Prove that both \(x^{4}-2x^{3}+x^{2}\) and \(x^{2}-8x+17\) are non-negative for all real \(x\). By considering the intervals \(x\leqslant0\), \(0 < x\leqslant2\) and \(x > 2\) separately, or otherwise, prove that the equation \[ x^{4}-2x^{3}+x^{2}-8x+17=0 \] has no real roots. Prove that the equation \(x^{4}-x^{3}+x^{2}-4x+4=0\) has no real roots.
Solution: \begin{align*} x^4 - 2x^3+x^2 &= x^2(x^2-2x+1) \\ &= x^2(x-1)^2 > 0 \end{align*} Since \(x\)and \(x-1\) can't both be zero, and square cannot be negative. \begin{align*} x^2 - 8x+17 &= (x-4)^2 +1 \geq 1 > 0 \end{align*} If \(x \leq 2\) then \(x^4 - 2x^3+x^2 > 0\) and \(17-8x \geq 1\) so \(x^4-2x^3+x^2-8x+17 > 0\) If \(x > 2\) then \(x^4-2x^3 = x^3(x-2) \geq 0\) and \(x^2-8x+17 > 0\) so \(x^4-2x^3+x^2-8x+17 > 0\), so for all real numbers our polynomial is positive and therefore cannot have any roots. Note that: \(x^4-x^3+x^2 = x^2(x^2-x+1) > 0\) and \(x^2-4x+4 =(x-2)^2 \geq 0\) If \(x < 1\) then \(x^4-x^3+x^2 > 0\) and \(4(1-x) > 0\) so \(x^4-x^3+x^2-4x+4 > 0\). If \(x > 1\) then \(x^4-x^3 = x^3(x-1) > 0\) and \(x^2-4x+4 \geq 0\) therefore \(x^4-x^3+x^2-4x+4 > 0\). Therefore \(x^4-x^3+x^2-4x+4 > 0\) for all real \(x\) and hence there are no real roots.
Prove that if \(A+B+C+D=\pi,\) then \[ \sin\left(A+B\right)\sin\left(A+D\right)-\sin B\sin D=\sin A\sin C. \] The points \(P,Q,R\) and \(S\) lie, in that order, on a circle of centre \(O\). Prove that \[ PQ\times RS+QR\times PS=PR\times QS. \]
Solution: \begin{align*} \sin(A+B)\sin(A+D) - \sin B \sin D &= \sin (A+B)\sin(\pi - B-C) - \sin B \sin (\pi - A - B - C) \\ &= \sin (A+B)\sin(B+C) - \sin B \sin(A+B+C) \\ &= \sin(A+B)\sin (B+C) - \sin B (\sin (A+B)\cos C +\cos(A+B) \sin C) \\ &= \sin(A+B)\cos B \sin C + \cos(A+B)\sin B \sin C \\ &= \sin A \sin C \cos^2 B + \cos A \sin B \cos B \sin C - \cos A \cos B \sin B \sin C + \sin A \sin^2 B \sin C \\ &= \sin A \sin C (\cos^2 B + \sin^2 B) \\ &= \sin A \sin C \end{align*}
Sketch the curves given by \[ y=x^{3}-2bx^{2}+c^{2}x, \] where \(b\) and \(c\) are non-negative, in the cases: \begin{questionparts} \item \(2b < c\sqrt{3}\) \item \(2b=c\sqrt{3}\neq0\) \item \(c\sqrt{3} < 2b < 2c\), \item \(b=c\neq0\) \item \(b > c > 0\), \item \(c=0,b\neq0\) \item \(c=b=0\). \end{questionpart} Sketch also the curves given by \(y^{2}=x^{3}-2bx^{2}+c^{2}x\) in the cases \((i), (v)\) and \((vii)\).
Solution:
A plane contains \(n\) distinct given lines, no two of which are parallel, and no three of which intersect at a point. By first considering the cases \(n=1,2,3\) and \(4\), provide and justify, by induction or otherwise, a formula for the number of line segments (including the infinite segments). Prove also that the plane is divided into \(\frac{1}{2}(n^{2}+n+2)\) regions (including those extending to infinity).
Solution: With \(n=1\) line, the plane is divided in half. With \(n=2\) lines the plane is divided into four pieces. (Each of the previous pieces are split in half) With \(n=3\) lines the plane is divided into up to \(7\) pieces. (The new line crosses two lines in two places dividing \(3\) regions into \(2\), thus increasing the number of regions by \(3\)). With \(n=4\) lines the plane is divided into \(11\) pieces. (The new line crosses three lines in three places doubling the number of regions of \(4\) places). Claim: With \(n\) lines the plane is divided into \(\frac12(n^2+n+2)\) regions. Proof: (By induction) (Base case) When \(n=1\) clearly the line is divided into \(2\) regions, and \(\frac12 (1^2 + 1^2 + 2) = 2\) so the base case is true. (Inductive step) Suppose our formula is true for \(n=k\), so we have placed \(k\) lines in general position and divided the plane into \(\frac12(k^2+k+2)\) regions. When we place a new line it will meet those \(k\) lines in \(k\) places (since no lines are parallel) and there will be k+1 regions the line will run through (since no three lines meet at a point). Each of those \(k+1\) regios is now split in half, so there are \(k+1\) "new regions". Therefore there are now \(\frac12(k^2+k+2)+(k+1) = \frac12(k^2+k+1+2k+2) = \frac12 ((k+1)^2+(k+1)+1)\) regions, ie our hypothesis is true for \(n=k+1\). (Conclusion) Therefore since our statement is true for \(n=1\) and since if it is true for some \(n=k\) it is true for \(n=k+1\) by the principle of mathematical induction it is true for all \(n \geq 1\) Proof: (Alternative). There are \(\binom{n}{2}\) places where the lines meet. Each intersection is the most extreme point (say lowest) for one region (if two are tied, rotate by a very small amount) so this is a unique mapping. There will be \(n+1\) regions which are infinite and don't have a most extreme point, hence \(\binom{n}{2} + n+1 = \frac12(n^2-n)+n+1 = \frac12(n^2+n+2)\)
The distinct points \(L,M,P\) and \(Q\) of the Argand diagram lie on a circle \(S\) centred on the origin and the corresponding complex numbers are \(l,m,p\) and \(q\). By considering the perpendicular bisectors of the chords, or otherwise, prove that the chord \(LM\) is perpendicular to the chord \(PQ\) if and only if \(lm+pq=0.\) Let \(A_{1},A_{2}\) and \(A_{3}\) be three distinct points on \(S\). For any given point \(A_{1}'\) on \(S\), the points \(A_{2}',A_{3}'\) and \(A_{1}''\) are chosen on \(S\) such that \(A_{1}'A_{2}',A_{2}'A_{3}'\) and \(A_{3}'A_{1}''\) are perpendicular to \(A_{1}A_{2},A_{2}A_{3}\) and \(A_{3}A_{1},\) respectively. Show that for exactly two positions of \(A_{1}',\) the points \(A_{1}'\) and \(A_{1}''\) coincide. If, instead, \(A_{1},A_{2},A_{3}\) and \(A_{4}\) are four given distinct points on \(S\) and, for any given point \(A_{1}',\) the points \(A_{2}',A_{3}',A_{4}'\) and \(A_{1}''\) are chosen on \(S\) such that \(A_{1}'A_{2}',A_{2}'A_{3}',A_{3}'A_{4}'\) and \(A_{4}'A_{1}''\) are respectively perpendicular to \(A_{1}A_{2},A_{2}A_{3},A_{3}A_{4}\) and \(A_{4}A_{1},\) show that \(A_{1}'\) coincides with \(A_{1}''.\) Give the corresponding result for \(n\) distinct points on \(S\).
Solution: The perpendicular bisector of the chords runs through the origin, therefore \(LM\) is perpendicular to \(PQ\) if and only if \(\frac{l+m}{2}\) is perpendicular to \(\frac{p+q}{2}\), ie \begin{align*} && (l+m) &= it (p+q) \\ \Leftrightarrow && \frac{l+m}{p+q} & \in i \mathbb{R} \\ \Leftrightarrow && 0 &= \frac{l+m}{p+q} + \frac{l^*+m^*}{p^*+q^*} \\ &&&= \frac{l+m}{p+q} + \frac{\frac{r^2}{l}+\frac{r^2}{m}}{\frac{r^2}{p}+\frac{r^2}{q}} \\ &&&=\frac{l+m}{p+q} + \frac{l+m}{p+q} \frac{pq}{lm} \\ &&&= \frac{l+m}{p+q} \left ( \frac{lm+pq}{lm} \right) \end{align*} Therefore as long as \(l+m, p+q \neq 0\) \(lm+pq = 0\) is equivalent to the chords being perpendicular. In the case where (say) \(l,m\) is a diameter, then the condition for the chords to be perpendicular is that \(p,q\) is also a diameter and at right angles, but clearly this is also equivalent to our condition. Suppose \(A_1, A_2, A_3\) are distinct points on \(S\), and \(A_1'\) is given and suppose \(a_i, a_i'\) are the corresponding complex numbers, then the conditions are: \begin{align*} A_1'A_2' \perp A_1A_2: && 0 &= a_1'a_2' + a_1a_2 \\ A_2'A_3' \perp A_2A_3: && 0 &= a_2'a_3' + a_2a_3 \\ A_3'A_1'' \perp A_3A_1: && 0 &= a_3'a_1'' + a_3a_1 \\ \\ \Rightarrow && a_2' &= -\frac{a_1a_2}{a_1'} \\ && a_3' &= -\frac{a_2a_3}{a_2'} \\ &&&= \frac{a_1'a_2a_3}{a_1a_2} \\ &&&= \frac{a_1'a_3}{a_1} \\ && a_1'' &= - \frac{a_3a_1}{a_3'} \\ &&&= \frac{a_3a_1a_1}{a_1'a_3} \\ &&&= \frac{a_1^2}{a_1'} \\ \Rightarrow && a_1'a_1'' &= a_1^2 \end{align*} Therefore \(a_1' = a_1''\) if \(a_1' = \pm a_1\) Suppose we have \(4\) points, then \begin{align*} A_1'A_2' \perp A_1A_2: && 0 &= a_1'a_2' + a_1a_2 \\ A_2'A_3' \perp A_2A_3: && 0 &= a_2'a_3' + a_2a_3 \\ A_3'A_4' \perp A_3A_4: && 0 &= a_3'a_4' + a_3a_4 \\ A_4'A_1'' \perp A_4A_1: && 0 &= a_4'a_1'' + a_4a_1 \\ \\ \Rightarrow && a_4' &= -\frac{a_3a_4}{a_3'} \\ &&&= -\frac{a_1a_3a_4}{a_1'a_3} \\ &&&= -\frac{a_1a_4}{a_1'} \\ \Rightarrow && a_1'' &= -\frac{a_4a_1}{a_4'} \\ &&&= \frac{a_4a_1a_1'}{a_1a_4} \\ &&&= a_1' \end{align*} So they coincide. For \(n\) points if there are an even number of points they coincide, an odd number and there are two points when they coincide.
Let \(a,b,c,d,p\) and \(q\) be positive integers. Prove that:
Solution:
A damped system with feedback is modelled by the equation \[ \mathrm{f}'(t)+\mathrm{f}(t)-k\mathrm{f}(t-1)=0,\mbox{ }\tag{\(\dagger\)} \] where \(k\) is a given non-zero constant. Show that (non-zero) solutions for \(\mathrm{f}\) of the form \(\mathrm{f}(t)=A\mathrm{e}^{pt},\) where \(A\) and \(p\) are constants, are possible provided \(p\) satisfies \[ p+1=k\mathrm{e}^{-p}.\mbox{ }\tag{*} \] Show also, by means of a sketch, or otherwise, that equation \((*)\) can have \(0,1\) or \(2\) real roots, depending on the value of \(k\), and find the set of values of \(k\) for which such solutions of \((\dagger)\) exist. For what set of values of \(k\) do such solutions tend to zero as \(t\rightarrow+\infty\)?
Solution: Suppose \(f(t) = Ae^{pt}\) is a solution, then \begin{align*} && 0 &= Ape^{pt} + Ae^{pt} - Ake^{p(t-1)} \\ \Leftrightarrow && 0 &= p +1 - ke^{-p} \\ \Leftrightarrow && p+1 &= ke^{-p} \end{align*}
The functions \(\mathrm{x}\) and \(\mathrm{y}\) are related by \[ \mathrm{x}(t)=\int_{0}^{t}\mathrm{y}(u)\,\mathrm{d}u, \] so that \(\mathrm{x}'(t)=\mathrm{y}(t)\). Show that \[ \int_{0}^{1}\mathrm{x}(t)\mathrm{y}(t)\,\mathrm{d}t=\tfrac{1}{2}\left[\mathrm{x}(1)\right]^{2}. \] In addition, it is given that \(\mbox{y}(t)\) satisfies \[ \mathrm{y}''+(\mathrm{y}^{2}-1)\mathrm{y}'+\mathrm{y}=0,\mbox{ }(*) \] with \(\mathrm{y}(0)=\mathrm{y}(1)\) and \(\mathrm{y}'(0)=\mathrm{y}'(1)\). By integrating \((*)\), prove that \(\mathrm{x}(1)=0.\) By multiplying \((*)\) by \(\mathrm{x}(t)\) and integrating by parts, prove the relation \[ \int_{0}^{1}\left[\mathrm{y}(t)\right]^{2}\,\mathrm{d}t=\tfrac{1}{3}\int_{0}^{1}\left[\mathrm{y}(t)\right]^{4}\,\mathrm{d}t. \] Prove also the relation \[ \int_{0}^{1}\left[\mathrm{y}'(t)\right]^{2}\,\mathrm{d}t=\int_{0}^{1}\left[\mathrm{y}(t)\right]^{2}\,\mathrm{d}t. \]
Solution: Consider \(\frac12 x(t)^2\) then differentiating we obtain \(x(t)x'(t) = x(t)y(t)\). Also note that \(x(0) = \int_0^0 y(u) \d u = 0\) Therefore, \begin{align*} \int_0^1 x(t)y(t) \d t &= \left [ \frac12 x(t)^2 \right]_0^1 \\ &= \frac12[x(1)]^2 \end{align*} \begin{align*} && 0 &= y'' + (y^2-1)y' + y \\ \Rightarrow && 0 &= \int_0^1 \l y'' + (y^2-1)y' + y \r \d t \\ &&&= \left [y'(t) + \frac13y^3-y+x \right]_0^1 \\ &&&= x(1) \end{align*} Therefore \(x(1) = 0\). \begin{align*} && 0 &= xy'' + (y^2-1)y' x+ yx \\ \Rightarrow && 0 &= \int_0^1 \l xy'' + (y^2-1)y'x + xy \r \d t \\ &&&= \left [ x y' +(\frac13 y^3-y)x \right]_0^1 - \int_0^1 yy'+\frac13y^4-y^2 \d t \\ &&&= 0 - \frac13 \int_0^1 [y(t)]^4 \d t - \int_0^1 [y(t)]^2 \d t \\ \Rightarrow && \int_0^1 [y(t)]^2 \d t &= \frac13 \int_0^1 [y(t)]^4 \d t \end{align*} \begin{align*} && 0 &= yy'' + (y^2-1)y' y+ y^2 \\ \Rightarrow && 0 &= \int_0^1 \l yy'' + (y^2-1)y'y + y^2 \r \d t \\ &&&= \left [ y y' +(\frac14 y^4-\frac12y^2) \right]_0^1 - \int_0^1 [y'(t)]^2 \d t + \int_0^1 y^2 \d t \\ &&&= 0 - \int_0^1 [y'(t)]^2 \d t + \int_0^1 y^2 \d t \\ \Rightarrow && \int_0^1 [y'(t)]^2 \d t &= \int_0^1 [y(t)]^2 \d t \end{align*}
Show by means of a sketch that the parabola \(r(1+\cos\theta)=1\) cuts the interior of the cardioid \(r=4(1+\cos\theta)\) into two parts. Show that the total length of the boundary of the part that includes the point \(r=1,\theta=0\) is \(18\sqrt{3}+\ln(2+\sqrt{3}).\)
Solution:
Two square matrices \(\mathbf{A}\) and \(\mathbf{B}\) satisfies \(\mathbf{AB=0}.\) Show that either \(\det\mathbf{A}=0\) or \(\det\mathbf{B}=0\) or \(\det\mathbf{A}=\det\mathbf{B}=0\). If \(\det\mathbf{B}\neq0\), what must \(\mathbf{A}\) be? Give an example to show that the condition \(\det\mathbf{A}=\det\mathbf{B}=0\) is not sufficient for the equation \(\mathbf{AB=0}\) to hold. Find real numbers \(p,q\) and \(r\) such that \[ \mathbf{M}^{3}+2\mathbf{M}^{2}-5\mathbf{M}-6\mathbf{I}=(\mathbf{M}+p\mathbf{I})(\mathbf{M}+q\mathbf{I})(\mathbf{M}+r\mathbf{I}), \] where \(\mathbf{M}\) is any square matrix and \(\mathbf{I}\) is the appropriate identity matrix. Hence, or otherwise, find all matrices \(\mathbf{M}\) of the form $\begin{pmatrix}a & c\\ 0 & b \end{pmatrix}$ which satisfy the equation \[ \mathbf{M}^{3}+2\mathbf{M}^{2}-5\mathbf{M}-6\mathbf{I}=\mathbf{0}. \]
Solution: Since \(0 = \det \mathbf{0} = \det \mathbf{AB} = \det \mathbf{A} \det\mathbf{B}\) at least one of \(\det \mathbf{A}\) or \(\det \mathbf{B}\) is zero. If \(\det \mathbf{B} \neq 0\) then \(\mathbf{B}\) is invertible, and multiplying on the right by \(\mathbf{B}^{-1}\) gives us \(\mathbf{A} = \mathbf{0}\). If \(\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\) and \(\mathbf{B} = \begin{pmatrix} 1 & 0 \\1 & 0 \end{pmatrix}\), then \(\det \mathbf{A} = \det \mathbf{B} = 0\), but \(\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \mathbf{0}\) Since \(\mathbf{M}\) commutes with itself and the identity matrix, this is equivalent to factorising the polynomial over the reals. Therefore $$\mathbf{M}^{3}+2\mathbf{M}^{2}-5\mathbf{M}-6\mathbf{I}=(\mathbf{M}-2\mathbf{I})(\mathbf{M}+\mathbf{I})(\mathbf{M}+3\mathbf{I}),$$ Since we now know at least one of \(\det (\mathbf{M}-2\mathbf{I})\), \(\det (\mathbf{M}+\mathbf{I})\), \(\det (\mathbf{M}+3\mathbf{I})\), we should look at cases: Since at least one of those must be non-zero, we must have the following cases: \((a,b) = (2,-1), (-1,2), (-1,-3), (-3,-1), (2,-3), (-3,2)\) In each of those cases, we will have: \(\begin{pmatrix} 0 & c \\ 0 & b+k \end{pmatrix}\begin{pmatrix} a+l & c \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0\end{pmatrix}\) and so all of those solutions are valid. So \(c\) can be anything as long as \((a,b)\) are in that set of solutions