Problems

Filters
Clear Filters
2012 Paper 1 Q1
D: 1484.0 B: 1500.0

The line \(L\) has equation \(y=c-mx\), with \(m>0\) and \(c>0\). It passes through the point \(R(a,b)\) and cuts the axes at the points \(P(p,0)\) and \(Q(0,q)\), where \(a\), \(b\), \(p\) and \(q\) are all positive. Find \(p\) and \(q\) in terms of \(a\), \(b\) and \(m\). As \(L\) varies with \(R\) remaining fixed, show that the minimum value of the sum of the distances of \(P\) and \(Q\) from the origin is \((a^{\frac12} + b^{\frac12})^2\), and find in a similar form the minimum distance between \(P\) and \(Q\). (You may assume that any stationary values of these distances are minima.)


Solution: \begin{align*} && b &= c - ma \\ \Rightarrow && c &= b+ma \\ \Rightarrow && y &= m(a-x)+b \\ \Rightarrow && q &= ma+b \\ && p &= \frac{ma+b}{m} \\ \\ && d &= p+q \\ &&&= a + \frac{b}{m} + ma + b \\ \Rightarrow && d' &= -bm^{-2}+a \\ \Rightarrow && m &= \sqrt{b/a} \\ \\ \Rightarrow &&d &= a + \sqrt{ba}+\sqrt{ba} + b \\ &&&= (\sqrt{a}+\sqrt{b})^2 \\ \\ && |PQ|^2 &= p^2 + q^2 \\ &&&= a^2 + \frac{2ab}{m} + \frac{b^2}{m^2} + m^2a^2 + 2mab + b^2 \\ &&&= a^2+b^2 + \frac{b^2}{m^2} + \frac{2ab}{m}+ 2abm + a^2m^2 \\ && \frac{\d}{\d m}&= -2b^2m^{-3}-2abm^{-2}+2ab + 2a^2m \\ && 0 &=2a^2m^4+2abm^3-2abm-2b^2 \\ &&&= 2(am^3-b)(am+b) \\ \Rightarrow && m &= \sqrt[3]{\frac{b}{a}} \\ \\ &&|PQ|^2 &= \left[ a^{1/3}(a^{2/3} + b^{2/3}) \right]^2 + \left[ b^{1/3}(a^{2/3} + b^{2/3}) \right]^2 \\ &&&= a^{2/3}(a^{2/3} + b^{2/3})^2 + b^{2/3}(a^{2/3} + b^{2/3})^2 \\ &&&= (a^{2/3} + b^{2/3})^2 \cdot (a^{2/3} + b^{2/3}) \\ &&&= (a^{2/3} + b^{2/3})^3 \\ \Rightarrow && |PQ| &= (a^{2/3} + b^{2/3})^{3/2} \end{align*} We can also do this with AM-GM instead: \begin{align*} && d &= a + b + \frac{b}{m} + am \\ &&&\geq a+b + 2 \sqrt{\frac{b}{m} \cdot am} \\ &&&= a+2\sqrt{ab}+b \\ \\ && |PQ|^2 &= a^2+b^2 + \frac{b^2}{m^2} + \frac{2ab}{m}+ 2abm + a^2m^2 \\ &&&= a^2+b^2 + \frac{b^2}{m} + abm + abm + a^2m^2 + \frac{ab}{m} + \frac{ab}{m} \\ &&&= a^2+b^2 + 3\sqrt[3]{ \frac{b^2}{m} \cdot abm \cdot abm} + 3 \sqrt[3]{ a^2m^2 \cdot \frac{ab}{m} \cdot \frac{ab}{m} } \\ &&&= a^2 + 3b^{4/3}a^{2/3}+3b^{2/3}a^{4/3}+b^2 \\ &&&= (a^{2/3}+b^{2/3})^3 \end{align*}

2012 Paper 1 Q2
D: 1484.0 B: 1484.0

  1. Sketch the curve \(y= x^4-6x^2+9\) giving the coordinates of the stationary points. Let \(n\) be the number of distinct real values of \(x\) for which \[ x^4-6x^2 +b=0. \] State the values of \(b\), if any, for which
    1. \(n=0\,\);
    2. \(n=1\,\);
    3. \(n=2\,\);
    4. \(n=3\,\);
    5. \(n=4\,\).
  2. For which values of \(a\) does the curve \(y= x^4-6x^2 +ax +b\) have a point at which both \(\dfrac{\d y}{\d x}=0\) and \(\dfrac{\d^2y}{\d x^2}=0\,\)? For these values of \(a\), find the number of distinct real values of \(x\) for which \(\vphantom{\dfrac{A}{B}}\) \[ x^4-6x^2 +ax +b=0\,, \] in the different cases that arise according to the value of \(b\).
  3. Sketch the curve \(y= x^4-6x^2 +ax\) in the case \(a>8\,\).


Solution:

  1. \(\,\)
    TikZ diagram
    1. \(n = 0\) if \(b > 9\)
    2. \(n = 1\) is not possible, since by symmetry if \(x\) is a root, so is \(-x\), and \(0\) can never be the only root.
    3. \(n = 2\) if \(b < 0\) or \(b = 9\)
    4. \(n = 3\) if \(b = 0\)
    5. \(n = 4\) if \(0 < b < 9\)
  2. \(\,\) \begin{align*} && y' &= 4x^3-12x+a \\ && y'' &= 12x^2-12 \\ \Rightarrow && x &= \pm 1 \\ \Rightarrow && 0 &= 4(\pm 1) - 12 (\pm 1) + a \\ &&&= a \mp 8 \\ \Rightarrow && a &= \pm 8 \end{align*} When \(a = 8\), we have \(y = x^4-6x^2+8x\) and \begin{align*} &&y' &= 4x^3-12x+8 \\ &&&= 4(x^3-3x+2) \\ &&&= 4(x-1)^2(x+2) \\ \Rightarrow && y(1) &= 3\\ && y(-2) &= -24 \end{align*}
    TikZ diagram
    Therefore there are no solutions if \(b > 24\), one solution if \(b = 24\) and two solutions otherwise. Similarly, if \(a = -8\), we have \(y = x^4 - 6x^2-8x\) \begin{align*} && y' &= 4x^3-12x-8 \\ &&&= 4(x^3-3x-2) \\ &&&= 4(x-2)(x+1)^2 \end{align*} So we have stationary points at \(x = 2\) and \(x = -1\) (which is also a inflection point) and at \(x = 2\) \(y = -24\), so we have the same story: there are no solutions if \(b > 24\), one solution if \(b = 24\) and two solutions otherwise.
  3. \(\,\)
    TikZ diagram

2012 Paper 1 Q3
D: 1516.0 B: 1484.0

  1. Sketch the curve \(y=\sin x\) for \(0\le x \le \tfrac12 \pi\) and add to your diagram the tangent to the curve at the origin and the chord joining the origin to the point \((b, \sin b)\), where \(0 < b < \frac12\pi\). By considering areas, show that \[ 1-\tfrac12 b^2 <\cos b < 1-\tfrac 12 b \sin b\,. \]
  2. By considering the curve \(y=a^x\), where \(a>1\), show that \[ \frac{2(a-1)}{a+1} < \ln a < -1 + \sqrt{2a-1\,}\,. \] [Hint: You may wish to write \(a^x\) as \(\e^{x\ln a}\).]


Solution:

  1. \(\,\)
    TikZ diagram
    The area under the blue curve is \(1-\cos b\). The area under the green line is \(\frac12 b \sin b\) The area under the red line is \(\frac12 b^2\) Therefore \(\frac12 b \sin b < 1- \cos b < \frac12 b^2 \Rightarrow 1- \frac12 b^2 < \cos b < 1 - \frac12 b \sin b\)
  2. \(\,\)
    TikZ diagram
    \begin{align*} &&\text{Area under blue curve}: &= \int_0^1 a^x \d x\\ &&&= \left [ \frac{1}{\ln a}e^{x \ln a} \right]_0^1 \\ &&&= \frac{a-1}{\ln a} \\ \\ &&\text{Area under green line}: &=\frac12 \cdot 1 \cdot (a + 1)\\ &&&= \frac{a+1}{2} \\ \\ &&\text{Area under tangent}: &=\frac12 \cdot 1 \cdot (1+\ln a + 1)\\ &&&= \frac{\ln a+2}{2} \\ \\ \Rightarrow && \frac{a+1}{2} & > \frac{a-1}{\ln a} \\ \Rightarrow && \ln a& > \frac{2(a-1)}{a+1} \\ \\ \Rightarrow && \frac{a-1}{\ln a} &> \frac{\ln a +2}{2} \\ \Rightarrow && 2(a-1) -2\ln a - (\ln a)^2 &> 0 \\ \Rightarrow && \ln a & < -1 + \sqrt{2a-1} \end{align*}

2012 Paper 1 Q4
D: 1516.0 B: 1500.0

The curve \(C\) has equation \(xy = \frac12\). The tangents to \(C\) at the distinct points \(P\big(p, \frac1{2p}\big)\) and \(Q\big(q, \frac1{2q}\big)\) where \(p\) and \(q\) are positive, intersect at \(T\) and the normals to \(C\) at these points intersect at \(N\). Show that \(T\) is the point \[ \left( \frac{2pq}{p+q}\,,\, \frac 1 {p+q}\right)\!. \] In the case \(pq=\frac12\), find the coordinates of \(N\). Show (in this case) that \(T\) and \(N\) lie on the line \(y=x\) and are such that the product of their distances from the origin is constant.


Solution: \begin{align*} && \frac{\d y}{\d x} &= -\frac1{2x^2} \\ \Rightarrow && \frac{y - \frac{1}{2p}}{x - p} &= - \frac{1}{2p^2} \\ \Rightarrow && y - \frac1{2p} &= -\frac{1}{2p^2}x +\frac1{2p} \\ \Rightarrow && y +\frac{1}{2p^2}x &= \frac1p \\ \Rightarrow && 2p^2 y + x &= 2p\\ \Rightarrow && 2q^2 y + x &= 2q \\ \Rightarrow && (p^2-q^2)y &= p-q \\ \Rightarrow && y &= \frac{1}{p+q} \\ && x &= \frac{2pq}{p+q} \end{align*} \begin{align*} \text{normal}: && \frac{y-\frac1{2p}}{x-p} &= 2p^2 \\ \Rightarrow && y - \frac1{2p} &= 2p^2x - 2p^3 \\ \Rightarrow && 2py -4p^3x &= 1-4p^4 \\ \Rightarrow && 2qy -4q^3x &= 1-4q^4 \\ pq = \tfrac12: && y - 2p^2 x &= q-2p^3 \\ && y - 2q^2 x &= p-2q^3 \\ \Rightarrow && (2q^2-2p^2)x &= q-p +2q^3-2p^3 \\ &&&= (q-p)(q+p+2q^2+1+2p^2) \\ \Rightarrow && x &= \frac{1+2(p^2+q^2)+1}{2(p+q)} \\ &&&= \frac{1+2(p^2+q^2+2pq-1)+1}{2(p+q)} \\ &&&= p+q\\ && y &= 2p^2 \left ( p+q \right) + q - 2p^3 \\ &&&= p+q \end{align*} So \(N(p+q, p+q)\) and \(T\left (\frac{1}{p+q}, \frac{1}{p+q} \right)\), so both points lie on \(y = x\). \[ OT \cdot ON = \frac{\sqrt{2}}{p+q} \cdot (p+q)\sqrt{2} = 2 \] which is clearly constant.

2012 Paper 1 Q5
D: 1500.0 B: 1485.6

Show that \[ \int_0^{\frac14\pi} \sin (2x) \ln(\cos x)\, \d x = \frac14(\ln 2 -1)\,, \] and that \[ \int_0^{\frac14\pi} \cos (2x) \ln(\cos x)\, \d x = \frac18(\pi -\ln 4-2)\,. \] Hence evaluate \[ \int_{\frac14\pi}^{\frac12\pi} \big ( \cos(2x) + \sin (2x)\big) \, \ln \big( \cos x + \sin x\big)\, \d x\,. \]


Solution: \begin{align*} &&\int_0^{\frac14\pi} \sin (2x) \ln(\cos x)\, \d x &= \int_0^{\frac14 \pi} 2 \sin x \cos x \ln (\cos x) \d x \\ u = \cos \theta :&&&= \int_{u=1}^{u=\frac1{\sqrt2}} -2u \ln u \d u \\ &&&= \int_{\frac1{\sqrt{2}}}^1 2u \ln u \d u \\ &&&= \left [u^2 \ln u \right]_{\frac1{\sqrt{2}}}^1-\int_{\frac1{\sqrt{2}}}^1 u \d u \\ &&&= -\frac12 \ln \frac{1}{\sqrt{2}} - \l\frac12 - \frac14 \r \\ &&&= \frac14 (\ln 2 - 1) \end{align*} \begin{align*} && \int_0^{\frac14\pi} \cos (2x) \ln(\cos x)\, \d x &= \left [ \frac12 \sin 2x \ln (\cos x) \right]_0^{\frac14\pi}- \int_0^{\frac14\pi} \frac12 \sin 2x \frac{-\sin x}{\cos x} \d x \\ &&&=\frac12 \ln \frac{1}{\sqrt{2}}+\int_0^{\frac14\pi} \sin^2 x \d x \\ &&&= -\frac14 \ln 2 + \int_0^{\frac14\pi} \frac{1-\cos 2x }{2} \d x \\ &&&= -\frac14 \ln 2 +\frac{\pi}{8} -\frac{1}{4} \\ &&&= \frac18 (\pi - 2\ln 2 - 2) \\ &&&= \frac18 (\pi - \ln 4 - 2) \\ \end{align*} Notice that \(\cos x + \sin x = \sqrt{2} \cos (x -\frac{\pi}{4})\), so: \begin{align*} &&\int_{\frac14\pi}^{\frac12\pi} \big ( \cos(2x) + \sin (2x)\big) \ln \big( \cos x + \sin x\big)\d x &= \int_{\frac14\pi}^{\frac12\pi} \big ( \cos(2x) + \sin (2x)\big) \ln (\sqrt{2} \cos ( x - \frac{\pi}{4}) ) \d x \\ &&&= \int_{u=0}^{u=\frac{\pi}{4}} \l \cos(2u+\frac{\pi}{2})+\sin(2u+\frac{\pi}{2}) \r \cdot \l \frac12 \ln 2 +\ln (\cos u) \r \d x \\ &&&= \int_{0}^{\frac{\pi}{4}} \l -\sin 2u+\cos 2u \r \cdot \l \frac12 \ln 2 +\ln (\cos u) \r \d x \\ &&&= \frac14 \ln 2\left [ \cos 2u + \sin 2u \ \right]_{0}^{\frac{\pi}{4}} - \frac14(\ln2 - 1) + \frac18\pi - \frac14(\ln 2 +1) \\ &&&= \frac{\pi}{8}-\frac12 \ln 2 \end{align*}

2012 Paper 1 Q6
D: 1516.0 B: 1484.0

A thin circular path with diameter \(AB\) is laid on horizontal ground. A vertical flagpole is erected with its base at a point \(D\) on the diameter \(AB\). The angles of elevation of the top of the flagpole from \(A\) and \(B\) are \(\alpha\) and \(\beta\) respectively (both are acute). The point \(C\) lies on the circular path with \(DC\) perpendicular to \(AB\) and the angle of elevation of the top of the flagpole from \(C\) is \(\phi\). Show that \(\cot\alpha\cot \beta = \cot^2\phi\). Show that, for any \(p\) and \(q\), \[ \cos p \cos q \sin^2\tfrac12(p+q) - \sin p\sin q \cos^2 \tfrac12 (p+q) = \tfrac12 \cos(p+q) -\tfrac12 \cos(p+q)\cos(p-q) .\] Deduce that, if \(p\) and \(q\) are positive and \( p+q \le \tfrac12 \pi\), then \[ \cot p\cot q\, \ge \cot^2 \tfrac12(p+q) \, \] and hence show that \(\phi \le \tfrac12(\alpha+\beta)\) when \( \alpha +\beta \le \tfrac12 \pi\,\).


Solution:

TikZ diagram
\begin{align*} && \cot \alpha &= \frac{AD}{h} \\ && \cot \beta &= \frac{BD}{h} \\ && \cot \phi &= \frac{DC}h \\ && CD^2 &= AB \cdot BD \tag{intersecting chords} \\ \Rightarrow && \cot^2 \phi &= \cot \alpha \cot \beta \end{align*} \begin{align*} && LHS &= \cos p \cos q \sin^2\tfrac12(p+q) - \sin p\sin q \cos^2 \tfrac12 (p+q) \\ &&&= \cos p \cos q \left ( \frac{1-\cos(p+q)}{2} \right) - \sin p\sin q \left (\frac{1+\cos(p+q)}{2} \right) \\ &&&= \frac12 \left (\cos p \cos q(1-\cos(p+q)) - \sin p\sin q (1+\cos(p+q)) \right) \\ &&&= \frac12 \left ((\cos p \cos q- \sin p\sin q) - (\cos p \cos q+ \sin p\sin q)\cos(p+q) \right) \\ &&&= \frac12 \left (\cos(p+q) - \cos (p-q)\cos(p+q) \right) \\ &&&= RHS \end{align*} Therefore \begin{align*} \cot p \cot q -\cot^2 \tfrac12 (p+q) &= \frac{\tfrac12 \cos(p+q) -\tfrac12 \cos(p+q)\cos(p-q)}{\sin p \sin q \sin^2 \tfrac12(p+q)} \\ &=\frac{\cos(p+q)(1-\cos(p-q))}{\sin p \sin q \sin^2 \tfrac12(p+q)} \end{align*} Since \(p,q\) are acute, the denominator is positive. Since \(p+q \leq \frac{\pi}{2}\), we have \(\cos(p+q) \geq 0\). Also \((1-\cos(p-q)) \geq 0\). Thus, the expression is \(\geq 0\). So we must have \begin{align*} && \cot^2 \phi &= \cot \alpha \cot \beta \\ &&&\geq \cot^2 \tfrac12(\alpha+\beta) \end{align*} Since \(\cot\) is decreasing on \((0, \tfrac12 \pi)\) we can deduce \(\phi \leq \tfrac12 (\alpha+\beta)\)

2012 Paper 1 Q7
D: 1500.0 B: 1500.0

A sequence of numbers \(t_0\), \(t_1\), \(t_2\), \(\ldots\,\) satisfies \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ t_{n+2} = p t_{n+1}+qt_{n} \ \ \ \ \ \ \ \ \ \ (n\ge0), \] where \(p\) and \(q\) are real. Throughout this question, \(x\), \(y\) and \(z\) are non-zero real numbers.

  1. Show that, if \(t_n=x\) for all values of \(n\), then \(p+q=1\) and \(x\) can be any (non-zero) real number.
  2. Show that, if \(t_{2n} = x\) and \(t_{2n+1}=y\) for all values of \(n\), then \(q\pm p=1\). Deduce that either \(x=y\) or \(x=-y\), unless \(p\) and \(q\) take certain values that you should identify.
  3. Show that, if \(t_{3n} = x\), \(t_{3n+1}=y\) and \(t_{3n+2}=z\) for all values of \(n\), then \[ p^3+q^3 +3pq-1=0\,. \] Deduce that either \(p+q=1\) or \((p-q)^2 +(p+1)^2+(q+1)^2=0\). Hence show that either \(x=y=z\) or \(x+y+z=0\).


Solution:

  1. Suppose \(t_n = x\) for all \(n\), then we must have \begin{align*} && x &= p x + q x \\ \Leftrightarrow && 1 &= p+q \end{align*} and this clearly works for any value of \(x\).
  2. Suppose \(t_{2n} = x, t_{2n+1} = y\) for all \(n\), then \begin{align*} && x &= py + q x \\ && y &= px + q y \\ \Rightarrow && 0 &= py + (q-1) x \\ && 0 &= px + (q-1) y \\ \Rightarrow && p &= (q-1) \frac{x}{y} = (q-1) \frac{y}{x} \\ \Rightarrow && \frac{y}{x} = \pm 1 & \text{ or } q = 1, p = 0 \\ \Rightarrow && y = \pm x & \text{ or } (p,q) = (0,1) \\ \end{align*}
  3. Suppose \(t_{3n} = x\), \(t_{3n+1}=y\) and \(t_{3n+2}=z\) , so \begin{align*} && x &= pz + qy \\ && y & = px + qz \\ && z &= py + qx \\ \\ && z &= p(px+qz) + q(pz + qy) \\ &&&= p^2x + 2pqz + q^2 y \\ &&&= p^2(pz+qy) + 2pqz + q^2(px+qz) \\ &&&= p^3 z + p^2qy + 2pqz + q^2p x + q^3 z \\ &&&= (p^3+q^3+2pq)z + pq(py+qx) \\ &&&= (p^3 + q^3 + 2pq)z + pq z \\ &&&= (p^3 + q^3 + 3pq)z \\ \Rightarrow && 0 &= p^3 + q^3 + 3pq- 1 \\ &&&= (p+q-1)(p^2+q^2+1+p+q-pq) \\ &&&= \tfrac12(p+q-1)((p-q)^2+(p+1)^2+(q+1)^2) \end{align*} Therefore \(p+q = 1\) or \((p-q)^2+(p+1)^2+(q+1)^2 = 0 \Rightarrow p = q = -1\). If \(p+q = 1\), then \(z = py + (1-p)x\) and \(x = p(py+(1-p)x) + (1-p)y \Rightarrow (1-p+p^2)x = (1-p+p^2)y \Rightarrow x = y \Rightarrow x= y = z\). If \(p = q = -1\) then adding all the equations we get \(x + y + z = -2(x+y+z) \Rightarrow x + y + z = 0\)
Note that what is actually going on here is that solutions must be of the form \(t_n = \lambda^n\) so the only way to be constant is for \(\lambda = 1\) to be a root, the only way for it to be \(2\)-periodic is for \(\lambda = -1\) to be a root, and the only way for it to be \(3\)-periodic is for \(\lambda = 1, \omega, \omega^2\) to be the roots (although we see this via the classic \(x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x + \omega y + \omega^2 z)(x+\omega^2 y +\omega z)\) which is because of the real constraint in the question.

2012 Paper 1 Q8
D: 1516.0 B: 1484.0

  1. Show that substituting \(y=xv\), where \(v\) is a function of \(x\), in the differential equation \[ xy \frac{\d y}{\d x} +y^2- 2x^2 =0 \quad (x\ne0) \] leads to the differential equation \[ xv\frac{\d v}{\d x} +2v^2 -2=0\,. \] Hence show that the general solution can be written in the form \[ x^2(y^2 -x^2) = C \,,\] where \(C\) is a constant.
  2. Find the general solution of the differential equation \[ y \frac{\d y}{\d x} +6x +5y=0\, \quad (x\ne0). \]


Solution:

  1. \(\,\) \begin{align*} && y &= xv \\ && y' &= v + xv' \\ \Rightarrow && 0 &= x^2 v \left ( v + x\frac{\d v}{\d x} \right) +(x^2v^2) - 2x^2 \\ &&&= 2x^2v^2 + x^3 v \frac{\d v}{\d x} - 2x^2 \\ \Rightarrow && 0 &= xv \frac{\d v}{\d x} + 2v^2-2 \\ \\ \Rightarrow && \frac{v}{1-v^2} \frac{\d v}{\d x} &= \frac{2}{x} \\ \Rightarrow && \int \frac{v}{1-v^2} \d v &=2 \ln |x| \\ \Rightarrow && -\frac12\ln |1-v^2| &= 2\ln |x| + C \\ \Rightarrow && 4\ln |x| + \ln |1-v^2| &= K \\ \Rightarrow && x^4(1-v^2) &= K \\ \Rightarrow && x^2(x^2-y^2) &= K \end{align*}
  2. \(\,\) \begin{align*} && 0 &= xv \left (v +x \frac{\d v}{\d x} \right) + 6x + 5xv \\ &&&= x^2 v \frac{\d v}{\d x} +xv^2 + 6x+5xv \\ \Rightarrow && 0 &= xv\frac{\d v}{\d x} +v^2 +5v+6 \\ \Rightarrow && -\int \frac{1}{x} \d x &=\int \frac{v}{v^2+5v+6} \d v \\ \Rightarrow && -\ln |x| &= \int \frac{v}{(v+2)(v+3)} \d v \\ &&&= \int \left (\frac{3}{v+3} - \frac{2}{v+2} \right) \d v \\ \Rightarrow && -\ln |x| &= 3\ln |v+3| - 2 \ln |v+2| + C\\ \Rightarrow && -\ln |x| &= \ln \frac{|v+3|^3}{|v+2|^2} + C \\ \Rightarrow && \frac{1}{|x|}|v+2|^2 &= A|v+3|^3 \\ \Rightarrow && \frac{1}{|x|}|\frac{y}{x} + 2|^2&= A|\frac{y}{x} + 3|^3 \\ \Rightarrow && \frac{1}{|x|^3} |y +2x|^2 &= \frac{A}{|x|^3}|y + 3x|^3 \\ \Rightarrow && (y+2x)^2 &= A|y+3x|^3 \end{align*}

2012 Paper 1 Q9
D: 1500.0 B: 1488.1

A tall shot-putter projects a small shot from a point \(2.5\,\)m above the ground, which is horizontal. The speed of projection is \(10\,\text{ms}^{- 1}\) and the angle of projection is \(\theta\) above the horizontal. Taking the acceleration due to gravity to be \(10\,\text{ms}^{-2}\), show that the time, in seconds, that elapses before the shot hits the ground is \[ \frac1{\sqrt2}\left ( \sqrt{1-c}+ \sqrt{2-c}\right), \] where \(c = \cos2\theta\). Find an expression for the range in terms of \(c\) and show that it is greatest when \(c= \frac15\,\). Show that the extra distance attained by projecting the shot at this angle rather than at an angle of \(45^\circ\) is \(5(\sqrt6 -\sqrt2 -1)\,\)m.


Solution: \begin{align*} && s &= ut + \frac12 gt^2 \\ \Rightarrow && -2.5 &= 10 \sin \theta \, T - 5 T^2 \\ \Rightarrow && T &= \frac{10\sin \theta \pm \sqrt{100\sin^2 \theta - 4 \cdot 5 \cdot (-2.5)}}{10} \\ &&&= \sin \theta +\sqrt{\sin^2 \theta + \frac12} \\ &&&= \frac1{\sqrt{2}} \left ( \sqrt{2} \sin \theta +\sqrt{2 \sin^2 \theta +1} \right) \\ &&&= \frac1{\sqrt{2}} \left ( \sqrt{2 (1-\cos^2 \theta)} + \sqrt{2-\cos 2\theta} \right) \\ &&&= \frac1{\sqrt{2}} \left ( \sqrt{1-\cos2 \theta} + \sqrt{2-\cos 2\theta} \right) \\ &&&= \frac{1}{\sqrt{2}}\left ( \sqrt{1-c}+\sqrt{2-c} \right)\\ \\ && s &= 10 \cos \theta T \\ &&&= 10 \sqrt{\frac{\cos 2 \theta +1}{2}}\frac{1}{\sqrt{2}}\left ( \sqrt{1-c}+\sqrt{2-c} \right) \\ &&&= 5 \sqrt{c+1}\left ( \sqrt{1-c}+\sqrt{2-c} \right) \\ \\ && \frac15\frac{\d s}{\d c} &= \frac12(c+1)^{-1/2}((1-c)^{1/2} + (2-c)^{1/2}) - \frac12(c+1)^{1/2}\left ((1-c)^{-1/2}+(2-c)^{-1/2} \right) \\ &&&= \frac{((1-c)(2-c)^{1/2}+(2-c)(1-c)^{1/2})-((c+1)(2-c)^{1/2}+(c+1)(1-c)^{1/2})}{2\sqrt{c+1}\sqrt{1-c}\sqrt{2-c}} \\ &&&= \frac{\sqrt{2-c}\left (1-c-c-1 \right)+\sqrt{1-c}\left(2-c-c-1) \right)}{2\sqrt{c+1}\sqrt{1-c}\sqrt{2-c}} \\ &&&= \frac{\sqrt{1-c}\left(1-2c\right)-2c\sqrt{2-c}}{2\sqrt{c+1}\sqrt{1-c}\sqrt{2-c}} \\ \\ \frac{\d s}{\d c} =0: && \sqrt{1-c}\left(1-2c\right)&=2c\sqrt{2-c} \\ \Rightarrow && (1-c)(1-2c)^2&=4c^2(2-c) \\ \Rightarrow && 1-5c+8c^2-4c^3 &= 8c^2-4c^3 \\ \Rightarrow && 0 &= -5c+1 \\ \Rightarrow && c &= \frac15 \end{align*} When \(\theta = 45^{\circ}, c = 0\), so \(s_{45^{\circ}} = 5(1+\sqrt{2})\) When \(c = \frac15\), \begin{align*} s &= 5 \sqrt{\frac15+1}\left ( \sqrt{1-\frac15}+\sqrt{2-\frac15} \right) \\ &= 5 \sqrt{\frac65} \left ( \sqrt{\frac45} + \sqrt{\frac95} \right) \\ &= 2\sqrt{6}+3\sqrt{6} = 5\sqrt{6} \end{align*} Therefore the additional distance is \(5(\sqrt{6}-\sqrt{2}-1)\)

2012 Paper 1 Q10
D: 1500.0 B: 1500.0

I stand at the top of a vertical well. The depth of the well, from the top to the surface of the water, is \(D\). I drop a stone from the top of the well and measure the time that elapses between the release of the stone and the moment when I hear the splash of the stone entering the water. In order to gauge the depth of the well, I climb a distance \(\delta\) down into the well and drop a stone from my new position. The time until I hear the splash is \(t\) less than the previous time. Show that \[ t = \sqrt{\frac{2D}g} - \sqrt{\frac{2(D-\delta)}g} + \frac \delta u\,, \] where \(u\) is the (constant) speed of sound. Hence show that \[ D = \tfrac12 gT^2\,, \] where \(T= \dfrac12 \beta + \dfrac \delta{\beta g}\) and \(\beta = t - \dfrac \delta u\,\). Taking \(u=300\,\)m\,s\(^{-1}\) and \(g=10\,\)m\,s\(^{-2}\), show that if \(t= \frac 15\,\)s and \(\delta=10\,\)m, the well is approximately \(185\,\)m deep.


Solution: \begin{align*} && s &= ut + \frac12at^2 \\ && D &= \frac12gt_D^2 \\ \Rightarrow && t_D &= \sqrt{\frac{2D}{g}} \\ \Rightarrow && t_{D-\delta} &= \sqrt{\frac{2(D-\delta}{g}} \end{align*} Therefore the difference in times of what I hear will be: \begin{align*} t &= \underbrace{\sqrt{\frac{2D}{g}}}_{\text{time for first stone to hit water}} + \underbrace{\frac{D}{u}}_{\text{time to hear about it}} - \left (\underbrace{\sqrt{\frac{2(D-\delta)}{g}}}_{\text{time for second stone to hit water}} + \underbrace{\frac{D-\delta}{u}}_{\text{time to hear about it}} \right) \\ &= \sqrt{\frac{2D}g} - \sqrt{\frac{2(D-\delta)}g} + \frac \delta u \end{align*} \begin{align*} && t &= \sqrt{\frac{2D}g} - \sqrt{\frac{2(D-\delta)}g} + \frac \delta u \\ \Rightarrow && \beta &= \sqrt{\frac{2D}g} - \sqrt{\frac{2(D-\delta)}g} \\ && \beta^2 &= \frac{2D}{g} + \frac{2(D-\delta)}{g} - \frac{4}{g}\sqrt{D(D-g)} \\ &&&= \frac{4D}{g} - \frac{2\delta}{g} - \frac{4}{g} \sqrt{D(D-\delta)}\\ \Rightarrow && g\beta^2 &= 4D-2\delta -4\sqrt{D(D-\delta)}\\ \Rightarrow && (g \beta^2-4D+2\delta)^2 &= 16D(D-\delta) \\ \Rightarrow && g^2\beta^4 + 16D^2 + 4\delta^2 -8g\beta^2D+4g\beta^2 \delta -16D\delta &= 16D^2-16D\delta \\ \Rightarrow && 8g\beta^2D &= g\beta^4 +4\delta^2 +4g\beta^2 \delta \\ \Rightarrow && D &= \frac1{8g\beta^2} \left ( g^2\beta^4 +4\delta^2 +4g\beta^2 \delta\right) \\ &&&= \frac1{8g\beta^2} \left ( g\beta^2 +2\delta \right)^2 \\ &&&= \frac12g \left ( \frac{\beta}{2} + \frac{\delta}{g\beta} \right)^2 \end{align*} If \(u = 300, g = 10, t = \frac15, \delta = 10\), then \begin{align*} && \beta &= \frac15-\frac{10}{300}\\ &&&= \frac15 - \frac1{30} \\ &&&= \frac{1}{6}\\ && D &= \frac12 \cdot 10 \left ( \frac1{12} + 6 \right)^2 \\ &&&= 5\cdot (36 + 1 + \frac{1}{12^2}) \\ &&&\approx 37 \cdot 5 = 185 \end{align*}