Problems

Filters
Clear Filters
1989 Paper 3 Q1
D: 1700.0 B: 1516.0

Prove that the area of the zone of the surface of a sphere between two parallel planes cutting the sphere is given by \[ 2\pi\times(\mbox{radius of sphere})\times(\mbox{perpendicular distance between the planes}). \] A tangent from the origin \(O\) to the curve with cartesian equation \[ (x-c)^{2}+y^{2}=a^{2}, \] where \(a\) and \(c\) are positive constants with \(c>a,\) touches the curve at \(P\). The \(x\)-axis cuts the curve at \(Q\) and \(R\), the points lying in the order \(OQR\) on the axis. The line \(OP\) and the arc \(PR\) are rotated through \(2\pi\) radians about the line \(OQR\) to form a surface. Find the area of this surface.


Solution:

TikZ diagram
We can choose a coordinate frame where the parallel planes are parallel to the \(y-z\) axis. Then we can compute the surface area as an integral of the surface of revolution for \(x^2 + y^2 = r^2\). Using \(y = r \sin t, x = r \cos t\) we have: \begin{align*} S &= 2\pi\int_{\cos^{-1}a}^{\cos^{-1}b}y \sqrt{\left ( \frac{\d x}{\d t} \right)^2+\left ( \frac{\d y}{\d t} \right)^2} \d t \\ &=2\pi\int_{\cos^{-1}a}^{\cos^{-1}b} r^2 \sin t \d t \\ &= 2\pi \cdot r^2 \cdot (a - b) \\ &= 2 \pi \cdot r \cdot (ra-rb) \\ &= 2\pi\times(\mbox{radius of sphere})\times(\mbox{perpendicular distance between the planes}). \end{align*}
TikZ diagram
We can view this surface as a sphere missing a cap of height \(XQ\) and adding a cone of slant height \(OP\) and radius \(PX\) The centre of the circle is at \((c,0)\) and \(OP^2 + a^2 = c^2 \Rightarrow OP = \sqrt{c^2-a^2}\) Since \(OPC \sim OXP\) we must have that \(\frac{OX}{OP} = \frac{OP}{OC} \Rightarrow OX = \frac{c^2-a^2}{c}\) and \(\frac{PX}{OP} = \frac{CP}{OC} \Rightarrow PX = \frac{a}{c}\sqrt{c^2-a^2}\) \(QX = OX - OQ = \frac{c^2-a^2}{c}-(c-a) = \frac{ac-a^2}{c}\) Therefore the surface area is: \begin{align*} S &= 4 \pi a^2 - 2\pi \cdot a \cdot QX+ \pi PX \cdot OP \\ &= 4 \pi a^2 - 2\pi a \cdot \frac{ac-a^2}{c}+\pi \frac{a}{c}\sqrt{c^2-a^2}\cdot \sqrt{c^2-a^2} \\ &= 4\pi a^2 -2\pi \frac{a^2c-a^3}{c}+\pi \frac{ac^2-a^3}{c} \\ &= \pi a \frac{(a+c)^2}{c} \end{align*}

1989 Paper 3 Q2
D: 1700.0 B: 1484.0

The points \(A,B\) and \(C\) lie on the surface of the ground, which is an inclined plane. The point \(B\) is 100m due north of \(A,\) and \(C\) is 60m due east of \(B\). The vertical displacements from \(A\) to \(B,\) and from \(B\) to \(C\), are each 5m downwards. A plane coal seam lies below the surface and is to be located by making vertical bore-holes at \(A,B\) and \(C\). The bore-holes strike the coal seam at 95m, 45m and 76m below \(A,B\) and \(C\) respectively. Show that the coal seam is inclined at \(\cos^{-1}(\frac{4}{5})\) to the horizontal. The coal seam comes to the surface along a line. Find the bearing of this line.


Solution: Set up a coordinate system so that \(x\) is E-W, \(y\) is N-S and \(z\) is the vertical direction. Also assume \(B\) is the origin, then, \(A = \begin{pmatrix} 0 \\ -100 \\ 5\end{pmatrix}, B = \begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}, C= \begin{pmatrix} 60 \\ 0\\ -5\end{pmatrix},\). The coal seam has points: \(\begin{pmatrix} 0 \\ -100 \\ -90\end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -45\end{pmatrix}, \begin{pmatrix} 60 \\ 0\\ -81\end{pmatrix},\) Therefore we can find the normal to the coal seam: \begin{align*} \mathbf{n} &= \left (\begin{pmatrix} 0 \\ -100 \\ -90\end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ -45\end{pmatrix}\right ) \times \left ( \begin{pmatrix} 60 \\ 0\\ -81\end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ -45\end{pmatrix}\right ) \\ &= \begin{pmatrix} 0 \\ - 100 \\ -45\end{pmatrix} \times \begin{pmatrix} 60 \\ 0 \\ -36\end{pmatrix} \\ &= \begin{pmatrix} 3600 \\ -60 \cdot 45 \\ 60 \cdot 100 \end{pmatrix} \\ &= 300\begin{pmatrix} 12 \\ -9 \\ 20\end{pmatrix} \end{align*} To measure the incline \(\theta\) to the horizontal we can take a dot with \(\hat{\mathbf{k}}\), to see: \begin{align*} \cos \theta &= \frac{20}{\sqrt{12^2+(-9)^2+20^2} \sqrt{1^2+0^2+0^2}} \\ &= \frac{20}{25} \\ &= \frac{4}{5} \end{align*} Therefore the angle is \(\cos^{-1} \tfrac 45\) The equation of the seam is \(12x - 9y + 20z = -900\). The equation of the surface is \(5x + 3y + 60z = 0\) We can compute the direction of the overlap again with a cross product: \begin{align*} \mathbf{d} &= \begin{pmatrix} 12 \\ -9 \\ 20\end{pmatrix} \times \begin{pmatrix} 5 \\ 3 \\ 60\end{pmatrix} \\ &= \begin{pmatrix} -600 \\ -620 \\ 81 \end{pmatrix} \end{align*} To get the bearing of this vector we just need to look at the \(x\) and \(y\) components, so it will be \(\tan^{-1} \frac{600}{620} = \tan^{-1} \frac{30}{31}\)

1989 Paper 3 Q3
D: 1675.2 B: 1469.0

The matrix \(\mathbf{M}\) is given by \[ \mathbf{M}=\begin{pmatrix}\cos(2\pi/m) & -\sin(2\pi/m)\\ \sin(2\pi/m) & \cos(2\pi/m) \end{pmatrix}, \] where \(m\) is an integer greater than \(1.\) Prove that \[ \mathbf{M}^{m-1}+\mathbf{M}^{m-2}+\cdots+\mathbf{M}^{2}+\mathbf{M}+\mathbf{I}=\mathbf{O}, \] where $\mathbf{I}=\begin{pmatrix}1 & 0\\ 0 & 1 \end{pmatrix}\( and \)\mathbf{O}=\begin{pmatrix}0 & 0\\ 0 & 0 \end{pmatrix}.$ The sequence \(\mathbf{X}_{0},\mathbf{X}_{1},\mathbf{X}_{2},\ldots\) is defined by \[ \mathbf{X}_{k+1}=\mathbf{PX}_{k}+\mathbf{Q}, \] where \(\mathbf{P,Q}\) and \(\mathbf{X}_{0}\) are given \(2\times2\) matrices. Suggest a suitable expression for \(\mathbf{X}_{k}\) in terms of \(\mathbf{P},\) \(\mathbf{Q}\) and \(\mathbf{X}_{0},\) and justify it by induction. The binary operation \(*\) is defined as follows: \[ \mathbf{X}_{i}*\mathbf{X}_{j}\mbox{ is the result of substituting \ensuremath{\mathbf{X}_{j}}for \ensuremath{\mathbf{X}_{0}}in the expression for \ensuremath{\mathbf{X}_{i}}. } \] Show that if \(\mathbf{P=M},\) the set \(\{\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\ldots\}\) forms a finite group under the operation \(*\).


Solution: \(\mathbf{M}^m = \mathbf{I}\), we also have \(\mathrm{det}(\mathbf{M - I}) = \cos^2(2\pi/m) - 2\cos(2\pi/m) + 1 + \sin^2(2\pi/m) = 2(1-\cos(2\pi/m))\) therefore \(\mathbf{M-I}\) is invertible. Therefore since \(\mathbf{(M-I)(M^{m-1} + M^{m-1} + \cdots + M^2 + M + I)= M^m-I = 0}\) we can cancel the \(\mathbf{M-I}\) to obtain the desired result. \(\mathbf{X_0 = X_0}\) \(\mathbf{X_1 = PX_0+Q}\) \(\mathbf{X_2 = P(PX_0+Q)+Q = P^2X_0 + PQ + Q}\) Claim: \(\mathbf{X_k = P^k X_0 + (P^{k-1} + P^{k-2} + \cdots + I)Q}\) Proof: (By induction on \(k\)). Base case \(k = 0\) is true. Assume it's true for some \(k = l\), then consider \(k = l+1\) \(\mathbf{X_{l+1} = PX_l + Q = P( P^l X_0 + (P^{l-1} + P^{l-2} + \cdots + I)Q) + Q = P^{l+1}X_0 + (P^l + P^{l-1} + \cdots + P)Q + Q = P^{l+1}X_0 + (P^l + P^{l-1} + \cdots + P + I)Q}\) Suppose \(\mathbf{P} = \mathbf{M}\), then consider the set \(\{\mathbf{X_1, X_2}, \ldots\}\) with the operation \(*\) as defined. \(\mathbf{X_i * X_j} = M^{i}(X_j) + (M^{i-1} + M^{i-2} + \cdots + M + I)Q = M^{i}(M^jX_0 + (M^{j-1} + M^{j-2} + \cdots + M + I)Q) + (M^{i-1} + M^{i-2} + \cdots + M + I)Q = M^{i+j}X_0 + (M^{i+j-1}+\cdots + M + I)Q = X_{i+j}\) Since \(X_m = X_0\) we can check all the requirements of the group, but this is going to be isomorphic to the cyclic group with \(m\) elements.

1989 Paper 3 Q4
D: 1700.0 B: 1500.0

Sketch the curve whose cartesian equation is \[ y=\frac{2x(x^{2}-5)}{x^{2}-4}, \] and give the equations of the asymptotes and of the tangent to the curve at the origin. Hence, or otherwise, determine (giving reasons) the number of real roots of the following equations:

  1. \(4x^{2}(x^{2}-5)=(5x-2)(x^{2}-4)\);
  2. \(4x^{2}(x^{2}-5)^{2}=(x^{2}-4)^{2}(x^{2}+1)\);
  3. \(4z^{2}(z-5)^{2}=(z-4)^{2}(z+1)\).


Solution:

TikZ diagram
The gradient at the origin is \(\frac{5}{2}\) which we can observe by looking at the taylor series
  1. \begin{align*} && 4x^{2}(x^{2}-5)&=(5x-2)(x^{2}-4) \\ && \frac{2x(x^2-5)}{x^2-4} &= \frac{5x-2}{2x} = \frac52 -\frac1x \end{align*} Therefore it will have two roots as the hyperbola will intersect our graph in two places. (In the upper left and lower right quadrants).
  2. \begin{align*} && 4x^{2}(x^{2}-5)^{2}&=(x^{2}-4)^{2}(x^{2}+1) \\ && \frac{2x(x^2-5)}{x^2-4} &= \frac{(x^2-4)(x^2+1)}{2x} \end{align*}
    TikZ diagram
    No solutions \begin{align*} && 4z^{2}(z-5)^{2}&=(z-4)^{2}(z+1) \\ && \frac{2z(z^2-5)}{z^2-4} &= \frac{(z+5)(z-4)(z+1)}{(z-5)(z+4)} \end{align*}
    TikZ diagram
    5 solutions

1989 Paper 3 Q5
D: 1700.0 B: 1516.0

Given that \(y=\cosh(n\cosh^{-1}x),\) for \(x\geqslant1,\) prove that \[ y=\frac{(x+\sqrt{x^{2}-1})^{n}+(x-\sqrt{x^{2}-1})^{n}}{2}. \] Explain why, when \(n=2k+1\) and \(k\in\mathbb{Z}^{+},\) \(y\) can also be expressed as the polynomial \[ a_{0}x+a_{1}x^{3}+a_{2}x^{5}+\cdots+a_{k}x^{2k+1}. \] Find \(a_{0},\) and show that

  1. \(a_{1}=(-1)^{k-1}2k(k+1)(2k+1)/3\);
  2. \(a_{2}=(-1)^{k}2(k-1)k(k+2)(2k+1)/15.\)
Find also the value of \({\displaystyle \sum_{r=0}^{k}a_{r}.}\)


Solution: Recall, \(\cosh^{-1} x = \ln (x + \sqrt{x^2-1})\) \begin{align*} \cosh(n \cosh^{-1} x) &= \frac12 \left ( \exp(n \cosh^{-1} x) + \exp(-n\cosh^{-1}x) \right) \\ &= \frac12 \left ((x + \sqrt{x^2-1})^n + (x + \sqrt{x^2-1})^{-n} \right) \\ &= \frac12 \left ((x + \sqrt{x^2-1})^n + (x - \sqrt{x^2-1})^{n} \right) \\ \end{align*} When \(n = 2k+1\) \begin{align*} \cosh(n \cosh^{-1} x)&= \frac12 \left ((x + \sqrt{x^2-1})^n + (x - \sqrt{x^2-1})^{n} \right) \\ &= \frac12 \left (\sum_{i=0}^{2k+1}\binom{2k+1}{i}x^{2k+1-i}\left ( (\sqrt{x^2-1}^{i} + (-\sqrt{x^2-1})^{i} \right) \right) \\ &=\sum_{i=0}^{k} \binom{2k+1}{2i}x^{2k+1-2i}(x^2-1)^i \\ &=\sum_{i=0}^{k} \binom{2k+1}{2i}x^{2(k-i)+1}(x^2-1)^i \\ \end{align*} Which is clearly a polynomial with only odd degree terms. \begin{align*} a_0 &= \frac{\d y}{\d x} \vert_{x=0} \\ &= \sum_{i=0}^k\binom{2k+1}{2i} \left ( (2(k-i)+1)x^{2(k-i)}(x^2-1)^i + 2i\cdot x^{2(k-i)+2}(x^2-1) \right) \\ &= \binom{2k+1}{2k} (-1)^{k} \\ &= (-1)^k(2k+1) \end{align*}

  1. \begin{align*} a_1 &= \binom{2k+1}{2k}\binom{k}{1}(-1)^{k-1}+\binom{2k+1}{2(k-1)}(-1)^{k-1} \\ &=(-1)^{k-1}\cdot ( (2k+1)k + \frac{(2k+1)\cdot 2k \cdot (2k-1)}{3!}) \\ &= (-1)^{k-1}(2k+1)k\frac{3 + 2k-1}{3} \\ &= (-1)^{k-1}2(2k+1)k (k+1) \end{align*}
  2. \begin{align*} a_2 &= \binom{2k+1}{2k} \binom{k}{2}(-1)^{k-2} + \binom{2k+1}{2(k-1)} \binom{k-1}{1} (-1)^{k-2}+\binom{2k+1}{2(k-2)} (-1)^{k-2} \\ &= \binom{2k+1}{1} \binom{k}{2}(-1)^{k-2} + \binom{2k+1}{3} \binom{k-1}{1} (-1)^{k-2}+\binom{2k+1}{5} (-1)^{k-2} \\ &= (-1)^{k} \left (\binom{2k+1}{1} \frac{k(k-1)}{2} + \binom{2k+1}{3}(k-1)+\binom{2k+1}{5} \right) \\ &= (-1)^{k} \left ( \frac{(2k+1)k(k-1)}{2} + \frac{(2k+1)k(2k-1)}{3} + \frac{(2k+1)k(2k-1)(k-1)(2k-3)}{5\cdot2\cdot3} \right) \\ &= (-1)^k (2k+1)k\frac{1}{30} \left ( 15(k-1) + 10(2k-1)+(2k-1)(k-1)(2k-3) \right) \end{align*}
\begin{align*} \sum_{r=0}^k a_k &= \frac12 \left ((1 + \sqrt{1^2-1})^n + (1 - \sqrt{1^2-1})^{n} \right) \\ &= 1 \end{align*}

1989 Paper 3 Q6
D: 1700.0 B: 1500.0

Show that, for a given constant \(\gamma\) \((\sin\gamma\neq0)\) and with suitable choice of the constants \(A\) and \(B\), the line with cartesian equation \(lx+my=1\) has polar equations \[ \frac{1}{r}=A\cos\theta+B\cos(\theta-\gamma). \] The distinct points \(P\) and \(Q\) on the conic with polar equations \[ \frac{a}{r}=1+e\cos\theta \] correspond to \(\theta=\gamma-\delta\) and \(\theta=\gamma+\delta\) respectively, and \(\cos\delta\neq0.\) Obtain the polar equation of the chord \(PQ.\) Hence, or otherwise, obtain the equation of the tangent at the point where \(\theta=\gamma.\) The tangents at \(L\) and \(M\) to a conic with focus \(S\) meet at \(T.\) Show that \(ST\) bisects the angle \(LSM\) and find the position of the intersection of \(ST\) and \(LM\) in terms of your chosen parameters for \(L\) and \(M.\)


Solution: \begin{align*} && \frac1{r} &= A \cos \theta + B \cos (\theta - \gamma) \\ &&&= A \cos \theta + B \cos \theta \cos \gamma + B \sin \theta \sin \gamma \\ &&&= (A+B \cos \gamma) \cos \theta + B \sin \gamma \sin \theta \\ \Longleftrightarrow && 1 &= (A+B \cos \gamma) x + B \sin \gamma y \end{align*} So if we choose \(B = \frac{m}{\sin \gamma}\) and \(A = l-m \cot \gamma\) we have the desired result. \begin{align*} && \frac{1 + e \cos (\gamma -\delta)}a &= A \cos (\gamma - \delta) + B \cos (\gamma - \delta - \gamma) \\ &&&= A \cos(\gamma-\delta) +B \cos \delta\\ && \frac{1 + e \cos (\gamma +\delta)}{a} &= A \cos (\gamma + \delta) + B \cos (\gamma + \delta - \gamma) \\ &&&= A \cos(\gamma + \delta) + B \cos \delta\\ \Rightarrow && \frac1{r} &= \frac{e}{a} \cos \theta + \frac{1}{a \cos \delta} \cos (\theta - \gamma) \\ \lim{\delta \to 0} &&\frac1{r} &= \frac{e}{a} \cos \theta+ \frac{1}{a} \cos (\theta - \gamma) \end{align*} Suppose we have have points \(L\) and \(M\) with \(\theta = \gamma_L, \gamma_M\) then our tangents are: \begin{align*} && \frac{a}{r} &= \cos \theta + \cos (\theta - \gamma_L) \\ && \frac{a}{r} &= \cos \theta + \cos (\theta - \gamma_M) \\ \Rightarrow && 0 &= \cos (\theta - \gamma_L) -\cos(\theta - \gamma_M) \\ &&&= - 2 \sin \frac{(\theta - \gamma_L)+(\theta - \gamma_M)}{2} \sin \frac{(\theta - \gamma_L)-(\theta - \gamma_M)}{2} \\ &&&= -2 \sin \left ( \theta - \frac{\gamma_L+\gamma_M}2 \right) \sin \left ( \frac{\gamma_M - \gamma_L}{2}\right) \\ \Rightarrow && \theta &= \frac{\gamma_L+\gamma_M}{2} \end{align*} Therefore clearly \(ST\) bisects \(LSM\). The line \(LM\) can be seen as the chord from the points \(\frac{\gamma_L+\gamma_M}{2} \pm \frac{\gamma_L-\gamma_M}{2}\), so the line is: \begin{align*} && \frac{a}{r} &= e \cos \theta + \frac{1}{\cos \left ( \frac{\gamma_L-\gamma_M}{2}\right)} \cos \left (\theta - \frac{\gamma_L+\gamma_M}{2} \right) \end{align*} and we want the point on the line where \(\theta =\frac{\gamma_L+\gamma_M}{2}\) so \begin{align*} && \frac{a}{r} &= e \cos \left ( \frac{\gamma_L+\gamma_M}{2} \right) + \frac{1}{\cos \left ( \frac{\gamma_L-\gamma_M}{2}\right)} \\ \Rightarrow && r &= \frac{a}{e \cos \left ( \frac{\gamma_L+\gamma_M}{2} \right) + \frac{1}{\cos \left ( \frac{\gamma_L-\gamma_M}{2}\right)}} \end{align*}

1989 Paper 3 Q7
D: 1700.0 B: 1474.1

The linear transformation \(\mathrm{T}\) is a shear which transforms a point \(P\) to the point \(P'\) defined by

  1. \(\overrightarrow{PP'}\) makes an acute angle \(\alpha\) (anticlockwise) with the \(x\)-axis,
  2. \(\angle POP'\) is clockwise (i.e. the rotation from \(OP\) to \(OP'\) clockwise is less than \(\pi),\)
  3. \(PP'=k\times PN,\) where \(PN\) is the perpendicular onto the line \(y=x\tan\alpha,\) where \(k\) is a given non-zero constant.
If \(\mathrm{T}\) is represented in matrix form by $\begin{pmatrix}x'\\ y' \end{pmatrix}=\mathbf{M}\begin{pmatrix}x\\ y \end{pmatrix},$ show that \[ \mathbf{M}=\begin{pmatrix}1-k\sin\alpha\cos\alpha & k\cos^{2}\alpha\\ -k\sin^{2}\alpha & 1+k\sin\alpha\cos\alpha \end{pmatrix}. \] Show that the necessary and sufficient condition for $\begin{pmatrix}p & q\\ r & t \end{pmatrix}\( to commute with \)\mathbf{M}$ is \[ t-p=2q\tan\alpha=-2r\cot\alpha. \]


Solution:

TikZ diagram
We can see that \(\mathbf{M}\) sends \(\begin{pmatrix} 1 \\ \tan \alpha \end{pmatrix}\) to itself, and \(\begin{pmatrix} -\tan \alpha \\ 1 \end{pmatrix}\) to \(\begin{pmatrix} -\tan \alpha \\ 1 \end{pmatrix} + k \begin{pmatrix} 1 \\ \tan \alpha \end{pmatrix}\) Therefore, we have: \begin{align*} && \mathbf{M} \begin{pmatrix} 1 & -\tan \alpha \\ \tan \alpha & 1 \end{pmatrix} &= \begin{pmatrix} 1 & k - \tan \alpha \\ \tan \alpha & 1 + k\tan \alpha \end{pmatrix} \\ && \sec \alpha \mathbf{M} \begin{pmatrix} \cos \alpha & -\sin\alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} &= \begin{pmatrix} 1 & k - \tan \alpha \\ \tan \alpha & 1 + k\tan \alpha \end{pmatrix} \\ \Rightarrow && \mathbf{M} &= \cos \alpha\begin{pmatrix} 1 & k - \tan \alpha \\ \tan \alpha & 1 + k\tan \alpha \end{pmatrix}\begin{pmatrix} \cos \alpha & \sin\alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \\ &&&= \cos\alpha \begin{pmatrix}\cos \alpha -k\sin\alpha + \frac{\sin^2 \alpha}{\cos \alpha} & \sin \alpha + k \cos \alpha - \sin \alpha \\ \sin \alpha - \sin \alpha - k\frac{\sin^2 \alpha}{\cos \alpha} & \frac{\sin^2 \alpha}{\cos \alpha} + \cos\alpha + k \sin \alpha \end{pmatrix} \\ &&&= \begin{pmatrix}1-k\sin\alpha\cos\alpha & k\cos^{2}\alpha\\ -k\sin^{2}\alpha & 1+k\sin\alpha\cos\alpha \end{pmatrix} \end{align*} Suppose $\begin{pmatrix}p & q\\ r & t \end{pmatrix} \mathbf{M} = \mathbf{M} \begin{pmatrix}p & q\\ r & t \end{pmatrix}$ then, \begin{align*} && \begin{pmatrix}p & q\\ r & t \end{pmatrix} \mathbf{M} &= \mathbf{M} \begin{pmatrix}p & q\\ r & t \end{pmatrix} \\ \Leftrightarrow && \small \begin{pmatrix} p(1-k\sin\alpha\cos\alpha) + q(-k\sin^{2}\alpha) & pk\cos^{2}\alpha + q(1+k\sin\alpha\cos\alpha)\\ r(1-k\sin\alpha\cos\alpha) + t(-k\sin^{2}\alpha) & rk\cos^{2}\alpha + t(1+k\sin\alpha\cos\alpha)\end{pmatrix} &= \\ && \qquad \small \begin{pmatrix} p(1-k\sin\alpha\cos\alpha) + rk\cos^{2}\alpha & q(1-k\sin\alpha\cos\alpha) + tk\cos^{2}\alpha \\ -pk\sin^{2}\alpha + r(1+k\sin\alpha\cos\alpha) & -qk\sin^{2}\alpha+t (1+k\sin\alpha\cos\alpha) \end{pmatrix} \\ \Leftrightarrow && \begin{cases} p(1-k\sin\alpha\cos\alpha) + q(-k\sin^{2}\alpha) &= p(1-k\sin\alpha\cos\alpha) + rk\cos^{2}\alpha \\ pk\cos^{2}\alpha + q(1+k\sin\alpha\cos\alpha) &=q(1-k\sin\alpha\cos\alpha) + tk\cos^{2}\alpha \\ r(1-k\sin\alpha\cos\alpha) + t(-k\sin^{2}\alpha) &=-pk\sin^{2}\alpha + r(1+k\sin\alpha\cos\alpha) \\ rk\cos^{2}\alpha + t(1+k\sin\alpha\cos\alpha) &= -qk\sin^{2}\alpha+t (1+k\sin\alpha\cos\alpha) \end{cases} \\ \Leftrightarrow && \begin{cases} -q\tan^{2}\alpha &= r \\ p\cos^{2}\alpha + q\sin\alpha\cos\alpha &=-q\sin\alpha\cos\alpha + t\cos^{2}\alpha \\ -r\sin\alpha\cos\alpha + -t\sin^{2}\alpha &=-p\sin^{2}\alpha + r\sin\alpha\cos\alpha \\ r &= -q\tan^{2}\alpha \end{cases} \\ \Leftrightarrow && \begin{cases} -q\tan^{2}\alpha &= r \\ 2q\sin\alpha\cos\alpha &=(t-p)\cos^{2}\alpha \\ (p-t)\sin^{2}\alpha &=2r\sin\alpha\cos\alpha \end{cases} \\ \Leftrightarrow && \begin{cases} -q\tan^{2}\alpha &= r \\ 2q\tan \alpha &=(t-p) \end{cases} \\ \end{align*} as required

1989 Paper 3 Q8
D: 1700.0 B: 1484.0

Given that \[ \frac{\mathrm{d}x}{\mathrm{d}t}=4(x-y)\qquad\mbox{ and }\qquad\frac{\mathrm{d}y}{\mathrm{d}t}=x-12(\mathrm{e}^{2t}+\mathrm{e}^{-2t}), \] obtain a differential equation for \(x\) which does not contain \(y\). Hence, or otherwise, find \(x\) and \(y\) in terms of \(t\) given that \(x=y=0\) when \(t=0\).


Solution: \begin{align*} && \frac{\d x}{\d t} &= 4(x-y) \\ && \frac{\d y}{\d t} &= x - 12(e^{2t}+e^{-2t}) \\ \Rightarrow && \frac{\d^2 x}{\d t^2} &= 4 \frac{\d x}{\d t}-4\frac{\d y}{\d t} \\ &&&= 4 \frac{\d x}{\d t}-4 \left ( x - 12(e^{2t}+e^{-2t}) \right) \\ \Rightarrow && \frac{\d^2 x}{\d t^2} - 4 \frac{\d x}{\d t}+4x &= 48 (e^{2t}+e^{-2t}) \end{align*} This differential equation has characteristic polynomial \(\lambda^2 - 4\lambda + 4 = (\lambda-2)^2\). Therefore we should expect a general solution of \((At+B)e^{2t}\). For particular integrals we should try \(ke^{-2t}\) and \(Ct^2 e^{2t}\). For the former, we have: \begin{align*} && 48 &= 4k+8k+k \\ \Rightarrow && k &= \frac{48}{13} \end{align*} For the latter we have: \begin{align*} &&4Ct^2e^{2t} -4C(2te^{2t}+2t^2e^{2t})+2C((1+2t)e^{2t}+2t^2e^{2t}) &= 48e^{2t} \\ \Rightarrow && 2C &= 48 \\ \Rightarrow && C &= 24 \end{align*} Therefore the solution should be: \begin{align*} x = (At+B)e^{2t} + \frac{48}{13}e^{-2t} + 24t^2 e^{2t} \\ x(0) = B + \frac{48}{13} \\ x'(0) = 2B+A-\frac{96}{13} \\ x =\frac{48}{13}((4t-1)e^{2t}+e^{-2t})+24t^2e^{2t} \\ y = x - \frac{1}{4} \frac{\d x}{\d t} \end{align*}

1989 Paper 3 Q9
D: 1700.0 B: 1516.0

Obtain the sum to infinity of each of the following series.

  1. \(1{\displaystyle +\frac{2}{2}+\frac{3}{2^{2}}+\frac{4}{2^{3}}+\cdots+\frac{r}{2^{r-1}}+\cdots;}\)
  2. \(1{\displaystyle +\frac{1}{2}\times\frac{1}{2}+\frac{1}{3}\times\frac{1}{2^{2}}+\cdots+\frac{1}{r}\times\frac{1}{2^{r-1}}+\cdots;}\)
  3. \({\displaystyle \dfrac{1\times3}{2!}\times\frac{1}{3}+\frac{1\times3\times5}{3!}\frac{1}{3^{2}}+\cdots+\frac{1\times3\times\cdots\times(2k-1)}{k!}\times\frac{1}{3^{k-1}}+\cdots.}\)
[Questions of convergence need not be considered.]


Solution:

  1. \begin{align*} && \frac1{1-x} &= \sum_{r=0}^{\infty} x^r \\ \underbrace{\Rightarrow}_{\frac{\d}{\d x}} && \frac{1}{(1-x)^2} &= \sum_{r=0}^\infty rx^{r-1} \\ \underbrace{\Rightarrow}_{x = \frac12} && 4 &= \sum_{r=0}^{\infty} \frac{r}{2^{r-1}} \end{align*}
  2. \begin{align*} && \frac1{1-x} &= \sum_{r=1}^{\infty} x^{r-1} \\ \underbrace{\Rightarrow}_{\int} && -\ln (1-x) &= \sum_{r=1}^{\infty} \frac1{r} x^r \\ \underbrace{\Rightarrow}_{x = \frac12} && \ln 2 &= \sum_{r=1}^{\infty} \frac1{r } \times \frac{1}{ 2^{r}} \\ \Rightarrow && 2 \ln 2 &= \sum_{r=1}^{\infty} \frac1{r } \times \frac{1}{ 2^{r-1}} \\ \end{align*}
  3. \begin{align*} && (1-x)^{-1/2} &= 1 + \frac{(-\tfrac12)}{1!} (-x) +\frac{(-\tfrac12)(-\tfrac32)}{2!}(-x)^2 + \cdots \\ &&&= \sum_{r=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdot (2r-1)}{2^rr!} x^r \\ \underbrace{\Rightarrow}_{x = \frac23} && \sqrt{3} &= \sum_{r=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdot (2r-1)}{r!} \frac1{3^r} \\ &&&= 1 + \frac{1}{1!} \frac23 + \frac13 \sum_{r=2}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdot (2r-1)}{r!} \frac1{3^{r-1}} \\ \Rightarrow && 3\sqrt{3}-5 &= \sum_{r=2}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdot (2r-1)}{r!} \frac1{3^{r-1}} \\ \end{align*}

1989 Paper 3 Q10
D: 1700.0 B: 1516.0

  1. Prove that \[ \sum_{r=1}^{n}r(r+1)(r+2)(r+3)(r+4)=\tfrac{1}{6}n(n+1)(n+2)(n+3)(n+4)(n+5) \] and deduce that \[ \sum_{r=1}^{n}r^{5}<\tfrac{1}{6}n(n+1)(n+2)(n+3)(n+4)(n+5). \]
  2. Prove that, if \(n>1,\) \[ \sum_{r=0}^{n-1}r^{5}>\tfrac{1}{6}(n-5)(n-4)(n-3)(n-2)(n-1)n. \]
  3. Let \(\mathrm{f}\) be an increasing function. If the limits \[ \lim_{n\rightarrow\infty}\sum_{r=0}^{n-1}\frac{a}{n}\mathrm{f}\left(\frac{ra}{n}\right)\qquad\mbox{ and }\qquad\lim_{n\rightarrow\infty}\sum_{r=1}^{n}\frac{a}{n}\mathrm{f}\left(\frac{ra}{n}\right) \] both exist and are equal, the definite integral \({\displaystyle \int_{0}^{a}\mathrm{f}(x)\,\mathrm{d}x}\) is defined to be their common value. Using this definition, prove that \[ \int_{0}^{a}x^{5}\,\mathrm{d}x=\tfrac{1}{6}a^6. \]


Solution:

  1. Claim: \[ \sum_{r=1}^{n}r(r+1)(r+2)(r+3)(r+4)=\tfrac{1}{6}n(n+1)(n+2)(n+3)(n+4)(n+5) \] Proof: (By Induction) Base case: (n=1) \begin{align*} LHS &= 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 5! \\ RHS &= \frac16 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 5! \end{align*} Therefore the base case is true. Inductive step: Suppose our statement is true for some \(n=k\), then consider \(n = k+1\) \begin{align*} \sum_{r=1}^{k+1} r(r+1)(r+2)(r+3)(r+4) &= \sum_{r=1}^{k} r(r+1)(r+2)(r+3)(r+4) + (k+1)(k+2)(k+3)(k+4)(k+5) \\ &\underbrace{=}_{\text{assumption}} \frac16 k(k+1)(k+2)(k+3)(k+4)(k+5) + (k+1)(k+2)(k+3)(k+4)(k+5) \\ &= (k+1)(k+2)(k+3)(k+4)(k+5) \l \frac{k}{6} +1\r \\ &= \frac16 (k+1)(k+2)(k+3)(k+4)(k+5)(k+6) \end{align*} Therefore our statement is true for \(n = k+1\). Therefore since our statement is true for \(n=1\) and if it is true for \(n=k\) then it is true for \(n = k+1\) by the principle of mathematical induction it is true for all \(n \geq 1\) Since \begin{align*} \sum_{r=1}^{n}r^5 &< \sum_{r=1}^{n}r(r+1)(r+2)(r+3)(r+4) \\ &= \frac16 n(n+1)(n+2)(n+3)(n+4)(n+5) \end{align*}
  2. \begin{align*}\sum_{r=0}^{n-1} r^5 &> \sum_{r=0}^{n-1} (r-4)(r-3)(r-2)(r-1)r \\ &= \sum_{r=0}^{n-5} r(r+1)(r+2)(r+3)(r+4) \\ &= \frac16 (n-5)(n-4)(n-3)(n-2)(n-1)n \end{align*}
  3. Let \(f(x) = x^5\) \begin{align*} S_{1,n} &= \sum_{r=0}^{n-1}\frac{a}{n}f\left(\frac{ra}{n}\right) \\ &= \sum_{r=0}^{n-1}\frac{a}{n}\left(\frac{ra}{n}\right)^5 \\ &=\frac{a^6}{n^6} \sum_{r=0}^{n-1}r^5\\ \end{align*} Therefore \(\frac{a^6}6 \frac{(n-5)(n-4)(n-3)(n-2)(n-1)n}{n^6} < S_{1,n} < \frac{a^6}6 \frac{(n-1)n(n+1)(n+2)(n+3)(n+4)}{n^6}\) and so \(\lim_{n\to\infty} S_{1,n} = \frac{a^6}{6}\). Similarly, \begin{align*} S_{2,n} &= \sum_{r=1}^{n}\frac{a}{n}f\left(\frac{ra}{n}\right) \\ &= \sum_{r=1}^{n}\frac{a}{n}\left(\frac{ra}{n}\right)^5 \\ &= \frac{a^6}{n^6} \sum_{r=1}^{n} r^5 \end{align*} Therefore \(\frac{a^6}6 \frac{(n-4)(n-3)(n-2)(n-1)n(n+1)}{n^6} < S_{2,n} < \frac{a^6}6 \frac{n(n+1)(n+2)(n+3)(n+4)(n+5)}{n^6}\) and so \(\lim_{n\to\infty} S_{2,n} = \frac{a^6}{6}\). Since both limits exist are are equal, we have \[ \int_{0}^{a}x^{5}\,\mathrm{d}x=\tfrac{1}{6}a^6. \]