Sketch the graph of \[ y=\frac{x^{2}\mathrm{e}^{-x}}{1+x}, \] for \(-\infty< x< \infty.\) Show that the value of \[ \int_{0}^{\infty}\frac{x^{2}\mathrm{e}^{-x}}{1+x}\,\mathrm{d}x \] lies between \(0\) and \(1\).
Solution:
The real numbers \(u_{0},u_{1},u_{2},\ldots\) satisfy the difference equation \[ au_{n+2}+bu_{n+1}+cu_{n}=0\qquad(n=0,1,2,\ldots), \] where \(a,b\) and \(c\) are real numbers such that the quadratic equation \[ ax^{2}+bx+c=0 \] has two distinct real roots \(\alpha\) and \(\beta.\) Show that the above difference equation is satisfied by the numbers \(u_{n}\) defined by \[ u_{n}=A\alpha^{n}+B\beta^{n}, \] where \[ A=\frac{u_{1}-\beta u_{0}}{\alpha-\beta}\qquad\mbox{ and }\qquad B=\frac{u_{1}-\alpha u_{0}}{\beta-\alpha}. \] Show also, by induction, that these numbers provide the only solution. Find the numbers \(v_{n}\) \((n=0,1,2,\ldots)\) which satisfy \[ 8(n+2)(n+1)v_{n+2}-2(n+3)(n+1)v_{n+1}-(n+3)(n+2)v_{n}=0 \] with \(v_{0}=0\) and \(v_{1}=1.\)
Solution: First notice that \(u_n = \alpha^n\) and \(u_n = \beta^n\) both satisfy the recurrence, since: \begin{align*} && a \alpha^2 + b \alpha + c &= 0 \\ \Rightarrow && a \alpha^{n+2} + b \alpha^{n+1} + c \alpha^n &= 0 \\ \Rightarrow && a u_{n+2} + bu_{n+1} + cu_n &=0 \end{align*} Notice also that if \(u_n\) and \(v_n\) both satisfy the recurrence, then any linear combination of them will satisfy the recurrence: \begin{align*} && \begin{cases} au_{n+2} + bu_{n+1} + cu_n &= 0 \\ av_{n+2} + bv_{n+1} + cv_n &= 0 \\ \end{cases} \\ \Rightarrow && a (\lambda u_{n+2}+ \mu v_{n+2}) + b (\lambda u_{n+1}+ \mu v_{n+1}) + c (\lambda u_{n}+ \mu v_{n}) &= 0 \end{align*} by adding a linear combination of the top two equations. Therefore it suffices to check that the constants \(A\) and \(B\) are such that we match \(u_0\) and \(u_1\). \(\frac{u_1 - \beta u_0}{\alpha - \beta} + \frac{u_1 - \alpha u_0}{\beta - \alpha} = u_0\) and \(\frac{u_1 - \beta u_0}{\alpha - \beta}\alpha + \frac{u_1 - \alpha u_0}{\beta - \alpha}\beta = u_1\). So we are done. Suppose we have another sequence, then we first notice that the first and second terms must be identical to each other. Suppose the first \(k\) terms are identical, then since the \(k+1\)th term depends only on the \(k\) and \(k-1\)th terms (both of which are equal) the \(k+1\)th term is the same. Therefore, by the principle of mathematical induction, all terms are the same. First notice that if you put \(v_n = (n+1)w_n\) we have \begin{align*} && 8(n+3)(n+2)(n+1)w_{n+2} - 2(n+3)(n+2)(n+1)w_{n+1} - (n+3)(n+2)(n+1)w_n &= 0 \\ \Rightarrow && 8w_{n+2}-2w_{n+1}-w_n &= 0 \end{align*} This has characteristic equation \(8\lambda^2 - 2\lambda - 1 = 0 \Rightarrow \lambda = \frac12, -\frac14\). Therefore the general solution is \(w_n = A \l \frac12 \r^n + B \l -\frac14\r^n\) and \(v_n = (n+1)\l A \l \frac12 \r^n + B \l -\frac14\r^n \r\). When \(n = 0\) we have \(A+B = 0 \Rightarrow B =-A\). When \(n=1\) we have \(1 = 2 \l \frac{A}{2} + \frac{A}{4} \r \Rightarrow A = \frac{4}{3}\), therefore \[ v_n = \frac{4}{3}(n+1) \l \frac{1}{2^n} + \l -\frac14\r^n \r\]
Give a parametric form for the curve in the Argand diagram determined by \(\left|z-\mathrm{i}\right|=2.\) Let \(w=(z+\mathrm{i})/(z-\mathrm{i}).\) Find and sketch the locus, in the Argand diagram, of the point which represents the complex number \(w\) when \begin{questionparts} \item \(\left|z-\mathrm{i}\right|=2;\) \item \(z\) is real; \item \(z\) is imaginary. \end{questionpart}
Solution: There are many possible parametric forms, for example \(z = i + 2e^{it}, z = 2\ cos \theta + (1 + 2\sin \theta)i\) etc. It is a circle radius \(2\) about the point \(i\).
A kingdom consists of a vast plane with a central parabolic hill. In a vertical cross-section through the centre of the hill, with the \(x\)-axis horizontal and the \(z\)-axis vertical, the surface of the plane and hill is given by \[ z=\begin{cases} \dfrac{1}{2a}(a^{2}-x^{2}) & \mbox{ for }\left|x\right|\leqslant a,\\ 0 & \mbox{ for }\left|x\right|>a. \end{cases} \] The whole surface is formed by rotating this cross-section about the \(z\)-axis. In the \((x,z)\) plane through the centre of the hill, the king has a summer residence at \((-R,0)\) and a winter residence at \((R,0)\), where \(R>a.\) He wishes to connect them by a road, consisting of the following segments: \begin{itemize} \item a path in the \((x,z)\) plane joining \((-R,0)\) to \((-b,(a^{2}-b^{2})/2a),\) where \(0\leqslant b\leqslant a.\) \item a horizontal semicircular path joining the two points \((\pm b,(a^{2}-b^{2})/2a),\) if \(b\neq0;\) \item a path in the \((x,z)\) plane joining \((b,(a^{2}-b^{2})/2a)\) to \((R,0).\) \end{itemiz} The king wants the road to be as short as possible. Advise him on his choice of \(b.\)
Solution: The path can be broken down into \(5\) sections. 1. The section from \((-R,0)\) to \((-a,0)\) which will have distance \(R-a\) and is unchangeable. 2. The distance from \((-a,0)\) to \((-b, \frac{a^2-b^2}{2a})\) whose distance we will calculate shortly. 3. The distance from \((-b, \frac{a^2-b^2}{2a})\) to \((b, \frac{a^2-b^2}{2a})\) which will have distance \(\pi b\). 4. The distance from \((b, \frac{a^2-b^2}{2a})\) to \((a,0)\) which will have the same distance as 2. 5. The distance from \((a,0)\) to \((R,0)\) which will have distance \(R-a\) and we have no control over. \begin{align*} \text{distance 2.} &= \int_b^a \sqrt{1 + \left ( \frac{x}{a}\right)^2 } \d x \end{align*} We want to minimize the total, by varying \(b\), so it makes sense to differentiate and set to zero. \begin{align*} &&0&= -2\sqrt{1+\frac{b^2}{a^2}} + \pi \\ \Rightarrow && \frac{\pi^2}{4} &= 1 + \frac{b^2}{a^2} \\ \Rightarrow && b &= a \sqrt{\frac{\pi^2}{4}-1} \end{align*} Since \(\pi \approx 3\) this point is outside our range \(0 \leq b \leq a\), and our derivative is always positive. Therefore the distance is always increasing and the king would be better off going around the hill as soon as he arrives at it.
A firm of engineers obtains the right to dig and exploit an undersea tunnel. Each day the firm borrows enough money to pay for the day's digging, which costs £\(c,\) and to pay the daily interest of \(100k\%\) on the sum already borrowed. The tunnel takes \(T\) days to build, and, once finished, earns £\(d\) a day, all of which goes to pay the daily interest and repay the debt until it is fully paid. The financial transactions take place at the end of each day's work. Show that \(S_{n},\) the total amount borrowed by the end of day \(n\), is given by \[ S_{n}=\frac{c[(1+k)^{n}-1]}{k} \] for \(n\leqslant T\). Given that \(S_{T+m}>0,\) where \(m>0,\) express \(S_{T+m}\) in terms of \(c,d,k,T\) and \(m.\) Show that, if \(d/c>(1+k)^{T}-1,\) the firm will eventually pay off the debt.
Solution: After \(n\) days they will have borrowed \(c\) for \(n-1\) days, \(c\) for \(n-2\) days, etc until \(c\) for no days. Therefore the outstanding balance will be: \begin{align*} c + (1+k)\cdot c+ (1+k)^2 \cdot c + \cdots + (1+k)^{n-1} \cdot c &= c\frac{(1+k)^n-1}{(1+k)-1} \\ &= \frac{c[(1+k)^n-1]}{k} \end{align*} At the end of \(T\) days the outstanding balance will be \(S_T = \frac{c[(1+k)^T-1]}{k}\). We can think of each payment of \(d\) during the subsequent period as being equivalent of a payment of \(d (1+k)^{m-1}\) \(m\) days later (as otherwise they would have accrued the equivalent amount in interest. Therefore after \(m\) days the amount paid back (equivalent) is: \begin{align*} (1+k)^{m-1} \cdot d + (1+k)^{m-2} \cdot d + \cdots + d &= \frac{d[(1+k)^m-1]}{k} \end{align*} Therefore the net position, \(S_{T+m}\) will be: \begin{align*} S_{T+m} &= \frac{c[(1+k)^T-1](1+k)^m-d[(1+k)^m-1]}{k} \\ &= \frac{(1+k)^m [c ((1+k)^T-1)-d]+d}{k} \end{align*} Therefore they will eventually pay back their debts if \( [c ((1+k)^T-1)-d]\) is negative. ie \(d > c((1+k)^T-1) \Rightarrow d/c > (1+k)^T-1\)
Let \(\mathrm{f}(x)=\sin2x\cos x.\) Find the 1988th derivative of \(\mathrm{f}(x).\) Show that the smallest positive value of \(x\) for which this derivative is zero is \(\frac{1}{3}\pi+\epsilon,\) where \(\epsilon\) is approximately equal to \[ \frac{3^{-1988}\sqrt{3}}{2}. \]
Solution: \begin{align*} && f(x) &= \sin 2x \cos x \\ &&&= \frac12 \l \sin 3x + \sin x \r \\ \Rightarrow && f^{(1988)}(x) &= \frac12 \l 3^{1988} (-1)^{994} \sin 3x+ (-1)^{994} \sin x \r \\ &&&= \boxed{\frac12 \left (3^{1998} \sin 3x + \sin x \right)} \\ \\ f^{(1988)}(x) = 0: && 0 &= 3^{1988} \sin 3x + \sin x \\ \Rightarrow && 0 &= 3^{1988} ( 3\sin x-4\sin^3 x) + \sin x \\ \Rightarrow && 0 &= \sin x \left (1+3^{1989}-4\cdot 3^{1988}\sin^{2} x \right) \end{align*} Since \(\sin x\) will first contribute a zero when \(x = \frac{\pi}{2}\) we focus on the second bracket, in particular, we need: \begin{align*} && \sin^2 x &= \frac{3}{4} \left ( 1 + \frac{1}{3^{1988}} \right) \\ \Rightarrow && \sin x &= \frac{\sqrt{3}}2 \left (1 + \frac{1}{2 \cdot 3^{1988}} + \cdots \right ) \end{align*} Since near \(\frac{\pi}{3}\), \begin{align*} \sin (\frac{\pi}{3} + \epsilon) &= \sin \frac{\pi}{3} \cos \epsilon + \cos \frac{\pi}{3} \sin \epsilon \\ &\approx \frac{\sqrt{3}}{2} (1-\epsilon^2 + \cdots ) + \frac{1}{2}(\epsilon + \cdots) \\ &= \frac{\sqrt{3}}2 + \frac12 \epsilon + \cdots \end{align*} Therefore by comparison we can see that \(x = \frac{\pi}{3} + \frac{\sqrt{3}}{2} 3^{-1988}\) will be a very good approximation for the root.
For \(n=0,1,2,\ldots,\) the functions \(y_{n}\) satisfy the differential equation \[ \frac{\mathrm{d}^{2}y_{n}}{\mathrm{d}x^{2}}-\omega^{2}x^{2}y_{n}=-(2n+1)\omega y_{n}, \] where \(\omega\) is a positive constant, and \(y_{n}\rightarrow0\) and \(\mathrm{d}y_{n}/\mathrm{d}x\rightarrow0\) as \(x\rightarrow+\infty\) and as \(x\rightarrow-\infty.\) Verify that these conditions are satisfied, for \(n=0\) and \(n=1,\) by \[ y_{0}(x)=\mathrm{e}^{-\lambda x^{2}}\qquad\mbox{ and }\qquad y_{1}(x)=x\mathrm{e}^{-\lambda x^{2}} \] for some constant \(\lambda,\) to be determined. Show that \[ \frac{\mathrm{d}}{\mathrm{d}x}\left(y_{m}\frac{\mathrm{d}y_{n}}{\mathrm{d}x}-y_{n}\frac{\mathrm{d}y_{m}}{\mathrm{d}x}\right)=2(m-n)\omega y_{m}y_{n}, \] and deduce that, if \(m\neq n,\) \[ \int_{-\infty}^{\infty}y_{m}(x)y_{n}(x)\,\mathrm{d}x=0. \]
Solution: \begin{align*} && y_0(x) &= e^{-\lambda x^2} \\ && \lim_{x \to \pm \infty} y_0(x) &= 0 \Leftrightarrow \lambda > 0 \\ && \lim_{x \to \pm \infty} y'_0(x) &= \lim_{x \to \pm \infty} 2x\lambda e^{-\lambda x^2} \\ &&&= 0\Leftrightarrow \lambda > 0 \\ && y''_0(x) &= 4x^2 \lambda^2 e^{-\lambda x^2} + 2\lambda e^{-\lambda x^2} \\ \\ && y''_0 - \omega^2 x^2 y_0+(2\cdot 0 + 1) \omega y_0 &= e^{-\lambda x^2} \l 4x^2 \lambda^2 + 2 \lambda - \omega^2 x^2 + \omega\r \\ &&&=0 \Leftrightarrow \lambda = \pm \frac{\omega}{2} \end{align*} Therefore \(y_0\) satisfies if \(\lambda = \frac{\omega}{2}\) Similarly for \(y_1\), \begin{align*} && y_1(x) &= xe^{-\lambda x^2} \\ && \lim_{x \to \pm \infty} y_1(x) &= 0 \Leftrightarrow \lambda > 0 \\ && \lim_{x \to \pm \infty} y'_1(x) &= \lim_{x \to \pm \infty} \l -2x^2 \lambda e^{-\lambda x^2} + e^{-\lambda x^2} \r \\ &&&= 0\Leftrightarrow \lambda > 0 \\ && y''_0(x) &= e^{-\lambda x^2} \l 4x^3 \lambda^2-4x\lambda - 2x\lambda \r \\ &&&= e^{-\lambda x^2} \l 4x^3 \lambda^2-6x\lambda \r \\ && y''_1 - \omega^2 x^2 y_1+(2\cdot 1 + 1) \omega y_1 &= e^{-\lambda x^2} \l 4x^3\lambda^2-6x\lambda-\omega^2x^3+3\omega x\r \\ &&&=0 \Leftrightarrow \lambda = \pm \frac{\omega}{2} \end{align*} Therefore \(y_1\) satisfies if \(\lambda = \frac{\omega}{2}\) \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\left(y_{m}\frac{\mathrm{d}y_{n}}{\mathrm{d}x}-y_{n}\frac{\mathrm{d}y_{m}}{\mathrm{d}x}\right) &= y'_my'_n+y_my''_n - y'_ny'_m-y_ny''_m \\ &= y_my''_n - y_ny''_m \\ &= y_m(\omega^2 x^2 y_n - (2n+1)\omega y_n) - y_n(\omega^2 x^2 y_m - (2m+1)\omega y_m) \\ &= y_my_n (2m-2n)\omega \\ &= 2(m-n) \omega y_my_n \end{align*} Therefore: \begin{align*} \int_{-\infty}^{\infty} y_m(x)y_n(x) \d x &= \int_{-\infty}^{\infty} \frac{1}{2(m-n)} \frac{\mathrm{d}}{\mathrm{d}x}\left(y_{m}\frac{\mathrm{d}y_{n}}{\mathrm{d}x}-y_{n}\frac{\mathrm{d}y_{m}}{\mathrm{d}x}\right) \d x \\ &= \frac{1}{2(m-n)} \left [ y_{m}\frac{\mathrm{d}y_{n}}{\mathrm{d}x}-y_{n}\frac{\mathrm{d}y_{m}}{\mathrm{d}x}\right]_{-\infty}^{\infty} \\ &\to 0 \end{align*} This condition is known as Orthogonality. In fact this question is talking about a Sturm-Liouville orthogonality condition, in particular for the quantum harmonic oscillator, and the eigenfunctions are related to Hermite polynomials.
Find the equations of the tangent and normal to the parabola \(y^{2}=4ax\) at the point \((at^{2},2at).\) For \(i=1,2,\) and 3, let \(P_{i}\) be the point \((at_{i}^{2},2at_{i}),\) where \(t_{1},t_{2}\) and \(t_{3}\) are all distinct. Let \(A_{1}\) be the area of the triangle formed by the tangents at \(P_{1},P_{2}\) and \(P_{3},\) and let \(A_{2}\) be the area of the triangle formed by the normals at \(P_{1},P_{2}\) and \(P_{3}.\) Using the fact that the area of the triangle with vertices at \((x_{1},y_{1}),(x_{2},y_{2})\) and \((x_{3},y_{3})\) is the absolute value of \[ \tfrac{1}{2}\det\begin{pmatrix}x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{pmatrix}, \] show that \(A_{3}=(t_{1}+t_{2}+t_{3})^{2}A_{1}.\) Deduce a necessary and sufficient condition in terms of \(t_{1},t_{2}\) and \(t_{3}\) for the normals at \(P_{1},P_{2}\) and \(P_{3}\) to be concurrent.
Solution: \(\frac{dy}{dt} = 2a, \frac{dx}{dt} = 2at \Rightarrow \frac{dy}{dx} = \frac{1}{t}\). Therefore the equation of the tangent will be \(\frac{y - 2at}{x-at^2} = \frac{1}{t} \Rightarrow y = \frac1tx +at\) and normal will be \(\frac{y-2at}{x-at^2} = -t \Rightarrow y = t(at^2-x+2a)\). The tangents will meet when: \begin{align*} && \begin{cases} t_iy -x &= at_i^2 \\ t_j y - x &= at_j^2 \\ \end{cases} \\ \Rightarrow &&(t_i - t_j)y &= a(t_i-t_j)(t_i+t_j) \\ \Rightarrow && y &= a(t_i+t_j) \\ && x &= at_it_j \end{align*} The normals will meet when: \begin{align*} && \begin{cases} y +t_i x &= at_i^3+2at_i \\ y +t_j x &= at_j^3+2at_j \\ \end{cases} \\ \Rightarrow &&(t_i - t_j)x &= a(t_i-t_j)(t_i^2+t_it_j+t_j^2+2) \\ \Rightarrow && x&= a(t_i^2+t_it_j+t_j^2+2) \\ && y &= -at_it_j(t_i+t_j) \end{align*} Therefore the area of our triangles will be: \begin{align*} \tfrac{1}{2}\det\begin{pmatrix}at_1t_2 & a(t_1+t_2) & 1\\ at_2t_3 & a(t_2+t_3) & 1\\ at_3t_1 & a(t_3+t_1) & 1 \end{pmatrix} &= \frac{a^2}{2}\det\begin{pmatrix}t_1t_2 & (t_1+t_2) & 1\\ t_2t_3 & (t_2+t_3) & 1\\ t_3t_1 & (t_3+t_1) & 1 \end{pmatrix} \\ &= \frac{a^2}{2}\det\begin{pmatrix}t_1t_2 & (t_1+t_2) & 1\\ t_2(t_3-t_1) & (t_3-t_1) & 0\\ t_1(t_3-t_2) & (t_3-t_2) & 0 \end{pmatrix} \\ &= \frac{a^2}{2}|(t_2-t_1)(t_3-t_2)(t_1-t_3)| \end{align*} and \begin{align*} \tfrac{1}{2}\det\begin{pmatrix}a(t_1^2+t_1t_2+t_2^2+2) & -at_1t_2(t_1+t_2) & 1\\ a(t_2^2+t_2t_3+t_3^2+2) & -at_2t_3(t_2+t_3) & 1\\ a(t_3^2+t_3t_1+t_1^2+2) & -at_3t_1(t_3+t_1) & 1\\ \end{pmatrix} &= \frac{a^2}{2}\det\begin{pmatrix}(t_1^2+t_1t_2+t_2^2+2) & -t_1t_2(t_1+t_2) & 1\\ (t_2^2+t_2t_3+t_3^2+2) & -t_2t_3(t_2+t_3) & 1\\ (t_3^2+t_3t_1+t_1^2+2) & -t_3t_1(t_3+t_1) & 1\\ \end{pmatrix} \\ &= \frac{a^2}{2}\det\begin{pmatrix}(t_1^2+t_1t_2+t_2^2+2) & -t_1t_2(t_1+t_2) & 1\\ t_3^2-t_1^2+t_2(t_3-t_1) & t_2(t_1^2+t_1t_2-t_2t_3-t_3^2) & 0\\ t_3^2-t_2^2+t_1(t_3-t_2) & t_1(t_2^2+t_2t_1-t_1t_3-t_3^2) & 0\\ \end{pmatrix} \\ &= \frac{a^2}{2}\det\begin{pmatrix}(t_1^2+t_1t_2+t_2^2+2) & -t_1t_2(t_1+t_2) & 1\\ (t_3-t_1)(t_3+t_2+t_1) & t_2(t_1-t_3)(t_1+t_3+t_2) & 0\\ (t_3-t_2)(t_3+t_2+t_1) & t_1(t_2-t_3)(t_1+t_2+t_3)& 0\\ \end{pmatrix} \\ &= \frac{a^2}{2}(t_1+t_2+t_3)^2|(t_2-t_1)(t_3-t_2)(t_1-t_3)| \end{align*} as required. The normals will be concurrent iff the area of their triangle is \(0\). This is certainly true if \(t_1+t_2+t_3 = 0\). In fact the only if is also true, since no \(3\) tangents can be concurrent.
Let \(G\) be a finite group with identity \(e.\) For each element \(g\in G,\) the order of \(g\), \(o(g),\) is defined to be the smallest positive integer \(n\) for which \(g^{n}=e.\)
Solution: \begin{questionparts} \item Show that, if \(o(g)=n\) and \(g^{N}=e,\) then \(n\) divides \(N.\) Using the division algorithm, write \(N = qn + r\) where \(0 \leq r < n\) to divide \(N\) by \(n\). Then we have \(e = g^N = g^{qn + r} = g^{qn}g^r = (g^{n})^qg^r = e^qg^r = g^r\) therefore \(r\) is a number smaller than \(n\) such that \(g^r = e\). Therefore either \(r = 0\) or \(o(g) = r\), but by definition \(o(g) = n\) therefore \(r = 0\) and \(n \mid N\). \item Let \(g\) and \(h\) be elements of \(G\). Prove that, for any integer \(m,\) \[ gh^{m}g^{-1}=(ghg^{-1})^{m}. \] \((ghg^{-1})^m = \underbrace{(ghg^{-1})(ghg^{-1})\cdots(ghg^{-1})}_{m \text{ times}} = gh(g^{-1}g)h(g^{-1}g)\cdots (g^{-1}g)hg^{-1} = gh^mg^{-1}\) \item Let \(g\) and \(h\) be elements of \(G\), such that \(g^{5}=e,h\neq e\) and \(ghg^{-1}=h^{2}.\) Prove that \(g^{2}hg^{-2}=h^{4}\) and find \(o(h).\) \(g^2hg^{-2} = g(ghg^{-1})g^{-1} = gh^2g^{-1} = (ghg^{-1})^2 = (h^2)^2 = h^4\). \(h = g^{5}hg^{-5} = g^4ghg^{-1}g^{-4} = g^4h^2g^{-4} = g^3(ghg^{-1})^2g^{-3} = g^3h^4g^{-3} = h^32\) Therefore \(e = h^{31}\). Therfore \(o(h) \mid 31 \Rightarrow \boxed{o(h) = 31}\) since \(31\) is prime and \(o(h) \neq 1\)
Four greyhounds \(A,B,C\) and \(D\) are held at positions such that \(ABCD\) is a large square. At a given instant, the dogs are released and \(A\) runs directly towards \(B\) at constant speed \(v\), \(B\) runs directly towards \(C\) at constant speed \(v\), and so on. Show that \(A\)'s path is given in polar coordinates (referred to an origin at the centre of the field and a suitable initial line) by \(r=\lambda\mathrm{e}^{-\theta},\) where \(\lambda\) is a constant. Generalise this result to the case of \(n\) dogs held at the vertices of a regular \(n\)-gon (\(n\geqslant3\)).
Solution: