Solution:
In this question, \(\lfloor x \rfloor\) denotes the greatest integer that is less than or equal to \(x\), so that \(\lfloor 2.9 \rfloor = 2 = \lfloor 2.0 \rfloor\) and \(\lfloor -1.5 \rfloor = -2\). The function \(\f\) is defined, for \(x\ne0\), by \(\f(x) = \dfrac{\lfloor x \rfloor}{x}\,\).
Solution:
For any two points \(X\) and \(Y\), with position vectors \(\bf x\) and \(\bf y\) respectively, \(X*Y\) is defined to be the point with position vector \(\lambda {\bf x}+ (1-\lambda){\bf y}\), where \(\lambda\) is a fixed number.
Solution:
Solution:
The point \(P\) has coordinates \((x,y)\) which satisfy \[ x^2+y^2 + kxy +3x +y =0\,. \]
Solution:
By considering the coefficient of \(x^r\) in the series for \((1+x)(1+x)^n\), or otherwise, obtain the following relation between binomial coefficients: \[ \binom n r + \binom n {r-1} = \binom {n+1} r \qquad (1\le r\le n). \] The sequence of numbers \(B_0\), \(B_1\), \(B_2\), \(\ldots\) is defined by \[ B_{2m} = \sum_{j=0}^m \binom{2m-j}j \text{ and } B_{2m+1} = \sum_{k=0}^m \binom{2m+1-k}k . \] Show that \(B_{n+2} - B_{n+1} = B_{n}\,\) (\(n=0\), \(1\), \(2\), \(\ldots\,\)). What is the relation between the sequence \(B_0\), \(B_1\), \(B_2\), \(\ldots\) and the Fibonacci sequence \(F_0\), \(F_1\), \(F_2\), \(\ldots\) defined by \(F_0=0\), \(F_1=1\) and \(F_n = F_{n-1}+F_{n-2}\) for \(n\ge2\)?
Solution: The coefficient of \(x^{r-1}\) in \((1+x)^n\) is \(\binom{n}{r-1}\) and the coefficient of \(x^r\) in \((1+x)^n\) is \(\binom{n}{r}\). The only ways to get \(x^r\) in the expansion of \((1+x)(1+x)^n\) is to either multiply the \(x^r\) term from the second expansion by \(1\) or the \(x^{r-1}\) term by \(x\). This is \(\binom{n}{r-1} + \binom{n}{r}\). However, the coefficient of \(x^r\) in \((1+x)^{n+1}\) is \(\binom{n+1}r\), so \(\binom{n}{r} + \binom{n}{n-1} = \binom{n+1}r\). Claim: \(B_{n+2} - B_{n+1} = B_{n}\). Proof: Consider \(n\) even, ie \(n = 2m\) \begin{align*} B_{n+2} - B_{n+1} &= \sum_{j=0}^{m+1} \binom{2(m+1)-j}{j} - \sum_{j=0}^m \binom{2m+1-j}{j} \\ &= \binom{2(m+1)-(m+1)}{m+1} +\sum_{j=0}^m \left ( \binom{2(m+1)-j}{j} - \binom{2m+1-j}{j} \right) \\ &= 1 + \sum_{j=1}^m \binom{2m+1-j}{j-1} \\ &= 1 + \sum_{j=0}^{m-1} \binom{2m-j}{j} \\ &= \binom{m}{m} + \sum_{j=0}^{m-1} \binom{2m-j}{j} \\ &= \sum_{j=0}^{m} \binom{2m-j}{j} \\ &= B_n \end{align*} Consider \(n\) even, ie \(n = 2m+1\) \begin{align*} B_{n+2} - B_{n+1} &= \sum_{j=0}^{m+1} \binom{2(m+1)+1-j}{j} - \sum_{j=0}^{m+1} \binom{2(m+1)-j}{j} \\ &= \sum_{j=0}^{m+1} \left (\binom{2(m+1)+1-j}{j} - \binom{2(m+1)-j}{j}\right)\\ &= \sum_{j=1}^{m+1} \binom{2(m+1)-j}{j-1} \\ &= \sum_{j=0}^{m} \binom{2m+1-j}{j} \\ &= B_n \end{align*} as required. \(B_0 = 1, B_1 = 2\), therefore \(B_n = F_{n+2}\)
Solution:
Solution:
Two particles, \(A\) and \(B\), are projected simultaneously towards each other from two points which are a distance \(d\) apart in a horizontal plane. Particle \(A\) has mass \(m\) and is projected at speed \(u\) at angle \(\alpha\) above the horizontal. Particle \(B\) has mass \(M\) and is projected at speed \(v\) at angle \(\beta\) above the horizontal. The trajectories of the two particles lie in the same vertical plane. The particles collide directly when each is at its point of greatest height above the plane. Given that both \(A\) and \(B\) return to their starting points, and that momentum is conserved in the collision, show that \[ m\cot \alpha = M \cot \beta\,. \] Show further that the collision occurs at a point which is a horizontal distance \(b\) from the point of projection of \(A\) where \[ b= \frac{Md}{m+M}\, , \] and find, in terms of \(b\) and \(\alpha\), the height above the horizontal plane at which the collision occurs.
Solution: Since \(A\) and \(B\) return to their starting points, and at their highest points there is no vertical component to their velocities, their horizontal must perfectly reverse, ie \begin{align*} && m u \cos \alpha - M v \cos \beta &= -m u \cos \alpha + M v \cos \beta \\ \Rightarrow && mu \cos \alpha &= Mv \cos \beta \end{align*} Since they reach their highest points at the same time, they must have the same initial vertical speed, ie \(u \sin \alpha = v \sin \beta\), so \begin{align*} && m v \frac{\sin \beta}{\sin \alpha} \cos \alpha &= M v \cos \beta \\ \Rightarrow && m \cot \alpha &= M \cot \beta \end{align*} The horizontal distance travelled by \(A\) & \(B\) will be: \begin{align*} && d_A &= u \cos \alpha t \\ && d_B &= v \cos \beta t \\ \Rightarrow && \frac{d_A}{d_A+d_B} &= \frac{u \cos \alpha}{u \cos \alpha + v \cos \beta} \\ &&&= \frac{\frac{M}{m}v \cos \beta}{\frac{M}{m}v \cos \beta + v \cos \beta} \\ &&&= \frac{M}{M+m} \\ \Rightarrow && d_A = b &= \frac{Md}{m+M} \end{align*} Applying \(v^2 = u^2 + 2as\) we see that \begin{align*} && 0 &= u \sin \alpha - gt \\ \Rightarrow && t &= \frac{u \sin \alpha}{g} \\ && b &=u \cos \alpha \frac{u \sin \alpha}{g} \\ \Rightarrow && u^2 &= \frac{2bg}{\sin 2 \alpha} \\ && 0 &= u^2 \sin^2 \alpha - 2g h \\ \Rightarrow && h &= \frac{u^2 \sin^2 \alpha}{2g} \\ &&&= \frac{2bg}{\sin 2 \alpha} \frac{ \sin^2 \alpha}{2g} \\ &&&= \frac12 b \tan \alpha \end{align*}
Two parallel vertical barriers are fixed a distance \(d\) apart on horizontal ice. A small ice hockey puck moves on the ice backwards and forwards between the barriers, in the direction perpendicular to the barriers, colliding with each in turn. The coefficient of friction between the puck and the ice is \(\mu\) and the coefficient of restitution between the puck and each of the barriers is \(r\). The puck starts at one of the barriers, moving with speed \(v\) towards the other barrier. Show that \[ v_{i+1}^2 - r^2 v_i^2 = - 2 r^2 \mu gd\, \] where \(v_i\) is the speed of the puck just after its \(i\)th collision. The puck comes to rest against one of the barriers after traversing the gap between them \(n\) times. In the case \(r\ne1\), express \(n\) in terms of \(r\) and \(k\), where \(k= \dfrac{v^2}{2\mu g d}\,\). If \(r=\e^{-1}\) (where \(\e\) is the base of natural logarithms) show that \[ n = \tfrac12 \ln\big(1+k(\e^2-1)\big)\,. \] Give an expression for \(n\) in the case \(r=1\).
Solution: \begin{align*} \text{W.E.P.}: && \text{change in energy} &= \text{work done on particle} \\ \Rightarrow && \underbrace{\frac12mv^2}_{\text{speed before hitting barrier}} - \underbrace{\frac12mu^2}_{\text{speed leaving first barrier}} &= \underbrace{\left( -\mu mg \right)}_{F} \cdot \underbrace{d}_{d} \\ \Rightarrow && v^2 &= v_i^2-2\mu gd \end{align*} Newton's experimental law tells us that the speed leaving the barrier will be \(r\) times the speed approaching, ie \begin{align*} && v_{i+1} &= rv \\ \Rightarrow && v_{i+1}^2 &= r^2 v^2 \\ &&&= r^2v_i^2 - 2r^2\mu gd \\ \Rightarrow && v_{i+1}^2 - r^2v_i^2 &= - 2r^2\mu gd \end{align*} It must be the case that after \(n+1\) collisions the speed is zero, ie \(v_{n+1}^2 = 0\). Not that we can consider \(w_i = \frac{v_i^2}{2\mu gd}\) and we have the recurrence: \begin{align*} && w_{i+1} &=r^2w_i -r^2 \\ \end{align*} Looking at this we have a linear recurrence with a constant term, so let's try \(w_i = C\), then \begin{align*} && C &= r^2 C - r^2 \\ \Rightarrow && C &= \frac{-r^2}{1-r^2} \\ \end{align*} So \(w_i = Ar^{2i} - \frac{r^2}{1-r^2}\). \(w_0 = k \Rightarrow A = k+\frac{r^2}{1-r^2}\) Therefore \(w_n = \left (k+\frac{r^2}{1-r^2} \right)r^{2n} - \frac{r^2}{1-r^2}\) Suppose \(w_n = 0\) then, \begin{align*} && 0 &= \left (k+\frac{r^2}{1-r^2} \right)r^{2n} - \frac{r^2}{1-r^2} \\ \Rightarrow && r^{2n} &= \frac{r^2}{1-r^2} \frac{1}{k+\frac{r^2}{1-r^2}} \\ &&&= \frac{r^2}{k(1-r^2)+r^2} \\ \Rightarrow && 2n \ln r &= 2\ln r - \ln[k(1-r^2)+r^2] \\ \Rightarrow && n &= 1 - \frac1{2\ln r} \ln[k(1-r^2)+r^2)] \end{align*} If \(r = e^{-1}\) then \(\ln r = -1\) \begin{align*} && n &= 1 + \frac12 \ln [k(1-e^{-2}) + e^{-2}] \\ &&&= 1 + \frac12 \ln [e^{-2}(k(e^2-1)+1)] \\ &&&= 1 + \frac12 \ln e^{-2} + \frac12 \ln [1+k(e^2-1)] \\ &&&= \frac12 \ln [1+k(e^2-1)] \end{align*} If \(r = 1\) the recurrence becomes: \(w_{i+1} = w_i - 1\), so \(w_i = k-n\), so we have \(k\) collisions.