Show that \[ \int_0^a \frac{\sinh x}{2\cosh^2 x -1} \, \mathrm{d} x = \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}\cosh a -1}{\sqrt{2}\cosh a +1}\r + \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}+1}{\sqrt{2}-1}\r \] and find \[ \int_0^a \frac{\cosh x}{1+2\sinh^2 x} \, \mathrm{d} x \, . \] Hence show that \[ \int_0^\infty \frac{\cosh x - \sinh x}{1+2\sinh^2 x} \, \mathrm{d} x = \frac{\pi}{2\sqrt{2}} - \frac{1}{2 \sqrt{2}} \ln \l \frac{\sqrt{2}+1}{\sqrt{2}-1}\r \, . \] By substituting \(u = \e^x\) in this result, or otherwise, find \[ \int_1^\infty \frac{1}{1+u^4} \, \mathrm{d} u \, . \]
The equation of a curve is \(y=\f ( x )\) where \[ \f ( x ) = x-4-\frac{16 \l 2x+1 \r^2}{x^2 \l x - 4 \r} \;. \]
Solution:
Given that \(\f''(x) > 0\) when \(a \le x \le b\,\), explain with the aid of a sketch why \[ (b-a) \, \f \Big( {a+b \over 2} \Big) < \int^b_a \f(x) \, \mathrm{d}x < (b-a) \, \displaystyle \frac{\f(a) + \f(b)}{2} \;. \] By choosing suitable \(a\), \(b\) and \(\f(x)\,\), show that \[ {4 \over (2n-1)^2} < {1 \over n-1} - {1 \over n} < {1 \over 2} \l {1 \over n^2} + {1 \over (n-1)^2}\r \,, \] where \(n\) is an integer greater than 1. Deduce that \[ 4 \l {1 \over 3^2} +{1 \over 5^2} + {1 \over 7^2} + \cdots \r < 1 < {1 \over 2} + \left( {1 \over 2^2} +{1 \over 3^2} + {1 \over 4^2} + \cdots \right)\,. \] Show that \[ {1 \over 2} \l {1 \over 3^2} + {1 \over 4^2} + {1 \over 5^2} + \frac 1 {6^2} + \cdots \r < {1 \over 3^2} +{1 \over 5^2} + {1 \over 7^2} + \cdots \] and hence show that \[ {3 \over 2} \displaystyle < \sum_{n=1}^\infty {1 \over n^2} <{7 \over 4}\;. \]
The triangle \(OAB\) is isosceles, with \(OA = OB\) and angle \(AOB = 2 \alpha\) where \(0< \alpha < {\pi \over 2}\,\). The semi-circle \(\mathrm{C}_0\) has its centre at the midpoint of the base \(AB\) of the triangle, and the sides \(OA\) and \(OB\) of the triangle are both tangent to the semi-circle. \(\mathrm{C}_1, \mathrm{C}_2, \mathrm{C}_3, \ldots\) are circles such that \(\mathrm{C}_n\) is tangent to \(\mathrm{C}_{n-1}\) and to sides \(OA\) and \(OB\) of the triangle. Let \(r_n\) be the radius of \(\mathrm{C}_n\,\). Show that \[ \frac{r_{n+1}}{r_n} = \frac{1-\sin\alpha}{1+\sin\alpha}\;. \] Let \(S\) be the total area of the semi-circle \(\mathrm{C}_0\) and the circles \(\mathrm{C}_1\), \(\mathrm{C}_2\), \(\mathrm{C}_3\), \(\ldots\;\). Show that \[ S = {1 + \sin^2 \alpha \over 4 \sin \alpha} \, \pi r_0^2 \;. \] Show that there are values of \(\alpha\) for which \(S\) is more than four fifths of the area of triangle~\(OAB\).
Show that if \(\, \cos(x - \alpha) = \cos \beta \,\) then either \(\, \tan x = \tan ( \alpha + \beta)\,\) or \(\; \tan x = \tan ( \alpha - \beta)\,\). By choosing suitable values of \(x\), \(\alpha\) and \(\beta\,\), give an example to show that if \(\,\tan x = \tan ( \alpha + \beta)\,\), then \(\,\cos(x - \alpha) \, \) need not equal \( \cos \beta \,\). Let \(\omega\) be the acute angle such that \(\tan \omega = \frac 43\,\).
Given a sequence \(w_0\), \(w_1\), \(w_2\), \(\ldots\,\), the sequence \(F_1\), \(F_2\), \(\ldots\) is defined by $$F_n = w_n^2 + w_{n-1}^2 - 4w_nw_{n-1} \,.$$ Show that $\; F_{n}-F_{n-1} = \l w_n-w_{n-2} \r \l w_n+w_{n-2}-4w_{n-1} \r \; \( for \)n \ge 2\,$.
For \(n=1\), \(2\), \(3\), \(\ldots\,\), let \[ I_n = \int_0^1 {t^{n-1} \over \l t+1 \r^n} \, \mathrm{d} t \, . \] By considering the greatest value taken by \(\displaystyle {t \over t+1}\) for \(0 \le t \le 1\) show that \(I_{n+1} < {1 \over 2} I_{n}\,\). Show also that \(\; \displaystyle I_{n+1}= - \frac 1{\; n\, 2^n} + I_{n}\,\). Deduce that \(\; \displaystyle I_n < \frac1 {\; n \, 2^{n-1}}\,\). Prove that \[ \ln 2 = \sum_{r=1}^n {1 \over \; r\, 2^r} + I_{n+1} \] and hence show that \({2 \over 3} < \ln 2 < {17 \over 24}\,\).
Solution: \begin{align*} && \frac{t}{t+1} &= 1 - \frac{1}{t+1} \geq \frac12 \\ \Rightarrow && I_{n+1} &= \int_0^1 \frac{t^{n}}{(t+1)^{n+1}} \d t \\ &&&= \int_0^1\frac{t}{t+1} \frac{t^{n-1}}{(t+1)^{n}} \d t \\ &&&< \int_0^1\frac12\frac{t^{n-1}}{(t+1)^{n}} \d t \\ &&&= \frac12 I_n \\ \\ && I_{n+1} &= \int_0^1 \frac{t^{n}}{(t+1)^{n+1}} \d t \\ &&&= \left [ t^n \frac{(1+t)^{-n}}{-n} \right]_0^1 +\frac1n \int_0^1 n t^{n-1}(1+t)^{-n} \d t \\ &&&= -\frac{1}{n2^n} + I_n \\ \Rightarrow && \frac12 I_n &> -\frac1{n2^n} + I_n \\ \Rightarrow && \frac{1}{n2^{n-1}} &> I_n \end{align*} \begin{align*} && \ln 2 &= \int_0^1 \frac{1}{1+t} \d t \\ &&&= I_1 \\ &&&= \frac1{2} + I_2 \\ &&&= \frac1{2} + \frac{1}{2 \cdot 2^2} + I_3 \\ &&&= \sum_{r=1}^n \frac{1}{r2^r} + I_{n+1} \\ \\ && \ln 2 &= \frac12 + \frac18 + \frac1{24} + I_4 \\ \Rightarrow && \ln 2 &> \frac12 + \frac18 + \frac1{24} = \frac{12+3+1}{24} = \frac{16}{24} = \frac23 \\ \Rightarrow && \ln 2 &= \frac12 + \frac18 + I_3 \\ &&&< \frac12 + \frac18 +\frac{1}{3 \cdot 4} \\ &&&< \frac{12}{24} + \frac{3}{24} + \frac{2}{24} = \frac{17}{24} \end{align*}
Show that if \[ {\mathrm{d}y \over \mathrm{d} x}=\f(x)y + {\g(x) \over y} \] then the substitution \(u = y^2\) gives a linear differential equation for \(u(x)\,\). Hence or otherwise solve the differential equation \[ {\mathrm{d}y \over \mathrm{d} x}={y \over x} - {1 \over y}\;. \] Determine the solution curves of this equation which pass through \((1 \,, 1)\,\), \((2\, , 2)\) and \((4 \, , 4)\) and sketch graphs of all three curves on the same axes.
Solution: \begin{align*} && \frac{\d y}{\d x} &= f(x) y + \frac{g(x)}{y} \\ && y \frac{\d y}{\d x} &= f(x) y^2 + g(x) \\ u = y^2: && \frac12 \frac{\d u}{\d x} &= f(x) u + g(x) \end{align*} Which is a linear differential equation for \(u\). \begin{align*} && \frac12 u' &= \frac1x u -1 \\ \Rightarrow && u' - \frac2xu &= -1 \\ \Rightarrow && \frac{1}{x^2} u' - \frac{2}{x^3} u &= -\frac{1}{x^2} \\ \Rightarrow && (\frac{u}{x^2})' &= - \frac{1}{x^2} \\ \Rightarrow && \frac{u}{x^2} &= \frac1x + C \\ \Rightarrow && u &= Cx^2 + x \\ \Rightarrow && y^2 &= Cx^2 + x \end{align*} If \((1,1)\) is on the curve then \(1 = C + 1 \Rightarrow C = 0 \Rightarrow y^2 = x\). If \((2,2)\) is on the curve then \(4 = 4C + 2 \Rightarrow C = \frac12 \Rightarrow y^2 = x + \frac12 x^2\). If \((3,3)\) is on the curve then \(9 = 9C + 3 \Rightarrow C = \frac23 \Rightarrow y^2 = x + \frac23 x^2\)
A circular hoop of radius \(a\) is free to rotate about a fixed horizontal axis passing through a point \(P\) on its circumference. The plane of the hoop is perpendicular to this axis. The hoop hangs in equilibrium with its centre, \(O\), vertically below \(P\). The point \(A\) on the hoop is vertically below \(O\), so that \(POA\) is a diameter of the hoop. A mouse \(M\) runs at constant speed \(u\) round the rough inner surface of the lower part of the hoop. Show that the mouse can choose its speed so that the hoop remains in equilibrium with diameter \(POA\) vertical. Describe what happens to the hoop when the mouse passes the point at which angle \(AOM = 2 \arctan \mu\,\), where \(\mu\) is the coefficient of friction between mouse and hoop.
A particle \(P\) of mass \(m\) is attached to points \(A\) and \(B\), where \(A\) is a distance \(9a\) vertically above \(B\), by elastic strings, each of which has modulus of elasticity \(6mg\). The string \(AP\) has natural length \(6a\) and the string \(BP\) has natural length \(2a\). Let \(x\) be the distance \(AP\). The system is released from rest with \(P\) on the vertical line \(AB\) and \(x = 6a\). Show that the acceleration \(\ddot{x}\) of \(P\) is \(\ds{4g \over a}(7a - x)\) for \(6a < x < 7a\) and \(\ds{g \over a}(7a - x)\) for \(7a < x < 9a\,\). Find the time taken for the particle to reach \(B\).