta) \\ \Rightarrow && \ln(f(\theta)) &= -\ln |\tan(\theta) + \sec(\theta)| + \ln |\cos(\theta)| + C \\ \Rightarrow && f(\theta) &= A \frac{\cos \theta}{\tan \theta + \sec \theta} \\ &&&= A \frac{\cos^2 \theta}{\sin \theta + 1} \\ &&&= A \frac{1-\sin^2 \theta}{\sin \theta + 1} \\ &&&= A (1-\sin \theta) \end{align*} When \(\theta = -\frac12 \pi, r = 4\), so \(A = 2\).
In this question, you are not permitted to use any properties of trigonometric functions or inverse trigonometric functions. The function \(\T\) is defined for \(x>0\) by \[ \T(x) = \int_0^x \! \frac 1 {1+u^2} \, \d u\,, \] and $\displaystyle T_\infty = \int_0^\infty \!\! \frac 1 {1+u^2} \, \d u\,$ (which has a finite value).
Show that the point \(T\) with coordinates \[ \left( \frac{a(1-t^2)}{1+t^2} \; , \; \frac{2bt}{1+t^2}\right) \tag{\(*\)} \] (where \(a\) and \(b\) are non-zero) lies on the ellipse \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \,. \]
Prove that, for any numbers \(a_1\), \(a_2\), \(\ldots\)\,, and \(b_1\), \(b_2\), \(\ldots\)\,, and for \(n\ge1\), \[ \sum_{m=1}^n a_m(b_{m+1} -b_m) = a_{n+1}b_{n+1} -a_1b_1 -\sum_{m=1}^n b_{m+1}(a_{m+1} -a_m) \,. \]
Two particles \(A\) and \(B\) of masses \(m\) and \(2 m\), respectively, are connected by a light spring of natural length \(a\) and modulus of elasticity \(\lambda\). They are placed on a smooth horizontal table with \(AB\) perpendicular to the edge of the table, and \(A\) is held on the edge of the table. Initially the spring is at its natural length. Particle \(A\) is released. At a time \(t\) later, particle \(A\) has dropped a distance \(y\) and particle \( B\) has moved a distance \(x\) from its initial position (where \(x < a\)). Show that \( y + 2x= \frac12 gt^2\). The value of \(\lambda\) is such that particle \(B\) reaches the edge of the table at a time \(T\) given by \(T= \sqrt{6a/g\,}\,\). By considering the total energy of the system (without solving any differential equations), show that the speed of particle \(B\) at this time is \(\sqrt{2ag/3\,}\,\).
A uniform rod \(PQ\) of mass \(m\) and length \(3a\) is freely hinged at \(P\). The rod is held horizontally and a particle of mass \(m\) is placed on top of the rod at a distance~\(\ell\) from \(P\), where \(\ell <2a\). The coefficient of friction between the rod and the particle is \(\mu\). The rod is then released. Show that, while the particle does not slip along the rod, \[ (3a^2+\ell^2)\dot \theta^2 = g(3a+2\ell)\sin\theta \,, \] where \(\theta\) is the angle through which the rod has turned, and the dot denotes the time derivative. Hence, or otherwise, find an expression for \(\ddot \theta\) and show that the normal reaction of the rod on the particle is non-zero when~\(\theta\) is acute. Show further that, when the particle is on the point of slipping, \[ \tan\theta = \frac{\mu a (2a-\ell)}{2(\ell^2 + a\ell +a^2)} \,. \] What happens at the moment the rod is released if, instead, \(\ell>2a\)?
Solution: