Let \(\mathrm{h}(x)=ax^{2}+bx+c,\) where \(a,b\) and \(c\) are constants, and \(a\neq0\). Give a condition which \(a,b\) and \(c\) must satisfy in order that \(\mathrm{h}(x)\) can be written in the form \[ a(x+k)^{2},\tag{*} \] where \(k\) is a constant. If \(\mathrm{f}(x)=3x^{2}+4x\) and \(\mathrm{g}(x)=x^{2}-2\), find the two constant values of \(\lambda\) such that \(\mathrm{f}(x)+\lambda\mathrm{g}(x)\) can be written in the form \((*)\). Hence, or otherwise, find constants \(A,B,C,D,m\) and \(n\) such that \begin{alignat*}{1} \mathrm{f}(x) & =A(x+m)^{2}+B(x+n)^{2}\\ \mathrm{g}(x) & =C(x+m)^{2}+D(x+n)^{2}. \end{alignat*} If \(\mathrm{f}(x)=3x^{2}+4x\) and \(\mathrm{g}(x)=x^{2}+\alpha\) and it is given by that there is only one value of \(\lambda\) for which \(\mathrm{f}(x)+\lambda\mathrm{g}(x)\) can be written in the form \((*)\), find \(\alpha\).
Solution: For \(h(x)\) to be written in this form \(b^2=4ac\). Suppose \(f(x) = 3x^2+4x\), \(g(x) = x^2-2\). then, \begin{align*} && f(x) + \lambda g(x) &= (3+\lambda)x^2+4x - 2 \lambda \\ \Rightarrow && 0 &= 16 + 8(3+\lambda) \lambda \\ \Rightarrow && 0 &= 2+ 3 \lambda + \lambda^2 \\ &&&= (\lambda +1)(\lambda + 2) \\ \Rightarrow && \lambda &= -1 , -2 \\ \end{align*} \begin{align*} && f(x) - g(x) &= 2(x+1)^2 \\ && f(x) -2g(x) &= (x+2)^2 \\ \Rightarrow && g(x) &= 2(x+1)^2 - (x+2)^2 \\ && f(x) &= 4(x+1)^2 - (x+2)^2 \end{align*} Suppose \(f(x) = 3x^2+4x, g(x) = x^2 + \alpha\), then \begin{align*} && f(x) + \lambda g(x) &= (3+\lambda)x^2+4x+\lambda \alpha \\ \Rightarrow && 0 &= 16 -2\lambda \alpha(\lambda + 3) \\ && 0 &= \alpha \lambda^2 +3\lambda-8 \\ \Rightarrow && 0 &= 9 +32 \alpha \\ \Rightarrow && \alpha &= -\frac{9}{32} \end{align*}
The equation of a hyperbola (with respect to axes which are displaced and rotated with respect to the standard axes) is \[ 3y^{2}-10xy+3x^{2}+16y-16x+15=0.\tag{\(\dagger\)} \] By differentiating \((\dagger)\), or otherwise, show that the equation of the tangent through the point \((s,t)\) on the curve is \[ y=\left(\frac{5t-3s+8}{3t-5s+8}\right)x-\left(\frac{8t-8s+15}{3t-5s+8}\right). \] Show that the equations of the asymptote (the limiting tangents as \(s\rightarrow\infty\)) are \[ y=3x-4\qquad\mbox{ and }\qquad3y=x-4. \] {[}Hint: You will need to find a relationship between \(s\) and \(t\) which is valid in the limit as \(s\rightarrow\infty.\){]} Show that the angle between one asymptote and the \(x\)-axis is the same as the angle between the other asymptote and the \(y\)-axis. Deduce the slopes of the lines that bisect the angles between the asymptotes and find the equations of the axes of the hyperbola.
Solution: \begin{align*} && 0 &= 3y^{2}-10xy+3x^{2}+16y-16x+15 \\ \Rightarrow && 0 &= 6y \frac{\d y}{\d x} - 10x \frac{\d y}{\d x} - 10y + 6x+ 16 \frac{\d y}{\d x } - 16 \\ &&&= \frac{\d y}{\d x} \left (6y - 10x +16 \right) - (10y-6x+16) \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{5y-3x+8}{3y-5x+8} \\ \Rightarrow && \frac{y-t}{x-s} &= \frac{5t-3s+8}{3t-5s+8} \\ && y &= \left(\frac{5t-3s+8}{3t-5s+8}\right)x -\left(\frac{5t-3s+8}{3t-5s+8}\right)s + t \\ &&&= \left(\frac{5t-3s+8}{3t-5s+8}\right)x - \frac{(5ts-3s^2+8s)-(3t^2-5st+8t)}{3t-5s+8} \\ &&&= \left(\frac{5t-3s+8}{3t-5s+8}\right)x - \frac{(5ts-3s^2+8s)-(3t^2-5st+8t)}{3t-5s+8} \\ &&&= \left(\frac{5t-3s+8}{3t-5s+8}\right)x - \frac{8s-8t-(3s^2+3t^2-10st)}{3t-5s+8} \\ &&&= \left(\frac{5t-3s+8}{3t-5s+8}\right)x - \frac{8s-8t-(16s-16t-15)}{3t-5s+8} \\ &&&= \left(\frac{5t-3s+8}{3t-5s+8}\right)x - \frac{8t-8s+15}{3t-5s+8} \\ \end{align*} While \(x \to \infty\) we still have \(3 \frac{y^2}{x^2} - 10 \frac{y}{x} + 3 + 16 \frac{y}{x^2} - 16\frac{1}{x} + 15 \frac{1}{x^2} = 0\), ie if \(\frac{y}{x} = k\), then \(3k^2 - 10k + 3 \to 0 \Rightarrow k \to 3, \frac13\). Therefore, as \(s \to \infty\) we can write \begin{align*} && y &= \left(\frac{5\frac{t}{s}-3+8\frac{1}{s}}{3\frac{t}{s}-5+8\frac1{s}}\right)x - \frac{8\frac{t}s-8+15\frac{1}{s}}{3\frac{t}{s}-5+8\frac{1}{s}} \\ k \to 3: &&& \to \left(\frac{15-3}{9-5}\right)x - \frac{24-8}{9-5} \\ &&&= 3x - 4 \\ k \to \frac13: && &\to \left(\frac{\frac53-3}{1-5}\right)x - \frac{\frac83-8}{1-5} \\ &&&= \frac13 x - \frac43 \end{align*} Therefore the equations are \(y = 3x-4\) and \(3y=x-4\) The lines are parallel to \(y = 3x\) and \(y = \frac13x\), so by considering the triangles formed with the origin and a point \(1\) along the \(x\) or \(y\) axis we can see the angles are identical. This means the line \(y = x\) is parallel to one axis and \(y = -x\) is parallel to the other. They must meet where our two lines meet which is \((1,-1)\), so our lines are \(y = x-2\) and \(y = -x\)
It is given that \(x,y\) and \(z\) are distinct and non-zero, and that they satisfy \[ x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}. \] Show that \(x^{2}y^{2}z^{2}=1\) and that the value of \(x+\dfrac{1}{y}\) is either \(+1\) or \(-1\).
Solution: \begin{align*} && x-y &= \frac1z - \frac1y \\ && x-z &= \frac1x - \frac1y \\ && y-z &= \frac1x - \frac1z \\ \Rightarrow && (x-y)(x-z)(y-z) &= \frac{(y-z)(y-x)(z-x)}{x^2y^2z^2} \\ \Rightarrow && x^2y^2 z^2 &= 1 \\ \end{align*} Suppose \(x + \frac1{y} =k \Rightarrow xy + 1 = ky\) Therefore \(y + \frac{1}{z} = y \pm xy = k\) Therefore \(1 \mp y = k(y \mp 1) \Rightarrow k = \pm 1\)
Let \(y=\cos\phi+\cos2\phi\), where \(\phi=\dfrac{2\pi}{5}.\) Verify by direct substitution that \(y\) satisfies the quadratic equation \(2y^{2}=3y+2\) and deduce that the value of \(y\) is \(-\frac{1}{2}.\) Let \(\theta=\dfrac{2\pi}{17}.\) Show that \[ \sum_{k=0}^{16}\cos k\theta=0. \] If \(z=\cos\theta+\cos2\theta+\cos4\theta+\cos8\theta,\) show that the value of \(z\) is \(-(1-\sqrt{17})/4\).
Solution: Note that \(\cos 4 \phi = \cos \phi, \cos 3 \phi = \cos 2 \phi\) \begin{align*} && LHS & = 2y^2 \\ &&&= 2 \left ( \cos \phi + \cos 2 \phi \right)^2 \\ &&&= 2 \cos ^2 \phi + 2 \cos^2 2 \phi + 4 \cos \phi \cos 2 \phi \\ &&&= \cos 2 \phi+1+ \cos4 \phi+1+2 \left ( \cos \phi + \cos 3 \phi \right) \\ &&&= \cos 2 \phi + 2 + \cos \phi + 2 \cos \phi + 2 \cos 2 \phi \\ &&&= 3(\cos \phi + \cos 2 \phi) + 2 \\ &&&= 3 y + 2 \\ &&&= RHS \end{align*} Therefore \(y\) satisfies \(2y^2 = 3y+2\), which we can solve: \begin{align*} && 0 &= 2y^2-3y-2 \\ &&&= (2y+1)(y-2) \\ \Rightarrow && y &= -\frac12,2 \end{align*} Since \(\cos \phi \neq 1\), \(y \neq 2\), therefore \(y = -\frac12\). \begin{align*} && \sum_{k=0}^{16} \cos k \theta &= \sum_{k=0}^{17} \textrm{Re} \left ( e^{ k \theta i} \right ) \\ &&&= \textrm{Re} \left ( \sum_{k=0}^{16}e^{ k \theta i} \right ) \\ &&&= \textrm{Re} \left ( \frac{1-e^{17 \theta i}}{1-e^{i \theta}} \right ) \\ &&&= 0 \end{align*} Suppose \(z = \cos \theta + \cos 2 \theta + \cos 4 \theta + \cos 8 \theta\) \begin{align*} z^2 &= \left (\cos \theta + \cos 2 \theta + \cos 4 \theta + \cos 8 \theta \right)^2 \\ &= \cos^2 \theta + \cos^2 2 \theta + \cos^2 4 \theta + \cos^2 8 \theta \\ & \quad \quad 2( \cos \theta \cos 2 \theta + \cos \theta \cos 4 \theta + \cos \theta \cos 8 \theta + \\ & \quad \quad \quad \cos 2 \theta \cos 4 \theta + \cos 2 \theta \cos 8 \theta + \cos 4 \theta \cos 8 \theta) \\ &= \frac12 \left (\cos 2 \theta + 1+ \cos 4 \theta + 1 + \cos 8 \theta + 1 + \cos 16 \theta + 1 \right ) + \\ &\quad \quad ( \cos \theta + \cos 3 \theta + \cos 3 \theta + \cos 5 \theta + \cos 7 \theta + \cos 9 \theta + \\ & \quad \quad \quad \cos 2 \theta + \cos 6 \theta + \cos 6 \theta + \cos 10 \theta +\cos 4 \theta + \cos 12 \theta ) \\ &= \frac12 z + 2 + \\ & \quad \quad ( \cos 3 \theta + \cos 6 \theta - \cos 8 \theta - \cos 11 \theta \\ & \quad \quad \quad - \cos 13 \theta - \cos 14 \theta - \cos 15 \theta - \cos 16 \theta - 1) \\ &= \frac12 z + 1 - z \\ &= -\frac12 z +1 \end{align*} Therefore \(z\) satisfies \(z^2=-\frac12 z+1 \Rightarrow z = \frac{-\frac12 \pm \sqrt{\frac14+4}}{2} = \frac{-1 \pm \sqrt{17}}{4}\) Therefore \(z = \frac{\sqrt{17}-1}{4}\) since \(z > 0\)
Give a rough sketch of the function \(\tan^{k}\theta\) for \(0\leqslant\theta\leqslant\frac{1}{4}\pi\) in the two cases \(k=1\) and \(k\gg1\) (i.e. \(k\) is much greater than 1). Show that for any positive integer \(n\) \[ \int_{0}^{\frac{1}{4}\pi}\tan^{2n+1}\theta\,\mathrm{d}\theta=(-1)^{n}\left(\tfrac{1}{2}\ln2+\sum_{m=1}^{n}\frac{(-1)^{m}}{2m}\right), \] and deduce that \[ \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m}=\tfrac{1}{2}\ln2. \] Show similarly that \[ \sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{2m-1}=\frac{\pi}{4}. \]
Solution:
Show by means of a sketch, or otherwise, that if \(0\leqslant\mathrm{f}(y)\leqslant\mathrm{g}(y)\) for \(0\leqslant y\leqslant x\) then \[ 0\leqslant\int_{0}^{x}\mathrm{f}(y)\,\mathrm{d}y\leqslant\int_{0}^{x}\mathrm{g}(y)\,\mathrm{d}y. \] Starting from the inequality \(0\leqslant\cos y\leqslant1,\) or otherwise, prove that if \(0\leqslant x\leqslant\frac{1}{2}\pi\) then \(0\leqslant\sin x\leqslant x\) and \(\cos x\geqslant1-\frac{1}{2}x^{2}.\) Deduce that \[ \frac{1}{1800}\leqslant\int_{0}^{\frac{1}{10}}\frac{x}{(2+\cos x)^{2}}\,\mathrm{d}x\leqslant\frac{1}{1797}. \] Show further that if \(0\leqslant x\leqslant\frac{1}{2}\pi\) then \(\sin x\geqslant x-\frac{1}{6}x^{3}.\) Hence prove that \[ \frac{1}{3000}\leqslant\int_{0}^{\frac{1}{10}}\frac{x^{2}}{(1-x+\sin x)^{2}}\,\mathrm{d}x\leqslant\frac{2}{5999}. \]
The function \(\mathrm{g}\) satisfies, for all positive \(x\) and \(y\), \[ \mathrm{g}(x)+\mathrm{g}(y)=\mathrm{g}(z),\tag{\ensuremath{*}} \] where \(z=xy/(x+y+1).\) By treating \(y\) as a constant, show that \[ \mathrm{g}'(x)=\frac{y^{2}+y}{(x+y+1)^{2}}\mathrm{g}'(z)=\frac{z(z+1)}{x(x+1)}\mathrm{g}'(z), \] and deduce that \(2\mathrm{g}'(1)=(u^{2}+u)\mathrm{g}'(u)\) for all \(u\) satisfying \(0 < u < 1.\) Now by treating \(u\) as a variable, show that \[ \mathrm{g}(u)=A\ln\left(\frac{u}{u+1}\right)+B, \] where \(A\) and \(B\) are constants. Verify that \(\mathrm{g}\) satisfies \((*)\) for a suitable value of \(B\). Can \(A\) be determined from \((*)\)? The function \(\mathrm{f}\) satisfies, for all positive \(x\) and \(y\), \[ \mathrm{f}(x)+\mathrm{f}(y)=\mathrm{f}(z) \] where \(z=xy.\) Show that \(\mathrm{f}(x)=C\ln x\) where \(C\) is a constant.
Solve the quadratic equation \(u^{2}+2u\sinh x-1=0\), giving \(u\) in terms of \(x\). Find the solution of the differential equation \[ \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}\sinh x-1=0 \] which satisfies \(y=0\) and \(y'>0\) at \(x=0\). Find the solution of the differential equation \[ \sinh x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}-\sinh x=0 \] which satisfies \(y=0\) at \(x=0\).
Solution: \begin{align*} && 0 &= u^2 + 2u \sinh x -1 \\ &&&= u^2 + u(e^x-e^{-x})-e^{x}e^{-x} \\ &&&= (u-e^{-x})(u+e^x) \\ \Rightarrow && u &= e^{-x}, -e^x \end{align*} \begin{align*} && 0 &= \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}\sinh x-1 \\ \Rightarrow && \frac{\d y}{\d x} &= e^{-x}, -e^x \\ \Rightarrow && y &= -e^{-x}+C, -e^x+C \\ y(0) = 0: && C &= 1\text{ both cases } \\ y'(0) > 0: && y &= 1-e^{-x} \end{align*} \begin{align*} && 0 &= \sinh x u^2 + 2u -\sinh x \\ \Rightarrow && u &= \frac{-2 \pm \sqrt{4+4\sinh^2 x}}{2\sinh x} \\ &&&= \frac{-1 \pm \cosh x}{\sinh x} = - \textrm{cosech }x \pm \textrm{coth}x \\ \\ && 0 &= \sinh x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}+2\frac{\mathrm{d}y}{\mathrm{d}x}-\sinh x \\ \Rightarrow && \frac{\d y}{\d x} &= - \textrm{cosech }x \pm \textrm{coth}x \\ \Rightarrow && y &= -\ln \left ( \tanh \frac{x}{2} \right) \pm \ln \sinh x+C \end{align*} For \(x \to 0\) to be defined, we need \(+\), so \begin{align*} && y &= \ln \left (\frac{\sinh x}{\tanh \frac{x}{2}} \right) + C \\ && y &= \ln \left (\frac{2\sinh \frac{x}{2} \cosh \frac{x}{2}}{\tanh \frac{x}{2}} \right)+C \\ &&&= \ln \left (2 \cosh^2 x \right) + C \\ y(0) = 0: && 0 &= \ln 2+C \\ \Rightarrow && y &= \ln(2 \cosh^2 x) -\ln 2 \\ && y &= 2 \ln (\cosh x) \end{align*}
Let \(G\) be the set of all matrices of the form \[ \begin{pmatrix}a & b\\ 0 & c \end{pmatrix}, \] where \(a,b\) and \(c\) are integers modulo 5, and \(a\neq0\neq c\). Show that \(G\) forms a group under matrix multiplication (which may be assumed to be associative). What is the order of \(G\)? Determine whether or not \(G\) is commutative. Determine whether or not the set consisting of all elements in \(G\) of order \(1\) or \(2\) is a subgroup of \(G\).
Solution: Claim \(G\) is a group under matrix multiplication
A straight stick of length \(h\) stands vertically. On a sunny day, the stick casts a shadow on flat horizontal ground. In cartesian axes based on the centre of the Earth, the position of the Sun may be taken to be \(R(\cos\theta,\sin\theta,0)\) where \(\theta\) varies but \(R\) is constant. The positions of the base and tip of the stick are \(a(0,\cos\phi,\sin\phi)\) and \(b(0,\cos\phi,\sin\phi)\), respectively, where \(b-a=h\). Show that the displacement vector from the base of the stick to the tip of the shadow is \[ Rh(R\cos\phi\sin\theta-b)^{-1}\begin{pmatrix}-\cos\theta\\ -\sin^{2}\phi\sin\theta\\ \cos\phi\sin\phi\sin\theta \end{pmatrix}. \] {[}`Stands vertically' means that the centre of the Earth, the base of the stick and the tip of the stick are collinear, `horizontal' means perpendicular to the stick.