Problems

Filters
Clear Filters
2013 Paper 1 Q1
D: 1516.0 B: 1516.0

  1. Use the substitution \(\sqrt x = y\) (where \(y\ge0\)) to find the real root of the equation \[ x + 3\, \sqrt x - \tfrac12 =0\,. \]
  2. Find all real roots of the following equations:
    • \(x+10\,\sqrt{x+2\, }\, -22 =0\,\);
    • \(x^2 -4x + \sqrt{2x^2 -8x-3 \,}\, -9 =0\,\).


Solution:

  1. \begin{align*} && 0 &= x + 3\sqrt{x} - \frac12 \\ \sqrt{x} = y: && 0&= y^2 + 3y - \frac12 \\ \Rightarrow && y &= \frac{-3\pm\sqrt{3^2+2}}{2} \\ &&&= \frac{-3 \pm \sqrt{11}}{2} \\ y > 0: && x &= \left ( \frac{\sqrt{11}-3}{2} \right)^2 \end{align*}
    • \begin{align*} && 0 &= x + 10\sqrt{x+2} - 22 \\ y = \sqrt{x+2}: && 0 &= y^2 - 2 + 10y - 22 \\ &&&= y^2 + 10y - 24 \\ &&&= (y-2)(y+12) \\ \Rightarrow && y &= 2, -12 \\ y > 0: && x &= 2 \end{align*}
    • Let \(y = \sqrt{2x^2-8x-3}\), so \begin{align*} && 0 &= x^2 - 4x +\sqrt{2x^2-8x-3} - 9 \\ && 0 &= \frac{y^2+3}{2} + y - 9 \\ &&&= \frac12 y^2 +y - \frac{15}{2} \\ &&&= \frac12 (y-3)(y+5) \\ \Rightarrow && y &= 3,-5 \\ y > 0: && 9 &= 2x^2-8x-3 \\ \Rightarrow && 0 &= 2x^2-8x-12 \\ &&&= 2(x^2-4x-6) \\ \Rightarrow && x &= 2 \pm \sqrt{10} \end{align*}

2013 Paper 1 Q2
D: 1500.0 B: 1487.3

In this question, \(\lfloor x \rfloor\) denotes the greatest integer that is less than or equal to \(x\), so that \(\lfloor 2.9 \rfloor = 2 = \lfloor 2.0 \rfloor\) and \(\lfloor -1.5 \rfloor = -2\). The function \(\f\) is defined, for \(x\ne0\), by \(\f(x) = \dfrac{\lfloor x \rfloor}{x}\,\).

  1. Sketch the graph of \(y=\f(x)\) for \(-3\le x \le 3\) (with \(x\ne0\)).
  2. By considering the line \(y= \frac7{12}\) on your graph, or otherwise, solve the equation \(\f(x) = \frac7 {12}\,\). Solve also the equations \(\f(x) =\frac{17}{24}\) and \(\f(x) = \frac{4 }{3 }\,\).
  3. Find the largest root of the equation \(\f(x) =\frac9{10}\,\).
Give necessary and sufficient conditions, in the form of inequalities, for the equation \(\f(x) =c\) to have exactly \(n\) roots, where \(n\ge1\).


Solution:

  1. TikZ diagram
  2. Notice that there are no solutions when \(x < 0\) since \(f(x) \geq 1\) in that region. Suppose \(x = n + \epsilon, 0 < \epsilon < 1\), then \(f(x) = \frac{n}{n+\epsilon}\), ie \(12n = 7n + 7 \epsilon \Rightarrow 5 n = 7\epsilon \Rightarrow \epsilon = \frac{5}{7}n \Rightarrow n < \frac75\), so \(n = 1 ,\epsilon = \frac57, x = \frac{12}5\). \begin{align*} && \frac{17}{24} &= f(x) \\ \Rightarrow && 17n + 17 \epsilon &= 24 n \\ \Rightarrow && 17 \epsilon &= 7 n \\ \Rightarrow && n &< \frac{17}{7} \\ \Rightarrow && n &= 1, 2 \\ \Rightarrow && x &= \frac{24}{17}, \frac{48}{17} \end{align*}. For \(f(x) = \frac{4}{3}\) we notice that \(x < 0\), so let \(x = -n +\epsilon\), ie \begin{align*} && \frac43 &= f(x) \\ \Rightarrow && \frac43 &= \frac{-n}{-n+\epsilon} \\ \Rightarrow && 4\epsilon &= n \\ \Rightarrow && n &= 1,2,3 \\ \Rightarrow && x &= -\frac{5}{4}, -\frac{3}{2}, -\frac{9}{4} \end{align*}
  3. \begin{align*} && \frac9{10} &= f(x) \\ \Rightarrow && 9n + 9 \epsilon &= 10 n \\ \Rightarrow && 9 \epsilon &= n \\ \Rightarrow && n < 9 \end{align} So largest will be when \(n = 8, \epsilon = \frac{8}{9}\), ie \(\frac{80}{9}\)
If \(c < 1\) \begin{align*} && c &= \frac{k}{k + \epsilon} \\ \Rightarrow && \frac{c}{1-c} \epsilon &= k \end{align*} For this to have exactly \(n\) solutions, we need \(n < \frac{c}{1-c} \leq n+1\). If \(c > 1\) \begin{align*} && c &= \frac{-k}{-k+\epsilon} \\ \Rightarrow && c \epsilon &= (c-1) k \\ \Rightarrow && \frac{c}{c-1} \epsilon &= k \end{align*} Therefore for there to be exactly \(n\) solutions we need \(n < \frac{c}{c-1} \leq n+1\)

2013 Paper 1 Q3
D: 1500.0 B: 1500.0

For any two points \(X\) and \(Y\), with position vectors \(\bf x\) and \(\bf y\) respectively, \(X*Y\) is defined to be the point with position vector \(\lambda {\bf x}+ (1-\lambda){\bf y}\), where \(\lambda\) is a fixed number.

  1. If \(X\) and \(Y\) are distinct, show that \(X*Y\) and \(Y*X\) are distinct unless \(\lambda\) takes a certain value (which you should state).
  2. Under what conditions are \((X*Y)*Z\) and \(X*(Y*Z)\,\) distinct?
  3. Show that, for any points \(X\), \(Y\) and \(Z\), \[ (X*Y)*Z = (X*Z)*(Y*Z)\, \] and obtain the corresponding result for \(X*(Y*Z)\).
  4. The points \(P_1\), \(P_2\), \(\ldots\) are defined by \( P_1 = X*Y\) and, for \(n \ge2\), \(P_n= P_{n-1}*Y\,.\) Given that \(X\) and \(Y\) are distinct and that \(0<\lambda<1\), find the ratio in which \(P_n\) divides the line segment \(XY\).


Solution:

  1. Suppose \(X*Y = Y*X\), then \begin{align*} && X * Y &= \lambda \mathbf{x} + (1-\lambda) \mathbf{y} \\ && Y * X &= \lambda \mathbf{y} + (1-\lambda) \mathbf{x}\\ \Rightarrow && 0 &= (2\lambda - 1)(\mathbf{x} -\mathbf{y}) \end{align*} Therefore, either \(\mathbf{x} = \mathbf{y}\) or \(\lambda = \frac12\). Since we assumed \(X,Y\) were distinct, \(\mathbf{x} \neq \mathbf{y}\) and so \(X*Y\) and \(Y*X\) are distinct unless \(\lambda = \frac12\)
  2. Suppose \((X*Y)*Z = X*(Y*Z)\) \begin{align*} &&(X*Y)*Z &= (\lambda \mathbf{x} + (1-\lambda) \mathbf{y}) * \mathbf{z} \\ &&&= (\lambda^2 \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)\mathbf{z}\\ &&X*(Y*Z) &=\mathbf{x}* (\lambda \mathbf{y} + (1-\lambda) \mathbf{z}) \\ &&&= (\lambda \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)^2\mathbf{z}\\ \Rightarrow && 0 &= (\lambda^2 - \lambda)\mathbf{x} + ((1-\lambda) - (1-\lambda)^2)\mathbf{z} \\ &&&=(1-\lambda)(-\lambda \mathbf{x} +\lambda \mathbf{z}) \\ &&&= \lambda(1-\lambda)(\mathbf{z}-\mathbf{x}) \end{align*} Therefore they are distinct unless \(\lambda = 1, 0\) or \(\mathbf{x} = \mathbf{z}\).
  3. Claim: \((X*Y)*Z = (X*Z)*(Y*Z)\) Proof: \begin{align*} && (X*Y)*Z &= (\lambda \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)^2\mathbf{z} \\ && (X*Z)*(Y*Z) &= (\lambda \mathbf{x} + (1-\lambda)\mathbf{z}) * (\lambda \mathbf{y} + (1-\lambda)\mathbf{z}) \\ &&&= \lambda(\lambda \mathbf{x} + (1-\lambda)\mathbf{z}) + (1-\lambda)(\lambda \mathbf{y} + (1-\lambda)\mathbf{z}) \\ &&&= \lambda^2 \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda) \mathbf{z} \end{align*} Claim: \(X*(Y*Z) = (X*Y)*(X*Z)\) Proof: \begin{align*} X*(Y*Z) &= \lambda \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)^2\mathbf{z} \\ (X*Y)*(X*Z) &= (\lambda \mathbf{x} + (1-\lambda)\mathbf{y})*(\lambda \mathbf{x} + (1-\lambda)\mathbf{z}) \\ &= \lambda (\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) + (1-\lambda)(\lambda \mathbf{x} + (1-\lambda)\mathbf{z}) \\ &= \lambda \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)^2\mathbf{z} \end{align*}
  4. \(P_1 = X*Y\) divides the line segment into the ratio \(\lambda:(1-\lambda)\). \(P_n\) divides the line segment \(P_{n-1}Y\) into the ratio \(\lambda:(1-\lambda)\), therefore it divides the line segment \(XY\) in the ratio \(\lambda^n : 1- \lambda^n\) Alternatively, \begin{align*} P_1 &= \lambda \mathbf{x} + (1-\lambda)\mathbf{y} \\ P_2 &= (\lambda \mathbf{x} + (1-\lambda)\mathbf{y} )*\mathbf{y} \\ &= \lambda^2 \mathbf{x} + (1-\lambda^2) \mathbf{y} \end{align*} Suppose \(P_k = \lambda^k\mathbf{x} + (1-\lambda^k)\mathbf{y}\) then \begin{align*}P_{k+1} &= (\lambda^k\mathbf{x} + (1-\lambda^k)\mathbf{y}) * \mathbf{y} \\ &= \lambda^{k+1}\mathbf{x} + \lambda(1-\lambda^k)\mathbf{y} + (1-\lambda)\mathbf{y}\\ & = \lambda^{k+1}\mathbf{x} + (1-\lambda^{k+1})\mathbf{y}\end{align*}

2013 Paper 1 Q4
D: 1500.0 B: 1484.0

  1. Show that, for \(n> 0\), \[ \int_0^{\frac14\pi} \tan^n x \,\sec^2 x \, \d x = \frac 1 {n+1} \; \text{ and } \int_0^{\frac14\pi} \!\! \sec ^n\! x \, \tan x \, \d x = \frac{(\sqrt 2)^n - 1}n \,. \]
  2. Evaluate the following integrals: \[ \displaystyle \int_0^{\frac14\pi} \!\! x\, \sec ^4 \! x\, \tan x \, \d x \, \text{ and } \int_0^{\frac14\pi} \!\! x^2 \sec ^2 \! x\, \tan x \, \d x \,. \]


Solution:

  1. \begin{align*} u = \tan x, \d u = \sec^2 x \d x: &&\int_0^{\pi/4} \tan^n x \sec^2 x \d x &= \int_0^1 u^n \d u \\ &&&= \frac{1}{n+1} \end{align*} \begin{align*} u = \sec x, \d u = \sec x \tan x \d x: &&\int_0^{\pi/4} \sec^n x \tan x \d x &= \int_{u=1}^{u=\sqrt{2}} u^{n-1} \d u \\ &&&= \left [ \frac{u^n}{n}\right] \\ &&&= \frac{(\sqrt{2})^n - 1}n \end{align*}
  2. \begin{align*} &&\int_0^{\frac14\pi} x \sec ^4 x \tan x \d x &= \left [x \frac{1}{4} \sec^4 x \right]_0^{\frac14\pi} - \frac14 \int_0^{\frac14\pi} \sec^4 x \d x \\ &&&= \frac{\pi}{4} - \frac14 \int_0^{\frac14\pi} \sec^2 x(1+ \tan^2 x) \d x \\ &&&= \frac{\pi}{4} - \frac14 \left [ \tan x+ \frac13 \tan^3 x \right] _0^{\frac14\pi} \\ &&&= \frac{\pi}{4} - \frac{1}{3} \end{align*} \begin{align*} \int_0^{\frac14\pi} \!\! x^2 \sec ^2 \! x\, \tan x \, \d x &= \left [x^2 \frac12 \tan^2 x \right]_0^{\frac14\pi} - \int_0^{\frac14\pi} x \tan^2 x \d x\\ &= \frac{\pi^2}{32} - \int_0^{\frac14\pi} x (\sec^2 x - 1) \d x\\ &= \frac{\pi^2}{32} - \left [x (-x + \tan x) \right]_0^{\frac14\pi} + \int_0^{\frac14\pi}-x + \tan x \d x \\ &= \frac{\pi^2}{32} - \frac{\pi}{4} (-\frac{\pi}{4} + 1) -\frac{\pi^2}{32} + \left [ -\ln \cos x \right]_0^{\pi/4} \\ &= \frac{\pi^2}{16}- \frac{\pi}{4} + \frac12 \ln 2 \end{align*}

2013 Paper 1 Q5
D: 1500.0 B: 1470.2

The point \(P\) has coordinates \((x,y)\) which satisfy \[ x^2+y^2 + kxy +3x +y =0\,. \]

  1. Sketch the locus of \(P\) in the case \(k=0\), giving the points of intersection with the coordinate axes.
  2. By factorising \(3x^2 +3y^2 +10xy\), or otherwise, sketch the locus of \(P\) in the case \(k=\frac{10}{3}\,\), giving the points of intersection with the coordinate axes.
  3. In the case \(k=2\), let \(Q\) be the point obtained by rotating \(P\) clockwise about the origin by an angle~\(\theta\), so that the coordinates \((X,Y)\) of \(Q\) are given by \[ X=x\cos\theta +y\sin\theta\,, \ \ \ \ Y= -x\sin\theta + y\cos\theta\,. \] Show that, for \(\theta =45^\circ\), the locus of \(Q\) is \( \sqrt2 Y= (\sqrt2 X+1 )^2 - 1 .\) Hence, or otherwise, sketch the locus of \(P\) in the case \(k=2\), giving the equation of the line of symmetry.


Solution:

  1. \(k = 0\), we have \(x^2 + y^2 + 3x + y = 0\), ie \((x+\tfrac32)^2+(y+\tfrac12)^2 = \frac{10}{4}\).
    TikZ diagram
  2. \(3x^2 + 3y^2 +10xy = (3x+y)(x+3y)\) so \(x^2 + y^2 + \tfrac{10}3xy + 3x+y = (3x+y)(\frac{x+3y}{3}+1) = 0\) so we have the line pair \(3x +y =0\), \(x+3y + 3 = 0\)
    TikZ diagram
  3. If \(k = 2\) then \((x+y)^2 + (x+y)+2x = 0\). If \(\theta = 45^\circ\) then \( X = \frac1{\sqrt{2}}(x+y), Y = \frac{1}{\sqrt{2}}(y-x)\), ie \(x+y = \sqrt{2}X\) and \(x = \frac{1}{\sqrt2}(X-Y)\), so our equation is: \begin{align*} 0 &= 2X^2 + \sqrt{2}X + \sqrt{2}(X-Y) \\ &= (\sqrt{2}X + 1)^2 - 1 - \sqrt{2} Y \end{align*} which would be a parabola with line of symmetry \(X = -\frac{1}{\sqrt{2}}\). However, we are actually looking at that parabola rotated by \(45^\circ\) anticlockwise.
    TikZ diagram

2013 Paper 1 Q6
D: 1500.0 B: 1501.4

By considering the coefficient of \(x^r\) in the series for \((1+x)(1+x)^n\), or otherwise, obtain the following relation between binomial coefficients: \[ \binom n r + \binom n {r-1} = \binom {n+1} r \qquad (1\le r\le n). \] The sequence of numbers \(B_0\), \(B_1\), \(B_2\), \(\ldots\) is defined by \[ B_{2m} = \sum_{j=0}^m \binom{2m-j}j \text{ and } B_{2m+1} = \sum_{k=0}^m \binom{2m+1-k}k . \] Show that \(B_{n+2} - B_{n+1} = B_{n}\,\) (\(n=0\), \(1\), \(2\), \(\ldots\,\)). What is the relation between the sequence \(B_0\), \(B_1\), \(B_2\), \(\ldots\) and the Fibonacci sequence \(F_0\), \(F_1\), \(F_2\), \(\ldots\) defined by \(F_0=0\), \(F_1=1\) and \(F_n = F_{n-1}+F_{n-2}\) for \(n\ge2\)?


Solution: The coefficient of \(x^{r-1}\) in \((1+x)^n\) is \(\binom{n}{r-1}\) and the coefficient of \(x^r\) in \((1+x)^n\) is \(\binom{n}{r}\). The only ways to get \(x^r\) in the expansion of \((1+x)(1+x)^n\) is to either multiply the \(x^r\) term from the second expansion by \(1\) or the \(x^{r-1}\) term by \(x\). This is \(\binom{n}{r-1} + \binom{n}{r}\). However, the coefficient of \(x^r\) in \((1+x)^{n+1}\) is \(\binom{n+1}r\), so \(\binom{n}{r} + \binom{n}{n-1} = \binom{n+1}r\). Claim: \(B_{n+2} - B_{n+1} = B_{n}\). Proof: Consider \(n\) even, ie \(n = 2m\) \begin{align*} B_{n+2} - B_{n+1} &= \sum_{j=0}^{m+1} \binom{2(m+1)-j}{j} - \sum_{j=0}^m \binom{2m+1-j}{j} \\ &= \binom{2(m+1)-(m+1)}{m+1} +\sum_{j=0}^m \left ( \binom{2(m+1)-j}{j} - \binom{2m+1-j}{j} \right) \\ &= 1 + \sum_{j=1}^m \binom{2m+1-j}{j-1} \\ &= 1 + \sum_{j=0}^{m-1} \binom{2m-j}{j} \\ &= \binom{m}{m} + \sum_{j=0}^{m-1} \binom{2m-j}{j} \\ &= \sum_{j=0}^{m} \binom{2m-j}{j} \\ &= B_n \end{align*} Consider \(n\) even, ie \(n = 2m+1\) \begin{align*} B_{n+2} - B_{n+1} &= \sum_{j=0}^{m+1} \binom{2(m+1)+1-j}{j} - \sum_{j=0}^{m+1} \binom{2(m+1)-j}{j} \\ &= \sum_{j=0}^{m+1} \left (\binom{2(m+1)+1-j}{j} - \binom{2(m+1)-j}{j}\right)\\ &= \sum_{j=1}^{m+1} \binom{2(m+1)-j}{j-1} \\ &= \sum_{j=0}^{m} \binom{2m+1-j}{j} \\ &= B_n \end{align*} as required. \(B_0 = 1, B_1 = 2\), therefore \(B_n = F_{n+2}\)

2013 Paper 1 Q7
D: 1516.0 B: 1516.0

  1. Use the substitution \(y=ux\), where \(u\) is a function of \(x\), to show that the solution of the differential equation \[ \frac{\d y}{\d x} = \frac x y + \frac y x \quad \quad (x > 0, y> 0) \] that satisfies \(y=2\) when \(x=1\) is \[ y= x\, \sqrt{4+2\ln x \, } ( x > \e^{-2}). \]
  2. Use a substitution to find the solution of the differential equation \[ \frac{\d y}{\d x} = \frac x y + \frac {2y} x \quad \quad (x > 0, y > 0) \] that satisfies \(y=2\) when \(x=1\).
  3. Find the solution of the differential equation \[ \frac{\d y}{\d x} = \frac {x^2} y + \frac {2y} x \quad \quad (x> 0, \ y> 0) \] that satisfies \(y=2\) when \(x=1\).


Solution:

  1. Let \(y = ux\), then \(\frac{\d y}{\d x} = x\frac{\d u}{\d x} = u\) and the differential equation becomes, \begin{align*} && xu' + u &= \frac{1}{u} +u \\ \Rightarrow && u' &= \frac{1}{ux} \\ \Rightarrow && u u' &= \frac1{x} \\ \Rightarrow && \frac12 u^2 &= \ln x + C \\ (x,y) = (1,2): && \frac12 4 &= C \\ \Rightarrow && \frac12 \frac{y^2}{x^2} &= \ln x + 2 \\ \Rightarrow && y^2 &= x^2 \l 2\ln x + 4 \r \\ \Rightarrow && y &= x \sqrt{4 + 2 \ln x} \quad (x > e^{-2}) \end{align*}
  2. Let \(y = ux^2\) then \begin{align*} && \frac{\d y}{\d x} &= \frac{x^2}{y} + \frac{2y}{x} \\ \Rightarrow && u' x^2 + 2x u &= \frac{1}{u} + 2x u \\ \Rightarrow && u' u &= \frac{1}{x^2} \\ \Rightarrow && \frac12 u^2 &= -\frac{1}{x} + C \\ (x,y) = (1,2): && 2 &= C - 1 \\ \Rightarrow && \frac12 \frac{y^2}{x^4} &= 3 - \frac{1}{x} \\ \Rightarrow && y &= x\sqrt{2(3x^2-x)}, \quad (x > \frac13) \end{align*}

2013 Paper 1 Q8
D: 1516.0 B: 1474.0

  1. The functions \(\mathrm{a, b, c}\) and \(\mathrm{d}\) are defined by
    • \({\rm a}(x) =x^2 \ \ \ \ (-\infty < x < \infty),\)
    • \({\rm b}(x) = \ln x \ \ \ \ (x > 0),\)
    • \({\rm c}(x) =2x \ \ \ \ (-\infty < x < \infty),\)
    • \({\rm d}(x)= \sqrt x \ \ \ \ (x\ge0) \,.\)
    Write down the following composite functions, giving the domain and range of each: \[ \rm cb, \quad ab, \quad da, \quad ad. \]
  2. The functions \(\mathrm{f}\) and \(\mathrm{g}\) are defined by
    • \(\f(x)= \sqrt{x^2-1\,} \ \ \ \ (\vert x \vert \ge 1),\)
    • \(\g(x) = \sqrt{x^2+1\,} \ \ \ \ (-\infty < x < \infty).\)
    Determine the composite functions \(\mathrm{fg}\) and \(\mathrm{gf}\), giving the domain and range of each.
  3. Sketch the graphs of the functions \(\h\) and \({\rm k}\) defined by
    • \(\h(x) = x+\sqrt{x^2-1\,}\, \ \ \ \ ( x \ge1)\),
    • \({\rm k}(x) = x-\sqrt{x^2-1\,}\, \ \ \ \ (\vert x\vert \ge1),\)
    justifying the main features of the graphs, and giving the equations of any asymptotes. Determine the domain and range of the composite function \(\mathrm{kh}\).


Solution:

  1. \begin{align*} cb(x) &= c(b(x)) \\ &= 2 \ln x \quad (x > 0) \\ ab(x) &= (b(x))^2 \\ &= (\ln x)^2 \quad (x > 0) \\ da(x) &= \sqrt{a(x)} \\ &= \sqrt{x^2} \\ &= |x| \quad (-\infty < x < \infty) \\ ad(x) &= (d(x))^2 \\ &= (\sqrt{x})^2 \\ &= x \quad (x \geq 0) \end{align*} The domains are specified above. The ranges are \(\mathbb{R}, \mathbb{R}_{\geq 0}, \mathbb{R}_{\geq 0}, \mathbb{R}_{\geq 0}\) respectively.
  2. \begin{align*} fg(x) &= \sqrt{g(x)^2-1} \quad (|g(x)| \geq 1) \\ &= \sqrt{x^2+1-1} \\ &= |x| \end{align*} So \(fg: \mathbb{R} \to \mathbb{R}_{\geq 0}\). \begin{align*} gf(x) &= \sqrt{f(x)^2 + 1} \\ &= \sqrt{\left ( \sqrt{x^2-1} \right)^2+1} \quad (|x| \geq 1) \\ &= |x| \end{align*} So \(gf: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}\)
    • TikZ diagram
    • TikZ diagram
    \begin{align*} kh(x) &= h(x) - \sqrt{h(x)^2 -1} \quad (|h(x)| \geq 1)\\ &= x + \sqrt{x^2+1} - \sqrt{(x + \sqrt{x^2+1})^2 - 1} \\ &= x + \sqrt{x^2+1} - \sqrt{x^2 + x^2 - 2x} \quad (x \geq 1) \\ &= x + \sqrt{x^2+1} - \sqrt{2x^2-2x} \quad (x \geq 1) \end{align*} This has domain \(x \geq 1\) and range, \((0, 1]\)

2013 Paper 1 Q9
D: 1516.0 B: 1516.0

Two particles, \(A\) and \(B\), are projected simultaneously towards each other from two points which are a distance \(d\) apart in a horizontal plane. Particle \(A\) has mass \(m\) and is projected at speed \(u\) at angle \(\alpha\) above the horizontal. Particle \(B\) has mass \(M\) and is projected at speed \(v\) at angle \(\beta\) above the horizontal. The trajectories of the two particles lie in the same vertical plane. The particles collide directly when each is at its point of greatest height above the plane. Given that both \(A\) and \(B\) return to their starting points, and that momentum is conserved in the collision, show that \[ m\cot \alpha = M \cot \beta\,. \] Show further that the collision occurs at a point which is a horizontal distance \(b\) from the point of projection of \(A\) where \[ b= \frac{Md}{m+M}\, , \] and find, in terms of \(b\) and \(\alpha\), the height above the horizontal plane at which the collision occurs.


Solution: Since \(A\) and \(B\) return to their starting points, and at their highest points there is no vertical component to their velocities, their horizontal must perfectly reverse, ie \begin{align*} && m u \cos \alpha - M v \cos \beta &= -m u \cos \alpha + M v \cos \beta \\ \Rightarrow && mu \cos \alpha &= Mv \cos \beta \end{align*} Since they reach their highest points at the same time, they must have the same initial vertical speed, ie \(u \sin \alpha = v \sin \beta\), so \begin{align*} && m v \frac{\sin \beta}{\sin \alpha} \cos \alpha &= M v \cos \beta \\ \Rightarrow && m \cot \alpha &= M \cot \beta \end{align*} The horizontal distance travelled by \(A\) & \(B\) will be: \begin{align*} && d_A &= u \cos \alpha t \\ && d_B &= v \cos \beta t \\ \Rightarrow && \frac{d_A}{d_A+d_B} &= \frac{u \cos \alpha}{u \cos \alpha + v \cos \beta} \\ &&&= \frac{\frac{M}{m}v \cos \beta}{\frac{M}{m}v \cos \beta + v \cos \beta} \\ &&&= \frac{M}{M+m} \\ \Rightarrow && d_A = b &= \frac{Md}{m+M} \end{align*} Applying \(v^2 = u^2 + 2as\) we see that \begin{align*} && 0 &= u \sin \alpha - gt \\ \Rightarrow && t &= \frac{u \sin \alpha}{g} \\ && b &=u \cos \alpha \frac{u \sin \alpha}{g} \\ \Rightarrow && u^2 &= \frac{2bg}{\sin 2 \alpha} \\ && 0 &= u^2 \sin^2 \alpha - 2g h \\ \Rightarrow && h &= \frac{u^2 \sin^2 \alpha}{2g} \\ &&&= \frac{2bg}{\sin 2 \alpha} \frac{ \sin^2 \alpha}{2g} \\ &&&= \frac12 b \tan \alpha \end{align*}

2013 Paper 1 Q10
D: 1500.0 B: 1500.0

Two parallel vertical barriers are fixed a distance \(d\) apart on horizontal ice. A small ice hockey puck moves on the ice backwards and forwards between the barriers, in the direction perpendicular to the barriers, colliding with each in turn. The coefficient of friction between the puck and the ice is \(\mu\) and the coefficient of restitution between the puck and each of the barriers is \(r\). The puck starts at one of the barriers, moving with speed \(v\) towards the other barrier. Show that \[ v_{i+1}^2 - r^2 v_i^2 = - 2 r^2 \mu gd\, \] where \(v_i\) is the speed of the puck just after its \(i\)th collision. The puck comes to rest against one of the barriers after traversing the gap between them \(n\) times. In the case \(r\ne1\), express \(n\) in terms of \(r\) and \(k\), where \(k= \dfrac{v^2}{2\mu g d}\,\). If \(r=\e^{-1}\) (where \(\e\) is the base of natural logarithms) show that \[ n = \tfrac12 \ln\big(1+k(\e^2-1)\big)\,. \] Give an expression for \(n\) in the case \(r=1\).


Solution: \begin{align*} \text{W.E.P.}: && \text{change in energy} &= \text{work done on particle} \\ \Rightarrow && \underbrace{\frac12mv^2}_{\text{speed before hitting barrier}} - \underbrace{\frac12mu^2}_{\text{speed leaving first barrier}} &= \underbrace{\left( -\mu mg \right)}_{F} \cdot \underbrace{d}_{d} \\ \Rightarrow && v^2 &= v_i^2-2\mu gd \end{align*} Newton's experimental law tells us that the speed leaving the barrier will be \(r\) times the speed approaching, ie \begin{align*} && v_{i+1} &= rv \\ \Rightarrow && v_{i+1}^2 &= r^2 v^2 \\ &&&= r^2v_i^2 - 2r^2\mu gd \\ \Rightarrow && v_{i+1}^2 - r^2v_i^2 &= - 2r^2\mu gd \end{align*} It must be the case that after \(n+1\) collisions the speed is zero, ie \(v_{n+1}^2 = 0\). Not that we can consider \(w_i = \frac{v_i^2}{2\mu gd}\) and we have the recurrence: \begin{align*} && w_{i+1} &=r^2w_i -r^2 \\ \end{align*} Looking at this we have a linear recurrence with a constant term, so let's try \(w_i = C\), then \begin{align*} && C &= r^2 C - r^2 \\ \Rightarrow && C &= \frac{-r^2}{1-r^2} \\ \end{align*} So \(w_i = Ar^{2i} - \frac{r^2}{1-r^2}\). \(w_0 = k \Rightarrow A = k+\frac{r^2}{1-r^2}\) Therefore \(w_n = \left (k+\frac{r^2}{1-r^2} \right)r^{2n} - \frac{r^2}{1-r^2}\) Suppose \(w_n = 0\) then, \begin{align*} && 0 &= \left (k+\frac{r^2}{1-r^2} \right)r^{2n} - \frac{r^2}{1-r^2} \\ \Rightarrow && r^{2n} &= \frac{r^2}{1-r^2} \frac{1}{k+\frac{r^2}{1-r^2}} \\ &&&= \frac{r^2}{k(1-r^2)+r^2} \\ \Rightarrow && 2n \ln r &= 2\ln r - \ln[k(1-r^2)+r^2] \\ \Rightarrow && n &= 1 - \frac1{2\ln r} \ln[k(1-r^2)+r^2)] \end{align*} If \(r = e^{-1}\) then \(\ln r = -1\) \begin{align*} && n &= 1 + \frac12 \ln [k(1-e^{-2}) + e^{-2}] \\ &&&= 1 + \frac12 \ln [e^{-2}(k(e^2-1)+1)] \\ &&&= 1 + \frac12 \ln e^{-2} + \frac12 \ln [1+k(e^2-1)] \\ &&&= \frac12 \ln [1+k(e^2-1)] \end{align*} If \(r = 1\) the recurrence becomes: \(w_{i+1} = w_i - 1\), so \(w_i = k-n\), so we have \(k\) collisions.