Solution:
Let \[\mathrm{f}(t)=\frac{\ln t}t\quad\text{ for }t>0.\] Sketch the graph of \(\mathrm{f}(t)\) and find its maximum value. How many positive values of \(t\) correspond to a given value of \(\mathrm f(t)\)? Find how many positive values of \(y\) satisfy \(x^y=y^x\) for a given positive value of \(x\). Sketch the set of points \((x,y)\) which satisfy \(x^y=y^x\) with \(x,y>0\).
By considering the solutions of the equation \(z^n-1=0\), or otherwise, show that \[(z-\omega)(z-\omega^2)\dots(z-\omega^{n-1})=1+z+z^2+\dots+z^{n-1},\] where \(z\) is any complex number and \(\omega={\rm e}^{2\pi i/n}\). Let \(A_1,A_2,A_3,\dots,A_n\) be points equally spaced around a circle of radius \(r\) centred at \(O\) (so that they are the vertices of a regular \(n\)-sided polygon). Show that \[\overrightarrow{OA_1}+\overrightarrow{OA_2}+\overrightarrow{OA_3} +\dots+\overrightarrow{OA_n}=\mathbf0.\] Deduce, or prove otherwise, that \[\sum_{k=1}^n|A_1A_k|^2=2r^2n.\]
In this question, you may assume that if \(k_1,\dots,k_n\) are distinct positive real numbers, then \[\frac1n\sum_{r=1}^nk_r>\left({\prod\limits_{r=1}^n} k_r\right )^{\!\! \frac1n},\] i.e. their arithmetic mean is greater than their geometric mean. Suppose that \(a\), \(b\), \(c\) and \(d\) are positive real numbers such that the polynomial \[{\rm f}(x)=x^4-4ax^3+6b^2x^2-4c^3x+d^4\] has four distinct positive roots.
Solution:
Find the ratio, over one revolution, of the distance moved by a wheel rolling on a flat surface to the distance traced out by a point on its circumference.
Solution: The point on the circumference will have position \((a\cos t, a \sin t )\) relative to the circumference where \(t \in [0, 2\pi]\). the wheel will travel \(2\pi a\), therefore the position is \((a\cos t + at, a \sin t )\). The total distance travelled can be computed using the arc length: \begin{align*} && s &= \int_0^{2\pi} \sqrt{\left ( \frac{\d y}{\d t} \right)^2 +\left ( \frac{\d x}{\d t} \right)^2} \d t \\ &&&= \int_0^{2\pi} \sqrt{(a - a\sin t)^2 +(a \cos t)^2 } \d t \\ &&&= a \int_0^{2\pi} \sqrt{2 - 2 \sin t } \d t \\ &&&= \sqrt{2}a \int_0^{2 \pi} \sqrt{1 - \sin t} \d t \\ &&&= \sqrt{2}a \int_0^{2 \pi} \frac{|\cos t|}{\sqrt{1 + \sin t}} \d t \\ &&&= 2\sqrt{2} a \int_{-\pi/2}^{\pi/2} \frac{\cos t}{\sqrt{1+\sin t}} \d t \\ &&&= 2\sqrt{2} a \left [ 2\sqrt{1+\sin t} \right]_{-\pi/2}^{\pi/2} \\ &&& = 2\sqrt{2} a 2\sqrt{2} \\ &&&= 8a \end{align*} Therefore the ratio is \(\frac{4}{\pi}\)
Suppose that \(y_n\) satisfies the equations \[(1-x^2)\frac{{\rm d}^2y_n}{{\rm d}x^2}-x\frac{{\rm d}y_n}{{\rm d}x}+n^2y_n=0,\] \[y_n(1)=1,\quad y_n(x)=(-1)^ny_n(-x).\] If \(x=\cos\theta\), show that \[\frac{{\rm d}^2y_n}{{\rm d}\theta^2}+n^2y_n=0,\] and hence obtain \(y_n\) as a function of \(\theta\). Deduce that for \(|x|\leqslant1\) \[y_0=1,\quad y_1=x,\] \[y_{n+1}-2xy_n+y_{n-1}=0.\]
For each positive integer \(n\), let \begin{align*} a_n&=\frac1{n+1}+\frac1{(n+1)(n+2)}+\frac1{(n+1)(n+2)(n+3)}+\cdots;\\ b_n&=\frac1{n+1}+\frac1{(n+1)^2}+\frac1{(n+1)^3}+\cdots. \end{align*}
Let \(R_{\alpha}\) be the \(2\times2\) matrix that represents a rotation through the angle \(\alpha\) and let $$A=\begin{pmatrix}a&b\\b&c\end{pmatrix}.$$
Solution: \begin{questionparts} \item \begin{align*} R_{-\alpha}AR_{\alpha} &= \begin{pmatrix} \cos \alpha & \sin\alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin\alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \\ &= \begin{pmatrix} \cos \alpha & \sin\alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} a\cos \alpha + b \sin \alpha & -a\sin\alpha + b \cos\alpha \\ b\cos\alpha + c \sin\alpha & c\cos\alpha-b\sin\alpha \end{pmatrix} \\ &= \begin{pmatrix} a\cos^2\alpha+2b\sin\alpha\cos\alpha+c\sin^2\alpha & -a\sin\alpha\cos \alpha+b\cos^2\alpha +c\sin\alpha\cos\alpha-b\sin^2 \alpha\\ (c-a)\sin\alpha\cos \alpha +b(\cos^2\alpha-\sin^2 \alpha) & a\sin^2 \alpha -2b\sin\alpha\cos\alpha+c\cos^2\alpha \end{pmatrix} \\ &= \begin{pmatrix} * & \frac{c-a}{2}\sin2\alpha+b \cos 2\alpha\\\frac{c-a}{2}\sin2\alpha+b \cos 2\alpha & * \end{pmatrix} \end{align*} Therefore this will be diagonal if \(\tan 2\alpha = \frac{2b}{a-c} \Rightarrow \alpha = \frac12 \tan^{-1} \l \frac{2b}{a-c} \r\) \item \begin{align*} x^2+(y+2x\cot2\theta)^2 &= x^2(1 + 4\cot^22\theta) + 4\cot2\theta xy + y^2 \\ &= \begin{pmatrix}x&y\end{pmatrix}\begin{pmatrix} 1 + 4\cot^22\theta & 2\cot 2\theta \\ 2\cot 2\theta & 1 \end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} \end{align*} Plugging this \(\mathbf{A}\) in our result from before we discover \begin{align*} \frac12 \tan^{-1} \l \frac{2b}{a-c} \r &= \frac12 \tan^{-1} \l \frac{4\cot 2\theta}{1 + 4\cot^22\theta-1} \r \\ &= \frac12 \tan^{-1} \l \tan 2 \theta \r \\ &= \theta \end{align*} Therefore, the matrix will be: \begin{align*} & \textrm{diag}\begin{pmatrix} (1+4\cot^2 2\theta)\cos^2 \theta + 4\cot2\theta \sin\theta\cos\theta + \sin^2 \theta \\ (1+4\cot^2 2\theta)\sin^2 \theta - 4\cot2\theta \sin\theta\cos\theta + \cos^2 \theta \end{pmatrix} \\ =& \textrm{diag}\begin{pmatrix} \cos^2\theta + \frac{\cos^2 2\theta}{\sin^2 \theta} + 2\cos 2\theta + \sin^2 \theta \\ \sin^2\theta + \frac{\cos^2 2\theta}{\cos^2 \theta} - 2\cos 2\theta + \cos^2 \theta \end{pmatrix} \\ =& \textrm{diag}\begin{pmatrix} 1 + \cos 2\theta \l \frac{\cos2\theta}{\sin^2 \theta} + 2\r \\ 1 + \cos 2\theta \l \frac{\cos2\theta}{\cos^2 \theta} - 2\r \\ \end{pmatrix} \\ =& \textrm{diag}\begin{pmatrix} 1 + \cos 2\theta \l \frac{\cos^2 \theta + \sin^2 \theta}{\sin^2 \theta}\r \\ 1 -\cos 2\theta \l \frac{-\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}\r \\ \end{pmatrix} \\ =& \textrm{diag}\begin{pmatrix} 1 + (\cos^2\theta - \sin^2 \theta) \cosec^2 \theta \\ 1 - (\cos^2\theta - \sin^2 \theta) \sec^2 \theta \\ \end{pmatrix} \\ =& \textrm{diag}\begin{pmatrix} \cot^2 \theta \\ \tan^2 \theta \\ \end{pmatrix} \\ \end{align*} Therefore this is a rotation of an ellipse with equation: \((\cot \theta x)^2 + (\tan \theta y)^2 = 1\), ie the shortest side and longest side are \(\cot \theta\) and \(\tan \theta\) respectively, but we know since \(0 < \theta < \tfrac{1}{4}\pi\) the shortest will be \(\tan \theta\) and the longest \(\cot \theta\).
A uniform rigid rod \(BC\) is suspended from a fixed point \(A\) by light stretched springs \(AB,AC\). The springs are of different natural lengths but the ratio of tension to extension is the same constant \(\kappa\) for each. The rod is not hanging vertically. Show that the ratio of the lengths of the stretched springs is equal to the ratio of the natural lengths of the unstretched springs.
Solution:
By pressing a finger down on it, a uniform spherical marble of radius \(a\) is made to slide along a horizontal table top with an initial linear velocity \(v_0\) and an initial {\em backward} angular velocity \(\omega_0\) about the horizontal axis perpendicular to \(v_0\). The frictional force between the marble and the table is constant (independent of speed). For what value of \(v_0/(a\omega_0)\) does the marble
Solution: