Course Problems
Home
Problems
Assign Problems
Organize
Assign Problems
Add Problems
Solution Progress
TikZ Images
Compare
Difficulty
Banger Rating
PDF Management
Ctrl+S
Edit Problem
Year
Paper
Question Number
Course
-- Select Course --
LFM Pure
LFM Pure and Mechanics
LFM Stats And Pure
UFM Additional Further Pure
UFM Mechanics
UFM Pure
UFM Statistics
zNo longer examinable
Section
-- Select Section --
Coordinate Geometry
Simultaneous equations
Proof
Proof by induction
Introduction to trig
Modulus function
Matrices
Linear transformations
Invariant lines and eigenvalues and vectors
Trigonometry 2
Small angle approximation
Differentiation
Integration
Implicit equations and differentiation
Differential equations
3x3 Matrices
Exponentials and Logarithms
Arithmetic and Geometric sequences
Differentiation from first principles
Integration as Area
Vectors
Constant Acceleration
Non-constant acceleration
Newton's laws and connected particles
Pulley systems
Motion on a slope
Friction
Momentum and Collisions
Moments
Parametric equations
Projectiles
Quadratics & Inequalities
Curve Sketching
Polynomials
Binomial Theorem (positive integer n)
Functions (Transformations and Inverses)
Partial Fractions
Generalised Binomial Theorem
Complex Numbers (L8th)
Combinatorics
Measures of Location and Spread
Probability Definitions
Tree Diagrams
Principle of Inclusion/Exclusion
Independent Events
Conditional Probability
Discrete Probability Distributions
Uniform Distribution
Binomial Distribution
Geometric Distribution
Hypergeometric Distribution
Negative Binomial Distribution
Modelling and Hypothesis Testing
Hypothesis test of binomial distributions
Data representation
Continuous Probability Distributions and Random Variables
Continuous Uniform Random Variables
Geometric Probability
Normal Distribution
Approximating Binomial to Normal Distribution
Solving equations numerically
Newton-Raphson method
Sequences and Series
Number Theory
Vector Product and Surfaces
Groups
Reduction Formulae
Moments
Work, energy and Power 1
Momentum and Collisions 1
Centre of Mass 1
Circular Motion 1
Momentum and Collisions 2
Work, energy and Power 2
Centre of Mass 2
Circular Motion 2
Dimensional Analysis
Variable Force
Simple Harmonic Motion
Sequences and series, recurrence and convergence
Roots of polynomials
Polar coordinates
Conic sections
Taylor series
Hyperbolic functions
Integration using inverse trig and hyperbolic functions
Vectors
First order differential equations (integrating factor)
Complex numbers 2
Second order differential equations
Discrete Random Variables
Poisson Distribution
Approximating the Poisson to the Normal distribution
Approximating the Binomial to the Poisson distribution
Probability Generating Functions
Cumulative distribution functions
Exponential Distribution
Bivariate data
Linear regression
Moment generating functions
Linear combinations of normal random variables
Central limit theorem
Hypothesis test of a normal distribution
Hypothesis test of Pearson’s product-moment correlation coefficient
Hypothesis test of Spearman’s rank correlation coefficien
Hypothesis test of a Poisson distribution
The Gamma Distribution
Chi-squared distribution
Yates’ continuity correction
Non-parametric tests
Wilcoxon tests
Moments of inertia
Worksheet Citation (for copying)
Click the copy button or select the text to copy this citation for use in worksheets.
Problem Text
Let $X$ be a standard normal random variable. If $M$ is any real number, the random variable $X_{M}$ is defined in terms of $X$ by \[ X_{M}=\begin{cases} X & \mbox{if }X < M,\\ M & \mbox{if }X\geqslant M. \end{cases} \] Show that the expectation of $X_{M}$ is given by \[ \mathrm{E}(X_{M})=-\phi(M)+M(1-\Phi(M)), \] where $\phi$ is the probability density function, and $\Phi$ is the cumulative distribution function of $X$. Fifty times a year, 1024 tourists disembark from a cruise liner at the port of Slaka. From there they must travel to the capital either by taxi or by bus. Officials of HOGPo are equally likely to direct a tourist to the bus station or to the taxi rank. Each bus of the bus coorperative holds 31 passengers, and the coorperative currently runs 16 buses. The bus coorperative makes a profit of 1 vloska for each passenger carried. It carries all the passengers it can, with any excess being (eventually) transported by taxi. What is the largest annual bribe the bus coorperative should consider paying to HOGPo in order to be allowed to run an extra bus?
Solution (Optional)
Let $X \sim N(0,1)$, and $\displaystyle X_{M}=\begin{cases} X & \text{if }X < M,\\ M & \text{if }X\geqslant M. \end{cases} $. Then we can calculate: \begin{align*} \mathbb{E}[X_M] &= \int_{-\infty}^M xf_X(x)\,dx + M\mathbb{P}(X \geq M) \\ &= \int_{-\infty}^M x \frac1{\sqrt{2\pi}}e^{-\frac12x^2}\,dx + M\mathbb{P}(X \geq M) \\ &= \left [ -\frac{1}{\sqrt{2\pi}}e^{-\frac12x^2} \right ]_{-\infty}^M + M (1-\mathbb{P}(X < M)) \\ &= -\phi(M) + M(1-\Phi(M)) \end{align*} Let $B \sim B\left (1024, \frac12 \right)$ be the number of potential bus passengers. Then $B \approx N(512, 256) = N(512, 16^2)$ which is a good approximation since both $np$ and $nq$ are large. The question is asking us, how much additional profit would the bus company get if they ran an additional bus. Currently each week they is (on average) $512$ passengers worth of demand, but they can only supply $496$ seats, so we should expect that there is demand for another bus. The question is how much that demand is worth. Using the first part of the question, we can see that their profit is something like a `capped normal', $X_M$, except we are scaled and with a different cap. So we are interested in $\displaystyle Y_{M}=\begin{cases} B & \mbox{if }B< M,\\ M & \mbox{if }B\geqslant M. \end{cases}$, but since $B \approx N\left (512,16^2\right)$ this is similar to \begin{align*} Y_{M}&=\begin{cases} 16X+512 & \mbox{if }16X+512< M,\\ M & \mbox{if }16X+512\geq M. \end{cases} \\ &= \begin{cases} 16X+512 & \mbox{if }X< \frac{M-512}{16},\\ M & \mbox{if }X \geq \frac{M-512}{16}. \end{cases} \\ &= 16X_{\frac{M-512}{16}} + 512\end{align*} We are interested in $\mathbb{E}[Y_{16\times31}]$ and $\mathbb{E}[Y_{17\times31}]$, which are $16\mathbb{E}[X_{-1}]+512$ and $16\mathbb{E}[Y_{\frac{15}{16}}]+512$ Since $\frac{15}{16} \approx 1$, lets look at $16(\mathbb{E}[X_1] - \mathbb{E}[X_{-1}])$ \begin{align*} \mathbb{E}[X_1] - \mathbb{E}[X_{-1}] &= \left ( -\phi(1) + 1-\Phi(1)\right) - \left ( - \phi(-1) -(1 - \Phi(-1)) \right ) \\ &= -\phi(1) + \phi(-1) + 1-\Phi(1) + 1 - \Phi(-1) \\ &= 1 - \Phi(1) + \Phi(1) \\ &= 1 \end{align*} Therefore the extra $31$ will fill roughly $16$ of them. (This is a slight overestimate, which is worth bearing in mind). A better approximation might be that $\mathbb{E}[X_t] - \mathbb{E}[X_{-1}] = \frac{t +1}{2}$ for $t \approx 1$, (since we want something increasing). This would give us an approximation of $15.5$, which is very close to the `true' answer. Therefore, over $50$ bus runs, we should earn roughly $800$ vloska extra from an additional bus. (Again an overestimate, and with an uncertain pay-off, they should consider offering maybe $600$). Since this is the future, we can quite easily calculate the exact values using the binomial distribution on a computer. This gives the true value as $15.833$, and so they should pay up to $791$
Preview
Problem
Solution
Update Problem
Cancel
Current Ratings
Difficulty Rating:
1500.0
Difficulty Comparisons:
0
Banger Rating:
1529.3
Banger Comparisons:
2
Search Problems
Press Enter to search, Escape to close