Problems

Filters
Clear Filters
2009 Paper 1 Q1
D: 1500.0 B: 1500.0

A {\em proper factor} of an integer \(N\) is a positive integer, not \(1\) or \(N\), that divides \(N\).

  1. Show that \(3^2\times 5^3\) has exactly \(10\) proper factors. Determine how many other integers of the form \(3^m\times5^n\) (where \(m\) and \(n\) are integers) have exactly 10 proper factors.
  2. Let \(N\) be the smallest positive integer that has exactly \(426\) proper factors. Determine \(N\), giving your answer in terms of its prime factors.


Solution:

  1. All factors of \(3^2 \times 5^3\) have factors of the form \(3^k \times 5^l\) where \(0 \leq k \leq 2\) and \(0 \leq l \leq 3\) therefore there are \(3\) possible values for \(k\) and \(4\) possible values for \(l\), which gives \(3 \times 4 = 12\) factors, which includes \(2\) factors we aren't counting, so \(10\) proper factors. By the same argument \(3^m \times 5^n\) has \((m+1) \times (n+1) - 2\) proper factors, so we want \((m+1) \times (n+1) = 12\), so we could have \begin{array}{cccc} \text{factor} & m+1 & n + 1 & m & n \\ 12 = 12 \times 1 & 12 & 1 & 11 & 0 \\ 12 = 6 \times 2 & 6& 2 & 5 & 1 \\ 12 = 4 \times 3 & 4& 3 & 3 & 2 \\ 12 = 3 \times 4 & 3& 4 & 2 & 3 \\ 12 = 2 \times 6 & 2& 6 & 1 & 5 \\ 12 = 1 \times 12 & 1& 12 & 0 & 11 \\ \end{array} So we could have \(3^{11}, 3^{5} \times 5^1 3^3 \times 5^2, 3^2 \times 5^3, 3^1 \times 5^5, 5^{11}\)
  2. Suppose \(N\) has \(426\) proper factors, then it has \(428 = 2^2 \times 107\) factors, so it will either factor as \(p^{427}\) or \(p_1^{106} p_2^{3}\) or \(p_1^{106} p_2 p_3\). Clearly the first will be very large, and we should have \(p_1 < p_2 < p_3\), so lets consider \(2^{106}\) with either \(3^3 = 27\) or \(3 \times = 15 < 27\). Therefore we should take \(2^{106} \times 3 \times 5\)

2009 Paper 1 Q2
D: 1500.0 B: 1500.0

A curve has the equation \[ y^3 = x^3 +a^3+b^3\,, \] where \(a\) and \(b\) are positive constants. Show that the tangent to the curve at the point \((-a,b)\) is \[ b^2y-a^2x = a^3+b^3\,. \] In the case \(a=1\) and \(b=2\), show that the \(x\)-coordinates of the points where the tangent meets the curve satisfy \[ 7x^3 -3x^2 -27x-17 =0\,. \] Hence find positive integers \(p\), \(q\), \(r\) and \(s\) such that \[ p^3 = q^3 +r^3 +s^3\,. \]


Solution: \begin{align*} && y^3 &= x^3 + a^3 + b^3 \\ \Rightarrow && 3y^2 \frac{\d y}{\d x} &= 3x^2 \\ \Rightarrow && \frac{\d y}{\d x} &= \frac{x^2}{y^2} \end{align*} Therefore the tangent at the point \((-a,b)\) has gradient \(\frac{a^2}{b^2}\), ie \begin{align*} && \frac{y-b}{x+a} &= \frac{a^2}{b^2} \\ \Rightarrow && b^2y - b^3 &= a^2 x + a^3 \\ \Rightarrow && b^2 y-a^2 x &= a^3 + b^3 \end{align*} Notice that tangent will be, \(4y-x = 9\) so substituting this we obtain: \begin{align*} && \left (\frac{9+x}{4} \right)^3 &= x^3 + 9 \\ \Rightarrow && 9^3 + 3 \cdot 9^2 x + 3 \cdot 9x^2 + x^3 &= 64x^3 + 64 \cdot 9 \\ \Rightarrow && 9 \cdot (9^2 - 8^2) + 9 \cdot (3 \cdot 9) + 9 \cdot 3x^2 -9 \cdot 7x^3 &= 0 \\ \Rightarrow && 7x^3-3x^2-27x-17 &= 0 \\ \Rightarrow && (x+1)^2(7x-17) &= 0 \tag{repeated root since tangent} \end{align*} So we have another point on the curve \(y^3 = x^3 + 2^3 + 1^3\), namely \((\frac{17}7, \frac{17+9 \cdot 7}{28}) = (\frac{17}7, \frac{20}{7})\), so \begin{align*} 20^3 &= 17^3 + 14^3 + 7^3 \end{align*}

2009 Paper 1 Q3
D: 1516.0 B: 1468.7

  1. By considering the equation \(x^2+x-a=0\,\), show that the equation \(x={(a-x)\vphantom M}^{\frac12}\) has one real solution when \(a\ge0\) and no real solutions when \(a<0\,\). Find the number of distinct real solutions of the equation \[ x={\big((1+a)x-a\big)}^{\!\frac13} \] in the cases that arise according to the value of \(a\).
  2. Find the number of distinct real solutions of the equation \[ x={(b+x)\vphantom M}^{\frac12} \] in the cases that arise according to the value of \(b\,\).

2009 Paper 1 Q4
D: 1500.0 B: 1500.0

The sides of a triangle have lengths \(p-q\), \(p\) and \(p+q\), where \(p>q> 0\,\). The largest and smallest angles of the triangle are \(\alpha\) and \(\beta\), respectively. Show by means of the cosine rule that \[ 4(1-\cos\alpha)(1-\cos\beta) = \cos\alpha + \cos\beta \,. \] In the case \(\alpha = 2\beta\), show that \(\cos\beta=\frac34\) and hence find the ratio of the lengths of the sides of the triangle.


Solution: The largest angle will be opposite the side with length \(p+q\). Similarly the smallest angle will be opposite the side with length \(p-q\). The cosine rule tells us that: \begin{align*} && (p+q)^2 &= p^2 + (p-q)^2 - 2p(p-q) \cos \alpha \\ && 0 &= p(p-4q-2(p-q)\cos \alpha)\\ && 0 &= p(1-2\cos \alpha) + q(2\cos \alpha - 4)\\ \Rightarrow && \frac{p}{q} & = \frac{4-2 \cos \alpha}{1-2 \cos \alpha} \\ && (p-q)^2 &= p^2 + (p+q)^2 - 2p(p+q) \cos \beta \\ && 0 &= p(p+4q-2(p+q) \cos \beta) \\ && 0 &= p(1-2\cos \beta)+q(4-2\cos \beta) \\ \Rightarrow && \frac{p}{q} &= \frac{2\cos \beta - 4}{1-2\cos \beta} \\ \Rightarrow && \frac{4-2 \cos \alpha}{1-2 \cos \alpha} &= \frac{2\cos \beta - 4}{1-2\cos \beta} \\ \Rightarrow && (2-\cos \alpha)(1-2\cos \beta) &= (\cos \beta - 2)(1 - 2 \cos \alpha) \\ \Rightarrow && 2 - \cos \alpha -4\cos \beta+2\cos \alpha \cos \beta &= \cos \beta - 2-2\cos \alpha \cos \beta + 4 \cos \alpha \\ \Rightarrow && 4-4\cos \alpha - 4\cos \beta+4\cos \alpha\cos \beta &= \cos \alpha + \cos \beta \\ \Rightarrow && 4(1-\cos \alpha)(1-\cos \beta) &= \cos \alpha + \cos \beta \end{align*} If \(\alpha = 2 \beta\), and let \(c = \cos \beta\) \begin{align*} && 4 (1- \cos 2 \beta)(1-\cos \beta) &= \cos 2 \beta + \cos \beta \\ \Rightarrow && 4(1-(2c^2-1))(1-c) &= 2c^2-1+c\\ \Rightarrow && 8(1+c)(1-c)^2 &= (2c-1)(c+1) \\ \Rightarrow && 0 &= (c+1)(8(1-c)^2-(2c-1)) \\ &&&= (c+1)(8c^2-18c+9) \\ &&&= (c+1)(4c-3)(2c-3) \\ \end{align*} Therefore \(c = -1, \frac32, \frac34\). Clearly \(\cos \beta \neq -1, \frac32\), since they are not valid angles in a triangle (or valid values of \(\cos \beta\)). \(\frac{p}{q} = \frac{2 \cdot \frac34-4 }{1 - 2\cdot \frac34} = \frac{3-8}{2-3} = 5\) so \(4:5:6\)

2009 Paper 1 Q5
D: 1484.0 B: 1484.0

A right circular cone has base radius \(r\), height \(h\) and slant length \(\ell\). Its volume \(V\), and the area~\(A\) of its curved surface, are given by \[ V= \tfrac13 \pi r^2 h \,, \ \ \ \ \ \ \ A = \pi r\ell\,. \] \vspace*{-1cm}

  1. Given that \(A\) is fixed and \(r\) is chosen so that \(V\) is at its stationary value, show that \(A^2 = 3\pi^2r^4\) and that $ \ell =\sqrt3\,r\(.
  2. Given, instead, that \)V\( is fixed and \)r$ is chosen so that \(A\) is at its stationary value, find~\(h\) in terms of \(r\).

2009 Paper 1 Q6
D: 1484.0 B: 1502.7

  1. Show that, for \(m>0\,\), \[ \int_{1/m}^m \frac{x^2}{x+1} \, \d x = \frac{(m-1)^3(m+1)}{2m^2}+ \ln m\,. \]
  2. Show by means of a substitution that \[ \int_{1/m}^m \frac1 {x^n(x+1)}\,\d x = \int_{1/m}^m \frac {u^{n-1}}{u+1}\,\d u \,. \]
  3. Evaluate:
    • [\bf (a)] \quad \(\displaystyle \int_{1/2}^2 \frac {x^5+3}{x^3(x+1)}\,\d x \;;\) \\
    • [\bf (b)] \quad \(\displaystyle \int_1^2 \frac{x^5+x^3 +1}{x^3(x+1)}\, \d x\;. \)

2009 Paper 1 Q7
D: 1484.0 B: 1484.0

Show that, for any integer \(m\), \[ \int_0^{2\pi} \e^x \cos mx \, \d x = \frac {1}{m^2+1}\big(\e^{2\pi}-1\big)\,. \]

  1. Expand \(\cos(A+B) +\cos(A-B)\). Hence show that \[\displaystyle \int_0^{2\pi} \e^x \cos x \cos 6x \, \d x\, = \tfrac{19}{650}\big( \e^{2\pi}-1\big)\,. \]
  2. Evaluate $\displaystyle \int_0^{2\pi} \e^x \sin 2x \sin 4x \cos x \, \d x\,$.


Solution: \begin{align*} && I &= \int_0^{2 \pi} e^{x} \cos m x \d x \\ &&&= \left [e^x \cos m x \right]_0^{2 \pi}-\int_0^{2 \pi} e^x m (-\sin mx) \d x\\ &&&= e^{2\pi}-1 + m\int_0^{2\pi}e^x \sin m x \d x \\ &&&= e^{2\pi}-1 + m\left [e^x \sin m x \right]_0^{2\pi} - m \int_0^{2\pi} e^x m \cos x \d x \\ &&&= e^{2\pi}-1+0 - m^2 I\\ \Rightarrow && (m^2+1)I &= e^{2\pi}-1 \\ \Rightarrow && I &= \frac{1}{m^2+1} (e^{2\pi}-1) \end{align*}

  1. \(\,\) \begin{align*} && \cos(A+B) + \cos(A-B) &= \cos A\cos B - \sin A \sin B + \cos A \cos B + \sin A \sin B \\ &&&= 2 \cos A \cos B \end{align*} Therefore \begin{align*} && I &= \int_0^{2\pi} e^x \cos x \cos 6x \d x \\ &&&= \int_0^{2\pi} e^x \frac12\left (\cos 7x + \cos 5x \right) \d x\\ &&&= \left ( \frac{1}{2(1+7^2)} + \frac1{2(1+5^2)}\right)(e^{2\pi}-1) \\ &&&= \left (\frac{1}{100}+\frac{1}{52} \right) (e^{2\pi}-1) \\ &&&= \frac{19}{650}(e^{2\pi}-1) \end{align*}
  2. \(\,\) \begin{align*} && I &= \int_0^{2\pi} e^x \sin 2x \sin 4x \cos x \d x\\ &&&= \int_0^{2\pi} e^x \tfrac12(\cos2x-\cos 6x) \cos x \d x\\ &&&= \frac12 \int_0^{2\pi} e^x \left (\cos 2x \cos x -\cos 6x \cos x \right) \d x \\ &&&= \frac14 \int_0^{2\pi} e^x \left (\cos 3x + \cos x-\cos 7x-\cos 5x \right) \d x \\ &&&= \frac14 \left (\frac{1}{1+3^2}+\frac{1}{1+1^2}-\frac{1}{1+7^2} - \frac{1}{1+5^2} \right)(e^{2\pi}-1) \\ &&&= \frac14 \left (\frac{1}{10}+\frac{1}{2}-\frac{1}{50} - \frac{1}{26} \right)(e^{2\pi}-1) \\ &&&= \frac{44}{325}(e^{2\pi}-1) \end{align*}

2009 Paper 1 Q8
D: 1500.0 B: 1484.0

  1. The equation of the circle \(C\) is \[ (x-2t)^2 +(y-t)^2 =t^2, \] where \(t\) is a positive number. Show that \(C\) touches the line \(y=0\,\). Let \(\alpha\) be the acute angle between the \(x\)-axis and the line joining the origin to the centre of \(C\). Show that $\tan2\alpha =\frac43\( and deduce that \)C\( touches the line \)3y=4x\,$.
  2. Find the equation of the incircle of the triangle formed by the lines \(y=0\), \(3y=4x\) and \(4y+3x=15\,\). {\bf Note:} The {\em incircle} of a triangle is the circle, lying totally inside the triangle, that touches all three sides.

2009 Paper 1 Q9
D: 1500.0 B: 1484.0

Two particles \(P\) and \(Q\) are projected simultaneously from points \(O\) and \(D\), respectively, where~\(D\) is a distance \(d\) directly above \(O\). The initial speed of \(P\) is \(V\) and its angle of projection {\em above} the horizontal is \(\alpha\). The initial speed of \(Q\) is \(kV\), where \(k>1\), and its angle of projection {\em below} the horizontal is \(\beta\). The particles collide at time \(T\) after projection. Show that \(\cos\alpha = k\cos\beta\) and that \(T\) satisfies the equation \[ (k^2-1)V^2T^2 +2dVT\sin\alpha -d^2 =0\,. \] Given that the particles collide when \(P\) reaches its maximum height, find an expression for~\(\sin^2\alpha\) in terms of \(g\), \(d\), \(k\) and \(V\), and deduce that \[ gd\le (1+k)V^2\,. \]

2009 Paper 1 Q10
D: 1500.0 B: 1500.0

A triangular wedge is fixed to a horizontal surface. The base angles of the wedge are \(\alpha\) and \(\frac\pi 2-\alpha\). Two particles, of masses \(M\) and \(m\), lie on different faces of the wedge, and are connected by a light inextensible string which passes over a smooth pulley at the apex of the wedge, as shown in the diagram. The contacts between the particles and the wedge are smooth.

\psset{xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt 0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25} \begin{pspicture*}(-0.12,-0.34)(8.27,3.81) \pspolygon(5.74,3.35)(5.89,3.08)(6.15,3.24)(6,3.5) \pscircle[linewidth=0.4pt,fillcolor=black,fillstyle=solid,opacity=0.4](5.99,3.5){0.23} \psline(0,0)(6,3.5) \psline(8,0)(6,3.5) \psline(6.2,3.59)(7.03,2.13) \psline(5.87,3.69)(1.99,1.44) \psline(0,0)(8,0) \rput[tl](0.91,0.44){\(\alpha\)} \rput[tl](6.54,0.63){\(\frac{\pi}{2}-\alpha\)} \rput[tl](1.38,1.99){\(M\)} \rput[tl](7.31,2.6){\(m\)} \begin{scriptsize} \psdots[dotsize=12pt 0,dotstyle=*](7.03,2.13) \psdots[dotsize=12pt 0,dotstyle=*](1.99,1.4) \end{scriptsize} \end{pspicture*}
  1. Show that if \(\tan \alpha> \dfrac m M \) the particle of mass \(M\) will slide down the face of the wedge.
  2. Given that \(\tan \alpha = \dfrac{2m}M\), show that the magnitude of the acceleration of the particles is \[ \frac{g\sin\alpha}{\tan\alpha +2} \] and that this is maximised at \(4m^3=M^3\,\).