Show that, if \(n\) is an integer such that $$(n-3)^3+n^3=(n+3)^3,\quad \quad {(*)}$$ then \(n\) is even and \(n^2\) is a factor of \(54\). Deduce that there is no integer \(n\) which satisfies the equation \((*)\). Show that, if \(n\) is an integer such that $$(n-6)^3+n^3=(n+6)^3, \quad \quad{(**)}$$ then \(n\) is even. Deduce that there is no integer \(n\) which satisfies the equation \((**)\).
Solution: \begin{align*} && n^3 &= (n+3)^3 - (n-3)^3 \\ &&&= n^3 + 9n^2+27n + 27 - (n^3 - 9n^2+27n-27) \\ &&&= 18n^2+54 \end{align*} Therefore since \(2 \mid 2(9n^2 + 27)\), \(2 \mid n^3 \Rightarrow 2 \mid n\), so \(n\) is even. Since \(n^2 \mid n^3\), \(n^2 \mid 54 = 2 \cdot 3^3\), therefore \(n = 1\) or \(n = 3\). \((1-3)^3 + 1^3 < 0 < (1+3)^3\). So \(n = 1\) doesn't work. \((3 - 3)^3 + 3^3 < (3+3)^3\) so \(n = 3\) doesn't work. Therefore there are no solutions. \begin{align*} && n^3 &= (n+6)^3 - (n-6)^3 \\ &&&= n^3 + 18n^2 + 180n + 6^3 - (n^3 - 18n^2 + 180n - 6^3 ) \\ &&&= 36n^2+2 \cdot 6^3 \end{align*} Therefore \(n^2 \mid 2 \cdot 6^3 = 2^4 \cdot 3^3\), therefore \(n = 1, 2, 3, 4, 6, 12\). \(n = 1\), \(1^3 <36+2\cdot 6^3\) \(n = 2\), \(2^3 <36 \cdot 4 + 2 \cdot 6^3\) \(n = 3\), \(3^3 <36 \cdot 9 + 2 \cdot 6^3\) \(n = 4\), \(4^3 < 36 \cdot 16 + 2 \cdot 6^3\) \(n = 6\), \(6^3 < 36\cdot 6^2+ 2 \cdot 6^3\) \(n = 12\), \(12^3 < 36 \cdot 12^2 + 2 \cdot 6^3\) Therefore there are no solutions \(n\) to the equation. These are both special cases of Fermat's Last Theorem, when \(n = 3\)
Use the first four terms of the binomial expansion of \((1-1/50)^{1/2}\), writing \(1/50 = 2/100\) to simplify the calculation, to derive the approximation \(\sqrt 2 \approx 1.414214\). Calculate similarly an approximation to the cube root of 2 to six decimal places by considering \((1+N/125)^a\), where \(a\) and \(N\) are suitable numbers. [You need not justify the accuracy of your approximations.]
Solution: \begin{align*} && (1-1/50)^{1/2} &= 1 + \frac12 \cdot \left ( -\frac1{50} \right) + \frac1{2!} \frac12 \cdot \left ( -\frac12 \right)\cdot \left ( -\frac1{50} \right)^2 + \frac1{3!} \frac12 \cdot \left ( -\frac12 \right) \cdot \left ( -\frac32 \right)\cdot \left ( -\frac1{50} \right)^3 + \cdots \\ &&&=1-\frac{1}{100} - \frac12 \frac1{10000} -\frac12 \frac1{1000000} +\cdots \\ &&&= 0.9899495 + \cdots \\ \Rightarrow && \frac{7\sqrt{2}}{10} &\approx 0.9899495 \\ \Rightarrow && \sqrt{2} &\approx \frac{9.899495}{7} \\ &&&\approx 1.414214 \end{align*} \begin{align*} && (1 + 3/125)^{1/3} &= \frac{\sqrt[3]{125+3}}{5} \\ &&& = \frac{8\sqrt[3]{2}}{10} \\ && (1 + 3/125)^{1/3} &= 1 + \frac13 \left ( \frac{3}{125} \right) + \frac1{2!} \cdot \frac{1}{3} \cdot \left ( -\frac23\right) \left ( \frac{3}{125}\right)^2 +\cdots \\ &&&= 1+ \frac{8}{1000} - \frac{64}{1000000} \\ &&&= 1.007936 \\ \Rightarrow && \sqrt[3]{2} &= \frac{10.07936}{8} \\ &&&= 1.259920 \end{align*}
Show that the sum \(S_N\) of the first \(N\) terms of the series $$\frac{1}{1\cdot2\cdot3}+\frac{3}{\cdot3\cdot4}+\frac{5}{3\cdot4\cdot5}+\cdots +\frac{2n-1}{n(n+1)(n+2)}+\cdots$$ is $${1\over2}\left({3\over2}+{1\over N+1}-{5\over N+2}\right).$$ What is the limit of \(S_N\) as \(N\to\infty\)? The numbers \(a_n\) are such that $$\frac{a_n}{a_{n-1}}=\frac{(n-1)(2n-1)}{(n+2)(2n-3)}.$$ Find an expression for \(a_n/a_1\) and hence, or otherwise, evaluate \(\sum\limits_{n=1}^\infty a_n\) when \(\displaystyle a_1=\frac{2}{9}\;\).
Solution: First notice by partial fractions: \begin{align*} \frac{2n-1}{n(n+1)(n+2)} &= \frac{-1/2}{n} + \frac{3}{n+1} + \frac{-5/2}{n+2} \\ &= \frac{-1}{2n} + \frac{3}{n+1} - \frac{5}{2(n+2)} \end{align*} And therefore: \begin{align*} \sum_{n = 1}^N \frac{2n-1}{n(n+1)(n+2)} &= -\frac12 \sum_{n=1}^N \frac1n +3\sum_{n=1}^N \frac1{n+1} -\frac52 \sum_{n=1}^N \frac1{n+2} \\ &= -\frac12-\frac14 + \frac{3}{2}+ \sum_{n=3}^N (3-\frac12 -\frac52)\frac1n + \frac{3}{N+1} - \frac{5}{2(N+1)} - \frac{5}{2(N+2)} \\ &= \frac12 \l \frac32+\frac1{N+1}-\frac{5}{N+2} \r \end{align*} As \(N \to \infty, S_N \to \frac{3}{4}\). \begin{align*} && \frac{a_n}{a_{n-1}}&=\frac{(n-1)(2n-1)}{(n+2)(2n-3)} \\ \Rightarrow && \frac{a_n}{a_1} &= \frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} \\ &&&= \frac{(n-1)(2n-1)}{(n+2)(2n-3)} \cdot \frac{(n-2)(2n-3)}{(n+1)(2n-5)} \cdots \frac{(1)(3)}{(4)(1)} \\ &&&= \frac{(2n-1)3\cdot 2\cdot 1}{(n+2)(n+1)n} \\ &&& = \frac{6(2n-1)}{n(n+1)(n+2)} \end{align*} Therefore \(a_n = \frac{4}{3} \frac{2n-1}{n(n+1)(n+2)}\) and so our sequence is \(\frac43\) the earlier sum, ie \(1\)
The integral \(I_n\) is defined by $$I_n=\int_0^\pi(\pi/2-x)\sin(nx+x/2)\,{\rm cosec}\,(x/2)\,\d x,$$ where \(n\) is a positive integer. Evaluate \(I_n-I_{n-1}\), and hence evaluate \(I_n\) leaving your answer in the form of a sum.
Define the modulus of a complex number \(z\) and give the geometric interpretation of \(\vert\,z_1-z_2\,\vert\) for two complex numbers \(z_1\) and \(z_2\). On the basis of this interpretation establish the inequality $$\vert\,z_1+z_2\,\vert\le \vert\,z_1\,\vert+\vert\,z_2\,\vert.$$ Use this result to prove, by induction, the corresponding inequality for \(\vert\,z_1+\cdots+z_n\,\vert\). The complex numbers \(a_1,\,a_2,\,\ldots,\,a_n\) satisfy \(|a_i|\le 3\) (\(i=1, 2, \ldots , n\)). Prove that the equation $$a_1z+a_2z^2\cdots +a_nz^n=1$$ has no solution \(z\) with \(\vert\,z\,\vert\le 1/4\).
Solution: Suppose \(z = a+ib\), where \(a,b \in \mathbb{R}\) then the modulus of \(z\), \(|z| = \sqrt{a^2+b^2}\). Noting the similarity to the Pythagorean theorem, we can say that \(|z_1 - z_2|\) is the distance between \(z_1\) and \(z_2\) in the Argand diagram. \begin{align*} |z_1 + z_2| &= |(z_1 - 0) + (0 -z_2)| \\ &\underbrace{\leq}_{\text{the direct distance is shorter than going via }0} |z_1 - 0| + |0 - z_2| \\ &= |z_1| + |-z_2| \\ &= |z_1| + |z_2| \end{align*} Claim: \(\displaystyle \vert\,z_1+\cdots+z_n\,\vert \leq \sum_{i=1}^n |z_i|\) Proof: (By Induction) Base Case: \(n = 1, 2\) have been proven. Inductive step, suppose it is true for \(n = k\), then consider \(n = k+1\), ie \begin{align*} \vert\,z_1+\cdots+z_k+z_{k+1}\,\vert &\leq \vert\,z_1+\cdots+z_k\vert + \vert z_{k+1}\,\vert \\ &\underbrace{\leq}_{\text{inductive hypothesis}} \sum_{i=1}^k |z_i| + |z_{k+1}| \\ &= \sum_{i=1}^{k+1} |z_i| \end{align*} Therefore if our hypothesis is true for \(n = k\) it is true for \(n = k+1\), and so since it is true for \(n = 1\) it is true by the principle of mathematical induction for all integers \(n \geq 1\). Suppose \(|z| \leq 1/4\), then consider: \begin{align*} \vert a_1z+a_2z^2+\cdots +a_nz^n \vert &\leq \vert a_1 z\vert + \vert a_2z^2\vert + \cdots + \vert a_n z_n\ \vert \\ &= \vert a_1\vert\vert z\vert + \vert a_2\vert\vert z^2\vert + \cdots + \vert a_n\vert\vert z^n\ \vert \\ &\leq 3\left ( |z| + |z|^2 + \cdots + |z|^n \right) \\ &\leq 3 \left ( \frac{1}{4} + \frac1{4^2} + \cdots + \frac{1}{4^n} \right) \\ &< 3 \frac{1/4}{1-1/4} \\ &= 1 \end{align*} Therefore we cannot have equality and there are no solutions.
Two curves are given parametrically by \[ x_{1}=(\theta+\sin\theta),\qquad y_{1}=(1+\cos\theta),\tag{1} \]and \[ x_{2}=(\theta-\sin\theta),\qquad y_{1}=-(1+\cos\theta),\tag{2} \] Find the gradients of the tangents to the curves at the points where \(\theta= \pi/2\) and \(\theta=3\pi/2\). Sketch, using the same axes, the curves for \(0\le\theta \le 2\pi\). Find the equation of the normal to the curve (1) at the point with parameter \(\theta\). Show that this normal is a tangent to the curve (2).
\begin{eqnarray*} {\rm f}(x)&=& \tan x-x,\\ {\rm g}(x)&=& 2-2\cos x-x\sin x,\\ {\rm h}(x)&=& 2x+x\cos 2x-\tfrac{3}{2}\sin 2x,\\ {\rm F}(x)&=& {x(\cos x)^{1/3}\over\sin x}. \end{eqnarray*} \vspace{1mm}
Points \(\mathbf{A},\mathbf{B},\mathbf{C}\) in three dimensions have coordinate vectors \(\mathbf{a},\mathbf{b},\mathbf{c}\), respectively. Show that the lines joining the vertices of the triangle \(ABC\) to the mid-points of the opposite sides meet at a point \(R\). \(P\) is a point which is {\bf not} in the plane \(ABC\). Lines are drawn through the mid-points of \(BC\), \(CA\) and \(AB\) parallel to \(PA\), \(PB\) and \(PC\) respectively. Write down the vector equations of the lines and show by inspection that these lines meet at a common point \(Q\). Prove further that the line \(PQ\) meets the plane \(ABC\) at \(R\).
A light smoothly jointed planar framework in the form of a regular hexagon \(ABCDEF\) is suspended smoothly from \(A\) and a weight 1kg is suspended from \(C\). The framework is kept rigid by three light rods \(BD\), \(BE\) and \(BF\). What is the direction and magnitude of the supporting force which must be exerted on the framework at \(A\)? Indicate on a labelled diagram which rods are in thrust (compression) and which are in tension. Find the magnitude of the force in \(BE\).
A wedge of mass \(M\) rests on a smooth horizontal surface. The face of the wedge is a smooth plane inclined at an angle \(\alpha\) to the horizontal. A particle of mass \(m\) slides down the face of the wedge, starting from rest. At a later time \(t\), the speed \(V\) of the wedge, the speed \(v\) of the particle and the angle \(\beta\) of the velocity of the particle below the horizontal are as shown in the diagram.