Problems

Filters
Clear Filters
1988 Paper 2 Q1
D: 1600.0 B: 1485.1

The function \(\mathrm{f}\) is defined, for \(x\neq1\) and \(x\neq2\) by \[ \mathrm{f}(x)=\frac{1}{\left(x-1\right)\left(x-2\right)} \] Show that for \(\left|x\right|<1\) \[ \mathrm{f}(x)=\sum_{n=0}^{\infty}x^{n}-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n} \] and that for \(1<\left|x\right|<2\) \[ \mathrm{f}(x)=-\sum_{n=1}^{\infty}x^{-n}-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n} \] Find an expression for \(\mbox{f}(x)\) which is valid for \(\left|x\right|>2\).


Solution: \begin{align*} && \f(x) &= \frac1{(x-1)(x-2)} \\ &&&=\frac{1}{x-2} -\frac{1}{x-1} \\ \end{align*} Therefore, for \(|x| < 1\) \begin{align*} && \f(x) &=\frac{1}{x-2} -\frac{1}{x-1} \\ &&&= -\frac12 \frac{1}{1-\frac{x}{2}} + \frac{1}{1-x} \\ &&&= \sum_{n=0}^{\infty} x^n - \frac12 \sum_{n=0}^\infty \l \frac{x}2 \r^2 \end{align*} where both geometric series converge since \(|x| < 1\) and \(|\frac{x}{2}| < 1\) When \(1 < |x|< 2 \Rightarrow |\frac{1}{x}| < 1\), we must have: \begin{align*} && \f(x) &=\frac{1}{x-2} -\frac{1}{x-1} \\ &&&= -\frac12 \frac{1}{1-\frac{x}{2}} + \frac1{x}\frac{1}{1-\frac{1}{x}} \\ &&&= - \frac12 \sum_{n=0}^\infty \l \frac{x}2 \r^2 - \frac{1}{x} \sum_{n=0}^{\infty} x^{-n} \\ &&&= - \frac12 \sum_{n=0}^\infty \l \frac{x}2 \r^2 - \sum_{n=1}^{\infty} x^{-n} \\ \end{align*} Finally, when \(|x| > 2\), ie \(|\frac{2}{x}| < 1\) we have \begin{align*} && \f(x) &=\frac{1}{x-2} -\frac{1}{x-1} \\ &&& =\frac1{x} \frac{1}{1-\frac{2}{x}} - \frac{1}{x}\frac{1}{1-\frac{1}{x}} \\ &&&= \frac1{x} \sum_{n=0}^{\infty} \l \frac{2}{x} \r^n - \sum_{n=1}^{\infty}x^{-n} \\ &&&= \sum_{n=1}^{\infty} 2^{n-1} x^{-n} - \sum_{n=1}^{\infty}x^{-n} \\ \end{align*}

1988 Paper 2 Q2
D: 1600.0 B: 1500.0

The numbers \(x,y\) and \(z\) are non-zero, and satisfy \[ 2a-3y=\frac{\left(z-x\right)^{2}}{y}\quad\mbox{ and }\quad2a-3z=\frac{\left(x-y\right)^{2}}{z}, \] for some number \(a\). If \(y\neq z\), prove that \[ x+y+z=a, \] and that \[ 2a-3x=\frac{\left(y-z\right)^{2}}{x}. \] Determine whether this last equation holds only if \(y\neq z\).


Solution: \begin{align*} && \begin{cases} 2a-3y=\frac{\left(z-x\right)^{2}}{y} \\ 2a-3z=\frac{\left(x-y\right)^{2}}{z} \end{cases} \\ \Rightarrow && \begin{cases} 2ay-3y^2=\left(z-x\right)^{2} \\ 2az-3z^2=\left(x-y\right)^{2} \end{cases} \\ \Rightarrow && 2a(y-z)-3(y+z)(y-z) &= (z-x+x-y)(z-x-x+y) \\ \Rightarrow && (y-z)(2a-3y-3z) &= (z-y)(z-2x+y) \\ \Rightarrow && 2a-3y-3z &= 2x-y-z \tag{\(y \neq z\)} \\ \Rightarrow && a &= x+y+z \\ \end{align*} This is is our first result. \begin{align*} && 2a-3y-3z &= 2x-y-z \\ \Rightarrow && 2a-3y-3x &= 3z-y-x \\ \Rightarrow && (y-x)2a-3(y-x)(y+x) &= (y-x)(2z-x-y) \\ \Rightarrow && 2a(y-x)-3(y^2-x^2) &= (z-y)^2-(x-z)^2 \\ \Rightarrow && 2ax - 3x^2 &= (y-z)^2 \\ \Rightarrow && 2a - 3x &= \frac{(y-z)^2}{x} \end{align*} Suppose \(x = \frac23 a, y = z = \frac16 a\) then all equations are satisfied, but \(y = z\).

1988 Paper 2 Q3
D: 1600.0 B: 1530.2

The quadratic equation \(x^{2}+bx+c=0\), where \(b\) and \(c\) are real, has the properly that if \(k\) is a (possibly complex) root, then \(k^{-1}\) is a root. Determine carefully the restriction that this property places on \(b\) and \(c\). If, in addition to this property, the equation has the further property that if \(k\) is a root, then \(1-k\) is a root, find \(b\) and \(c\). Show that \[ x^{3}-\tfrac{3}{2}x^{2}-\tfrac{3}{2}x+1=0 \] is the only cubic equation of the form \(x^{3}+px^{2}+qx+r=0\), where \(p,q\) and \(r\) are real, which has both the above properties.


Solution: Suppose \(k\) is a root of our quadratic. There are two possibilities, if \(k^{-1} = k\) then we must have \(k^2 = 1\) so either \(\pm 1\) is a root or we must have \((x-k)(x-k^{-1}) = x^2+bx+c\). In the first case we can have: \begin{align*} x^2+bx +c = (x-1)^2 &\Rightarrow b = -2, c = 1 \\ x^2+bx +c = (x+1)^2 &\Rightarrow b = 2, c = 1 \\ x^2+bx +c = (x-1)(x+1) &\Rightarrow b = 0, c = 1 \\ \end{align*} In the other cases, \(c = 1\) and \(b = k^{-1}+k\). Therefore we must have \(c = 1\) and \(b\) can take any values. The statement "if \(k\) is a root then \(1-k\) is a root" implies these two roots are different, so we must have \(1-k = k^{-1} \Rightarrow k-k^2 = 1 \Rightarrow k^2-k+1 = 0\) so \(b = -1, c = 1\). Suppose \(x^3+px^2+qx+r = 0\) has the first property, then for any root \(k\) we must have: \(k^3 + pk^2 + qk + r = 0\) and \(1 + pk^{-1} + qk^{-2} + rk^{-3} = 0\) therefore \(x^3+px^2+qx+r\) and \(rx^3+qx^2+px+1 = 0\) must have identical roots (since \(x = \pm\) either wont work here since they imply having the roots \(1, 0\) or \(-1, 2, \frac12\) which is exactly our equation. Therefore \(r = 1, p = q\). Suppose \(x^3 + px^2 + px+1 = 0\) has the property that if \(k\) is a root \(1-k\) is a root, therefore: \begin{align*} 0 &= (1-k)^3+p(1-k)^2 + p(1-k) + 1 \\ &= 1 -3k+3k^2-k^3+p-2kp+pk^2+p-pk+1 \\ &= -k^3+(3+p)k^2+(-3-3p)k+(2+2p) \end{align*} Since these roots must be the same as the original roots, we must have \(3+p = -p, -3-3p = -p, 2+2p = -1 \Rightarrow p = -\frac32\)

1988 Paper 2 Q4
D: 1600.0 B: 1516.0

The complex number \(w\) is such that \(w^{2}-2w\) is real.

  1. Sketch the locus of \(w\) in the Argand diagram.
  2. If \(w^{2}=x+\mathrm{i}y,\) describe fully and sketch the locus of points \((x,y)\) in the \(x\)-\(y\) plane.
The complex number \(t\) is such that \(t^{2}-2t\) is imaginary. If \(t^{2}=p+\mathrm{i}q\), sketch the locus of points \((p,q)\) in the \(p\)-\(q\) plane.


Solution:

  1. Suppose \(w = u+ vi\) then \(w^2 - 2w = u^2-v^2-2u+(2uv-2v)i\) so to be purely real we must have \(2uv-2v = 2v(u-1) = 0\) ie either \(v = 0\) or \(u = 1\). Therefore the locus is the real axis and the line \(1 + ti\):
    TikZ diagram
  2. If \(w^2 = x+yi\) then we must have \(x = u^2-v^2\) and \(y = 2uv\), so either \(v = 0, y = 0, x = u^2-2u \geq -1\) or \(u = 1, x = 1-v^2, y = 2v\) which is a parabola:
    TikZ diagram
If \(t = u+iv\) then \(t^2-2t = u^2-v^2-2u + (2uv-2v)i\). For this to be purely imaginary, we need \(u^2-v^2 - 2u = 0 \Rightarrow (u-1)^2-v^2 = 1\), ie points on a hyperbola. Then \(p = u^2-v^2\) and \(q = 2uv\). We can parameterise our hyperbola as \(u = 1 \pm \cosh s, v = \sinh s\) and so \(p = 1 + 2 \cosh s\) and \(q = \sinh 2s\) or \(q = \pm (p-1) \sqrt{(\frac{p-1}{2})^2-1}\) where \(p \geq 3\)
TikZ diagram

1988 Paper 2 Q5
D: 1600.0 B: 1484.0

By considering the imaginary part of the equation \(z^{7}=1,\) or otherwise, find all the roots of the equation \[ t^{6}-21t^{4}+35t^{2}-7=0. \] You should justify each step carefully. Hence, or otherwise, prove that \[ \tan\frac{2\pi}{7}\tan\frac{4\pi}{7}\tan\frac{6\pi}{7}=\sqrt{7}. \] Find the corresponding result for \[ \tan\frac{2\pi}{n}\tan\frac{4\pi}{n}\cdots\tan\frac{(n-1)\pi}{n} \] in the two cases \(n=9\) and \(n=11.\)


Solution: Suppose \(z^7 = 1\), then we can write \(z = \cos \theta + i \sin \theta\) and we must have that: \begin{align*} 0 &= \textrm{Im}((\cos \theta + i \sin \theta)^7) \\ &= \binom{7}{6}\cos^6 \theta \sin \theta - \binom{7}{4} \cos^4 \theta \sin^3 \theta + \binom{7}{2} \cos^2 \theta \sin^5 \theta - \sin^7 \theta \\ &= 7 \cos^6 \sin \theta - 35 \cos^4 \theta \sin ^3 \theta + 21 \cos^2 \theta \sin^5 \theta - \sin^7 \theta \\ &= -\cos^7 \theta \l \tan^7 \theta - 21 \tan^5 \theta + 35 \tan^3 \theta - 7 \tan \theta\r \\ &= \cos^7 \theta \cdot t (t^7-21t^4+35t^2-7) \end{align*} Where \(t = \tan \theta\). So if \(z\) is a root of \(z^7 = 1\) and \(\cos \theta \neq 0, \tan \theta \neq 0\) then \(t\) is a root of the equation. Thererefore the roots are: \(\tan \frac{2\pi k}{7}\) where \(k = 1, 2, \ldots 6\). Noting that \(\tan \frac{\pi}7 = -\tan \frac{6\pi}{7}, \tan \frac{3\pi}{7} = -\tan \frac{4 \pi}{7}, \tan \frac{5\pi}{7} = -\tan \frac{2 \pi}{7}\) we can conclude that: \begin{align*} && 7 &= \prod_{k=1}^k \tan \frac{k \pi}{6} \\ &&&= \l \tan\frac{2\pi}{7}\tan\frac{4\pi}{7}\tan\frac{6\pi}{7} \r^2 \\ \Rightarrow&& \pm \sqrt{7} &= \tan\frac{2\pi}{7}\tan\frac{4\pi}{7}\tan\frac{6\pi}{7} \end{align*} However, we know that \(\tan \frac{2\pi}{7}\) is positive, \(\tan \frac{4\pi}{7},\tan \frac{6\pi}{7}\) are negative, therefore the result must be positive, ie \(+\sqrt{7}\) Using a similar method, we notice that: \begin{align*} 0 &= \textrm{Im} \l (\cos \theta + i \sin \theta)^n \r \\ &= \cos^n \theta \cdot t (t^{n-1} + \cdots - \binom{n}{n-1}) \end{align*} Therefore \(\prod_{k=0}^{n-1} \tan \frac{k \pi}{n} = n\) and since \(\tan \frac{(2k+1) \pi}{n} = \tan \frac{(n-2k-1)\pi}{n}\) is a map of all the odd numbers to the even numbers (and vice versa) when \(n\) is odd. We also know that the terms less where \(\tan \theta\) has \(\theta < \frac{\pi}{2}\) are positive, and the others even, we can determine the signs: \begin{align*} \tan \frac{2 \pi}{9} \tan \frac{4 \pi}{9} \tan \frac{6 \pi}{9} \tan \frac{8 \pi}{9} & = 3 \\ \tan \frac{2 \pi}{11} \tan \frac{4 \pi}{11} \tan \frac{6 \pi}{11} \tan \frac{8 \pi}{11} \tan \frac{10 \pi}{11} &= -\sqrt{11} \end{align*}

1988 Paper 2 Q6
D: 1600.0 B: 1500.0

Show that the following functions are positive when \(x\) is positive:

  1. [ \(x-\tanh x\)
  2. \(x\sinh x-2\cosh x+2\)
  3. \(2x\cosh2x-3\sinh2x+4x\).
The function \(\mathrm{f}\) is defined for \(x>0\) by \[ \mathrm{f}(x)=\frac{x(\cosh x)^{\frac{1}{3}}}{\sinh x}. \] Show that \(\mathrm{f}(x)\) has no turning points when \(x>0,\) and sketch \(\mathrm{f}(x)\) for \(x>0.\)


Solution:

  1. Notice that \(f(x) = x - \tanh x\) has \(f'(x) = 1-\textrm{sech}^2 x = \tanh^2 x > 0\) so \(f(x)\) is strictly increasing on \((0, \infty)\) and \(f(0) = 0\) therefore \(f(x)\) is positive for all \(x\) positive
  2. Let \(f(x) = x\sinh x-2\cosh x+2\) then \(f'(x) = \sinh x +x \cosh x - 2 \sinh x = x \cosh x -\sinh x = \cosh x ( x - \tanh x) > 0\) by the first part. \(f(0) = 0\) so \(f(x)\) is positive for all \(x\) positive.
  3. Let \(f(x) = 2x\cosh2x-3\sinh2x+4x\) then \begin{align*} f'(x) &= 2\cosh 2x +4x\sinh 2x - 6 \cosh 2x + 4 \\ &= 4( x\sinh 2x-\cosh 2x +1) \\ &= 4(x2\cosh x \sinh x -2\cosh^2x ) \\ &= 8 \cosh^2 x (x - \tanh x) \end{align*} Which is always positive when \(x\) > 0, \(f(0) = 0\) so \(f(x) > 0\) for all positive \(x\).
Let \(f(x) = \frac{x(\cosh x)^{\frac{1}{3}}}{\sinh x}\) then \begin{align*} f'(x) &= \frac{(\cosh x)^{\frac13}\sinh x+\frac13 x \cosh^{-\frac23} x \sinh^2 x - x(\cosh x)^{\frac13} \cosh x}{\sinh^2 x} \\ &= \frac{\cosh x \sinh x + \frac13 x \sinh^2 x - x \cosh^2 x}{\cosh x^{\frac23} x \sinh^2 x} \\ &= \frac{3\cosh x \sinh x + x( \sinh^2 x - 3 \cosh^2 x)}{3\cosh x^{\frac23} x \sinh^2 x} \\ &= \frac{\frac32 \sinh 2x + x( -2\cosh 2x - 2)}{3\cosh x^{\frac23} x \sinh^2 x} \\ &= \frac{3 \sinh 2x -4x\cosh 2x - 4x}{6\cosh x^{\frac23} x \sinh^2 x} \\ \end{align*} which from the earlier part is always negative.
TikZ diagram

1988 Paper 2 Q7
D: 1600.0 B: 1500.0

The integral \(I\) is defined by \[ I=\int_{1}^{2}\frac{(2-2x+x^{2})^{k}}{x^{k+1}}\,\mathrm{d}x \] where \(k\) is a constant. Show that \[ I=\int_{0}^{1}\frac{(1+x^{2})^{k}}{(1+x)^{k+1}}\,\mathrm{d}x=\int_{0}^{\frac{1}{4}\pi}\frac{\mathrm{d}\theta}{\left[\sqrt{2}\cos\theta\cos\left(\frac{1}{4}\pi-\theta\right)\right]^{k+1}}=2\int_{0}^{\frac{1}{8}\pi}\frac{\mathrm{d}\theta}{\left[\sqrt{2}\cos\theta\cos\left(\frac{1}{4}\pi-\theta\right)\right]^{k+1}}. \] Hence show that \[ I=2\int_{0}^{\sqrt{2}-1}\frac{(1+x^{2})^{k}}{(1+x)^{k+1}}\,\mathrm{d}x \] Deduce that \[ \int_{1}^{\sqrt{2}}\left(\frac{2-2x^{2}+x^{4}}{x^{2}}\right)^{k}\frac{1}{x}\,\mathrm{d}x=\int_{1}^{\sqrt{2}}\left(\frac{2-2x+x^{2}}{x}\right)^{k}\frac{1}{x}\,\mathrm{d}x \]


Solution: \begin{align*} I &=\int_{1}^{2}\frac{(2-2x+x^{2})^{k}}{x^{k+1}}\,\mathrm{d}x \\ u = x-1 &, \quad \d u = \d x \\ &= \int_{u = 0}^{u=1} \frac{(u^2+1)^k}{(u+1)^{k+1}} \d u \\ &= \boxed{\int_0^1 \frac{(1+x^2)^k}{(1+x)^{k+1}} \d x} \\ x = \tan \theta &, \quad \d x = \sec^2 \theta \d \theta \\ &= \int_{\theta = 0}^{\theta = \pi/4} \frac{\sec^{2k+2} \theta }{(1 + \tan \theta)^{k+1}} \d \theta \\ &= \int_0^{\pi/4} \frac{\d \theta}{\cos^{2k+2} \theta (\frac{\sin \theta + \cos \theta}{\cos \theta})^{k+1}} \\ &= \int_0^{\pi/4} \frac{\d \theta}{\cos^{k+1} \theta ({\sin \theta + \cos \theta})^{k+1}} \\ &= \int_0^{\pi/4} \frac{\d \theta}{\cos^{k+1} \theta (\sqrt{2} \cos (\frac{\pi}{4} - \theta))^{k+1}} \\ I &= \boxed{ \int_0^{\pi/4} \frac{\d \theta}{(\sqrt{2}\cos \theta \cos (\frac{\pi}{4} - \theta))^{k+1}}} \\ \end{align*} Since \(f(\theta) = \cos \theta \cos (\frac{\pi}{4} - \theta)\) is symmetric about \(\frac{\pi}{8}\) this integral is twice the integral to \(\frac{\pi}{8}\). \(\tan 2 \theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \Rightarrow 1 = \frac{2 \tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}} \Rightarrow \tan \frac{\pi}{8} = \sqrt{2}-1\). Therefore, using the same substitution we must have: \[ I=2\int_{0}^{\sqrt{2}-1}\frac{(1+x^{2})^{k}}{(1+x)^{k+1}}\,\mathrm{d}x \] Let \(u = x^2\), then \(\d u = 2 x\d x\) \begin{align*} \int_{1}^{\sqrt{2}}\left(\frac{2-2x^{2}+x^{4}}{x^{2}}\right)^{k}\frac{1}{x}\,\mathrm{d}x &= \int_{u = 1}^{u = 2} \l \frac{2-2u+u^2}{u}\r^k \frac{1}{2u} \d u \\ &= \frac12 I \\ &= \int_{0}^{\sqrt{2}-1}\frac{(1+x^{2})^{k}}{(1+x)^{k+1}}\,\mathrm{d}x \\ u = 1+x & \quad \d u = \d x \\ &= \int_1^{\sqrt{2}} \frac{(1+(u-1)^2)^k}{u^{k+1}} \d u \\ &= \int_{1}^{\sqrt{2}}\left(\frac{2-2u+u^{2}}{u}\right)^{k}\frac{1}{u}\,\mathrm{d}x \\ &= \int_{1}^{\sqrt{2}}\left(\frac{2-2x+x^{2}}{x}\right)^{k}\frac{1}{x}\,\mathrm{d}x \end{align*}

1988 Paper 2 Q8
D: 1600.0 B: 1502.0

In a crude model of population dynamics of a community of aardvarks and buffaloes, it is assumed that, if the numbers of aardvarks and buffaloes in any year are \(A\) and \(B\) respectively, then the numbers in the following year at \(\frac{1}{4}A+\frac{3}{4}B\) and \(\frac{3}{2}B-\frac{1}{2}A\) respectively. It does not matter if the model predicts fractions of animals, but a non-positive number of buffaloes means that the species has become extinct, and the model ceases to apply. Using matrices or otherwise, show that the ratio of the number of aardvarks to the number of buffaloes can remain the same each year, provided it takes one of two possible values. Let these two possible values be \(x\) and \(y\), and let the numbers of aardvarks and buffaloes in a given year be \(a\) and \(b\) respectively. By writing the vector \((a,b)\) as a linear combination of the vectors \((x,1)\) and \((y,1),\) or otherwise, show how the numbers of aardvarks and buffaloes in subsequent years may be found. On a sketch of the \(a\)-\(b\) plane, mark the regions which correspond to the following situations

  1. an equilibrium population is reached as time \(t\rightarrow\infty\);
  2. buffaloes become extinct after a finite time;
  3. buffaloes approach extinction as \(t\rightarrow\infty.\)


Solution: If the population in a given year is \(\mathbf{v} = \begin{pmatrix}A \\ B \end{pmatrix}\) then the population the next year is \(\mathbf{Mv}\) where \(\mathbf{M} = \begin{pmatrix} \frac14 & \frac34 \\ -\frac12 &\frac32 \end{pmatrix}\) The ratio is the same if \(\mathbf{Mv} = \lambda \mathbf{v}\) ie if \(\mathbf{v}\) is an eigenvector of \(\mathbf{M}\). The eigenvalues will be \(1\) and \(\frac38\) (by inspection) so we should be able to solve for the eigenvectors: \(\lambda = 1\) we have \(\frac14A + \frac34B = A \Rightarrow A = B\) a ratio of \(1\). \(\lambda = \frac38\) we have \(\frac14A + \frac34B = \frac38A \Rightarrow \frac34B = \frac18A \Rightarrow A = 6B\) a ratio of \(6\). If we write \(\begin{pmatrix} a \\ b \end{pmatrix}\) as \(x_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + x_6 \begin{pmatrix} 6 \\ 1 \end{pmatrix}\) we find that after \(n\) years, we have: \(x_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \l \frac38 \r^n x_6 \begin{pmatrix} 6 \\ 1 \end{pmatrix}\) for the populations. Therefore if \(x_1\) is \(< 0\) then in finite time we will end up with one population being 0. If \(x_1 > 0\) are positive we tend to a finite population and if \(x_1 = 0\) then over time the population will tend to \(0\) at infinity. In our diagram these areas correspond to (red) - die out in finite time, (green) population stable and the thick black line where the population goes extinct as \(t \to \infty\)

TikZ diagram

1988 Paper 2 Q9
D: 1654.1 B: 1558.3

Give a careful argument to show that, if \(G_{1}\) and \(G_{2}\) are subgroups of a finite group \(G\) such that every element of \(G\) is either in \(G_{1}\) or in \(G_{2},\) then either \(G_{1}=G\) or \(G_{2}=G\). Give an example of a group \(H\) which has three subgroups \(H_{1},H_{2}\) and \(H_{3}\) such that every element of \(H\) is either in \(H_{1},H_{2}\) or \(H_{3}\) and \(H_{1}\neq H,H_{2}\neq H,H_{3}\neq H\).


Solution: Suppose \(|G_1|, |G_2| < |G|\) for sake of contraction. Then by Lagrange's theorem \(|G_1| \mid |G|\) and \(|G_2| \mid |G|\), so \(|G_1|, |G_2| \leq \frac{|G|}{2}\). But \(|G_1 \cup G_2| = |G_1| + |G_2| - |G_1 \cap G_2|\). \(|G_1 \cup G_2| = |G|\) by assumption, and \(e \in G_1 \cap G_2\), so \(|G_1 \cap G_2| \geq 1\). Therefore \(|G| = |G_1| + |G_2| - |G_1 \cap G_2| \leq \frac{|G|}{2} + \frac{|G|}{2} - 1 = |G| - 1 < |G|\), contradiction! Let \(H = K_4 = \{e, a, b, c\}\) with \(a^2 = b^2 = c^2 = e\). then \(H = \{e, a\} \cup \{e, b\} \cup \{e, c\}\) with all subgroups distinct

1988 Paper 2 Q10
D: 1600.0 B: 1516.0

The surface \(S\) in 3-dimensional space is described by the equation \[ \mathbf{a}\cdot\mathbf{r}+ar=a^{2}, \] where \(\mathbf{r}\) is the position vector with respect to the origin \(O\), \(\mathbf{a}(\neq\mathbf{0})\) is the position vector of a fixed point, \(r=\left|\mathbf{r}\right|\) and \(a=\left|\mathbf{a}\right|.\) Show, with the aid of a diagram, that \(S\) is the locus of points which are equidistant from the origin \(O\) and the plane \(\mathbf{r}\cdot\mathbf{a}=a^{2}.\) The point \(P\), with position vector \(\mathbf{p},\) lies in \(S\), and the line joining \(P\) to \(O\) meets \(S\) again at \(Q\). Find the position vector of \(Q\). The line through \(O\) orthogonal to \(\mathbf{p}\) and \(\mathbf{a}\) meets \(S\) at \(T\) and \(T'\). Show that the position vectors of \(T\) and \(T'\) are \[ \pm\frac{1}{\sqrt{2ap-a^{2}}}\mathbf{a}\times\mathbf{p}, \] where \(p=\left|\mathbf{p}\right|.\) Show that the area of the triangle \(PQT\) is \[ \frac{ap^{2}}{2p-a}. \]


Solution: The plane is the same as the plane \((\mathbf{r} - \mathbf{a}) \cdot \mathbf{a} = 0\), ie the plane through \(\mathbf{a}\) whose normal is parallel to \(\mathbf{a}\) The distance from \(\mathbf{r}\) to the plane therefore is \(\lambda\) where \(\mathbf{r}+\lambda \frac{1}{a}\mathbf{a}\) must be on the plane, ie \((\mathbf{r}+\frac{\lambda}{a} \mathbf{a} - \mathbf{a})\cdot \mathbf{a} = 0 \Rightarrow \lambda = \frac{a^2-\mathbf{a} \cdot \mathbf{r}}{a}\) But if \(\mathbf{a} \cdot \mathbf{r} = a^2 - ar\) then \(\lambda = r\), ie the distance to the plane is the same as the distance to the origin. \(\mathbf{q} = k \mathbf{p}\) and so \(\mathbf{a} \cdot k \mathbf{p} + a |k|p = a^2\) if \(k > 0\) we will find \(k = 1\) the position vector we already know about, therefore suppose \(k < 0\) so: \begin{align*} && \mathbf{a} \cdot k \mathbf{p} - ka p &= a^2 \\ \Rightarrow && k(a^2-ap)-kap &= a^2 \\ \Rightarrow && k(a^2-2ap) &= a^2 \\ \Rightarrow && k &= \frac{a^2}{a^2-2ap} \end{align*} Therefore \(\mathbf{q} = \frac{a^2}{a^2-2ap} \mathbf{p}\) The line through \(O\) orthogonal to \(\mathbf{p}\) and \(\mathbf{a}\) will be parallel to \(\mathbf{a} \times \mathbf{p}\). Therefore we should consider points of the from \(s \mathbf{a} \times \mathbf{p}\) on the surface \(S\). \begin{align*} && s\mathbf{a} \cdot ( \mathbf{a} \times \mathbf{p}) + sa^2p |\sin \theta| &= a^2 \end{align*} The angle between \(\cos \theta = \frac{\mathbf{a} \cdot \mathbf{p}}{ap} = \frac{a^2-ap}{ap} \Rightarrow |\sin \theta| = \sqrt{1-\frac{(a-p)^2}{p^2}} = \frac{1}{p} \sqrt{2ap-a^2}\) Therefore \(sa^2 \sqrt{2ap-a^2} = a^2 \Rightarrow s = \frac{1}{\sqrt{2ap-a^2}}\) and so the points are as required. Noting that \(|\mathbf{p} \times \mathbf{t}| = |\frac{1}{p \sin \theta}\mathbf{p} \times (\mathbf{p} \times \mathbf{a}) | = |\frac{1}{p \sin \theta}p^2a \sin \theta | = pa\) The area of triangle \(PQT\) is : \begin{align*} \frac12 | (\mathbf{p} - \mathbf{t}) \times (\mathbf{q} - \mathbf{t}) | &= \frac12 |\mathbf{p} \times \mathbf{q} - \mathbf{t} \times \mathbf{q} - \mathbf{p} \times \mathbf{t} - \mathbf{t} \times \mathbf{t}| \\ &= \frac12 |\mathbf{t} \times (\mathbf{p} - \mathbf{q})| \\ &= \frac12 \cdot (1 - \frac{a^2}{a^2-2ap})| \mathbf{t} \times \mathbf{p}| \\ &= \frac12 \frac{2ap}{a^2-2ap} \cdot ap \\ &= \frac{ap^2}{a^2-ap} \end{align*}