Problems

Filters
Clear Filters
2025 Paper 2 Q11
D: 1500.0 B: 1500.0

  1. By considering the sum of a geometric series, or otherwise, show that \[\sum_{r=1}^{\infty} rx^{r-1} = \frac{1}{(1-x)^2} \quad \text{for } |x| < 1.\]
  2. Ali plays a game with a fair \(2k\)-sided die. He rolls the die until the first \(2k\) appears. Ali wins if all the numbers he rolls are even.
    1. Find the probability that Ali wins the game. If Ali wins the game, he earns £1 for each roll, including the final one. If he loses, he earns nothing.
    2. Find Ali's expected earnings from playing the game.
  3. Find a simplified expression for \[1 + 2\binom{n}{1}x + 3\binom{n}{2}x^2 + \ldots + (n+1)x^n,\] where \(n\) is a positive integer.
  4. Zen plays a different game with a fair \(2k\)-sided die. She rolls the die until the first \(2k\) appears, and wins if the numbers rolled are strictly increasing in size. For example, if \(k = 3\), she wins if she rolls 2, 6 or 1, 4, 5, 6, but not if she rolls 1, 4, 2, 6 or 1, 3, 3, 6. If Zen wins the game, she earns £1 for each roll, including the final one. If she loses, she earns nothing. Find Zen's expected earnings from playing the game.
  5. Using the approximation \[\left(1 + \frac{1}{n}\right)^n \approx e \quad \text{for large } n,\] show that, when \(k\) is large, Zen's expected earnings are a little over 35\% more than Ali's expected earnings.


Solution:

  1. Note that, \begin{align*} && \sum_{r = 0}^\infty x^r &= \frac{1}{1-x} && |x| < 1\\ \underbrace{\Rightarrow}_{\frac{\d}{\d x}} && \sum_{r = 0}^\infty rx^{r-1} &= \frac{1}{(1-x)^2} && |x| < 1\\ && \sum_{r = 1}^\infty rx^{r-1} &= \frac{1}{(1-x)^2} && |x| < 1\\ \end{align*}
    1. \begin{align*} && \mathbb{P}(\text{Ali wins in }s\text{ rounds}) &= \left ( \frac{k-1}{2k} \right)^{s-1} \frac{1}{2k} \\ \Rightarrow && \mathbb{P}(\text{Ali wins}) &= \sum_{s=1}^\infty \mathbb{P}(\text{Ali wins in }s\text{ rounds}) \\ &&&=\sum_{s=1}^\infty \left ( \frac{k-1}{2k} \right)^{s-1} \frac{1}{2k} \\ &&&= \frac{1}{2k} \sum_{s=0}^\infty \left ( \frac{k-1}{2k} \right)^{s} \\ &&&= \frac{1}{2k} \frac{1}{1 - \frac{k-1}{2k}} \\ &&&= \frac{1}{2k - (k-1)} \\ &&&= \frac{1}{k+1} \end{align*}
    2. \begin{align*} \mathbb{E}(\text{Ali score}) &= \sum_{s=1}^{\infty} s \mathbb{P}(\text{Ali wins in }s\text{ rounds}) \\ &= \sum_{s=1}^{\infty} s \left ( \frac{k-1}{2k} \right)^{s-1} \frac{1}{2k} \\ &= \frac{1}{2k} \frac{1}{\left (1 - \frac{k-1}{2k} \right)^2} \\ &= \frac{2k}{(k+1)^2} \end{align*}
  2. \begin{align*} && (1+x)^{n} &= \sum_{k=0}^n \binom{n}{k} x^k \\ \Rightarrow && x(1+x)^n &= \sum_{k=0}^n \binom{n}{k} x^{k+1} \\ \Rightarrow && (1+x)^n + nx(1+x)^{n-1} &= \sum_{k=0}^n (k+1)\binom{n}{k} x^k \\ \Rightarrow && (1+x)^{n-1}(1+(n+1)x) &= 1 + 2\binom{n}{1}x + 3\binom{n}{2}x^2 + \ldots + (n+1)x^n \end{align*}
  3. \begin{align*} \mathbb{E}(\text{Zen score}) &= \sum_{s=1}^{2k} s \mathbb{P} \left ( \text{Zen gets }s\text{ numbers in increasing order ending with }2k \right) \\ &= \sum_{s=1}^{2k} s \binom{2k-1}{s-1} \frac{1}{(2k)^s} \\ &= \frac{1}{2k}\sum_{s=0}^{2k-1} (s+1) \binom{2k-1}{s} \frac{1}{(2k)^s} \\ &= \frac{1}{2k} \left ( 1 + \frac{1}{2k} \right)^{2k-2} \left ( 1 + (2k-1+1) \frac{1}{2k} \right) \\ &= \frac{1}{k}\left ( 1 + \frac{1}{2k} \right)^{2k-2} \end{align*}
  4. Therefore as \(k \to \infty\) \begin{align*} \frac{\mathbb{E}(\text{Zen score})}{\mathbb{E}(\text{Ali score}) } &= \frac{1}{k}\left ( 1 + \frac{1}{2k} \right)^{2k-2} \big / \frac{2k}{(k+1)^2} \\ &= \frac{(k+1)^2}{2k^2} \cdot \left ( 1 + \frac{1}{2k} \right)^{2k} \cdot \left ( 1 + \frac{1}{2k} \right)^{-2} \\ &\to \frac12 e \approx 2.7/2 = 1.35 \end{align*} ie Zen's expected earnings are \(\approx 35\%\) more.

2025 Paper 2 Q12
D: 1500.0 B: 1500.0

Let \(X\) be a Poisson random variable with mean \(\lambda\) and let \(p_r = P(X = r)\), for \(r = 0, 1, 2, \ldots\). Neither \(\lambda\) nor \(\lambda + \frac{1}{2} + \sqrt{\lambda + \frac{1}{4}}\) is an integer.

  1. Show, by considering the sequence \(d_r \equiv p_r - p_{r-1}\) for \(r = 1, 2, \ldots\), that there is a unique integer \(m\) such that \(P(X = r) \leq P(X = m)\) for all \(r = 0, 1, 2, \ldots\), and that \[\lambda - 1 < m < \lambda.\]
  2. Show that the minimum value of \(d_r\) occurs at \(r = k\), where \(k\) is such that \[k < \lambda + \frac{1}{2} + \sqrt{\lambda + \frac{1}{4}} < k + 1.\]
  3. Show that the condition for the maximum value of \(d_r\) to occur at \(r = 1\) is \[1 < \lambda < 2 + \sqrt{2}.\]
  4. In the case \(\lambda = 3.36\), sketch a graph of \(p_r\) against \(r\) for \(r = 0, 1, 2, \ldots, 6, 7\).


Solution:

  1. Suppose \(d_r = p_r - p_{r-1}\) then \begin{align*} d_r &= p_r - p_{r-1} \\ &= \mathbb{P}(X = r) - \mathbb{P}(X = r-1) \\ &= e^{-\lambda} \left ( \frac{\lambda^r}{r!} - \frac{\lambda^{r-1}}{(r-1)!} \right) \\ &= e^{-\lambda} \frac{\lambda^{r-1}}{(r-1)!} \left ( \frac{\lambda}{r} - 1\right) \end{align*} Therefore \(d_r > 0 \Leftrightarrow \lambda > r\)ie, \(p_r\) is increasing while \(r < \lambda\) and reaches a (unique) maximum when \(r = \lfloor \lambda \rfloor\).
  2. Let \(dd_r = d_r - d_{r-1}\), so: \begin{align*} dd_r &= d_r - d_{r-1} \\ &= p_r - 2p_{r-1} + p_{r-2} \\ &= e^{-\lambda} \frac{\lambda^{r-2}}{r!} \left ( \lambda^2 - 2 \lambda r + r(r-1)\right ) \end{align*} Therefore \(dd_r < 0 \Leftrightarrow \lambda^2 - 2\lambda r +r(r-1) < 0 \Leftrightarrow r^2 -(1+2\lambda)r + \lambda^2 < 0\), but this has roots \(r = \frac{(1+2\lambda) \pm \sqrt{(1+2\lambda)^2-4\lambda^2}}{2} = \lambda + \frac12 \pm \sqrt{\lambda + \frac14}\). Therefore \(d_r\) is decreasing when \(r \in \left (\lambda + \frac12 -\sqrt{\lambda + \frac14},\lambda + \frac12 + \sqrt{\lambda + \frac14} \right)\), therefore the possible minimums are \(d_1\) and \(d_k\) where \(k < \lambda + \frac{1}{2} + \sqrt{\lambda + \frac{1}{4}} < k + 1\). \(d_1 = e^{-\lambda}(\lambda - 1)\), \(d_k = e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}(\frac{\lambda}{k}-1)\)
  3. If the maximum value of \(d_r\) is \(r = 1\) then \(d_r\) must be decreasing, ie considering \(dd_2\) we have \(\lambda^2 -4\lambda + 2< 0 \Leftrightarrow 2 - \sqrt{2} < \lambda < 2 + \sqrt{2}\). It must also be the case that it doesn't get beaten as \(\lambda \to \infty\). In this case \(d_r \to 0\), so we need \(d_1 > 0\), ie \(\lambda > 1\). Therefore \(1 < \lambda < 2 + \sqrt{2}\)
  4. TikZ diagram
    re} \end{center}

2025 Paper 3 Q1
D: 1500.0 B: 1500.0

You need not consider the convergence of the improper integrals in this question. For \(p, q > 0\), define $$b(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1} \, dx$$

  1. Show that \(b(p,q) = b(q,p)\).
  2. Show that \(b(p+1,q) = b(p,q) - b(p,q+1)\) and hence that \(b(p+1,p) = \frac{1}{2}b(p,p)\).
  3. Show that $$b(p,q) = 2\int_0^{\pi/2} (\sin\theta)^{2p-1}(\cos\theta)^{2q-1} \, d\theta$$ Hence show that \(b(p,p) = \frac{1}{2^{2p-1}}b(p,\frac{1}{2})\).
  4. Show that $$b(p,q) = \int_0^\infty \frac{t^{p-1}}{(1+t)^{p+q}} \, dt$$
  5. Evaluate $$\int_0^\infty \frac{t^{3/2}}{(1+t)^6} \, dt$$


Solution:

  1. \begin{align*} && b(p,q) &= \int_0^1 x^{p-1}(1-x)^{q-1}\, \d x \\ u = 1-x, \d u = -\d x && &= \int_{u=1}^{u = 0} (1-u)^{p-1}u^{q-1} (-1) \, \d u \\ &&&= \int_0^1 (1-u)^{p-1}u^{q-1} \d u \\ &&&= \int_0^1 u^{q-1}(1-u)^{p-1} \d u \\ &&&= b(q,p) \end{align*}
  2. \begin{align*} b(p+1,q) + b(p,q+1) &= \int_0^1 x^p(1-x)^{q-1} \d x + \int_0^1 x^{p-1}(1-x)^{q} \d x \\ &= \int_0^1 \left (x^p(1-x)^{q-1} + x^{p-1}(1-x)^{q}\right) \d x \\ &= \int_0^1 x^{p-1}(1-x)^{q-1} \left (x + (1-x) \right) \d x \\ &= \int_0^1 x^{p-1}(1-x)^{q-1} \d x \\ &= b(p,q) \end{align*} Therefore \(b(p+1,q) = b(p,q) - b(p,q+1)\), in particular \(2b(p+1,p) = b(p+1,p)+b(p,p+1) = b(p,p) \Rightarrow b(p+1,p) = \frac12 b(p,p)\) as required.
  3. \begin{align*} && b(p,q) &= \int_0^1 x^{p-1} (1-x)^{q-1} \d x \\ x = \sin^2 \theta, \d x = 2 \sin \theta \cos \theta \d \theta && &= \int_{u=0}^{u = \pi/2} \sin^{2p-2} \theta (1-\sin^2 \theta)^{q-1} \cdot 2 \sin \theta \cos \theta \d \theta \\ &&&= 2 \int_0^{\pi/2} \sin^{2p-1} \theta \cos^{2q-2} \cos \theta \d \theta \\ &&&= 2 \int_0^{\pi/2} \sin^{2p-1} \theta \cos^{2q-1} \theta \d \theta \end{align*} \begin{align*} b(p,p) &= 2\int_0^{\pi/2} (\sin \theta)^{2p-1}(\cos \theta)^{2p-1} \d \theta \\ &= 2 \int_0^{\pi/2} \left (\frac12 \sin 2\theta \right)^{2p-1} \d \theta \\ &= \frac1{2^{2p-1}} 2 \int_0^{\pi/2} (\sin 2 \theta)^{2p-1} \d \theta \\ &= \frac1{2^{2p-1}} 2 \int_{x=0}^{x=\pi} (\sin x)^{2p-1} 2 \d x\\ &= \frac1{2^{2p-1}} 2 \int_{x=0}^{x=\pi/2} (\sin x)^{2p-1} \d x\\ &= \frac1{2^{2p-1}} 2 \int_{0}^{\pi/2} (\sin x)^{2p-1} (\cos x)^{0} \d x\\ &= \frac1{2^{2p-1}} b(p,\tfrac12) \end{align*}
  4. \begin{align*} &&b(p,q) &= \int_0^1 x^{p-1}(1-x)^{q-1} \d x \\ t = \frac{x}{1-x}, \d t = (1-x)^{-2} \d x &&&= \int_{t=0}^{t = \infty} \left ( \frac{t}{1+t} \right)^{p-1} \left ( 1-\frac{t}{1+t} \right)^{q+1} \d t\\ x = \frac{t}{1+t} && &=\int_0^\infty t^{p-1} (1+t)^{-(p-1)-(q+1)} \d t \\ &&&= \int_0^{\infty} \frac{t^{p-1}}{(1+t)^{p+q}} \d t \end{align*}
  5. \begin{align*} I &= \int_0^\infty \frac{t^{3/2}}{(1+t)^6} \, dt \\ &= b( \tfrac52, \tfrac72) \\ &= b( \tfrac52, \tfrac52+1) \\ &= \tfrac12 b( \tfrac52, \tfrac52) \\ &= \frac12 \cdot \frac1{2^{4}} b(\tfrac52, \tfrac12) \\ &= \frac{1}{2^5} \cdot 2 \int_0^{\pi/2} (\sin \theta)^{4} \d \theta \\ &= \frac1{2^4} \int_0^{\pi/2}\left (\frac{1-\cos 2 \theta}{2} \right)^2 \d \theta \\ &= \frac1{2^6} \int_0^{\pi/2}\left (1 - 2 \cos 2 \theta + \cos^{2} 2 \theta \right) \d \theta \\ &= \frac1{2^6} \int_0^{\pi/2}\left (1 - 2 \cos 2 \theta + \frac{\cos 4 \theta + 1}{2} \right) \d \theta \\ &= \frac1{2^6} \left [\frac32 \theta - \sin 2 \theta + \frac18 \sin 4 \theta \right]_0^{\pi/2} \\ &= \frac1{2^6} \frac{3 \pi}{4} \\ &= \frac{3 \pi}{2^8} \end{align*}

2025 Paper 3 Q2
D: 1500.0 B: 1500.0

Let \(f(x) = 7 - 2|x|\). A sequence \(u_0, u_1, u_2, \ldots\) is defined by \(u_0 = a\) and \(u_n = f(u_{n-1})\) for \(n > 0\).

    1. Sketch, on the same axes, the graphs with equations \(y = f(x)\) and \(y = f(f(x))\).
    2. Find all solutions of the equation \(f(f(x)) = x\).
    3. Find the values of \(a\) for which the sequence \(u_0, u_1, u_2, \ldots\) has period 2.
    4. Show that, if \(a = \frac{28}{5}\), then the sequence \(u_2, u_3, u_4, \ldots\) has period 2, but neither \(u_0\) or \(u_1\) is equal to either of \(u_2\) or \(u_3\).
    1. Sketch, on the same axes, the graphs with equations \(y = f(x)\) and \(y = f(f(f(x)))\).
    2. Consider the sequence \(u_0, u_1, u_2, \ldots\) in the cases \(a = 1\) and \(a = -\tfrac79\). Hence find all the solutions of the equation \(f(f(f(x))) = x\).
    3. Find a value of \(a\) such that the sequence \(u_3, u_4, u_5, \ldots\) has period 3, but where none of \(u_0, u_1\) or \(u_2\) is equal to any of \(u_3, u_4\) or \(u_5\).


Solution:

    1. TikZ diagram
    2. If \(a = 1\) then \(u_1 = f(a) = 7-2 = 5\), \(u_2 = f(5) = -3\), \(u_3 = f(-3) = 7-6 = 1\). Therefore it must be the case that \(f(f(f(x))) = x\) for \(x = 1, 5, -3\). Similarly, if \(a = -\tfrac79\) then \(u_1 = f(-\tfrac79) = \tfrac{49}{9}\), \(u_2 = f(\tfrac{49}{9}) = -\tfrac{35}{9}\) and \(u_3 = f(-\tfrac{35}{9}) = -\tfrac79\). Therefore we must also have roots \(x = -\tfrac79, \tfrac{49}{9}, -\tfrac{35}9\). We also have the roots \(x = -7, \tfrac73\) from the first part so we have found all \(8\) roots.
    3. We need \(f(f(f(x))) = 1\) but \(f(f(x)) \neq -3, f(x) \neq 5, x \neq 1\). Suppose \(f(y) = 1 \Rightarrow 7-2|y| = 1 \Rightarrow y = \pm 3\). So \(y = 3\), ie \(f(f(x)) = 3\). Suppose \(f(z) = 3 \Rightarrow 7-2|z| = 3 \Rightarrow z = \pm 2\). Finally we need \(f(x) = \pm 2\), so say \(7-2|x| = 2 \Rightarrow x = \tfrac52\), so we have the sequence \(\tfrac52, 2, 3, 1, 5, -3, 1, \cdots\)as required.

2025 Paper 3 Q3
D: 1500.0 B: 1500.0

Let \(f(x)\) be defined and positive for \(x > 0\). Let \(a\) and \(b\) be real numbers with \(0 < a < b\) and define the points \(A = (a, f(a))\) and \(B = (b, -f(b))\). Let \(X = (m,0)\) be the point of intersection of line \(AB\) with the \(x\)-axis.

  1. Find an expression for \(m\) in terms of \(a\), \(b\), \(f(a)\) and \(f(b)\).
  2. Show that, if \(f(x) = \sqrt{x}\), then \(m = \sqrt{ab}\). Find, in terms of \(n\), \(a\) function \(f(x)\) such that \(m = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}\).
  3. Let \(g_1(x)\) and \(g_2(x)\) be defined and positive for \(x > 0\). Let \(m = M_1\) when \(f(x) = g_1(x)\) and let \(m = M_2\) when \(f(x) = g_2(x)\). Show that if \(\frac{g_1(x)}{g_2(x)}\) is a decreasing function then \(M_1 > M_2\). Hence show that $$\frac{a+b}{2} > \sqrt{ab} > \frac{2ab}{a+b}$$
  4. Let \(p\) and \(c\) be chosen so that the curve \(y = p(c-x)^3\) passes through both \(A\) and \(B\). Show that $$\frac{c-a}{b-c} = \left(\frac{f(a)}{f(b)}\right)^{1/3}$$ and hence determine \(c\) in terms of \(a\), \(b\), \(f(a)\) and \(f(b)\). Show that if \(f\) is a decreasing function, then \(c < m\).


Solution:

  1. The line \(AB\) has equation: \begin{align*} && \frac{y+f(b)}{x-b} &= \frac{f(a)+f(b)}{a-b} \\ \Rightarrow && \frac{f(b)}{m-b} &= \frac{f(a)+f(b)}{a-b} \\ \Rightarrow && m &= \frac{a-b}{f(a)+f(b)}f(b) + b \\ &&&= \frac{af(b)+bf(a)}{f(a)+f(b)} \end{align*}
  2. Suppose \(f(x) = \sqrt{x}\) then \begin{align*} m &= \frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}} \\ &= \frac{\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}} \\ &= \sqrt{ab} \end{align*} Suppose \(f(x) = x^{-n}\) then \begin{align*} m &= \frac{a b^{-n}+ba^{-n}}{a^{-n}+b^{-n}} \\ &= \frac{a^{n+1}+b^{n+1}}{b^n + a^n} \\ \end{align*}
  3. Without loss of generality, we can scale \(g_1(x)\) and \(g_2(x)\) so that \(g_1(a) = g_2(a)\) and \(m\) won't change for either of them. Then since \(\frac{g_1(b)}{g_2(b)} < 1\) (this function is decreasing) our line connecting \((a,g_i(a))\) and \((b,-g_i(b))\) must interect the axis first for \(g_2\), in particular \(M_1 > M_2\). Suppose \(g_1(x) =1, g_2(x) = \sqrt{x}, g_3(x) = x^{-1}\), the notice that \(\frac{g_1(x)}{g_2(x)} =\frac{g_2(x)}{g_3(x)}= x^{-1/2}\) are decreasing, therefore: \begin{align*} \frac{a+b}{1+1} &> \sqrt{ab} > \frac{1+1}{a^{-1}+b^{-1}} \\ \frac{a+b}{2} &> \sqrt{ab} > \frac{2ab}{a+b} \\ \end{align*}
  4. We must have: \begin{align*} && p(c-a)^3 &= f(a) \\ && p(c-b)^3 &= -f(b) \\ \Rightarrow &&\left ( \frac{c-a}{c-b} \right)^3 &= -\frac{f(a)}{f(b)} \\ \Rightarrow && \frac{c-a}{b-c} &= \left (\frac{f(a)}{f(b)} \right)^{\tfrac13} \\ \Rightarrow && c-a &= \left (\frac{f(a)}{f(b)} \right)^{\tfrac13}(b-c)\\ \Rightarrow && c \left (1 + \left (\frac{f(a)}{f(b)} \right)^{\tfrac13} \right) &= \left (\frac{f(a)}{f(b)} \right)^{\tfrac13}b + a \\ \Rightarrow && c &= \frac{\left (\frac{f(a)}{f(b)} \right)^{\tfrac13}b + a}{1 + \left (\frac{f(a)}{f(b)} \right)^{\tfrac13}} \\ &&&= \frac{b[f(a)]^\tfrac13+a[f(b)]^\tfrac13}{[f(a)]^\tfrac13+[f(b)]^\tfrac13} \end{align*} We have that \(\frac{c-a}{b-c} = \left (\frac{f(a)}{f(b)} \right)^{\tfrac13} \) and \(\frac{m-a}{b-c} = \frac{f(a)}{f(b)}\). Since \(f\) is decreasing, \(\frac{f(a)}{f(b)} > 1\) and so \(\left (\frac{f(a)}{f(b)} \right)^{\tfrac13} < \frac{f(a)}{f(b)}\), therefore \(m > c\).

2025 Paper 3 Q4
D: 1500.0 B: 1500.0

  1. \(x_2\) and \(y_2\) are defined in terms of \(x_1\) and \(y_1\) by the equation $$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$ \(G_1\) is the graph with equation $$\frac{x^2}{9} + \frac{y^2}{4} = 1$$ and \(G_2\) is the graph with equation $$\frac{\left(\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}}\right)^2}{9} + \frac{\left(-\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}}\right)^2}{4} = 1$$ Show that, if \((x_1, y_1)\) is a point on \(G_1\), then \((x_2, y_2)\) is a point on \(G_2\). Show that \(G_2\) is an anti-clockwise rotation of \(G_1\) through \(45°\) about the origin.
    1. The matrix $$\begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix}$$ represents a reflection. Find the line of invariant points of this matrix.
    2. Sketch, on the same axes, the graphs with equations $$y = 2^x \text{ and } 0.8x + 0.6y = 2^{-0.6x+0.8y}$$
  2. Sketch, on the same axes, for \(0 \leq x \leq 2\pi\), the graphs with equations $$y = \sin x \text{ and } y = \sin(x - 2y)$$ You should determine the exact co-ordinates of the points on the graph with equation \(y = \sin(x - 2y)\) where the tangent is horizontal and those where it is vertical.


Solution:

  1. Suppose \begin{align*} && \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} &= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \\ \Rightarrow && \binom{x_1}{y_1} &= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \binom{x_2}{y_2} \end{align*} Therefore if \(\frac{x_1^2}9+\frac{y_1^2}{4} = 1\) we must have \begin{align*} \frac{(\frac{x_2}{\sqrt{2}}+\frac{y_2}{\sqrt{2}})^2 }{9} + \frac{(-\frac{x_2}{\sqrt{2}}+\frac{y_2}{\sqrt{2}})^2}{4} = 1 \end{align*} but this is precisely the statement that \((x_1, y_1)\) is on \(G_1\) is equivalent to \((x_2,y_2)\) being on the \(G_2\). Since the point \((x_2,y_2)\) is a \(45^{\circ}\) rotation of \((x_1,y_1)\) anticlockwise about the origin, this means \(G_2\) is a \(45^{\circ}\) anticlockwise rotation of \(G_1\).
    1. \begin{align*} && \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} x \\ y \end{pmatrix} \\ \Rightarrow && \begin{pmatrix} -0.6 x + 0.8y \\ 0.8x + 0.6y \end{pmatrix} &= \begin{pmatrix} x \\ y \end{pmatrix} \\ \Rightarrow && \begin{pmatrix} -1.6 x + 0.8y \\ 0.8x -0.4y \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \Rightarrow && y &=2 x \end{align*}
    2. TikZ diagram
  2. Consider the transformation \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\) which is a shear, leaving the \(x\)-axis invariant. Then we must have:
    TikZ diagram
    Since the shear leaves lines of the form \(y = k\) invariant, the points where \(\frac{\d y}{\d x} = 0\) must also map to points where this is true, ie \((\tfrac{\pi}{2}, 1), (\tfrac{3\pi}{2}, -1)\) map to points \((\tfrac{\pi}{2}+2,1), (\tfrac{3\pi}{2} -2,-1)\) where the tangent is horizontal. The line \(x = c\) map back to lines \(\begin{pmatrix} 1 & -2 \\ 0 & 1\end{pmatrix} \begin{pmatrix} c \\ t\end{pmatrix} = \begin{pmatrix}c - 2t \\ t \end{pmatrix}\), ie \(y = -\frac12 x- \frac{c}{2}\). Therefore we are interested in points on the original curve where the gradient is \(-\frac12\), ie \((\frac{2\pi}{3}, \frac{\sqrt{3}}{2}), (\frac{4\pi}{3}, -\frac{\sqrt{3}}{2})\), these map to \((\frac{2\pi}{3}+\sqrt{3},\frac{\sqrt{3}}{2}), (\frac{4\pi}{3}-\sqrt{3}, -\frac{\sqrt{3}}{2})\)

2025 Paper 3 Q5
D: 1500.0 B: 1500.0

Three points, \(A\), \(B\) and \(C\), lie in a horizontal plane, but are not collinear. The point \(O\) lies above the plane. Let \(\overrightarrow{OA} = \mathbf{a}\), \(\overrightarrow{OB} = \mathbf{b}\) and \(\overrightarrow{OC} = \mathbf{c}\). \(P\) is a point with \(\overrightarrow{OP} = \alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}\), where \(\alpha\), \(\beta\) and \(\gamma\) are all positive and \(\alpha + \beta + \gamma < 1\). Let \(k = 1 - (\alpha + \beta + \gamma)\).

  1. The point \(L\) is on \(OA\), the point \(X\) is on \(BC\) and \(LX\) passes through \(P\). Determine \(\overrightarrow{OX}\) in terms of \(\beta\), \(\gamma\), \(\mathbf{b}\) and \(\mathbf{c}\) and show that \(\overrightarrow{OL} = \frac{\alpha}{k+\alpha}\mathbf{a}\).
  2. Let \(M\) and \(Y\) be the unique pair of points on \(OB\) and \(CA\) respectively such that \(MY\) passes through \(P\), and let \(N\) and \(Z\) be the unique pair of points on \(OC\) and \(AB\) respectively such that \(NZ\) passes through \(P\). Show that the plane \(LMN\) is also horizontal if and only if \(OP\) intersects plane \(ABC\) at the point \(G\), where \(\overrightarrow{OG} = \frac{1}{3}(\mathbf{a} + \mathbf{b} + \mathbf{c})\). Where do points \(X\), \(Y\) and \(Z\) lie in this case?
  3. State what the condition \(\alpha + \beta + \gamma < 1\) tells you about the position of \(P\) relative to the tetrahedron \(OABC\).


Solution:

  1. \(\overrightarrow{OL} = \lambda \mathbf{a}\) and \(\overrightarrow{OX} = \mu \mathbf{b} + (1-\mu) \mathbf{c}\). Since \(LX\) passes through \(P\), and \(A,B,C\) not colinear we must have that \(s \lambda = \alpha, (1-s)\mu = \beta, (1-s)(1-\mu) = \gamma\)

2025 Paper 3 Q6
D: 1500.0 B: 1500.0

  1. Let \(a\), \(b\) and \(c\) be three non-zero complex numbers with the properties \(a + b + c = 0\) and \(a^2 + b^2 + c^2 = 0\). Show that \(a\), \(b\) and \(c\) cannot all be real. Show further that \(a\), \(b\) and \(c\) all have the same modulus.
  2. Show that it is not possible to find three non-zero complex numbers \(a\), \(b\) and \(c\) with the properties \(a + b + c = 0\) and \(a^3 + b^3 + c^3 = 0\).
  3. Show that if any four non-zero complex numbers \(a\), \(b\), \(c\) and \(d\) have the properties \(a + b + c + d = 0\) and \(a^3 + b^3 + c^3 + d^3 = 0\), then at least two of them must have the same modulus.
  4. Show, by taking \(c = 1\), \(d = -2\) and \(e = 3\) that it is possible to find five real numbers \(a\), \(b\), \(c\), \(d\) and \(e\) with distinct magnitudes and with the properties \(a + b + c + d + e = 0\) and \(a^3 + b^3 + c^3 + d^3 + e^3 = 0\).


Solution:

  1. If \(a,b,c\) were all real then \(a^2+b^2+c^2 = 0 \Rightarrow a,b,c = 0\) but they are non-zero. Therefore they cannot all be real. Since \((a+b+c)^2 = 0\) we must have \(ab+bc+ca = 0\). Therefore \(a,b,c\) must satisfy \(x^3 -abc = 0 \Rightarrow\) they all have the same modulus, since they are all cube roots of the same number.
  2. Notice that \(a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab-bc-ca) \Rightarrow abc = 0\) but therefore they cannot all be non-zero.
  3. Suppose \(a+b+c+d = 0\) then note that \(\displaystyle a^2+b^2+c^2+d^2 = (a+b+c+d)^2 - 2\sum_{sym} ab\) and \(\displaystyle a^3+b^3+c^3+d^3 = (a+b+c+d)^3 - 3(a+b+c+d)(ab+ac+ad+bc+bd+cd) + 3(abc+abd+acd+bcd) \Rightarrow abc+abd+acd+bcd = 0\). Therefore \(a,b,c,d\) are roots of a polynomial of the form \(x^4 -kx^2 + l = 0\), but this means they must come in pairs with the same modulus.
  4. Suppose \(c = 1, d = -2, e = 3\) so \(c+d+e = 2\) and \(c^3 + d^3 + e^3 = 1 - 8 + 27 = 20\), so we need to find \(a,b\) satisfying \(a+b = -2, a^2+b^2 = -20\), ie \(4 = (a+b)^2 = -20 + 2ab \Rightarrow ab = 12\), so we need the roots of \(x^2 +2x + 12= 0\) which clearly have different modulus.

2025 Paper 3 Q7
D: 1500.0 B: 1500.0

Let \(f(x) = \sqrt{x^2 + 1} - x\).

  1. Using a binomial series, or otherwise, show that, for large \(|x|\), \(\sqrt{x^2 + 1} \approx |x| + \frac{1}{2|x|}\). Sketch the graph \(y = f(x)\).
  2. Let \(g(x) = \tan^{-1} f(x)\) and, for \(x \neq 0\), let \(k(x) = \frac{1}{2}\tan^{-1}\frac{1}{x}\).
    1. Show that \(g(x) + g(-x) = \frac{1}{2}\pi\).
    2. Show that \(k(x) + k(-x) = 0\).
    3. Show that \(\tan k(x) = \tan g(x)\) for \(x > 0\).
    4. Sketch the graphs \(y = g(x)\) and \(y = k(x)\) on the same axes.
    5. Evaluate \(\int_0^1 k(x) \, dx\) and hence write down the value of \(\int_{-1}^0 g(x) \, dx\).


Solution:

  1. \begin{align*} \sqrt{x^2+1} &= |x|\sqrt{1+\frac{1}{x^2}} \\ &=|x| \left (1 + \frac12 \frac{1}{x^2} + \cdots \right) & \text{if } \left (\frac{1}{x^2} < 1 \right) \\ &= |x| + \frac12 \frac{1}{|x|} + \cdots \\ &\approx |x| + \frac{1}{2|x|} \end{align*}
    TikZ diagram
    1. \begin{align*} && \tan( g(x) + g(-x)) &= \tan \left ( \tan^{-1}(\sqrt{x^2+1}-x) + \tan^{-1}(\sqrt{x^2+1}+x) \right) \\ &&&= \frac{\sqrt{x^2+1}-x+\sqrt{x^2+1}+x}{1-1} \\ \Rightarrow && g(x) + g(-x) &\in \left \{\cdots, -\frac{\pi}{2}, \frac{\pi}{2}, \cdots \right\} \end{align*} But \(g(x), g(-x) > 0\) and \(g(x), g(-x) \in (-\frac{\pi}{2}, \frac{\pi}{2})\), therefore it must be \(\frac{\pi}{2}\).
    2. \begin{align*} && \tan(2(k(x) + k(-x))) &= \tan(\tan^{-1}x + \tan^{-1}(-x)) \\ &&&= 0 \\ \Rightarrow && k(x)+k(-x) &\in \left \{\cdots, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \cdots \right\} \\ \end{align*} But \(k(x) \in (-\frac{\pi}{4}, \frac{\pi}{4})\), therefore \(k(x) + k(-x) = 0\).
    3. Let \(t = \tan k(x)\). \begin{align*} && \tan \left ( \tan^{-1} \frac{1}{x} \right) &= \frac{2 \tan\left ( \frac12 \tan^{-1} \frac1x \right)}{ 1-\tan^2\left ( \frac12 \tan^{-1} \frac1x \right)} \\ \Rightarrow && \frac1x &= \frac{2t}{1-t^2} \\ \Rightarrow && 1-t^2 &= 2tx \\ \Rightarrow && 0 &= t^2+2tx - 1 \\ \Rightarrow && 0 &= (t+x)^2 - 1-x^2 \\ \Rightarrow && t &= -x \pm \sqrt{1+x^2} \end{align*} Since \(t > 0\), \(t = \sqrt{1+x^2}-x = f(x) = \tan g(x)\)
    4. TikZ diagram
    5. \begin{align*} \int_0^1 k(x) \d x &= \int_0^1 \frac12 \tan^{-1} \left ( \frac1x \right) \d x \\ &= \left [ \frac{x}{2} \tan^{-1}\left ( \frac1x \right) \right]_0^1 - \int_0^1 \frac{x}{2} \frac{-1/x^2}{1+1/x^2} \d x \\ &= \left [ \frac{x}{2} \tan^{-1}\left ( \frac1x \right) \right]_0^1 + \frac14 \int_0^1 \frac{2x}{1+x^2} \d x \\ &= \frac12 \frac{\pi}{4} + \frac14 \ln(2) \\ &= \frac{\pi + \ln 4}{8}\end{align*} Therefore \(\displaystyle \int_{-1}^0 g(x) \d x = -\frac{\pi + \ln 4}{8}\)

2025 Paper 3 Q8
D: 1500.0 B: 1500.0

  1. Show that $$z^{m+1} - \frac{1}{z^{m+1}} = \left(z - \frac{1}{z}\right)\left(z^m + \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right)$$ Hence prove by induction that, for \(n \geq 1\), $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ Find similarly \(z^{2n} - \frac{1}{z^{2n}}\) as a product of \((z + \frac{1}{z})\) and a sum.
    1. By choosing \(z = e^{i\theta}\), show that $$\sin 2n\theta = 2\sin\theta \sum_{r=1}^n \cos(2r-1)\theta$$
    2. Use this result, with \(n = 2\), to show that \(\cos\frac{2\pi}{5} = \cos\frac{\pi}{5} - \frac{1}{2}\).
    3. Use this result, with \(n = 7\), to show that \(\cos\frac{2\pi}{15} + \cos\frac{4\pi}{15} + \cos\frac{8\pi}{15} + \cos\frac{16\pi}{15} = \frac{1}{2}\).
  2. Show that \(\sin\frac{\pi}{14} - \sin\frac{3\pi}{14} + \sin\frac{5\pi}{14} = \frac{1}{2}\).


Solution:

  1. \begin{align*} RHS &= \left(z - \frac{1}{z}\right)\left(z^m + \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right) \\ &= z^{m+1} + \frac{1}{z^{m-1}} - z^{m-1} - \frac{1}{z^{m+1}} + z^{m-1} - \frac{1}{z^{m-1}} \\ &= z^{m+1} - \frac{1}{z^{m+1}} \\ &= LHS \end{align*}. Claim: For \(n \geq 1\), $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ Proof: (By Induction) Base Case: (\(n=1\)). \begin{align*} LHS &= z^2 - \frac{1}{z^2} \\ &= (z-\frac1z)(z + \frac{1}{z}) \\ &= (z - \frac1z) \sum_{r=1}^1 \left ( z + \frac{1}{z} \right) \\ &= (z - \frac1z) \sum_{r=1}^1 \left ( z^{2r-1} + \frac{1}{z^{2r-1}} \right) \\ &= RHS \end{align*} as required. Inductive step: Suppose our result is true for some \(n=k\), then consider \(n = k+1\). \begin{align*} RHS &= \left(z - \frac{1}{z}\right)\sum_{r=1}^{k+1} \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right) \\ &= \left(z - \frac{1}{z}\right)\sum_{r=1}^{k} \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right) + \left(z - \frac{1}{z}\right)\left(z^{2k+1} + \frac{1}{z^{2k+1}}\right) \\ &= z^{2k} - \frac{1}{z^{2k}} + \left(z - \frac{1}{z}\right)\left(z^{2k+1} + \frac{1}{z^{2k+1}}\right) \\ &= z^{2k+2} - \frac{1}{z^{2k+2}} \\ &= LHS \end{align*}. Therefore if our result is true for \(n=k\) is true, it is true for \(n=k+1\). Since it is also true for \(n=1\) it is true for all \(n \geq 1\) but the principle of mathematical induction. Since \(\displaystyle z^{m+1} - \frac{1}{z^{m+1}} = \left(z + \frac{1}{z}\right)\left(z^m - \frac{1}{z^m}\right) + \left(z^{m-1} - \frac{1}{z^{m-1}}\right)\), we must have \(\displaystyle z^{2n}-\frac{1}{z^{2n}} = \left ( z + \frac{1}{z} \right) \sum_{r=1}^n \left (z^{2r-1}-\frac{1}{z^{2r-1}} \right)\)
    1. Since $$z^{2n} - \frac{1}{z^{2n}} = \left(z - \frac{1}{z}\right)\sum_{r=1}^n \left(z^{2r-1} + \frac{1}{z^{2r-1}}\right)$$ we have \begin{align*} && e^{2n\theta i} - e^{-2n\theta i} &= \left(e^{\theta i} - e^{-\theta i}\right)\sum_{r=1}^n \left(e^{(2r-1)\theta i} + e^{-(2r-1)\theta i}\right) \\ \Rightarrow && 2i \sin 2n \theta &= 2i \sin \theta \sum_{r=1}^n 2 \cos (2r-1) \theta \\ \Rightarrow && \sin 2n \theta &= 2\sin \theta \sum_{r=1}^n \cos (2r-1) \theta \end{align*}
    2. When \(n = 2, \theta = \frac{\pi}{5}\) we have: \begin{align*} &&\sin \frac{4\pi}{5} &= 2 \sin \frac{\pi}{5} (\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}) \\ &&\sin \frac{\pi}{5} &= 2 \sin \frac{\pi}{5} (\cos \frac{\pi}{5} - \cos \frac{2\pi}{5}) \\ &&\frac12 &= \cos \frac{\pi}{5} - \cos \frac{2 \pi}{5} \\ \Rightarrow && \cos \frac{2\pi}{5} &= \cos \frac{\pi}{5} - \frac12 \end{align*}
    3. When \(n = 7, \theta = \frac{\pi}{15}\) we have: \begin{align*} && \sin \frac{14 \pi}{15} &= 2 \sin \frac{\pi}{15} \sum_{r=1}^7 \cos (2r-1) \frac{\pi}{15} \\ \Rightarrow && \frac12 &= \cos \frac{\pi}{15} + \cos \frac{3 \pi}{15} + \cos \frac{5 \pi}{15}+ \cos \frac{7 \pi}{15}+ \cos \frac{9 \pi}{15}+ \cos \frac{11 \pi}{15}+ \cos \frac{13 \pi}{15} \\ &&&= -\cos \frac{16\pi}{15} + \cos \frac{3 \pi}{15} + \cos \frac{5 \pi}{15}- \cos \frac{8 \pi}{15}+ \cos \frac{9 \pi}{15}- \cos \frac{4 \pi}{15}- \cos \frac{2\pi}{15} \\ &&&= - \left ( \cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15}\right) + \cos \frac{\pi}{5} + \cos \frac{\pi}{3} + \cos \frac{3 \pi}{5} \\ &&&= - \left ( \cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15}\right) + \frac12 + \frac12 \\ \Rightarrow && \frac12 &= cos \frac{2\pi}{15}+\cos \frac{4\pi}{15}+\cos \frac{8\pi}{15}+\cos \frac{16\pi}{15} \end{align*}
  2. By using \(z = e^{i \theta}\) we have that: \begin{align*} && z^{2n}-\frac{1}{z^{2n}} &= \left ( z + \frac{1}{z} \right) \sum_{r=1}^n \left (z^{2r-1}-\frac{1}{z^{2r-1}} \right ) \\ \Rightarrow && e^{2n \theta i} - e^{-2n \theta i} &= (e^{\theta i} + e^{-\theta i}) \sum_{r=1}^n (e^{(2r-1)\theta i} - e^{(2r-1) \theta i}) \\ \Rightarrow && 2i \sin 2n \theta &= 2 \cos \theta \sum_{r=1}^n 2i \sin(2r-1) \theta \\ \Rightarrow && \sin 2n \theta &= 2 \cos \theta \sum_{r=1}^n \sin(2r-1) \theta \end{align*} When \(n = 3, \theta = \frac{\pi}{14}\) we must have: \begin{align*} &&\sin \frac{3 \pi}{7} &= 2 \cos \frac{\pi}{14}( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ &&&= 2 \sin \left (\frac{\pi}{2} - \frac{\pi}{14} \right)( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ &&&= 2 \sin \frac{3\pi}{7} ( \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14}) \\ \Rightarrow && \frac12 &= \sin \frac{\pi}{14}+\sin \frac{3\pi}{14}+\sin \frac{5\pi}{14} \end{align*} as required.