The curve \(P\) has the parametric equations $$ x= \sin\theta, \quad y=\cos2\theta \qquad\hbox{ for }-\pi/2 \le \theta \le \pi/2. $$ Show that \(P\) is part of the parabola \(y=1-2x^2\) and sketch \(P\). Show that the length of \(P\) is \(\surd (17) + {1\over 4} \sinh^{-1}4\). Obtain the volume of the solid enclosed when \(P\) is rotated through \(2\pi\) radians about the line \(y=-1\).
Solution: First notice that \(y = \cos 2 \theta = 1 - 2\sin^2 \theta = 1- 2x^2\), therefore \(P\) is lies on that parabola.
The curve \(C\) has the equation \(x^3+y^3 = 3xy\).
The matrices \(\mathbf{A},\mathbf{B}\) and \(\mathbf{M}\) are given by \[ \mathbf{A}=\begin{pmatrix}a & 0 & 0\\ b & c & 0\\ d & e & f \end{pmatrix},\quad\mathbf{B}=\begin{pmatrix}1 & p & q\\ 0 & 1 & r\\ 0 & 0 & 1 \end{pmatrix},\quad\mathbf{M}=\begin{pmatrix}1 & 3 & 2\\ 4 & 13 & 5\\ 3 & 8 & 7 \end{pmatrix}, \] where \(a,b,\ldots,r\) are real numbers. Given that \(\mathbf{M=AB},\) show that \(a=1,b=4,c=1,d=3,e=1,f=-2,p=3,q=2\) and \(r=-3\) gives the unique solution for \(\mathbf{A}\) and \(\mathbf{B}.\) Evaluate \(\mathbf{A}^{-1}\) and \(\mathbf{B}^{-1},\) Hence, or otherwise, solve the simultaneous equations \begin{alignat*}{1} x+3y+2z & =7\\ 4x+13y+5z & =18\\ 3x+8y+7z & =25. \end{alignat*}
Solution: \begin{align*} && \begin{pmatrix}1 & 3 & 2\\ 4 & 13 & 5\\ 3 & 8 & 7 \end{pmatrix} &= \begin{pmatrix}a & 0 & 0\\ b & c & 0\\ d & e & f \end{pmatrix}\begin{pmatrix}1 & p & q\\ 0 & 1 & r\\ 0 & 0 & 1 \end{pmatrix} \\ &&&= \begin{pmatrix} a & ap & aq \\ b & pb + c & qb + cr\\ d & pd + e & qd + er +f \end{pmatrix} \\ \Rightarrow && a,b,d,p,q&=1,4,3,3,2\\ &&&= \begin{pmatrix} 1 & 3 & 2 \\ 4 & 12 + c & 8+ cr\\ 3 & 9 + e & 6 + er +f \end{pmatrix} \\ \Rightarrow && c, e&=1,-1\\ &&&= \begin{pmatrix} 1 & 3 & 2 \\ 4 & 13 & 8+ r\\ 3 & 8 & 6 -r +f \end{pmatrix} \\ \Rightarrow && r, f &= -3, -2 \end{align*} \begin{align*} \mathbf{A}^{-1} &= \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0\\ 3 & -1 & -2 \end{pmatrix}^{-1} \\ &=\frac{1}{-2} \begin{pmatrix} -2 & 0 & 0 \\ 8 & -2 & 0\\ -7 & 1 & 1 \end{pmatrix} \\ \\ \mathbf{B}^{-1} &= \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & -3\\ 0 & 0 & 1 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 1 & -3 & -11 \\ 0 & 1 & 3\\ 0 & 0 & 1 \end{pmatrix} \\ \end{align*} We want to solve \(\mathbf{M}\mathbf{v} = \begin{pmatrix} 7 \\ 18 \\ 25 \end{pmatrix}\), ie \begin{align*} \mathbf{v} &= \mathbf{M}^{-1}\begin{pmatrix} 7 \\ 18 \\ 25 \end{pmatrix} \\ &= \mathbf{B}^{-1} \mathbf{A}^{-1}\begin{pmatrix} 7 \\ 18 \\ 25 \end{pmatrix} \\ &= \frac{1}{-2}\mathbf{B}^{-1} \begin{pmatrix} -2 & 0 & 0 \\ 8 & -2 & 0\\ -7 & 1 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ 18 \\ 25 \end{pmatrix} \\ &= \frac{1}{-2}\mathbf{B}^{-1} \begin{pmatrix} -14 \\ 20 \\ -6 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -3 & -11 \\ 0 & 1 & 3\\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 7 \\ -10 \\ 3 \end{pmatrix} \\ &= \begin{pmatrix} 4\\ -1 \\ 3 \end{pmatrix} \end{align*} This algorithm is called the "LU-decomposition"
Sum the following infinite series.
Solution:
The set \(S\) consists of ordered pairs of complex numbers \((z_1,z_2)\) and a binary operation \(\circ\) on \(S\) is defined by $$ (z_1,z_2)\circ(w_1,w_2)= (z_1w_1-z_2w^*_2, \; z_1w_2+z_2w^*_1). $$ Show that the operation \(\circ\) is associative and determine whether it is commutative. Evaluate \((z,0)\circ(w,0)\), \((z,0)\circ(0,w)\), \((0,z)\circ(w,0)\) and \((0,z)\circ(0,w)\). The set \(S_1\) is the subset of \(S\) consisting of \(A\), \(B\), \(\ldots\,\), \(H\), where \(A=(1,0)\), \(B=(0,1)\), \(C=(i,0)\), \(D=(0,i)\), \(E=(-1,0)\), \(F=(0,-1)\), \(G=(-i,0)\) and \(H=(0,-i)\). Show that \(S_1\) is closed under \(\circ\) and that it has an identity element. Determine the inverse and order of each element of \(S_1\). Show that \(S_1\) is a group under \(\circ\). \hfil\break [You are not required to compute the multiplication table in full.] Show that \(\{A,B,E,F\}\) is a subgroup of \(S_1\) and determine whether it is isomorphic to the group generated by the \(2\times2\) matrix $\begin{pmatrix}0 & 1\\ -1 & 0 \end{pmatrix}$ under matrix multiplication.
The point in the Argand diagram representing the complex number \(z\) lies on the circle with centre \(K\) and radius \(r\), where \(K\) represents the complex number \(k\). Show that $$ zz^* -kz^* -k^*z +kk^* -r^2 =0. $$ The points \(P\), \(Q_1\) and \(Q_2\) represent the complex numbers \(z\), \(w_1\) and \(w_2\) respectively. The point \(P\) lies on the circle with \(OA\) as diameter, where \(O\) and \(A\) represent \(0\) and \(2i\) respectively. Given that \(w_1=z/(z-1)\), find the equation of the locus \(L\) of \(Q_1\) in terms of \(w_1\) and describe the geometrical form of \(L\). Given that \(w_2=z^*\), show that the locus of \(Q_2\) is also \(L\). Determine the positions of \(P\) for which \(Q_1\) coincides with \(Q_2\).
The real numbers \(x\) and \(y\) satisfy the simultaneous equations $$ \sinh (2x) = \cosh y \qquad\hbox{and}\qquad \sinh(2y) = 2 \cosh x. $$ Show that \(\sinh^2 y\) is a root of the equation $$ 4t^3 + 4t^2 -4t -1=0 $$ and demonstrate that this gives at most one valid solution for \(y\). Show that the relevant value of \(t\) lies between \(0.7\) and \(0.8\), and use an iterative process to find \(t\) to 6 decimal places. Find \(y\) and hence find \(x\), checking your answers and stating the final answers to four decimal places.
Solution: Let \(t = \sinh^2 y\), then \begin{align*} && \sinh(2x) &= \cosh y \tag{1}\\ && \sinh(2y) &= 2 \cosh x \tag{2} \\ \\ && \cosh(2x) &= 2 \cosh^2 x -1 \\ (2): &&&= \frac12 \sinh^2(2y) -1 \\ && 1 &= \left (\frac12 \sinh^2(2y) -1 \right)^2 - \cosh^2 y \\ &&&= \frac14 \sinh^4(2y)-\sinh^2(2y)+1-\cosh^2 y \\ \Rightarrow && 0 &= \frac14 (\cosh^2 (2y)-1)^2- (\cosh^2 (2y)-1) - \cosh^2 y \\ &&&= \frac14 \left ( \left (1+2\sinh^2 y \right)^2-1 \right)^2 -\left ( \left (1+2\sinh^2 y \right)^2 -1\right) - (1 + \sinh^2 y ) \\ &&&= \frac14 \left ( 1 + 4t+4t^2 -1\right)^2 - \left ( 1+4t+4t^2-1\right) - (1 + t) \\ &&&= \frac14 (4t + 4t^2)^2 - (4t+4t^2)-1-t \\ &&&= 4(t+t^2)^2 - 4t^2-5t-1 \\ &&&= 4t^4+8t^3+4t^2-4t^2-5t-1 \\ &&& = 4t^4+8t^3-5t-1 \\ &&&= (t+1)(4t^3+4t^2-4t-1) \end{align*} Since \(\sinh^2 y\) is positive, we must be a root of the second cubic. Let \(f(t) = 4t^3+4t^2-4t-1\), then \(f(0) = -1\) and \(f'(t) = 12t^2+8t-4 = 4(t+1)(3t-1)\), so we have turning points at \(-1\) and \(\frac13\). Since \(f(-1) = 3 > 0\) and \(f(0) < 0\) we must have exactly one root larger than zero. Therefore there is a unique root. \(f(0.7) = -0.468 < 0\) \(f(0.8) = 0.408 > 0\) since \(f\) is continuous and changes sign, the root must fall in the interval \((0.7, 0.8)\). Let \(t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)}\), and \(t_0 = 0.75\), then \begin{align*} t_0 &= 0.75 \\ t_1 &= 0.7571428571 \\ t_2 &= 0.7570684728 \\ t_3 &= 0.7570684647 \end{align*} So \(t \approx 0.757068\), \(\sinh y \approx 0.870097\), \(y \approx 0.786474\), \(x \approx 0.546965\)
A square pyramid has its base vertices at the points \(A\) \((a,0,0)\), \(B\) \((0,a,0)\), \(C\) \((-a,0,0)\) and \(D\) \((0,-a,0)\), and its vertex at \(E\) \((0,0,a)\). The point \(P\) lies on \(AE\) with \(x\)-coordinate \(\lambda a\), where \(0<\lambda<1\), and the point \(Q\) lies on \(CE\) with \(x\)-coordinate \(-\mu a\), where \(0<\mu<1\). The plane \(BPQ\) cuts \(DE\) at \(R\) and the \(y\)-coordinate of \(R\) is \(-\gamma a\). Prove that $$ \gamma = {\lambda \mu \over \lambda + \mu - \lambda \mu}. $$ Show that the quadrilateral \(BPRQ\) cannot be a parallelogram.
For the real numbers \(a_1\), \(a_2\), \(a_3\), \(\ldots\),
The transformation \(T\) of the point \(P\) in the \(x\),\(y\) plane to the point \(P'\) is constructed as follows: \hfil\break Lines are drawn through \(P\) parallel to the lines \(y=mx\) and \(y=-mx\) to cut the line \(y=kx\) at \(Q\) and \(R\) respectively, \(m\) and \(k\) being given constants. \(P'\) is the fourth vertex of the parallelogram \(PQP'R\). Show that if \(P\) is \((x_1,y_1)\) then \(Q\) is $$ \left( {mx_1-y_1 \over m-k}, {k(mx_1-y_1)\over m-k}\right). $$ Obtain the coordinates of \(P'\) in terms of \(x_1\), \(y_1\), \(m\) and \(k\), and express \(T\) as a matrix transformation. Show that areas are transformed under \(T\) into areas of the same magnitude.