SM UFM Pure (with Solutions)

Question (1989 STEP I Q2)

For z > 0 find [  Inx dz. By approximating the area corresponding to fol rln(1/z)dz
by n rectangles of equal width and with their top right-hand vertices on the curve
y = x1n(1/z), show that, as n — oo,

(2 3 (3) e () e (3) o om )]

[You may assume that zlnz — 0 as x — 0.]

Integrating by parts we obtain:

1 1 1
/azlnxdx: [=2?1nz] —/:cz'da:
2 2 T

1 1
=3 22Ing — Za:Q—i-C

We should have:

n

1 .
1 1
/ zln —dx = lim —lln (E>
0 T n—oo f=mn 7

1 1,0t "1 n
— 2 — 2 — ] R —
Syt o] = 3 ()

Ly 12":.1 i
1= s, l(z nn —ilni)
1=

.1 [nn+1) S
:nh_{go? (2lnn—Zzlnz>

i=1

=1l ! 1 ! 1 Ly 1 In ¢
= {5 +;> nn i ) ilni
=1l 11 )1 1
- (0 - 53 S

=1 k=1

1 n—1 k
:n]g]go (2(1 lnn——zzm n—z)

k=0 i=0
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Question (1989 STEP III Q9)

Obtain the sum to infinity of each of the following series.

)

. 2 3 4 T ]

(")1+1><1+1><1+ —i—1>< ! 4

11 — — — — DY —_— — .« e "
22 3 22 r o 2r-l

e Ix3 1 1x3x561
(iii) — X —

n i +1><3><---><(2/-c—1)>< 1 n
2! 3 3! 32 k! gh—1
[Questions of convergence need not be considered.]
(i)
1 =
DL
r=0
1 [e.9]
_ r—1
N 1 2)2 > e
d r=0
da
= r
\:f./ 4= Z 9r—1
=1 r=0
2
(ii)
1-=z
r=1
1
= —In(l—z) = —z"
—~— r
I r=1
oo
1 1
_1 r=1
=3
—1 1
= 2In2 = el
r=1
(iif)
_1 _Ly_3
(1—z) 2 =1+ ( 12)(—.%') + ( 2)2( 2)(—30)2 +
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1-3-5----(2r—1) ,
-y ( )

X
|
= 2rr!
[0.9]
1-3-5----(2r—1) 1
\:i’ \/gzz r! 3r
=2 r=0
3
12 1 1-3-5----(2r—1) 1
EARTEREPYD i =
r=2
[e.e]
1-3-5----(2r—1) 1
= 3\/3_ :Z rl 37"71

Question (1993 STEP III Q4)

Sum the following infinite series.

(1)
141 12+1 14+ + 12n+
3\2 5\2 2n+1\2

(i)

9 g ad gt ... opthk  pAkHl ket

where |z| < 1.

(iii)
2 r2r—2
s 3r—1
(iv) .
2
; r(r2—1)
(i)

> X
2i+1
Zx 1 — a2
1=0
_ 1 1 1
S 2\1l—-2 14z

=1
2%4+2 _
= =
~— Z 2 + 1$
f 1=0

(—In(1 —z) —In(1 + x))

| =
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00 2i+2
1 /1 1 1 1. 3
N Zzi+1<2> 2 "2 T2

1.3
S
24

1 1 N% 1. 4
i (3) - o
4442 +1\2 273

4
= S=2In-
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(ii)
o0 o0
Z <2x4k _ Akt 7x4k+3) _ Z (2—:51 71‘3) ey
k=0 k=0
2—x—23
1— a4
(1-2)2+a+2?)
(1—-2)(1+4z+ 2%+ 23)
24z 4a?
14z +a?+a3

(iii)

(iv)
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Question (1997 STEP III Q7)

For each positive integer n, let

1 1 1
1 m+Dn+2)  (nt )(n+2)(n+3)
, L 1 1

ntl A Tt
(i) Evaluate b,,.

(ii) Show that 0 < a,, < 1/n.

(iii) Deduce that a,, = nle — [nle] (where [z] is the integer part of x).

(iv) Hence show that e is irrational.

Question (1998 STEP II Q3)
Show that the sum Sy of the first IV terms of the series

1 n 3 n 5 T 2n —1
1-2.3 3-4 3-4.-5

n(n+1)(n+2)

18
1 3+ 1 5
2\2 N+1 N+2/°

What is the limit of Sy as N — oco? The numbers a,, are such that

an (n—1)(2n —1)
an—1  (n+2)(2n—3)

(o.@)
Find an expression for a,/a; and hence, or otherwise, evaluate > a, when a; = —

n=1

First notice by partial fractions:

2m—1  —-1/2 3 —5/2
n(n+1)(n+2) n n+1l n+2
-1 3 5

T Tt 22
And therefore:

N om —1 11 N 5. 1
;_:1n(n—i—l)(n—i—Q):_22_:7”L~|—3Z Z

n=1 n=1 n:1n+2
11 N 1 5.1 3 5 5
— — 3_,_,f _ _
2 a1’ +nz3( 2Tt NI AN 2N 1)
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AsN—>oo,SN—>%.

an (n—1)(2n —1)
an-1 (n+2)(2n—3)
= On _ A4n_ Gn-1 = 42
a an—1 Qn-—2 a
_ (m—1)@2n—-1) (n=2)2n-3) (1)(3)
(n+2)2n—-3) (n+1)2n->5) (4)(1)
 (2n-1)3-2-1
 (n+2)(n+1)n
6(2n —1)

T nn+ D(n+2)

_ 4 2n—1 4 . .
Therefore a,, = 3 CESNCES)) and so our sequence is 5 the earlier sum, ie 1

Question (1999 STEP III Q3)
Justify, by means of a sketch, the formula

RS [P
Jggo{nn;f(um/n)}_/l f(z)da.

Show that
. 1
lim + + -+ =1n2.
n—oo |Nn+1 n-+2 n-+n
Evaluate
1 n n n
nso0 n2+1 n2+4 n2 + n?2
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fa+

Y y = f(z)
Area ~ Z (1+m97
H/__/
Wldth height
) oo
1
T
1 2
14+
1 1 1
V = lim +
n—soo |n+1 n+2 n—+n
"1
:T}I%H;O{Zn+m}
m=1
, I w— 1
- i X iy
m=1 n
2
1
—/ —dz
1 xr
[Inz]? = In2
. n
_nl—{go n2—|—4 n2 + n?
lim
n—>oo{ n2—|—m2}
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Question (1999 STEP III Q5)
The sequence ug, u1, U9, ... is defined by

up=1, wur =1, uUpy1 =up+up—1 Ffor n>1.

Prove that
2 2 2 2
un+2 + Up—1 = 2(un+1 + un) .

Using induction, or otherwise, prove the following result:
2 2 2 2
Uop = Uy + Uy 1 and  Uspi1 = Upyq — Uy g

for any positive integer n.

Claim: uj, o +up_y = 2(uj g +up)
Proof: (By Induction).
(Base Case): n =1

LHS =u o +us_y
= ug + u%
=3*+1*=10
RHS = 2(u2q +u2)
=2(2* +1%)
=10
Therefore the base case is true.

(Inductive hypothesis) Suppose u2,, +uZ_; = 2(u2, | + u?) is true for some n =k, ie
UF o Uiy = Q(UZ_H + u?), the consider n =k + 1

LHS = uj 14 + U114
= (Ups1 + Upt2)? + up
= ui+2 + uiﬂ 4 Ul 2Up 1 Uy o
= UZ 4o+ by + uj + 2upp (upgr + up)
= Uj + U+ UR + 2uf g + 2upprug
= Uy + 2Uj g U+ UR o 2up
= Uf oy + 2uf gy + (wppr +up)?
= Up g + 2Uf 1+ Uiy
= 2(“%-1-2 + Ui+1)
=RHS

Therefore it is true for n = k + 1.
Therefore by the principle of mathematical induction it is true for all n > 1

‘m: — 2 12 — 2 2
Claim: ugp, = uy, +uy, 1 and  Ugpi1 = Up g — Us

s uny1) (1 1\" (1) . ,
Proof: Notice that ( w, ) = (1 O> <1>, in particular

Up  Up—1\ (1 1 "
Un—1 Un—2 S \1 0
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2
N < Uop, U2n—1> _ <1 1> "
U2n—1 U2p—2 10

1 1\ /1 n\"
~\1 0 10

( Un un—l) < Un un—l)

Un—1 Un—2 Un—1 Un-—2

_ up + U%—1 Up—1(Un + Up—2)
Up—1(Up + Up—2) w2 +ul_,

_ 2 2 _ _
Therefore ug, = ug + u;_; and uzpt1 = Up(Unt1 + Un—1) = (Unt1 — Up—1)(Unt1 —

— 2 2
Un—l) = Upy1 — Up—1

Question (2000 STEP III QT7)

Given that
11 1

use the binomial theorem to show that

1 n
<1 + ) <e
n
for any positive integer n.
The product P(n) is defined, for any positive integer n, by
3 5 9 2" +1

Use the arithmetic-geometric mean inequality,

apt+ax+---+ap
n

3=

2 (a1~a2-...-an) s

to show that P(n) < e for all n .
Explain briefly why P(n) tends to a limit as n — oco. Show that this limit, L,
satisfies 2 < L <e.

None
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Question (2003 STEP II Q7)

Show that, if n > 0, then
/OO Inz 2
——dzr = —.
i el n2e

1
You may assume that 2% L0 asz— o0,
T
Explain why, if 1 < a < b, then

* Inz * Inx
/Z; _jL‘n'de</a .’I)n+1 dZL‘
N

1 e [® [1—zN
Z*<f —— | Inzdx,
n? 2 Jon 2 —x

n=1

Deduce that

where N is any integer greater than 1.

None

Question (2003 STEP III Q6)

Show that ] N |
2sin 59 cosrf = sin (r + 5)9 — sin (7‘ — 5)0 .

Hence, or otherwise, find all solutions of the equation

cosafl + cos(a+ 1) + - - -+ cos(b—2)0 4+ cos(b—1)0 =0,

where a and b are positive integers with a < b — 1.

1 1
sin (T‘ + 2) 0 — sin (r — 2) 0 = sinrf cos %9 + cos rf sin %9 — (sin 76 cos %9 — cosrfsin %9)

= 2cosrf sin %0

S =cosaf + cos(a+1)0 + - -+ + cos(b — 2)8 + cos(b — 1)0
b—1
2sin %95’ = Z 2sin %0 cosrf

r=a

b—1
. 1 . 1
:Z(SID<T—|—2>6—SIH(T‘—2)9>
r=a
. 1 . 1
—sm<b—2>0—sm<a—2)9
. 1 . 1
= sm<b—2> —sm<a—2>0

Case 1: A= B+ 2nw
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= (b—a)f =2nm
2nmw

0 =
= b—a

Case2: A=(2n+1)7r— B

(1= 1)o@ e (a-1)o

= (b+a—-1)0=2n+1)r
2nmw

0= —-+—

= b+a—1

Question (2004 STEP I Q8)
A sequence ty, t1, tg, ... is said to be sl strictlyincreasingi ftn+1 > t, for allm > 0.

(i) The terms of the sequence zg, x1, T2, ... satisfy
z
z; +6
Tpt+1 = n5

for n > 0. Prove that if ¢ > 3 then the sequence is strictly increasing.

(ii) The terms of the sequence yo, y1, Y2, ... satisfy

6
yn+1:5_7

for n > 0. Prove that if 2 < yg < 3 then the sequence is strictly increasing but
that y, < 3 for all n.

11
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Question (2004 STEP III Q3)
Given that f”(z) > 0 when a < z < b, explain with the aid of a sketch why

fla) + ()

a+b)</abf(:c)dx<(b—a) 5

2

(b—a) f(

By choosing suitable a, b and f(x), show that

4 < 1 1<1 1+ 1
2n—1)2 n-1 n 2\n?® (n-12)"

where n is an integer greater than 1. Deduce that

Py (AR AL AV I (A N
32 5T 2 " \22 T3z g2 '

Show that
11+1+1+1—|— <1+1+1—l—
2\32 42 52 @2 32 52 72
and hence show that -
3 1 7
2 nzan 4

None

12
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Question (2004 STEP III Q6)

Given a sequence wg, wy, wa, ..., the sequence Fi, Fo, ... is defined by
F, = wi + wfl_l — dwpWp—1 -
Show that F, — Fj,—1 = (wy, — wp—2) (Wy + Wp—9 — 4wy_1) forn > 2.
(i) The sequence ug, ui, ug, ... has ug = 1, and u; = 2 and satisfies
Up = 4Up—1 — Up—2 (N >2).

Prove that u% + ui_l =4upup—1—3 forn>1.

(ii) A sequence vy, vy, v2, ... has vg = 1 and satisfies
V2 402 =4dvvn 1 —3 (n>1). (%)

(a) Find v; and prove that, for each n > 2, either v, = 4v,_1 — v,—2 or
Un = Upn—2.

(b) Show that the sequence, with period 2, defined by

1 for n even
Uy =
2 for n odd

satisfies (). (¢) Find a sequence v,, with period 4 which has vp = 1, and
satisfies (x).

Question (2005 STEP III Q4)

The sequence u, (n =1,2,...) satisfies the recurrence relation

Un+1

Un+2 = (kun - un—l—l)

n

where k is a constant.
If u1 = a and uy = b, where a and b are non-zero and b # ka, prove by induction

that
b
U2n = (*)'Uanl
a

U2n+1 = CU2p

for n > 1, where c is a constant to be found in terms of k£, a and b. Hence express
U9, and ug,_1 in terms of a, b, ¢ and n.
Find conditions on a, b and k in the three cases:

(i) the sequence u,, is geometric;

(ii) wy has period 2;

(iii) the sequence u, has period 4.

13
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Question (2006 STEP II Q1)

The sequence of real numbers uy, us, us, ... is defined by

36
u = 2, and Upt1 =k — — forn>1, (%)
Un,
where k is a constant.

(i) Determine the values of k for which the sequence (x) is: (a) constant; (b)
periodic with period 2; (¢) periodic with period 4.

(ii) In the case k = 37, show that w, > 2 for all n. Given that in this case the
sequence (*) converges to a limit ¢, find the value of £.

Question (2008 STEP III Q2)

n
Let Sp(n) = > r¥, where k is a positive integer, so that
r=0
Si(n) = in(n+1) and Sa(n) = %n(n +1)(2n+1).

(i) By considering Y~ [(r +1)* — r¥], show that
r=0

kSkﬂn)::0r+Uk—(n+1)—(§>S%200——(2)5%300—~~~—(kfi1)5100.

Obtain simplified expressions for S3(n) and Sy(n).

(ii) Explain, using (%), why Si(n) is a polynomial of degree k£ + 1 in n. Show that
in this polynomial the constant term is zero and the sum of the coefficients is

1.
(i)
(n+Dk:§5“T+Dk—W]
r=0

() ) e () (D)) -7
(O e ()
= kSi_1(n) + <2>Sk_2(n) +- 4 (/@61 Si(n) + (n+1)

S BSa(n) = (n+ 1)F— (0t 1)— (’;)sk_2< Jp kk1>51<n>
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1530r) = (4 1) = o) = (o) HOEEEEER - ()
=(+1)((n+1)* =1 —n(2n+1) - 2n)
=n+1)(n®+3n% +3n+1—1-2n% - 3n)
:(Tl—|-1)(n +n)
=n*(n 4 1)?
= Sg(n)Z”Q(”:l)z
n2(n 2 nin n
554(n)_(n+1)5_(n+1)_<2>(:1)_(2) ( +1)6(2 +1)_(
TL2TL n(2n n
=(n+1)<(n+1)4—1_5 (2“)_5 (23+1)_52>

6(n — 6 —15n*(n + 1) — 10n(2n + 1) — 15n)

(Gn + 2403 + 361 + 24n + 6 — 6 — 150 — 15n% — 200
(6n + 9n? +n2—n)
)n

(n+1 (2n +1)(3n? +3n — 1)
6
n nlzn n2 n —
N 54(n):( +1)n(2 +;())(3 +3n—1)

(ii) Proceeding by induction, since Si(n) is a polynomial of degree k + 1 for small k,
we can see that

5\ n(n+1)
4 2
— 10n — 15n)

k+ k+1
s = e 0 = @) - (P sm - o = (FF s
—_———— —— ~~ k
poly deg =k+1  poly deg=1 polys deg<k ~——
poly deg=k poly deg=

therefore Si(n) is a polynomial of degree k + 1 (in fact with leading coefficient k +1
1

Since Sk (0) = 22:0 7 = 0 there is no constant term, and since Sk (1) = >_,_,r* =1
the sum of the coefficients is 1

15

1
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Question (2010 STEP III Q7)

Given that y = cos(marcsin z), for |z| < 1, prove that

d? d
(1—x2)—y—x—y+m2y:0.

dz? dx

: - . _dPy  dYy dy L .

Obtain a similar equation relating —=, —5 and —, and a similar equation
A 5 ) dz3’ dz? dz +2

. dly dy d7y : . dnt2y
relitlmg 11 4o an 12 Conjecture and prove a relation between Q2
dr d"

o and v
dgntl dzn

Obtain the first three non-zero terms of the Maclaurin series for . Show that, if
m is an even integer, cos mf may be written as a polynomial in sin 8 beginning
m2sin?0  m2(m? — 22)sin* 0

e i — (6] < 1)

State the degree of the polynomial.

Question (2012 STEP I Q7)

A sequence of numbers tg, t1, to, ... satisfies
tnt2 = Plny1 + qin (n >0),

where p and ¢ are real. Throughout this question, x, y and z are non-zero real
numbers.

(i) Show that, if ¢, = = for all values of n, then p+ ¢ = 1 and = can be any
(non-zero) real number.

(ii) Show that, if t3,, = x and t9,+1 = y for all values of n, then ¢ = p = 1. Deduce
that either x = y or x = —y, unless p and q take certain values that you should
identify.

(iii) Show that, if t3,, = x, t3,4+1 = y and t3,42 = 2z for all values of n, then
p3+q3+3pq—1:0.

Deduce that either p+¢ =1 or (p —¢)> + (p+1)?> + (¢ + 1)?> = 0. Hence show
that either x =y=zorxz+y+2=0.

(i) Suppose t,, = z for all n, then we must have

Tr =pr—+qr
e l=p+gq

and this clearly works for any value of x.

16
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(ii) Suppose to, = ,ton+1 = y for all n, then

T = py+qx
Y=pr+qy
= O0=py+(¢g—1)x
O=pz+(¢—1y
x
= pz(q—l)QZ(q—l)%
= %:ilorqzl,pzo
= y = +x or (p,q) = (0,1)

(iii) Suppose t3, = z, t3p+1 = y and t3p42 = 2 , SO

r=pz+qy
Yy =pxr—+qz
Z=py—+qx

z=p(pz + qz) + q(pz + qy)
=p’z + 2pqz + ¢y
=p*(pz + qy) + 2pgz + ¢*(pz + q2)
=p’z2+ pPqy + 2pqz + ¢*pr + ¢z
= (0 + ¢ + 2pg)z + pa(py + qz)
= (® + ¢ + 2pg)z + pqgz
=’ + ¢ + 3pq)z
= 0=p*+¢*+3pg—1
=(p+q-1)P*++1+p+q—pg
=3p+q-D((-*+ @+ 1>+ (¢+1)?)

Therefore p+g =1 or (p—q)2+(p+1)2+(q+1)2:()ip:q:_l‘

Ifp+qg=1,then z = py+ (1 —p)z and = = p(py + (1 — p)z) + (1 — p)y =
I-ptp)r=(1-ptply=a=y=a=y="=

If p = g = —1 then adding all the equations we get z +y+ 2= —2(z +y +2) =
r+y+z2=0

Note that what is actually going on here is that solutions must be of the form
t, = A" so the only way to be constant is for A = 1 to be a root, the only way
for it to be 2-periodic is for A = —1 to be a root, and the only way for it to be
3-periodic is for A = 1,w,w? to be the roots (although we see this via the classic
23+ + 23 = 3ayz = (x +y + 2)(z + wy + w?2) (2 + w?y + wz) which is because of the
real constraint in the question.

17
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Question (2012 STEP II Q8)
The positive numbers «, § and ¢ satisfy 5 — a > ¢. Show that

2 2_ 2
o+ p7 —
CHE T 4,y
af
The sequence ug, u1, ... is defined by ug = «, u; = 8 and

2 _ 2

un+1 = un q (n Z ].)7
Up—1

where «, 8 and ¢ are given positive numbers (and « and 8 are such that no term in
the sequence is zero). Prove that wuy,(u, + tpt2) = Upt1(Un—1 + upt1) . Prove also
that

Un+1 — PUp + Up—1 = 0

for some number p which you should express in terms of o, 8 and g. Hence, or
otherwise, show that if 5 > a + ¢, the sequence is strictly increasing (that is,
Un4+1 — Up > 0 for all n). Comment on the case f = o + g.

f—a>q

(B-a)?>¢

6%+ a? — 280 > ¢

o2+ 62 —¢>—2Ba>0

o + B2 — g2
ap

e

—-2>0

u2+1 - ¢
n
Un(un + Un+2) = Un - <Un + )
Un
2 2 2
= Uy + Upy1 — 4
2 2 2
= Up + Upt+1 — (un - Un—lun—f—l)
2
= Upy1 + Unt1Un—1

= unJrl(unfl + Un+1)

un(un—Z + un)
Un—1
un(un — PUp—1 + un—Q)

Un—1

Un+1 — PUp + Up—1 = —PUn +

Therefore if us — pui + ug = 0 it is always zero, ie if

up = pf — o
2 2
wy=" "4
(0%
B2 —q?
o

=pf—«
a2+ﬁ2—q2
af

= p=

18
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If 3 > o+ ¢ we must have that p > 2, and so up41 — up = (p — Duy,
Uy — Unp—1 > 0, therefore the sequence is strictly increasing.

If B = a+ ¢ the sequence follows up 1 — 2uy +Up—1 = 0 and SO Up 11 — Up = Uy — Up—1
for all n (which is still increasing - it’s an arithmetic progression with common difference

f—a).

Question (2012 STEP III Q2)

In this question, |z| < 1 and you may ignore issues of convergence.

(i) Simplify

1-2)1+z)1+2)A+2Y) - 1 +22"),
where n is a positive integer, and deduce that
1 m2n+1
pr— 2 4 ... 2"
1_$—(1+x)(1+:1:)(1+$) 1+z )+1_$.
Deduce further that
In(1 —x) Zln 1+x ,
and hence that
1 _ 1, 2 43 N
l—z 14z 1422 1424
(ii) Show that
142 = 1-2z 2x — 4a® N Az® — 827
14z4+22 1—-z4+22 1—a22+424 1—2%+28
(i)
1-2)(1+a)1+2) 1 +2") - (1+2)
— (1= +2)(1+ah) (1427
=1 -2 +2Y - (1 +22)
=1-—2"
Therefore,
— =(1 1 - (1
T = (a4 (142
1 2 2" i
= - (1 1 (1 L
= ()t (L) T
= —In(1 — ) Zln 1—|—£L’
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= In(1 —x) Zlnl—i—:r
R 2" —1
= _
Y Zl—i—l‘Qr
dz
1 2z 423

:1—|—x+1—|—m2+1—|—x4+.”

(ii) Consider

A+z+22)(1-—2z+22)Q -2 +2b) - (1 -2 +:1:2n+1)
= (1422 +aH(1 -2+ 2 (1 -2 +x2n+1)
_ (1 _ x2n+1 + x2n+2)

Therefore,

1 x2n+1

n+2
LUZ

m:<1—x+w2)<1—x2+x4>---(1—m2”+x2"“)+

= —In(l+z+2?%) = Zln(l —z¥ 4 a:zTH)

1+ 2z —org2 -1 4 o412l
T DLl & kbl
~ l+r4z? — 1—a2? + 22
I
-1+ 2x —2x + 423 —423 + 87

:1—x+x2 1—224+24  1—zt+428

Which is the desired result when we multiply both sides by —1

20
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Question (2012 STEP III Q8)
The sequence Fy, Fy, Fy, ... is defined by Fy =0, F; = 1 and, for n > 0,

Fn+2:Fn+1+Fn-

(i) Show that FOF3 - F1F2 = F2F5 - F3F4 .
(ii) Find the values of F,,F,+3 — Fj,+1F,12 in the two cases that arise.

(iii) Prove that, forr =1, 2, 3, ...,

1 1 1
= arctan + arctan
F2r> <F2r+1> <F2r+2)

and hence evaluate the following sum (which you may assume converges):

arctan (

Question (2013 STEP II Q6)

In this question, the following theorem may be used.

sl Letuy, ug, ... be a sequence of (real) numbers. If the sequence is bounded above
(that is, u, < b for all n, where b is some fixed number) and increasing (that is,
Up > up—1 for all n), then the sequence tends to a limit (that is, converges). The
sequence ui, usg, ... is defined by u; = 1 and

1

n
(i) Show that, for n > 3,

Up — Un—2

14 up)(1 4 up—2)

Un+2 — Un = (

(ii) Prove, by induction or otherwise, that 1 < u,, < 2 for all n.

(iii) Show that the sequence w1, us, us, ... tends to a limit, and that the sequence
U9, U4, Ug, ... tends to a limit. Find these limits and deduce that the sequence
u1, Uz, U3, - .. tends to a limit. Would this conclusion change if the sequence

were defined by (%) and u; = 37
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Question (2014 STEP III Q8)

The numbers f(r) satisfy f(r) > f(r +1) for r = 1, 2, .... Show that, for any
non-negative integer n,

Entl—1

Kk —1) f(E") < N fr) < Bk - 1) f(k)

r=k"
where k is an integer greater than 1.

(i) By taking f(r) = 1/r, show that

N+1
<'s

%M—\

oo
Deduce that the sum > 2 does not converge.
r=1

ii) By taking f(r) = 1/r3, show that
(ii) By g

=1
> <

m\»—n

(iii) Let S(n) be the set of positive integers less than n which do not have a 2 in
their decimal representation and let o(n) be the sum of the reciprocals of the
numbers in S(n), so for example o(5) = 14 1 + 1. Show that S(1000) contains
93 — 1 distinct numbers. Show that o(n) < 80 for all n.

22
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Question (2016 STEP II QR)

Evaluate the integral

—d > 2
- 22 Z (m 3)
Show by means of a sketch that

n 1
1 nta 1

E — & dx (%)
2 2 &

r=m r m—%

where m and n are positive integers with m < n.

o0
1
(i) You are given that the infinite series Z — converges to a value denoted by E.
r
r=1
Use (*) to obtain the following approximations for E:

) 33
EF~2;, Ex-; FE=~x~—.

3 20

1 r+3 1
(ii) Show that, when r is large, the error in approximating — by / — dx is
r 1 T
imately — .
approximately -

(0.)
1
Given that F =~ 1.645, show that g — ~ 1.08.
r
r=1

23



SM UFM Pure (with Solutions)

1 1

1+ar  1+ar+! for fa] # 1,

Question (2016 STEP III Q4) (i) By considering

simplify
N T
53

(14+2z")(1+art)”

r=1
Show that, for |z| <1,

o0
x’f‘

(14271 +zr+t1) 122’

=il

(ii) Deduce that

> (ry)((r + 1y) = 2¢7¥(2y)
r=1
for y > 0.
Hence simplify
Y. ry)((r+1)y),

for y > 0.

Question (2017 STEP III Q1) (i) Prove that, for any positive integers n and r,
1 r+1 1 1
n+r = r n+tr—1  n+r :
r+1 r U

Hence determine
=1

P+
n=1r+1
1 1
and deduce that Z o = 3
n=23
(ii) Show that, for n > 3,
3! 1 20 1 5!
ﬁ < gﬁ and gﬁ — gﬁ < ﬁ .

By summing these inequalities for n > 3, show that
115 <=1 116
— < —= K =0
96 Z:: n3 = 96

. . n
Note: 7' is another notation for ( >
r

r+1 1 1N _r+1/ ri(n-1) rin!
roo\ptroboondr )y (n+r—1! (n+n)!
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(r+1Dl(n—1)! n
r(n+r—1)! <1_n+r>
C(r+Dn-1) 7
 r(n+r—1)! ntr
_(r+1)n!

R

[e.e]

1 < (r+1 1 1
Sa=3 (" (-

n=1r+1 n=1

r+1 1 .
:Tm (Slnceﬁ%())
_r—l—l
- r
When r = 2, we have:
3 1
5= 2
n=13
1 =1
=t
=1
=1+
n=23
[oe)
1 1
= Zm_g
n=23
r 3!
nl T (n41)n(n —1)
3!
Cn3—n
3!
>7
n3
20 1 5! 5!

gﬁ_gﬁ_ n+1nn—-1) @n+2)(n+1)n(n—1)(n—2)
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SM
5l n? (1_ 1 )
n3n?—1 n? —4
5! n? n?—5
:n3n21<n24>
5! n%(n?-5)
T3 (n2—1)(n2 —4)
5!
S

Since k(k —5) < (k—1)(k —4) & 0 < 4, this only makes sense if n > 3

3!

3 Sl

o0

(if n > 3)

3! 1
= D5 <2

n=3 n=3 3

6 6 = 3 6 = 1
= TERI] S<pEtogt) am
=3 n=3 3
oo o0
3! 3 1
= Z$<6+1+Z”+2
n=1 n=2 2+1
oo
3! 3 1 29
2 b+t 4-=22
= Zn?» tit3T
n=1
oo
1 29 116
= 2 <7~ 95
n=1
20 1 5!
e
gH— g—&- n3
o0 oo
20 1 5!
- S () <X
n=3 3 5 n=3
120 120 <X 20 = 1 120 120 <X 5!
= Tt mtl i m < pmtat) g
n=3 3 n=35 n=3
120 120 = 20 = 1 120 120 <= 5!
= STtEtlm  lm<umte 3
n=2 2+1 n=1 4+1 n=3
. 120 120 20 441 g8
13 23 2 4 n3
n=1
115 = 1
= < —
96 T;n?’
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Question (2017 STEP III Q8)

Prove that, for any numbers ai, as, ..., and by, bo, ..., and for n > 1,

n n

Z a (bm+1 - bm) = an+1bn+1 - albl - Z bm+1(am+1 - am) .
m=1

m=1

(i) By setting b,,, = sin mx, show that

n

Z cos(m + &)z = 3 (sin(n + 1)z —sinz) iz .
m=1

Note: sin A —sin B = QCOS(A;B) sin(A;B).

(ii) Show that
n
Z msinmaz = (psin(n + 1)z + qsinnm)%x ,
m=1
where p and ¢ are to be determined in terms of n.

Note: 2sin Asin B = cos(A — B) — cos(A + B);
2cos Asin B = sin(A + B) —sin(A — B).

Question (1987 STEP I Q4)
Show that the sum of the infinite series

logy e — logye +logige — ...+ (—1)" loggen € +

1

In(2v/2)

[log, b = c is equivalent to a® = b.]

Let S =logye — logys e+ logige — ...+ (—1)"loggen € + ... then

S = Z(—l)”logzw e

n=0
> loge
- Z(*l)n 2n
o log 2
oo
loge

- 0(_ ) 2" log 2
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_ 1
~ In(23/2)
1

T In(2v2)

Question (1987 STEP II Q5)
If y = f(x), then the inverse of f (when it exists) can be obtained from Lagrange’s
identity. This identity, which you may use without proof, is

n—1
- —y+2 S .

nldnl

provided the series converges.

(i) Verify Lagrange’s identity when f(z) = az, (0 < a < 2).

(ii) Show that one root of the equation

x3

AN

= 98 —

D=

is -
B (3n)!
v 7;) nl (2n + 1)l24n+1

(iii) Find a solution for z, as a series in A, of the equation
z = e,

[You may assume that the series in part (ii) converges, and that the series in part

(iii) converges for suitable A.]

(i) If f(z) = ax then f~(z) = La.

Where we can sum the geometric progression if [1 —a| <1< 0< a < 2

(i) Suppose that f(z) =z — f2°. We would like to find f~1(3).
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1
Z 4n nl( 2n —|— 1)' 22n+1

1
7+Zn| 2n—|— 1)1 24n+1

1 . 1 - . .
o0+t = 5 we can include the wayward 5 in our infinite sum
and so we have the required result.

!
Since when n =0 2. 1

(iii) Consider f(z) = x — e’ we are interested in f~1(0).

dn—l N dn—l
— [y = _ oAU\ n\y
dyn,l[y (y —e™)] dyn,l[e ]
— nn—l)\n—lenz\y
=1
—1 _ n 1yn—1
= f <0>—Zln, A

We don’t care about convergence, but it’s worth noting this has a radius of
convergence of 1 (ie this series is valid if |A| < 1).

Question (1987 STEP III Q7)
Prove that

t3 t5 (_1)nt2n+1 t x2n+2
tan 1t =t— — 4+ — — ... p 2 —1M4/ da.
o 5% toonyr TV ) T

Hence show that, if 0 < ¢ < 1, then
t2n+3 w (_1>rt2r+1

— < |tan"1t —
22n+3) | Z% 2 + 1

t2n+3

S on+3

Show that, as n — oo,
@ r

(1)
42)(27’—}—1)_”T’

is at least 1072 if n is less

~ (=1

but that the error in approximating 7 by 42 2 +1)

than or equal to 98.
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1

e dzx.

t
We start by noticing that tan™'¢ = /
0

Consider the geometric series 1 — 22 + (—22)? + - - + (—2?)" = 1*(;?2"*1. Therefore,
(1+ m2)(1 > (—x2)2 4ot (_xQ)n) —1_ (_xQ)n+l or
1=(1422)(1—a%+ a2t — -+ (=1)"z2") + (—1)"F1g2nt2
t
1
tan~' ¢ = / 72(135
o 1+x
/t (1+22)(1 — a2+ 2% — -+ (=1)a?) + (_1)n+1x2n+2d
- x
0 72+ 1
t t 12042
1)t
X e [0
3 P £2n+1 b (o)t
gt )2n+1+/0 PN I
n
—1) 2r+1 t -1 n+1,.2n+2
_y e / D)™
—0 2r+1 0 x? +1

Therefore we can say (for 0 <t <1)

2 +1

t
/ x2n+2 dx
0

t2n+3

T +3

t -1 n+1,.2n+2
/ EV e,
0 x +1

t (_1\n+1,.2n+2
S / Gt A
0

t -1 n+1,.2n+2
/ D)™
2'F + ]. 0

n
-1 Tt2T+1
tan~'t — Z L =
r=0

<

n
B (_1)7‘t27‘+1
tan 1t —) 2| =
an Z;) 2r + 1

- 1+1

t2n+3
T 2(2n+3)

Since tan~'1 = % we must have that:

: ~ (=1

However,

r=0

"1y i
‘42 @2r +1) W‘ = 5mn 13
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2
- 2n + 3
2n2+ 3 2107
& 200> 2n+3
& 197 > 2n
& 98.5>n

Therefore we need more than 98 terms to get two decimal places of accuracy. Not
great!

Question (1991 STEP III Q10)

The equation
" —qz" 4 r =0,

where n > 5 and ¢ and r are real constants, has roots aq, s, . .., a,. The sum of the

products of m distinct roots is denoted by X, (so that, for example, X3 = > a5

where the sum runs over the values of 4, j and k with n > ¢ > j > k > 1). The sum
n

of mth powers of the roots is denoted by S,, (so that, for example, S3 = Y o).
i=1

Prove that S, = ¢” for 1 <p <n —1.

You may assume that for any nth degree equation and 1 < p < n

Sp = Sp_121 =F Sp_QZQ — e (_1)1;7151217_1 + (—1)pp2p = 0.]

Find expressions for S,,, Si4+1 and Sy, 12 in terms of ¢, and n. Suggest an expression
for Sy1m, where m < n, and prove its validity by induction.

Claim: S, =¢’ for 1 <p<n-—-1
Proof: When p =1, S, = Y1 = ¢ as expected.
Note that ¥; =0fori=2,--- ,n— 1.
Using S, = Sp—1351 — Sp—aXo + -+ (=1)P71H18 3, 1 + (=1)PT1pY,, we can see that
Sp=qSp—g when 1 <p<n—1,ie S, =¢".
Note that

Sn :Za?
:an?_l—Zr

=qSn_1 —nr

=q¢" —nr

Snt1 :Z@?—H
:an?—rZozi

=q¢"" —rq

— +2
Snt2 = § O‘?
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_ n+1 2
—aX Y

n+2 7’(]2

Claim: Sy = ¢ — rg™

Proof: The obvious

Question (1992 STEP II Q7)

The cubic equation
xg—me—l—qx—r:O

has roots a,b and c. Express p,q and r in terms of a, b and c.

(i) If p =0 and two of the roots are equal to each other, show that

4¢% +27r? = 0.

(ii) Show that, if two of the roots of the original equation are equal to each other,

then 5 )
2 3
D 2p°  pq
Alg-=) +271[=-= — (1)
<q 3> + 7(27 3—|—r> 0

p=a+b+c,qg=ab+bc+ ca,r = abc

(i) Suppose two roots are equal to each other, this means that one of the roots is also
a root of the derivative. ie

0=a+qz—r
0=32%+g¢

have a common root, but this root must satisfy 22 = —%. Then

= 223 —r
= r? = 425
-5 (-8)
3
= 0=27r% + 4¢°

ii) Consider z = z + £, then the equation is:
3

2 —pafqr—r=(z+ 23 —pz+ 224 qz+2) -7

3 3 3
2 3
B2 PP
= 2"+ pz +3z+27
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2p°  p?
— 2 —_— — [ —
Dz 3 z 9 +

pq
qz+3 T
2 2 3 3
3 (P po_ P PT_
=z —l—(3 3 +q>z—|—(27 9+3 r)

2 3
_ .3, (_P 27 P
=z +< 3+q>z+< 27+3 r)

Since this equation must also have repeated roots we must have:

2 3 3 2
4 2p°  pq
4 = 27T ———= + = — =
( 3 +q) + 7< o7 + 3 7"> 0

which is exactly our desired result

Question (1996 STEP III Q7) (i) fz+y+2z =, zy+yz+zx = f and zyz = v,
find numbers A, B and C' such that

23+ 9 + 2% = Aa® + BapB + Cn.
Solve the equations

r+y+z=1
?+y’+22=3
B+ +2=4

(ii) The area of a triangle whose sides are a,b and c is given by the formula

area = \/s(s — a)(s — b)(s — ¢)

where s is the semi-perimeter %(a +b+c). If a,b and c are the roots of the
equation

23 — 1622 + 81z — 128 = 0,
find the area of the triangle.

(i)
(z+y+z)P =2+ + 25+
3zy? + 3x2% 4 3yx® + - - + 32y
+ 6xyz
(x 4y +2)(@y +yz + 22) = 22y + 2?2 + - + 2% + 3zyz
By = (e ry+2)® -3y o+ 2y?) - bayz
=a® —3(af — 3y) — 6y
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=a® - 308+ 3y
Since 4 =13 —3-1-(—1) + 3y = v = 0, therefore one of z,y,z = 0. WLOG z = 0,
Slo)
y—i—z:1,y2+22:3:>y2+(1—y)2:3:>y2—y—1:0:y:%‘/g, SO we
have
(z,y,2) = (0, 1+2\/g’ 1_2\/5) and permutations.
(ii)

A% =s(s—a)(s —b)(s —c)

Notice the second part is the same as plugging s = 16/2 = 8 into our polynomial
Therefore
A*=8-(8°—-16-8>+81-8—128)
—8-8(8%2—16-8+ 81— 16)

— 64(—64 + 81 — 16)
— 64

Therefore A =8
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Question (1997 STEP III Q4)

In this question, you may assume that if k1, ..., k, are distinct positive real numbers,
then 1
1 n n n
£S5k 11k
r=1 r=1

i.e. their arithmetic mean is greater than their geometric mean. Suppose that a, b, ¢
and d are positive real numbers such that the polynomial

f(z) = z* — 4az® + 66%2® — 43z + d*
has four distinct positive roots.

(i) Show that pgr, grs,rsp and spq are distinct, where p, ¢, and s are the roots
of the polynomial f.

(ii) By considering the relationship between the coefficients of f and its roots, show
that ¢ > d.

(iii) Explain why the polynomial f’(x) must have three distinct roots.
(iv) By differentiating f, show that b > c.

(v) Show that a > b.

(1) Suppose pgr = qrs, since the roots are positive, we can divide by ¢r to obtain p = s
(a contradiction. Therefore all those terms are distinct.

(ii) 4¢3 = pqr + qrs +rsp + spq, d* = pqrs.
Applying AM-GM, we obtain:

¢ = PRI A TR YR s -

= c>d

(iii) There must be a turning point between each root (since there are no repeated
roots).

(iv) f'(x) = 42® — 12a2? + 120? — 4¢® = 4(2® — 3az? + 3b> — ¢3). Letting the roots of
this polynomial be a, 3, and again applying AM-GM, we must have:

p2 — W > {02322 = &
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= b>c

(v) Again, since there are turning points between the roots of f/(z) we must have
distinct roots for f”(x), ie:

f"(x) = 32% — 6az + 6b> = 3(x? — 2ax + b?) has distinct real roots. But for this to
occur we must have that (2a)? — 4b? = 4(a? — b%) > 0,ie a > b

Question (2007 STEP III Q1)

In this question, do not consider the special cases in which the denominators of any
of your expressions are zero. Express tan(6y + 02 + 03 + 64) in terms of ¢;, where
t1 = tan 6y, etc. Given that tan 6y, tanfs, tanf3 and tan @, are the four roots of the

equation
at* + P+t +dt+e=0

(where a # 0), find an expression in terms of a, b, ¢, d and e for tan(6, + 62 + 03+ 64).
The four real numbers 61, 65, 3 and 6,4 lie in the range 0 < 0; < 27 and satisfy the
equation

pcos20 + cos(f —a)+p=0,
where p and « are independent of 6. Show that 6; + 05 + 03 + 6, = nw for some
integer n.

tan(91 + 02) + tan(93 + 94)
1 — tan(0; + 02) tan(0s + 64)

t1+to + t3+tg
1—tito 1—tsty
1— t1+to t3+ta

1—t1to 1—t3ty

(t1 +t2)(1 — t3tg) + (t3 + t4)(1 — t1t2)

(1 —tata)(1 —tata) — (t1 +t2)(ts + ta)

_ty A to itz ty — (titats 4 titaty 4 titgty + tatsts)
N 1 — t1tg — tits — t1ty — tots — toty — tsty

tan(01 + 05+ 03 + 94) =

If t1,t9,t3,t4 are the roots of at* + bt3 + ct? + dt + e = 0, then t1 + to +t3 + 14 =

—2 it +titsHtits oty Hats +tgty = <, titats+titaty +titsts +tatsty = —2, therefore

the expression is:

b d

tan(fy + 02 + 03 + 04) = 1“_ e
Cd-b
Ca-—c

0=pcos20+cos(d —a)+p
=p(2cos? 0 — 1) + cosfcosa — sinfsina + p
= 2pcos? 0 + cos § cos o — sin 0 sin o

0 =2pcosf + cosa — tan fsin

4

—2pcosf = cosa — tan fsin

4

36



SM

UFM Pure (with Solutions)

= 4p? cos? 0 = cos® o — 2sin a cos atan @
1
4p2m = COS2 a — sin 2o tan 6 + Sin2
= 4p? = cos® o — sin 2t + t2 — sin
0
= tan(91 + 92 + 93 + 04) = 5 1
sin“a —1
=0
= 01 +603+05+0,=nn

+sin? atan® 6
atan® 6

203 + sin? at?

Question (2008 STEP III Q1)

Find all values of a, b, x and y that satisfy the simultaneous e
a+b =1
axr +by = %
azr® + by2 = %
az® + by = % .

[ Hint: you may wish to start by multiplying the second equation by = + y. |

quations

This is a second order recurrence relation, so we need to find m

=

So we now need to solve the characteristic equation:
M-+ 2=0

and n such that;

15+£2v30
Sox,y:%.
We need,
l=a+b
1_@15+2\/%+615—2\/%
3 35 35
1 15 2v30
=t r(a—b)
3735 35
= f—m—afb
18
_ CL_18—\/%
36
,_ 18+V30
38

So our two answers are:
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(a,b,2,y) = 18 £ v30 18F 30 15+2v30 15F2v30
b ’y 36 Y 36 Y 35 9y 35 Y

Question (2009 STEP III Q5)

The numbers z, y and z satisfy

r+y+z=1

2244 =2

3434+ 28=3.

Show that 1

yz—i—zx—i—xy:—i.

Show also that z2y + 222 + y?z + y%x + 2%z + 2%y = —1, and hence that

1
Yz = — .
Y76
Let S, = 2" + y™ + 2™ . Use the above results to find numbers a, b and ¢ such that
the relation
Sn+1 = aSp +bS,-1 +cSp—2,

holds for all n.

(x+y+2)? =2 +y*+ 22+ 2(xy + yz + z1)

= 12 =2 4 2(xy + yz + 22)
1
= xy+yz+zx:f§

1-2=(z+y+2)(2*+9°+ 2%
:x3+y3—1—23+x2y+x22+y2z+y2x+z2x+22y
:3+x2y+x2z+y22+y2x+z2x+z2y

= —1=a?y+ 222+ 2+ x4+ P+ 2%y

(z+y+2)° =23+ 43+ 25+
3xy2 +3z2% 4+ -+ 322 + 3zy2+

6ryz
= 1 =3+3(-1) 4+ 6zy=
= TYz :1
6

Since we have f(t) = (t —a)(t —y)(t —2) =3 — 12 — 1t — é is zero for x,y, z we can
notice that:

il = ¢ %t"il + ét”*Q is also true for z,y, z (by multiplying by t" 2.

Therefore:

Sn+1 = Sn + %Snfl + %Sn72
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Question (2014 STEP III Q1)
Let a, b and ¢ be real numbers such that a + b+ ¢ = 0 and let

(14 az)(1 +bx)(1 + cx) =1+ gz + ra®
for all real x. Show that ¢ = bc + ca + ab and r = abe.

(i) Show that the coefficient of z™ in the series expansion (in ascending powers of
x) of In(1 + gz? + r23) is (=1)"*1S, where

P i i (n>1).

n

(ii) Find, in terms of ¢ and r, the coefficients of 22, #® and x° in the series expansion
(in ascending powers of ) of In(1 + gz? + rz3) and hence show that S2S3 = 5.

(iii) Show that S955 = 5.

(iv) Give a proof of, or find a counterexample to, the claim that S2S57 = Sy.

(1+az)(1+bx)(1 4 cx) = (1 + (a + b)z + abz?)(1 + cx)
=1+ (a+b+c)z+ (ab+ be + ca)x® + abex®

Therefore by comparing coefficients, ¢ = bc 4 ca + ab and r = abc as required.
(i)

In(1 + g2 + rz®) = In(1 + ax) + In(1 + bz) + In(1 + cz)

o (ar)t (b))t s (men)”

B i (_1)n+1(an Ty S Cn)xn

- n=1 n

= Z(—l)”+15’nx"

n=1
(ii)
2 3\2
In(1 + gz? + ra®) = (q2? + rad) — (ge” +ra’)” + 0(z°)

2

1
= gz + ra® — §q2$4 — qrz® + O(x%)
Comparing coefficients we see that So = —q and S3 = 7, we also must have

S5 = —qr = S9S53 as required.

39



SM UFM Pure (with Solutions)

(iii)

(qz® +ra3)?  (qu? +rad)?

In(1 + gz? 4+ ra®) = (g2? + ra®) — 5 3 +0(z®)
1 1 1
= qz® +rad — §q2x4 — qrazd + 57“%‘6 + gq?’a:ﬁ + ¢*ra’ + O(xs)
2 3 1oy 5 1 L3\ 6, 2. 7
=qxr°+rr —iq T —qrz” + §T+§q T+ qrx
Comparing coefficients we see that S9 = —q and S5 = —qgr, we also must have
S7 = ¢°r = S.55 as required.
(iv) Let a=b=1,¢c = —2, then Sy = w =3,57 = w = —18,5¢ =
114124(-2)° —
2 25512 o4 3. (1g)

Question (2015 STEP III Q6) (i) Let w and z be complex numbers, and let u =
w + z and v = w? + z2. Prove that w and z are real if and only if u and v are
real and u? < 2v.

(ii) The complex numbers u, w and z satisfy the equations

w+z—u=0
w2+22—u2:—%

wd+ 23— du= -\

where A is a positive real number. Show that for all values of A except one
(which you should find) there are three possible values of u, all real.

Are w and z necessarily real? Give a proof or counterexample.

(i) Notice that u? = v+2wz, so w, z are roots of the quadratic t? —ut+ UQT_” Therefore
they are both real if u? > 2(u? — v) = 2v > u?.

(ii)

(w+ 2)(w? + 2%) = w® + 23 + wz(w + 2)

1
u(u2—%):)\(u—1)+§u
= ud —u=ANu—1)
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= 0=(u—1)(u(u+1) =)
= 0=(u—1)(u?+u—2N\)

Therefore there will be at most 3 values for u, unless 1 is a root of u? +u — J, ie
A=2

Suppose u = 1, then we have:

—1+4/=1/3
2

w+z=lLwz=1/3=w,z= which are clearly complex.

Question (2017 STEP III Q3)
Let a, 8, v and d be the roots of the quartic equation

x4+pa:3+q:1:2+m+s:O.

You are given that, for any such equation, af + v, ay+ 56 and ad + By satisfy a
cubic equation of the form

y3 +Ay2 + (pr —4s)y + (4qs —p’s — 1"2) =0.

Determine A. Now consider the quartic equation given by p =0, ¢=3,r = —6
and s = 10.

(i) Find the value of a8 + 4, given that it is the largest root of the corresponding
cubic equation.

(ii) Hence, using the values of ¢ and s, find the value of (o + 3)(y + ¢) and the
value of a8 given that a8 > ~¢ .

(iii) Using these results, and the values of p and r, solve the quartic equation.

A=—(af+v5+ay+ B0+ ad+ By)
= —q

(i) The corresponding cubic equation is:

0 =y> — 3y? — 40y + (120 — 36)
=33 — 3y% — 40y + 84
=y—7(y—2)(y+6)

Therefore aff +v6 =7
(ii)
(a+B)(y+96) =ay+ad + By + 36
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(iii)

=3 —(af +79)
=3-7=-4

Let af and 9 be the roots of a quadratic; then the quadratic will be 2 — 7t +10 =
0=t=2,5s0a8=5

af =570 =2

Consider the quadratic with roots a4+ 8 and v + 4, then
t2—4=0=t==42

Suppose aa + 8 =2,7+ § = —2 then
a,B=1+2iv6=—1+i

afy + Byé + yda+ daf =5y + 28+ 2a+ 50 = —6 £ 6
Suppose o + f = —2,v + § = 2 then
a,f=—1+2i~v6=1+i

aBy + By + véa + daf = by + 28 + 2a. 4 5§ = 6, therefore these are there roots.
(In some order):

1+, -1+
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Question (2018 STEP III Q1) (i) The function f is given by
1 1
B B2
Find the stationary point of the curve y = f(3) and sketch the curve. Sketch
also the curve y = g(3), where

f(B) =5 (B#0).

9(6)=ﬁ+;—612 (8#0).

(ii) Let u and v be the roots of the equation
2> +az+ =0,

1
where 5 # 0. Obtain expressions in terms of « and § for u + v + — and
uw

1 1
—+ - +uv.
u v

1 1 1
(iii) Given that u+v+— = —1, and that u and v are real, show that —+ —+uv <
uw u v
-1.

1
(iv) Given instead that u+v+ — = 3, and that u and v are real, find the greatest
uv

1 1
value of — + — +wv.
U v

(i)

1 1

fB)=25 e

, 1 2
= f(ﬁ)_1+@+@

= 0=f(8)

1 2
=1+ g5+

= 0=p°+B+2

=(B+1)(*-B+2)

Therefore the only stationary point is at = —1, f(—1) = —1
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[T
mr

3 1
g(ﬁ)=ﬂ+3—@
3 2
9,(5):1—@4‘@
0=f"(B)
3 2
et
0=p32-38+2

=(B-1*(8+2)

Therefore there are stationary points at 8 =1, f(1) = 3,8 = =2, f(-2) = 1
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<

(ii) Let u,v be the roots of 22 + az + B = 0, then since (z — u)(z — v) = 0 we must
have o = —(u +v), f = uv.

Therefore:
1 1
ut+tv+—=—-a+ =
uv I53
1 1 U+ v
—+—-—tuv= + uv
U v uv
Q
=—-—+8
B
Given u + v + % =—1,ie —a+ % = —1. Since the roots are real, we must also

have that o® — 48 > 0, so

¥
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—a—l—l——l
5=

= a:1+l

B
o 1 1

= o=y (1rg)+s

1 1
25_5_72

So we want to maximise f() subject to a® — 45 >0

0<a?-483
1\ 2
—(1+-) —4
(1+5) -
2 1
=14+-4+=—-4
gte Y
& 0< —48°+ 5% + 28 +1
=—(B-1MB* +35+1)
& 6<1
But we know f(8) < —1 on (—o0, 1] so we're done.
(iii) Given that —a+%:3we have
+1 3
a4 - —
s
1
= a=-3+ -
g
« 1 1
= ——+f=—= -3+ )+
G (-srg)es
3 1
B+2 - =
B B
which we want to maximise, subject to:
0<a?—48
1\ 2
N
(7143
6 1
=9—-—-4+ = -4
e
= 0<—48°+98% —68+1
=—(B-1)*(48-1)
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N

Therefore the maximum will either be f(—2) = % or f(%) = —%. Therefore the
maximum is i

Question (2019 STEP III Q4)
The nth degree polynomial P(z) is said to be reflezive if:

(a) P(z) is of the form 2" — ayz" ! + agz" 2 — - - + (—=1)"a,, where n > 1;
(b) a1,as,...,a, are real;
(c) the n (not necessarily distinct) roots of the equation P(z) = 0 are a1, ag, ..., ap.

(i) Find all reflexive polynomials of degree less than or equal to 3.

(ii) For a reflexive polynomial with n > 3, show that

2a2:—a§—a§—~~—ai.
Deduce that, if all the coefficients of a reflexive polynomial of degree n are
integers and a, # 0, then n < 3.

(iii) Determine all reflexive polynomials with integer coefficients.

(i) Suppose n =1, then all polynomials are reflexive (since x — aj has the root a;.

Suppose n = 2, then we want

22— a1z +as = (r —a1)(z — ag)

=22 — (a1 + ag)x + ajas

= as =0

2

So all polynomials of the form x* — a1z work and no others.

Suppose n = 3 then we want

23— a12? + apr — a3 = (x — a1)(z — a)(z — a3)
=23 — (a1 + ag + a3)z + (arag + araz + azaz)r — ajasaz
= a2 +a3 =10
asaz = ag
= —a3 = ay

47



SM UFM Pure (with Solutions)

= az =0,—1
—ala% = —a
= a2:0,a2:1/a1

So we need either 2® — a1z or (v +1)%(z —1) =23 +22 -2 -1

(ii) Suppose n > 3 then

Za? = (Zai>2 —QZCM%’

i<j
:a%—Zag
= 2a2:a%—2a?
So (a2 +1)2=1—a3 —---—a2 so if a, > 0 (or any other a;,i > 2 for that matter)

then we must have a, = +1,a3,...a,_1 =0, but if a,, = £1 = 0 is not a root.
Therefore we must have ag and a; = 0 for all i > 3

(iii) The only reflexive polynomials therefore must be 2" — ka™~! and 23 + 272 —
xn—f—l — "

Question (2025 STEP III Q6) (i) Let a, b and ¢ be three non-zero complex num-
bers with the properties a +b+ ¢ = 0 and a® + b? + ¢ = 0. Show that a, b and
c cannot all be real. Show further that a, b and ¢ all have the same modulus.

(ii) Show that it is not possible to find three non-zero complex numbers a, b and ¢
with the properties a + b+ c¢ =0 and a® + b + ¢3 = 0.

(iii) Show that if any four non-zero complex numbers a, b, ¢ and d have the
properties a + b+ c+d = 0 and a® + b3 + ¢® + d® = 0, then at least two of
them must have the same modulus.

(iv) Show, by taking ¢ = 1, d = —2 and e = 3 that it is possible to find five real
numbers a, b, ¢, d and e with distinct magnitudes and with the properties
at+b+ct+d+e=0and a®+b+c3+d®+e=0.

(i) If a,b,c were all real then a® + b? +c¢? = 0 = a,b,c = 0 but they are non-zero.
Therefore they cannot all be real.

Since (a + b+ ¢)? = 0 we must have ab + bc + ca = 0. Therefore a, b, ¢ must satisfy
x3 — abc = 0 = they all have the same modulus, since they are all cube roots of
the same number.
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(ii) Notice that a® 4+ b + ¢3 — 3abe = (a + b+ ¢)(a® + b* + ¢* — ab — be — ca) = abc = 0
but therefore they cannot all be non-zero.

(iii) Suppose a+b+c+d = 0 then note that a® + 5%+ > +d* = (a+b+c+d)*—2) ab
sym
and

A+ +AE+d = (a+b+c+d)? —3(a+b+c+d)(ab+ac+ ad+be+bd + cd) +
3(abc + abd + acd + bed) = abe 4+ abd 4+ acd + bed = 0. Therefore a, b, ¢, d are roots
of a polynomial of the form z* — kxz? + [ = 0, but this means they must come in
pairs with the same modulus.

(iv) Suppose c=1,d=-2,e=3s0oc+d+e=2and & +d>+e3=1-8+27 =20,
so we need to find a,b satisfying a + b = —2,a® + v = —20, ie 4 = (a + b)? =
—20 + 2ab = ab = 12, so we need the roots of x? + 22 + 12 = 0 which clearly have
different modulus.

Question (1989 STEP II Q5) (i) Show that in polar coordinates, the gradient of
any curve at the point (r,6) is

gt 0+ g— tan 0
qg tand +r 3 ~"tand |

(ii) A mirror is designed so that any ray of light which hits one side of the mirror
and which is parallel to a certain fixed line L is reflected through a fixed point
O on L. For any ray hitting the mirror, the normal to the mirror at the point
of reflection bisects the angle between the incident ray and the reflected ray,
as shown in the figure. Prove that the mirror intersects any plane containing
L in a parabola.

(i) Suppose our curve is r(6), then y = rsinf, z = r cos§ and

dy dr .
0= @smﬁ—i-rcosﬁ
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(:; %COSG—TSIDQ

d d dx

- =1/ @
B dest—i—rcosH
dZCOSQ rsin 6

_%tan@—i—r

%—rtan@

as required.

(ii) Set up a system of polar coordinates such that the origin is at O and all points in
the plane containing L are represented by (r,0).

The constraint we have is that the angle of the normal, is %9. Let tan %9 =t, then
tanf =

2
1—¢2

d
taH,QZ_M
2 —tan9+r
2t
1—¢2
= t=——
2t
v
_2tr—(1— )
2t + (1 —12)r
= (262 +1 3" = (2t —t +t3)r
(1+ 3 =t(t? + 1)r
= r'=tr
d
= —r—tanlﬁr
= / dr—/tan 0do
lnr:—21ncosé9+0
1
= rcos2§9:C
= r+rcosf =D
= r=D—x
= x2+y2:D2—2D$+x2
= y?> = D* - 2Dx

Therefore it is a parabola

20
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Question (1989 STEP III Q6)

Show that, for a given constant v (sin~y # 0) and with suitable choice of the constants
A and B, the line with cartesian equation lx 4+ my = 1 has polar equations

1
— = Acosf + Bcos(0 — 7).
r
The distinct points P and () on the conic with polar equations

=1+ ecosf

3|

correspond to 6 =y — d and 0 = v + § respectively, and cosd # 0. Obtain the polar
equation of the chord P(Q. Hence, or otherwise, obtain the equation of the tangent
at the point where 6 = . The tangents at L and M to a conic with focus S meet at
T. Show that ST bisects the angle LSM and find the position of the intersection of
ST and LM in terms of your chosen parameters for L and M.

1
- = Acosf + Bcos(f — )

= Acosf + Bcosfcosy+ Bsinfsin~y
= (A + Bcos7y) cosf + Bsin~ysinf
= 1= (A+ Bcosvy)r + Bsinvyy

So if we choose B = and A =1 — mcoty we have the desired result.

sin 7

1+ ecos(y —9)
a

= Acos(y—0)+ Bceos(y —d —7)

1+ ecos(y+9)
a

= Acos

(y=9)
= Acos(y —6) + Bcosd
(y+6)+ Bcos(y+0 —7)

= Acos(y+0) + Bcosd
e

1 1
= — = —cosf + cos(6 — )
rooa acosd
. 1 e 1
limd — 0 — = —cosf + —cos(§ — )
rooa a

Suppose we have have points L and M with 6 = 7, then our tangents are:

% = cosf + cos(f — 1)
% = cosf + cos(f — var)
= 0 = cos(f — yz) — cos(0 — vur)
:—28in<0_7L)+(9_7M}Sin(e_vL)_(e_FYM)
9 2
B , ( ’YL+’YM> . <’7M_'YL>
= —2sin({f - ——|sin| ——
2 2
N QZWTW
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Therefore clearly ST bisects LSM.
The line LM can be seen as the chord from the points VLJ;’M + LM 50 the line is:

a 1 YL + Ym
- = 0+ —F——— 0— ————
; € Ccos o (VL_;M) cos ( 5 )

and we want the point on the line where 6 = w SO

a YL+ YM 1

a

yL+Ym 1
€ Ccos ( 2 ) + COS(’YL;“/M)

= r=

Question (1990 STEP II Q9)

Show by means of a sketch that the parabola (1 + cos#) = 1 cuts the interior of the
cardioid r = 4(1 + cos §) into two parts. Show that the total length of the boundary
of the part that includes the point r = 1,0 = 0 is 18v/3 + In(2 + v/3).

)
AN
> T
The curves will intersect when:
L 41+ cost)
—_— = cos
1+ cosf
1
= 1+ cosf = :t§
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1
= 0=——
cos 5

2w

= 0= j:4477
3

Therefore we can measure the two sides of the boundaries. For the cardioid it will be:

2m/3 d 2
s-/ r2+ di" do

2m/3 g
27r/3

r2 4 d"” oy
27r/3

2m/3
/ \/16 1+cos€ + 16 sin2 0d6

2m/3
2m/3
V2 + 2cos0dl
—27/3

2#/3
\/cos2 d0
2#/3
2m/3
= —|dé
/ | cos 2\

—27/3

2m/3 6 T 0
—16/ (—cos — )d9—|-8/ cos§d9

—T

2m/3
:16-[281112] +8-4

™

=16-(V3—-2)+8-4
=16V3

For the parabola we have that /22 + y2+2z =1 = 2249 = 1-22+2° = y? = 1 - 2z.

. 2 . .
So we can parameterise our parabola as y = t,x = 1Tt And we are interested in the

points t = —V3and t =3

V3y/(92)% 4 () Yiat

Il
\

3
V32124t
[
dt sinh~1 /3
sinhu =t,— = coshu = / cosh? udu
du sinh—1 /3

|: sinh~1 /3
=sinh~ ' v3 4+ 2V3
=1In(2+V3) +2V3

1
u+ 1 smh(2u)]

N |

—sinh~ 13

Therefore the total distance is as required.
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Question (1991 STEP III Q5)

The curve C' has the differential equation in polar coordinates

d?r . e 3
@—1—47“:5511130, for géﬁgg,

d
and, when 0 = g, r =1 and d—; = —2. Show that C forms a closed loop and that

the area of the region enclosed by C' is
us " 25 i <7T) i 27
—+ —|sin{—=)—sin|{—||.
5 48 5 5

First we seek the complementary function.

d?r
44y =
102 +4r =0

= r = Asin 20 + B cos 260

Next we seek a particular integral, of the form r = C'sin 36.

d2
4y =5sin30

do?
= —9C'sin 360 + 4C'sin 30 = 5sin 36
= C=-1
So our general solution is Asin 260 + B cos 26 — sin 36.
Plugging in boundary conditions we obtain:
ng,rzlz 1=-B+1
= B=0
m dr
0=—, —=-2: —2=-2A
27 do
= A=1

So the general solution is 7 = sin 20 — sin 36 = 2sin (_70) oS (%)

First notice that for 8 € [%, 3%] this is positive, and it is zero on the end points,
therefore we are tracing out a a loop.

The area of the loop will be:

3r/5
A :/ = (sin 20 — sin 30)* d6
/5

1 37T/5
== / sin® 260 + sin? 30 — 2 sin 26 cos 30d0
™

2 )
1 (3751 - 2cos4 —

:/ cosdl | 1220500 50— cos0af
2 ) 2 2
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1 1 1 3 /5
= H—ZsinéLH—ésin60+gcos59—sin9

/5

Question (1991 STEP III Q9)

The parametric equations Fq and Ey define the same ellipse, in terms of the parame-
ters 01 and 6o, (though not referred to the same coordinate axes).

Eq: T = acosf, y = bsin 6y,
k cos 05 k sin 69

E: = —_ —— —
2 v 1+ ecosfy’ y 1+ ecosfy’

where 0 < b < a, 0 <e<1and 0 < k. Find the position of the axes for E5 relative
to the axes for Fy and show that k = a(1 — €?) and b* = a?(1 — €?). [The standard

polar equation of an ellipse is r = .] By considering expressions for the

14 ecosf
length of the perimeter of the ellipse, or otherwise, prove that

™ ™ 1— 2
/ \/1—6200829d9:/ 76)2\/14-624-260089(19.
0 0

(14 ecosf

Given that e is so small that €% may be neglected, show that the value of either
integral is
(64 — 16e* — 3e).

None

Question (1992 STEP III Q10)

Sketch the curve C' whose polar equation is
r = 4a cos 20 for —%7‘(<0<%7T.
The ellipse E' has parametric equations
T = 2a.cos ¢, Yy = asin ¢.

Show, without evaluating the integrals, that the perimeters of C' and F are equal.
Show also that the areas of the regions enclosed by C' and E are equal.
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~

/4 dr\ 2
Perimeter(C') :/ r? + <> de
o/t a0

/4
= \/16a2 cos? 20 + 64a2 sin? 2046
—7/4

/4
= / 4a+/1 + 3sin® 2046

—m/4

T 2 2
Perimeter(D) = /02 \/<22> + (jﬁ;) do

2
— / \/ 4a? sin® ¢ + a2 cos? ¢pd¢
0

2
:a2/ \/ 1+ 3sin? ¢do
0

But clearly these two integrals are equal.

w/4
A(C) = 1 r2d
2 —7/4
1 w/4
— / 1642 cos? 20d6
2 —m/4
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w/4
= 8a’ / cos® 20d6

—7/4
= 8a2% = 27a’®
A(D) = 2ma®

Question (1993 STEP II Q5)

xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=0,dotsize=3pt
0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25 (-0.57,-0.63)(8.51,6.23)
(0,0)(7,5) (7,5)(7.75,1.98) (7.75,1.98)(0,0) -
0.67408182176363680.222081901905479941*5.52*cos(t)+0*5.52*sin(t)+1.48—0*5.52*ca
(7,5)(5.79,1.45) [t1](-0.4,-0.02)0 [t1](5.76,1.29) P [t1)(8.1,2.01) R [t1](7.2,5.26)Q
(7.67,2.29)(7.37,2.22) (7.37,2.22)(7.45,1.91)

In the diagram, O is the origin, P is a point of a curve r = r(f) with coordinates
(r,0) and @ is another point of the curve, close to P, with coordinates (r+ dr, 0+ 60).
The angle ZPRQ) is a right angle. By calculating tan ZQ PR, show that the angle
at which the curve cuts OP is

tan~* (rde>
dr ) -

Let « be a constant angle, 0 < a < %77. The curve with the equation

= ec9 cot «
in polar coordinates is called an equiangular spiral. Show that it cuts every radius
line at an angle . Sketch the spiral.

Find the length of the complete turn of the spiral beginning at » = 1 and going
outwards. What is the total length of the part of the spiral for which r < 17

[You may assume that the arc length s of the curve satisfies

(5 - (&)

Question (1993 STEP III Q2)
The curve C has the equation 2% + 3% = 3zy.

(i) Show that there is no point of inflection on C. You may assume that the origin
is not a point of inflection.

(ii) The part of C' which lies in the first quadrant is a closed loop touching the
axes at the origin. By converting to polar coordinates, or otherwise, evaluate
the area of this loop.

o7

s(t)41*5.52*sin(t)-



SM UFM Pure (with Solutions)

Question (1998 STEP III Q4)

Show that the equation (in plane polar coordinates) r = cos 6, for —%77 <h< %71',
represents a circle. Sketch the curve r = cos26 for 0 < 0 < 2x, and describe the
curves r = cos 2nf, where n is an integer. Show that the area enclosed by such a
curve is independent of n. Sketch also the curve r = cos 30 for 0 < 6 < 27.

Question (2006 STEP III Q6)

Show that in polar coordinates the gradient of any curve at the point (r,8) is

dr cand +
0 an T
d

d—g—rtaHQ

xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt
0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25 (-0.6,-3)(6.8,3) (0,0)(6.54,0)
[t1)(4.13,-0.22)0 [t1](-0.47,0.07) L -270(5.75,0.08)[plotpoints=500]-
1212x2/2/3(2,1.5)(5.42, 1.5)(3.73, —0.74) (5.42, 1.5) [linewidth =
0.4pt]— >(3,1.5)(4, 1.5)[linewidth =
0.4pt]— >(5.42,1.5)(4.99,0.93)(3.84, 0.78)(6.62, 2.05)

A mirror is designed so that if an incident ray of light is parallel to a fixed line L the
reflected ray passes through a fixed point O on L. Prove that the mirror intersects
any plane containing L in a parabola. You should assume that the angle between
the incident ray and the normal to the mirror is the same as the angle between the
reflected ray and the normal.
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Question (2011 STEP III Q5)

A movable point P has cartesian coordinates (z,y), where = and y are functions of t.
The polar coordinates of P with respect to the origin O are r and . Starting with

the expression
% / r2dé

for the area swept out by OP, obtain the equivalent expression

dy dx
N P A TS
2/<xdt ydt) ()

The ends of a thin straight rod AB lie on a closed convex curve C. The point P
on the rod is a fixed distance a from A and a fixed distance b from B. The angle
between AB and the positive x direction is t. As A and B move anticlockwise round
C, the angle t increases from 0 to 27 and P traces a closed convex curve D inside C,
with the origin O lying inside D, as shown in the diagram.

Y

h S
N

Let (x,y) be the coordinates of P. Write down the coordinates of A and B in terms
of a, b, z, y and t. The areas swept out by OA, OB and OP are denoted by [A], [B]
and [P], respectively. Show, using (x), that

[A] = [P] + ma® — af

f:%/o27r ((az—i—ifé)cost%—(y—if)sint) det.

Obtain a corresponding expression for [B] involving b. Hence show that the area
between the curves C and D is wab.

where

tanf = y/x
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d¢ x?ilt/_ydt

= sec edt — 7

N i@_ %_ dﬁ cos? 6
a - \Tat Yar ) a2

m%— dic cos? 6
dt ydt r2 cos? 0

B dy dx 1
“\Yat Yar
dy d:U
L[240 = 1/ - _ dt
2/r 2T Y

A= (x—acost,y —asint),B = (z + bcost,y + bsint)

2 — asin L —acos
[A]:;/O <($_acost)d(ydtt)_(y—asint)d(dtt)> dt

27
d d
= ;/0 ((x — acost) <d§ - acost> — (y — asint) (df —i—asint)) dt

1/27r dy  dz U t 4 a2cos?t + asint s int + a?sin?¢
= 35 — Q@ COST— — ax COoS a COS asint— — ya sin a” S1n
2 Tar Y dt ac Y

N[ —

2 dy dx dy de, . 9
/0 T Y <(x+dx)COSt+(y_dt)smt> + a | dt
—_———— 2

[P] T™a

= [P] + ma® — af

N[ =

2 d bsint d bcost
/ <x+bcost)@+sm>_(y+bsm)<fﬂ+w> gt
0 dt dt

N[ =

2w d d
/ ar—i—bcost)(—y—i-bcost)—(y+bsint)(—x—bsint) dt
; dt at

N[ =

2 d d
/0 < dii_ f+62+b(cost(a:+dt)+(y df)smt) dt
= [P] + wb* + bf
Since A and B trace out the same area, we must have ma? — af = wb*> + bf =

m(a? = %) = f(b+a) = f =m(a—b).
In particular the area inbetween is [A] — [P] = ma? — an(a — b)
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Question (2015 STEP III Q3)

In this question, r and € are polar coordinates with r > 0 and —7 < 8 < 7, and a
and b are positive constants. Let L be a fixed line and let A be a fixed point not
lying on L. Then the locus of points that are a fixed distance (call it d) from L
measured along lines through A is called a conchoid of Nicomedes.

(i) Show that if
|r —asecl| =b, (%)

where a > b, then sec > 0. Show that all points with coordinates satisfying
(*) lie on a certain conchoid of Nicomedes (you should identify L, d and A).
Sketch the locus of these points.

(ii) In the case a < b, sketch the curve (including the loop for which secd < 0)
given by
|r —asecl| =b.

Find the area of the loop in the case a =1 and b = 2.
[Note: [secfdf =1In|sec+ tanb| + C ]

(i) » =asecO £ b. The points on r = asec < rcosf = a < x = a are points on the
line x = a. Therefore points on the curve r = asecf + b are points which are a
distance b from the line x = a measured towards O. So A is the origin and d = b.

Yy

L
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L

(ii)

a

The loop starts and ends when r = asec0 —b =0 = cosf = §,so whena = 1,b = 2,

this is

A=

s s
—gtO§

(secd — 2)* d6

r2do
w/3
3

/ 3
[,
4

N~ NI~ N

(sec2 0 — 4secl + 4) dé
_7|—/
[tan® — 41n|secd + tan O] + 49]7r/3

w/3

M\P—‘[\D\H[\DM—‘

(2[ 41n]2+\[|+41n|2—\[]+87r>
2—\/§+4j
243

4

+4In(2 — V3) + 5

&

+2In

&

62
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Question (2015 STEP III Q8) (i) Show that under the changes of variable x =
rcosf and y = rsinf, where r is a function of 8 with » > 0, the differential

equation
dy
(y+ 55)@ =y—z
becomes
ﬂ +r=0
do -

Sketch a solution in the z-y plane.

(ii) Show that the solutions of

d
(v + 2 —z(a® +¢%)) é =y—z—y(=®+y°
can be written in the form
1
2 _
T + Ae?0

and sketch the different forms of solution that arise according to the value of

A.
(1)
dy
(ZH‘@@-?J—QJ
dy
= (rsin@%—rcos@)%:(rsine—rcosﬁ)
do
. dyi . dx
= (sinf + cos@)@ = (sin@ — cos 9)@
. dr . . dr .
= (sin@ + cos ) @cosﬂ—rsmﬁ = (sinf — cos 0) @sme—{—rcosﬁ
d
= d—g(sin9c080+cos29—Sin29+sin0c050):r(sin@cos@—00829+sin29+sin06050)
N ar _
a9 -
Therefore r = Ae™?
(ii)
2 ovy 4 2 2
(y+z—2@+y) - =v—r—y@ +y)
d d
= (rsin&—i—rcos&—r?’cosﬁ) d—g = (rsin@—rcos@—r?’sinﬁ)d—z
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dr

de

(rsin9+rc050—r36089) <j£sin0+7’cos0) =
. 3 . dr .
(rsm@—rcos&—r smH) @cose—rsme

(sinf(sin 6 + cos 6 — 2 cos ) — cos A(sin @ — cos @ — 12 sin 9)) =

7(—sin@(sin @ — cos§ — r? sin §) — cos O(sin § + cos § — 2 cos )

dr :r( 1412

_I_
Q
|
Do
S

T 1+ Ae20
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Question (2017 STEP III Q5)

The point with cartesian coordinates (x,y) lies on a curve with polar equation

r = f(#). Find an expression for j—z in terms of f(#), f'(f) and tan6.

Two curves, with polar equations r = f(6) and r = g(), meet at right angles.
Show that where they meet

f'(0)g'(0) + £(6)g(6) = 0.

The curve C has polar equation r = f(#) and passes through the point given
by r=4, 0 = 17r For each positive value of a, the curve with polar equation
r =a(l+sinb) meets C' at right angles. Find f(0).

Sketch on a single diagram the three curves with polar equations » = 1+ sinf,
r=4(1+sinfd) and r = f(0).

(z,y) = (f(0) cos(0), £(6) sin(6)) so

dy

ag = —/(©)sin(0) + f(0) cos(6)
dz

B 1(0)cos(9) + £/6) sin(s)
dy —f(0)sin(0) + f'(0) cos(0)

0) +
0) cos(0) + f'(0) sin(6)
—f(0) tan(6) + f(0)
f(8) + 1'(6) tan(6)

If the curves meet at right angles then the product of their gradients is —1, ie

—f(6) tan(6) + ['(6) —g(0) tan() +4'(6) _ |
f(0) + 1'(0) tan(0)  g(0) + ¢'(0) tan(6)
f(0)g() tan 0 — £(0)g'(0) tand — f'(8)g(6) tand + f'(0)g' () =
— (£(0)9(0) + £(8)g'(9) tan(8) + f'(6)g(6) tan(8) + f'()g'(6) tan® 0)
tan® 0 (£(0)g(0) + f'(0)g'(0)) + £'(0)g'(0) + f(6)g(6) =0
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(tan” 0 + 1) (f(0)g(0) + f'(0)g'(0)) =
f(0)g(0) + f'(0)g' () =

g9(0) = a(l+sinf), ¢’ (6) = acosb
Therefore f'(0)acosf + f(0)a(l + sin(f)) =0

G —sec(f) — tan
L — —sec(t) - tan(0)
= In(f(0)) = —In|tan(d) + sec(f)| + In| cos(9)| + C

= fO)=A

cos
tan @ 4 sec6
cos? 6
sinf + 1
~ 1—sin?6
T sinf+1
= A(1 —sin#)

When 0 = —%77,7"24, so A=2.
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Question (2018 STEP III Q4)
The point P(asec,btan@) lies on the hyperbola

2 2
75
-5 =1,
a b
where a > b > 0. Show that the equation of the tangent to the hyperbola at P can
be written as
bx — aysinf = abcosf.

(i) This tangent meets the lines 2 = % and 2 = —% at S and T, respectively.
a

a
How is the mid-point of ST related to P?

(ii) The point Q(asec ¢,btan @) also lies on the hyperbola and the tangents to
the hyperbola at P and @) are perpendicular. These two tangents intersect
at (x,y). Obtain expressions for #2 and y? in terms of a, § and ¢. Hence, or
otherwise, show that z2 4+ y? = a® — b%.

Note that
d 0
a;zc = asecftanf
dbtand
dzn = bsec’ 0
N %_ bsec? 6
dz  asecftané
b
~ asinf
N y—btan@_é 1
x —asecl  asinf
= asinfy — abtanfsin§ = bx — absec
= bx — aysinf = absec z(1 — sin? 0)
= abcosf
(1)
g bx — ay =0
bx —aysinf = abcosO
= ay(1 —sinf) = abcos 6
N ~ bcost
1 —sinf
acosf
1—sm0
T bx + ay =0
bx —aysinf® = abcosl
= ay(1+sinf) = —abcos b
N B —bcosb
y_1+sin«9
_acosf
"~ 1-+sin6
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u acos 6 2
: xr =
2 1—sin%6
= asecl
__ bcosf 2sinf
2 1-—sin%6
= btan@
The midpoint of ST is the same as P.
(ii) The tangents are perpendicular, therefore %9 = —¢sing, ie b2 = —a’sin¢sinf

The will intersect at:

bx —aysinf = abcosb
{bx —aysing = abcos¢
= ay(sinf — sin ¢) = ab(cos ¢ — cos )
b(cos ¢ — cosb)

~ v= (sin® — sin ¢)
o —a?sin¢sinf(cosd — cosf)?
= (sin 0 — sin ¢)2
= bx(sin ¢ — sin @) = ab(cos f sin ¢ — cos P sin b))
N . a(cos@sﬁngb - c.:osgbsinﬂ)
sin ¢ — sin 6
_a*(cosfsin ¢ — cos ¢sinf)?
(sin ¢ — sin 6)?
Therefore
2 2 a’ . 2 . . 2
xt+yt = m ((cos&snuﬁ — cos ¢sinf)” — sin ¢ sin f(cos ¢ — cos ) )
2
= (Sin(ﬁiw ((sin ¢ — sin 6)(cos? § sin ¢ — sin 6 cos> )

:G2—b2
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Question (1988 STEP III Q8)

Find the equations of the tangent and normal to the parabola y? = 4az at the point
(at?,2at). For i = 1,2, and 3, let P; be the point (at?, 2at;), where t1,ty and t3 are
all distinct. Let A; be the area of the triangle formed by the tangents at P, P>
and P3, and let As be the area of the triangle formed by the normals at P;, P» and
P5. Using the fact that the area of the triangle with vertices at (z1,y1), (2, y2) and
(x3,y3) is the absolute value of

1 oy 1
%det xo Yz 1],
r3 ys 1

show that A3 = (t; + to + t3)2A1. Deduce a necessary and sufficient condition in
terms of ¢1,t5 and t3 for the normals at P;, P, and P5 to be concurrent.

dy __ dr __ dy __ 1
%—Qa,dff—2at:>%—f
Therefore the equation of the tangent will be

will be =29 — _t = o = t(at? — z + 2a).

z—at?
{tiy —z = at?
_ 42
tiy—x = atj

y—2at
x—at?

= % =y = %x—i— at and normal

The tangents will meet when:

= (ti —tj)y = alt; — t;)(t; + t5)
= Yy = a(ti —+ tj)
xr = atit]’
The normals will meet when:
y+tix = at}+ 2at;
y+itjx = at? + 2at;
= (ti — tj)x = a(t; — t;)(t7 + titj + 5 +2)
= x=a(t] +tit; + 5 +2)

Y = —atit]'(ti + tj)

Therefore the area of our triangles will be:

atito a(tl + tg) 1 a2 tito (751 + tz) 1
%det atots a(tg + t3) 1] = ? det | tots (tQ + tg) 1
atsty a(ts+t1) 1 tst1 (ts+t1) 1

2 tito (tl + tz) 1

= ? det tg(tg — t1> (t3 — tl) 0

ti(ts —te) (t3—t2) O

= 2 = 1)t — )0 — )

and
a(ti +tity +134+2) —atita(ty +12) 1\ o (83 + tity + 13 +2)  —tita(t1 + t2)
Tdet | a(t3 +tats +13+2) —atots(ta+1t3) 1| = —det | (83 +tats +13+2) —tots(ta +1t3)
a(t3 +tsty +12 +2) —atsti(ts +t1) 1 (3 +tst1 +t3+2) —tsti(ts +t1)
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9 (12 4+t + 13 + 2) —t1to(ty + ta2)
a 2 2 2 2
= ? det t3 —t7 + tz(t3 — tl) tg(tl + titg — tots — tg)
22— 12+ t1(ts —t2) t1(t3 +tath — titz — 13)
2 (13 + tato + t5 + 2) —tita(t1 + ta)
= ?det (tg—tl)(t3+t2+t1) tg(tl —t3)(t1+t3+t2
(tg—tg)(t3+t2+t1) tl(tQ —t3)(t1+t2—|—t3
2

- %(tl o+ 13)2(ts — 1) (t5 — t2)(t1 — t3)]

as required.
The normals will be concurrent iff the area of their triangle is 0. This is certainly true
if t1 + t9 4+ t3 = 0. In fact the only if is also true, since no 3 tangents can be concurrent.

Question (1992 STEP III Q9)

The straight line OS A, where O is the origin, bisects the angle between the positive
x and y axes. The ellipse F has S as focus. In polar coordinates with .S as pole and
SA as the initial line, E has equation ¢ = r(1 + e cosf). Show that, at the point on
FE given by 0 = «, the gradient of the tangent to the ellipse is given by

dy sina—cosa—e

dxr sina+cosa+e’

The points on E given by 6 = o and 6 = [ are the ends of a diameter of F. Show

that ]
tan(a/2) tan(5/2) = =5 i—z.

[Hint. A diameter of an ellipse is a chord through its centre.]

(z,9)

¢=r(1+ecosb)
dr

= @(1—1—60059) —resinf

= 0
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dr
=

dr resin 6
dd 1+ecosb

Suppose we consider the (2/,y) plane, which is essentially the z — y plan rotated by

45°, then we would have

o dy
dy _ o

/ da’
dx S

dr

dé

sin @ + r cos 6

dr

do
resin @
1+ecosf

cosf —rsind

sin@ + r cos 0

resin @
1+ecosf

cosf —rsind

resin? @ 4 rcos O(1 + e cos )

resinf cosf — rsinf(1 + ecos0)

B cos 0 + e cos? 0 + esin’ 0
N —sinf
_cosf+e

—sinf

Since our frame is rotated by 45° we need to consider the appropriate gradient for this.

We know that m = tan so m’ = tan(f + 45°) =
therefore we should have

dy
dx

1+
1—

1+m

1-m

cosf+e
—sin 0
cos f+e
—sinf

cosf —sinf +e

—sinf —cosf — e
sinf — cosf — e

sinf + cosf + e

As required.

The tangents at those points are parallel, therefore

cosa+e cosf+e
sina  sing
1—tan2 & 1—tan2§
m te 14tan? g Te
= =
2tan § 2tan§
THtan? 2 Trtan? 2
1 —tan®$ + e(1+ tan* ) _ 1 — tan? g + e(1 + tan? g)
2 tan § Qtang
(1+e)+(e—1)tan* _ (I+e)+ (e— 1)tan2§
2tan § 2tan§
1 1
( +§)_(1—e)tang:( —i_;)—(l—e)tané
tan 5 2 tan 5 2

ie both tan % and tan 5
1+e

but this means the product of the roots is —1=¢
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Question (1994 STEP I Q5)

A parabola has the equation y = x2. The points P and Q with coordinates (p, p?)
and (g, ¢®) respectively move on the parabola in such a way that ZPOQ is always a
right angle.

(i) Find and sketch the locus of the midpoint R of the chord PQ.

(ii) Find and sketch the locus of the point 7" where the tangents to the parabola
at P and () intersect.

(i) The line PO has gradient % = p and teh line QO has gradient ¢, therefore we must
have that pg = —1. Therefore, R is the point

1 2 1
R = p_5p+p2
2 7 2

= (t,2t* +1)
So we are looking at another parabola.

Y
AN

W
8

(ii) The tangents are y = 2px + ¢, ie p? = 2p? + ¢, ie y = 2px — p? so we have

y—2pr = —p°
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2

Y —2qr=—q
= (2p — 29)z = p* — ¢
1
= w=§@+®

y =p(p+q) — p*

y=pq=—1

Therefore z = % (p — %), y = —1, so we have the line y = —1 (the directrix)

Y

AN

AN

Question (2003 STEP III Q7)

In the z—y plane, the point A has coordinates (a,0) and the point B has coordinates
(0,b), where a and b are positive. The point P, which is distinct from A and B,
has coordinates (s,t). X and Y are the feet of the perpendiculars from P to the
r—axis and y—axis respectively, and N is the foot of the perpendicular from P to the
line AB. Show that the coordinates (z,y) of N are given by

. ab?® — a(bt — as) _a?b+ b(bt — as)
T @y YT a2y
. =0 t . .
Show that, if = —1, then N lies on the line XY .
s s—a

Give a geometrical interpretation of this result.
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Question (2005 STEP III Q5)

Let P be the point on the curve y = ax? + bz + ¢ (where a is non-zero) at which the
gradient is m. Show that the equation of the tangent at P is

(m — b)?

y—mr=c— -

Show that the curves y = a12? 4+ b1z + ¢ and y = aox? + box + co (where a; and
ag are non-zero) have a common tangent with gradient m if and only if

(ag — al)m2 + 2(a1bg — agbi)m + 4ajas(co — c1) + @25% - alb% =0.

Show that, in the case a1 # a2, the two curves have exactly one common tangent if
and only if they touch each other. In the case a; = as, find a necessary and sufficient
condition for the two curves to have exactly one common tangent.

y = 2ax +b
= m = 2ax; + b
N mt:m—b
2a

Therefore we must have

may = 2ax? + bay
y—mx:ax?+ba:t+c—mxt

= az? 4 ba; + ¢ — (2az? + bay)
2

=c—ax;
(")
=c—a
2a
__(m=b?
- 4a

They will have a common tangent if and only if the constant terms are equal, ie

(m —by)? (m — b2)?
cg——-t =g — —
4&1 4a2
. (m—bl)2 (m—b2)2
< (Cl 62) o 4(11 4a2
& dajaz(cy — c3) = az(m — b1)2 —aj(m — b2)2

= (az — a1)m2 + 2(a1be — agby)m + a2b% — a1b%

as required.
Treating this as a polynomial in m, we can see that the two curves will have exactly
one common tangent iff A =0, ie:

0=A

= (2(a1b2 — agbl))2 — 4(&2 — al)(4a1a2(02 — Cl) —+ agb% — alb%)
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= 4a%b% — 8ajasbiby + 40,2()% — 4a§b? — 4a%b% + 4a1a2(b% + b%) — 16(az2 — a1)araz(ca — c1)
= —8ayasbiby + dajaz(b? + b3) — 16(ag — a1)ayas(cay — ¢1)
= araz(4(by — b2)? — 16(az — a1)(c2 — c1))
= 4daja((by — b1)2 —4(a2 — a1)(ca — 1)
But this is just the discriminant of the difference, ie equivalent to the two parabolas
just touching. (Assuming a; — ag # 0 and we do end up with a quadratic).

If a; = as = a then we need exactly one solution to 2a(b; — bo)m + 4a?(ca — c1) +
a(b% — b%) = 0, ie b1 ?é bg.

Question (2008 STEP III Q3)
The point P(acosf, bsinf), where a > b > 0, lies on the ellipse

The point S(—ea, 0), where b? = a?(1 — €?), is a focus of the ellipse. The point N
is the foot of the perpendicular from the origin, O, to the tangent to the ellipse at
P. The lines SP and ON intersect at 1T". Show that the y-coordinate of T is

bsin 0
14+ ecosf’

Show that T lies on the circle with centre S and radius a.

Find the gradient of the tangent of the ellipse at P:

v, 2ydy

I
a? b dx
d 2
N dy _  2xb
dx 2ya?
__acos ov?
~ bsinfa?
b
= ——cotd
a
Therefore the gradient of ON is 7 tan6.
Yy = %tan Ox
y—0  bsinf—-0
r— (—ea) acosf — (—ea)
_ bsind (2 + ea)
v= a(e+ cosf)
N _ bsind écot@ n ebsin 6
y_a(0059+e)a YT cosOte
b% cos 6 ebsin 6
a’(cosf +e) cosf +e
= (cosf 4 e)y = (1 — e*) cos By + ebsin b

e(l+ecosf)y = ebsinb

75



SM UFM Pure (with Solutions)

bsin 0

= = —
y 1+ ecosb

— —cotf
1+ecos¢9a

_ b*cosb
~ a(l+ecosb)

2 .
Therefore T' ( b cos b bsin 6 >

a(l+ecosf)’ 1+ ecosb
Finally, we can look at the distance of T" from S

b? cos 0 2 bsin 6 2
& = < (1+ecosf) (—ea)) * <1 + ecosf _O>
(b2c059+ea (1+ecosd )2 (absin 0)?
a2(1 + ecosh)?
bt cos? 0 + e2a*(1 + ecos 0)? + 2ea’b*(1 + ecos 0) + a’b?sin? 0
a?(1+ ecosf)?
a*(1 —e?)2cos? 0 + e2a*(1 + ecos 0)? + 2ea?a?(1 — €2)(1 + ecos ) + a*(1 — €?)sin? ¢
a?(1+ ecosf)?
_ 2 ((1 —e%)2cos? 0+ e2(1+ ecos0)? + 2e(1 — e?)(1 + ecos ) + (1 — e2)(1 — cos? 9))
(1+ ecosf)?
o (€21 +ecosf)? + (1 —e)((1—e?)cos? + 2e(1 +ecosh) + (1 — cos?0))
- ( (14 ecosh)? )
_ 2 <€2<1 +ecosf)? + (1 —e?)(1+ €COS(9>2>
(1+ ecosf)?

:a2

Therefore a circle radius a centre S.

(—ea,0)
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Question (2014 STEP III Q3) (i) The line L has equation y = mz + ¢, where

m > 0 and ¢ > 0. Show that, in the case me¢ > a > 0, the shortest distance
between L and the parabola y? = 4ax is

mc—a

mvmZ+1°

What is the shortest distance in the case that mc < a?

(ii) Find the shortest distance between the point (p,0), where p > 0, and the

parabola y? = 4ax, where a > 0, in the different cases that arise according to
the value of p/a. [You may wish to use the parametric coordinates (at?,2at) of
points on the parabola.] Hence find the shortest distance between the circle
(x —p)? + y? = b?, where p > 0 and b > 0, and the parabola y? = 4ax, where
a > 0, in the different cases that arise according to the values of p, a and b.

Question (2016 STEP III Q2)

The distinct points P(ap?,2ap), Q(aq?,2aq) and R(ar?,2ar) lie on the parabola
y? = 4ax, where a > 0. The points are such that the normal to the parabola at Q
and the normal to the parabola at R both pass through P.

(i) Show that ¢> + qp +2 = 0.

(ii) Show that QR passes through a certain point that is independent of the choice

of P.

(iii) Let 7" be the point of intersection of OP and QR, where O is the coordinate

origin. Show that 7' lies on a line that is independent of the choice of P. Show
further that the distance from the x-axis to T is less than @ )

V2

()

dy
|
ydx @
d 2
= ay _
dx Y
Therefore we must have
2aq _ 2ap — 2aq
T o0 T an2 — q02
a ap® — aq
gradient of normal Ay/Az
N 2
—g=——
p+gq
0=2+pqg+ q2
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(ii) We must have that ¢, r are the two roots of 22 4+ px +2 =0

QR has the equation:

y—2aq _ 2ar —2aq

r—aq® ar?—aq?

-2 2
= y aZ:
T —aq r+q
— r— a a
Yy g+ q q
9 2
== 2 _
Yy T + a<q —|—r>
2
Yy=——x+2a qr
p q+r
2 2
Yy=——x—2a—
p b
2

y=—(r+2a
p( )
Therefore the point (—2a,0) lies on all such lines.

(iii) OP has equation y = %x

2
y=-—u
p
2
y=——(z+2a)
p
4
2y = _
p
2a
= Yy=——
p
T=—a
Therefore T (—a, —%‘1) always lies on the line r = —a

The distance to the z-axis from T is %". We need to show that p can’t be too small.
Specifically 22 + px + 2 = 0 must have 2 real roots, ie A = p> —8 > 0= |p| > 2V/2,

Za 20 _ 4 a9 required.

o0 - 20 _
B =327 2
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Question (1989 STEP II Q2)
Let

(o]
tanx = E anx” for small x,
n=0

o
zcotx =1+ Z b,x™  for small z and not zero.

n=1

Using the relation
cotx — tanx = 2 cot 2z, (*)

or otherwise, prove that a,—1 = (1 —2")b,, for n > 1. Let

o0
zcosecr = 1+ Z cpx”  for small x # 0.

n=1

Using a relation similar to () involving 2cosec2z, or otherwise, prove that

pEas e |
=g gt (121
cotx —tanx = 2cot 2z
= rcotx — xrtanx = 2x cot 2x
oo oo oo
= 1+ Z bz — Z anr™ =1+ Z by (22)"
n=1 n=0 n=1
o oo
= Z(l —2Mbpa" = Z ap—12"
n=1 n=1
= an—1=(1-2"b, ifn>1
cotx +tanx = 22z
So
cotx + tanzx = 22z
= rcotx + xtanx = 222«
o o x
= 1+ Z bz + Z anz"t =14 Z cn(22)"
n=1 n=0 n=1
o0 1 o0 o0
= D T gutn-t ) anaa” =) 2ena”
n=1 n=1 n=1
1 1
= Cn:27 1+1_2n anp—1
1 2" — 2
“ongn 10t
1 21
=gt gn o Ol
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Question (1990 STEP III Q7)
The points P (0, a), @ (a,0) and R (a, —a) lie on the curve C with cartesian equation

zy? + 22 +ay —a® =0, where a > 0.

At each of P,(Q and R, express y as a Taylor series in h, where h is a small increment
in z, as far as the term in h%. Hence, or otherwise, sketch the shape of C near each
of these points. Show that, if (z,y) lies on C, then

42* — 4a’z — a* <0.

Sketch the graph of y = 4z* — 4a3x — a*. Given that the y-axis is an asymptote to
C, sketch the curve C.

O:xy2—|—a:3+a2y—a3

d
— 0 =y? + 2zyy + 322 + ay/
dz
2 2
3
. y - v
a* + 2zy
d2
2 0 =2y + 2yy + 2x(y/)? + 2zyy” + 62 + o’y
7 dyy' + 233(3//)2 + 6z
= Y =— >
a® + 2xy
P y=a
2
, a
-~ -
Y o2
—4a 4
//__7_7
4 a? a
= y~a—h+-h?
a
Q: y=20
3a?
/
:—7:—3
Y )
n_ 18a+6a 24
N a2
12
= y~0—3h——h
a
R: Yy=—a
; a2+3a2_4
a? —2a?
n_  —lba+32a+06a 22
N a? — 2a? a
1,
= y~—a+4h+ —h
a
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Alternatively:

0 =zy® +2° + a%y — d®
P(0,a): y=~a+cih+ coh?
0=h(a+c1h)? + a®(a+ crh + coh?) — a®
=a® — a® + (a® + a®c1)h + (2acy + a®co)h?
2

= 61:—1,62:*
a

2
= y~a—h+-h?
a

Q(a,0): y=cih+ coh?
0= (a+h)(c1h)* + (a+ h)® + a*(c1h + c2h?) — a®
=a® — a® + (3a® + a®c1)h + (act + 3a + a®ca)h* + - -
12

= 612—3,02:—f
a

12

R(a,—a): y=~ —a+cih+ ch?
0= (a+h)(—a+cih+cah®)? + (a+ h)® + a*(—a + c1h + coh?) — d®
= (a® — 2a%c; + 3a® + a’c1)h + (—2ac; + ¢ + - )A?
11
= (1 = 4,02 = —

a

11
= y=-—-a+4dh+ —
a
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If (z,y) lies on the curve, then viewing it as a quadratic in y we must have A =
(@®)? —4-z- (23 —a®) >0=a* —42* + 426> > 0= 42* —4a®z —a* <0

)

AN
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(¢f—a)

Question (1991 STEP III Q1) (i) Evaluate

n

6

the first five non-zero terms and the general term.

(ii) Expand In(1 + 2 + 22 + 23) as a series in powers of x, where |z| < 1, giving

(iii) Expand e®™™(1+2) a5 a series in powers of x, where —1 < z < 1, as far as the

term in 2.
(i)
6 203 1
r(r+1D(r+3) r r+1 r+3
n n
6 2 3 1
= = E —- —
" r(r+1)(r+3) —\r r+l r+3
n n n
2 3 1
=y =- +
r r+1 r+3
r=1 r= r=1

r=1 r=2 r=3
_2+2 3 3 1 1
1 2 2 n4+l n+l1 n+2



SM UFM Pure (with Solutions)

(ii)

1— 4
1n(1+x+x2—|—x3)—ln< x>

Where aj, = 1 if k # 0 (mod 4) otherwise aj, = —2 if k =0 (mod 4)

(iif)
exp(zIn(l + z)) = exp (m (x _ %ﬁ n %lﬁ . ))
<

1
= exp $2—2$3+3$4>
1 1 1 1 1 ,\?
:1+(x2—2x3+3x4>+2<332—2a:3—|—3x4> +
—1+x277x3+1334+1x4+---
2 3 2
)
:1+$2—2I‘3+6I4+

Question (1994 STEP III Q5)
The function f is given by f(z) = sin~! x for —1 < = < 1. Prove that

(1 — 22" (z) — zf'(z) = 0.
Prove also that
(1 — 222 () — (2n + 1)zt (2) — n2) (2) = 0,

for all n > 0, where f") denotes the nth derivative of f. Hence express f(z) as a
Maclaurin series. The function g is given by

1+z
=l
g(z) =Iny/7—,

for —1 < & < 1. Write down a power series expression for g(z), and show that the
coefficient of 22"+ is greater than that in the expansion of f, for each n > 0.

None
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Question (1997 STEP III Q1) (i) By considering the series expansion of (z? +
5x 4+ 4) e* show that

32 42 5
10e=d+ T+ 57 + 5+
(ii) Show that
2 2 2
Fe—1 3 4
e=1ld g+ +g+
(iii) Evaluate
28 33 43
1+ S+ Tt

(22 4 5z + 4)e :fik “2+§:5 A Si:ﬁk
k=0 k=0

. 0 4 k+2
—kz_:( i+ 1) +(k+2)!>$ +5x+4+4x

:4+9x+i((k+2)(k+1)+5(k+2)+ 4 )xk+2

~ (k+2)! (k+2)! " (k+2)!
~ (K2 +3k+2+5k+10+4\ ,
=4 9 +2
+ $+Z< i+ 2)! >:c
(k4 4)? 2
=449z
* +;%k+2

_ +Zk+2
k=2

So when z = 1 we have
32 42 52

10e =4+ T3+ o + 5 oo

(ii)

1
M8
??“;—A

(2% 4 3z + 1)e”

+23k'xk+1+z o

s 1 3 1 k
1 - - +1
+3m+;;<@—1ﬂ+m*kk+n0$

=
Il
o

Z(k+1Dk+3k+1)+1
:1+3$+Z(+)+(+)+ L

P (k+1)!
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(k+1)!

Plugging in £ = 1 we get the desired result.

(iii)

86

15e =

e L S
Y X

23 33
1+ﬁ+§+m
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Question (1998 STEP III Q5)

The exponential of a square matrix A is defined to be
=1
exp(A) = A,
r=0

where AY =T and I is the identity matrix. Let

0 -1
M = < 0l ) |
Show that M? = —TI and hence express exp(dM) as a single 2 x 2 matrix, where 6 is
a real number. Explain the geometrical significance of exp(6M). Let

0 1
(01,
Express similarly exp(sIN), where s is a real number, and explain the geometrical
significance of exp(sN). For which values of 6 does

exp(sIN) exp(0M) = exp(fM) exp(sN)

for all s? Interpret this fact geometrically.

v (1))
_(0-04(=1)-1 0-(=1)+(=1)-0
< 1-04+0-1 1-(—1)+0.0>

(v °)

=1
=1
exp(fM) = Z ﬁ(el\/l)”
r=0 '
=1
=2 ™
r!
r=0
= cos 01 + sin IM

_ (cosf —sinf
" \sinf cosé

This is a rotation of § degrees about the origin.
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This is a shear, leaving the y-axis invariant, sending (1,1) to (1 + s, 1).
Suppose those matrices commute, for all s, ie

1 s cosf) —sinf\ (cosf —sind 1 s
0 1/ \sin@ cosf /  \sinf cosé 0 1

N cosf) — ssinf) —sinf 4 scos\  [(cosf scosf —sinf
sin @ cosd ~ \sinf ssin@ + cosé

= sinf =0

= 0=nm,neZ

Clearly it doesn’t matter when we do nothing. If we are rotating by m then it also
doesn’t matter which order we do it in as the stretch happens in both directions equally.

Question (1998 STEP III QT7)
Sketch the graph of f(s) = e®(s —3) + 3 for 0 < s < co. Taking e ~ 2.7, find the
smallest positive integer, m, such that f(m) > 0. Now let

3

blr) = — 2
() =

where T is a positive constant. Show that b(z) has a single turning point in
0 < x < 00. By considering the behaviour for small x and for large z, sketch b(z)
for 0 <z < c0. Let

which may be assumed to be finite. Show that B = KT" where K is a constant,

Tm
and n is an integer which you should determine. Given that B ~ 2 / b(z) dz, use
0

your graph of b(x) to find a rough estimate for K.

None
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Question (2001 STEP III Q1)

d 1
Given that y = In(z + V22 + 1), show that Y~ Prove by induction

dz Va2 41
that, for n > 0,

(22 + 1)y + 2n + 1) 2y 402y =0,

d™y

where y(") = — and y(©) = y . Using this result in the case z = 0, or otherwise,

show that the Maclaurin series for y begins
z3 3z

T——+——

6 40

and find the next non-zero term.

y=In(z+VaZ+1)
d 1 d
= Y

— — (2 + x2—|—1>
dr x4+ +va2+1 dx(

1 1 2x
- 1+,7
x+va:2+1( 2\/w2+1>
1 (\/$2+1+x>

4+ vVaZ+1 241
1
2+ 1

1 2z T

STt L 1) = (a2 g e Andinparticular (241)y )y ) =

Note that y(2) =—

0.
Now applying Leibnitz formula:

0

((a:2 +1)y@ + a:y(l)> ™
= ((CE2 + l)y(2))(n) + (xy(1)>(n)

(22 + 1)y "+ 4 n2ay D 4 <Z> 2™ 4 gy 4y

= (2% + D)y + 2n+ Day™Y + (02 —n +n)y™
= (22 4+ Dy + 2n + 1)ay™Y 4 n2y™

as required.
When x = 0:

y(0) =In(0+ V0% + 1)

=lnl=0
Y(0)= =1

VTl

YD) 2 ()
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y) =0

y(3) -1

y(5) — 32

y() = —5%. 32

A TR
3 5
_ .3 5 7
STt T2 45 124927 "
1
::c—fx?’—&—im‘r’——f—i-

Question (2006 STEP III Q3) (i) Let

o 1 [o¢]
tanz = Zanaz" and cotz = — + Z bz
x

n=0 n=0
for 0 < x < %W. Explain why a,, = 0 for even n. Prove the identity
cotx —tanx = 2cot 2z

and show that
an = (1—2""Hp,, .

1 o0
(ii) Let cosecx = — + Z cpa™ for 0 < z < 3m. By considering cot z + tan z, or
x
n=0
otherwise, show that

cn=2""=1)by,.
(iii) Show that

(1 + benx”) + 22 = (1 + xzcnwn) a
n=0

n=0

Deduce from this and the previous results that a; = 1, and find ag.

(i) Since tan(—z) = —tanz, tan is an odd function, and in particular all it’s even
coeflicients are zero.

2c0s2
2cot2zx = coset

sin 2x

2(cos? x — sin? x)

2sinz cosx
cosx sinx

sinx cosx
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=cotx —tanx

Therefore
1 oo oo 1 oo
-t anx" - Zan:c” =2 ot an(2x)"
n=0 n=0 n=0
cot x tan x 00?2:1:
oo oo oo
= Z anz" = Z bpr™ — 2 Z b (22)"
n=0 n=0 n=0
(o)
= ba(1—2"ha"
n=0
[z"] : an = (1 —2""Hp,
(ii)
cosx sinx
cotx +tanxr = — +
sinx cosx
_ 1
~ sinzcosx
= 22x
1 o0 o 1 o0
= ;+anw"+2anx”:2 %—Fch(Qx)”
n=0 n=0 n=0
SN———r ~~
cot x tan x 2x
o0 oo
= Z ontle 2" = Z(an + by)z"
n=0 n=0
o
= Z (1 —2"*Hb, +b,) 2"
n=0
o
=> (2-2"") bpa”
n=0
[z"] cn=02""=1)by,
(iii)
cot? x +1 =2z
= 22 cot? + 2% = 2%%x
2 2
1 =  —
= z? E—Fanx” + 2% =2 ;—Fchx”
n=0 n=0
cotx x
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I
/N
—_

+
8

(]2
<
3
&3
N——
+
Hl\?

I
/N
—_

+
8

(]2
o
3
8
N——

(1+$(bli€+b3l‘3+'“))2+x2: (1+x(cw+63x3+---))2

=
= 1+ (1+2b)2* + (203 + b3z + -+ = 1+ 2c12% + (2e5 + )t + - -
= 1420 =227 = 1)by
1
= blz—g
= ap=(1-2°)(-1) =1
1
cl = —
176
1 1
= W3 4+ — =2 —
3+9 C3+36
1
= 23 —2(273 — )by = ——
s — 2 )bs 12
N 15, _ 1
437 12
1
= b3 = ——
3 45
11
=—(1-2hHY—==-
= a3 =—( )15 = 3

Question (2006 STEP III Q4)
The function f satisfies the identity

f@)+ fly) = flz+y) (*)

for all z and y. Show that 2f(x) = f(2z) and deduce that f”(0) = 0. By considering
the Maclaurin series for f(z), find the most general function that satisfies (). [Do
not consider issues of existence or convergence of Maclaurin series in this question.]

(i) By considering the function , defined by In (g(z)) = (), find the most general
function that, for all z and y, satisfies the identity

9(@)g(y) = g(z +y).
(ii) By considering the function H, defined by h(e") = H(u), find the most general
function that satisfies, for all positive z and y, the identity

h(z) + h(y) = h(xy).

(iii) Find the most general function ¢ that, for all x and y, satisfies the identity

t(z) +t(y) = t(2),

r+y
_xy.

where z =
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2f(x) = f(2) + f(x)
= f(z +x)
= f(2x)
- 2£(0) = £(0)
- £(0)=0
f”(O) _ }Lli% f<2h) - 2f§g) + f(=2h)
iy SR+ F(=20)
h—0 h2
()
h—>0 “h2
=0
= f//(O) —0

If f (:1:) satisfies the equation, then f’(x) satisfies the equation. In particular this means
that £ (0) = 0 for all n > 2. Therefore the only non-zero term in the Maclaurin series
is 2!, Therefore f(z) = cx

(i) Suppose g(x)g(y) = g(z +y), then if G(x) = In g(z) we must have G(z) + G(y) =
Gz +y),ie G(x) = cx = g(x) = ™

(ii) Suppose h(x)+h(y) = h(zy), then if h(e") = H(u) we must have that H(u)+H (v) =
h(e*) + h(e?) = h(e"™) = H(u + v).Therefore H(u) = cu, ie h(e*) = cu or
h(z) = h(e™®) = clnz.

(iii) Finally if ¢(z) + t(y) = t(z), the considering T'(w) = t(tanw) then T'(x) + T(y) =
t(tanz)+t(tany) = t(%) = t(tan(z+y)) = T'(x+y). Therefore T'(x) = cx
Therefore t(tanw) = cw = t(z) = ctan™ ' z

etzl—i—t—i—%—i—---,therefore

t
li =1
tgr(l)f( ) tgr(l) et —1
t
= lim

t=0¢ 4+ L + o(t3)

=01+ 5+ o(t?)
—1

t—0 t—0 (et — 1)2
S o) - (24 5+ o(th)
= lim 7
=0 (t+ 5 +o(t3))?
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Claim f(t) + 3t is an even function. Proof: Consider f(—t) — ¢, then

1 —t 1
= =5t=m7 73
_ —tet 1
T l—et 2
t(l—ef)—t L
1—¢t 2
B t 1
T 1—et 2
ot
_et—1+5t

So it is even.

Y

(ti)
Drawing the tangent to y = e™% at (0,1) we find that e~ > (1 —¢) for all ¢, in
particular, e/(1 —t) <1

f’(t):% <0and f/(t)=—% whent =0

94



SM UFM Pure (with Solutions)

[Note: This is the exponential generating function for the Bernoulli numbers]
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Question (2012 STEP II Q4)

In this question, you may assume that the infinite series

2 3 4 n
i g 45
PRl g

n(l4z)=7— — 4+ -2 4. 4 (-1
n(l+z)==x st~ 717t +(-1) "

is valid for |z| < 1.

(i) Let n be an integer greater than 1. Show that, for any positive integer k,

1 U]
(k+ DnF+l = knk

n n
1 n
<1+) <e.
n

.. . .. 1
(ii) Show, using an expansion in powers of g, that ln<

1 1
Hence show that 1n<1 + ) < — . Deduce that

2y +1
2y — 1

1
>>f0ry>§.
Y

Deduce that, for any positive integer n,
1\"z
e < <1 + > .
n
(iii) Use parts (i) and (ii) to show that as n — oo
1 n
<1 oy > —e.
n

(i) Since k > 1 we have n**1 > n* and (k + 1) > k, therefore (k + 1)n*+! > kn* =

1 1
GF D) < FnF

| 1+1 1 1 1 1
n )= =4 - -
n n  2n?  3nd3  4nt
1 /11 11
T n 2n2  3n3 dnt  5nd
>0 >0
1
<7
n
1
= nln<1+><1
n
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(ii)
m (2N (e D) w12
2y — 1 2 2y
1 1 1 1 1 1
2y 2(2y)? 0 3(2y)3 2y 2(2y)*  3(2y)3
1 . 2 . 2
y  3(2y)®  5(2y)°
S o
2 r =12y
1
> —
Yy
1 1
= In|{1+ T > -
Yy—3 Yy
1 1
= In (1 + > > T
n n+3
1
= (n+3)ln <1+> >1
n
1\ "2
= In <1 + > > 1
n
1\
= (1 + > >e
n
Since (1 + %)n is both bounded above, and increasing, it must tend to some limit L.
1\" 1\"t2
lim <1+> <e< lim (1—|—>
n—00 n n—00 n
. \" . 1\" . 1
= Iim (14 — <e< lim (14 — lim 4/14+ —
n—o0 n n—o00 n n—o00 n
1\" 1\"
= lim (1‘1') <e< lim <1+>
n—o0 n n—o00 n

And therefore equality must hold.
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Question (2012 STEP III Q4) (i) Show that
oo
1
S g
n!
n=1
d
" 2 (n+1)?
> el
= nl
oo
2n — 1)3
Sum the series Z w .
— n!
oo
. . (n?+1)27" .. .
(ii) Sum the series Z ————————  giving your answer in terms of natural
o (n+1)(n+2)
logarithms.
(i)
oo o
n+1 1 1
S-S ()
n=1 ’ n=1 ’ ’
o o
1 1
DILT
| |
fnl =l
e e} [e.e]
1 1
IR TR IS
| |
nl =l
=ete—1
=2e—1
i (n+1)2 _in(n— 1)+3n+1
— nl ot n!
o oo oo
1 1 1
S Y i o
— 2 | |
o (n—2)! — (n—1)! = n!
o0 [e.e] o0
1 1 1
=) +3) —+) -1
n=0 n=0 n=0
=be—1

(2n —1)3

8n3 — 12n%2 +6n — 1

-y

n=1

00
>
oyt n.

n!

—1)(n—2)+12n% —10n -1

_ i 8n(n

n!
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Z8n(n—1)(n—2)+12n(n—1)+2n—1
L TURS USRS ETURS)

n!
n=1

=8¢+ 12e+2e—(e—1)
=2le+1

(ii)

2+12 n
Z?o&mﬁ Y02 2 A - By A
=2+ 2log2 -5y, 2"
=2+2log2—5(2log2—2)

=12 — 8log 2

Question (2013 STEP III Q2)
In thi ti i ti f Let arcsin Sh
n this question, you may ignore questions of convergence. Let y = ——. Show
q you may ignore ¢ g Y= e
that d
(1—x2)£—$y—1:0
and prove that, for any positive integer n,
n—+2 n+1 n
Y d"™y o d™y
Sl @it i Mg s gies for e o o I term for odd and
ence obtain the Maclaurin series for ———, giving the general term for odd an
Vg2 BETCE
for even powers of x. Evaluate the infinite sum
oL +22+22X32+ Jr22x32x.--><n?Jr
3! 5! 7! (2n +1)! '
_arcsinzx
V1 — 22
dy — (1- 22)~12 (1 — 222 —arcsinz - (—z)(1 — 22)~ /2
de 1— 22
1ty
1 —a?
dy
= 0=(1-2°)"=—ay—1
i
dn (n+1)
Gt 0= (@ =a?y)" = ()Y
= 0=(1—a2)y+D ¢ (” 41' 1> (1 — 22)Dym+) 4 <”‘2F 1 (1 — 22)@y) _ (g +D) 4 <
(n+1)n

= (1 -2y 4 (4 1) - (~20) — )y 4 ( (2 - ”> "
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=(1- xz)y("“) — (2n +3) xy(”“) —((n+Dn+ (n+1)) y(n)
= (1—2H)y" ™ — 2n + 3) 2yt — (n+ 1)y ™

Since y(0) = 0,4/(0) = 1 we can look at the recursion: y(™+2)
terms, ie y(2%)(0) = 0

y0(0) = 1Ly®(0) = (14+1)2-1=22,4(0) = (3+ )% = 42. 22 and Y@+ (0) =
(2k)2 - (2k — 2)%---22 .12 = 22k . (k!)2. Therefore

— (n 4 1)%y™ for larger

arcsinz = 2% - (kD)2 500
= x
Vi—2? = (2k 4+ 1)!
arcsin% > 92k . (k')2 k1
= =
_1§: (k!)?
B 2 £~ (2k + 1)
B
S 2 3t 5l
2% 21
= S=2-8 ="
V3 3V6

Question (2015 STEP II Q1) (i) By use of calculus, show that x — In(1 + x) is
positive for all positive . Use this result to show that

>In(n+1).

[
S

k=1

(ii) By considering z + In(1 — z), show that

D 3 <l+mh2.
k=1

(i) Consider f(z) = —In(1 + ), then f'(z )_1_1+7x_1+7x >0if z > 0.

Therefore f(x) is strictly increasing on the positive reals. Since f(0) = 0 we must
have f(x) > 0 for all positive z, ie  — In(1 4 x) is positive for all positive z.
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n

=> (In(k+1) - In(k))

(ii) Let g(z) = z +In(1 —z) ,then ¢'(z) = 1 — &~ = =2 < 0if 0 < = < 1 and

11—z 11—z
g(0) = 0. Therefore g(x) is decreasing and hence negative on 0 < z < 1, in

particular z < —In(1 — )

3

=> 2k —1In(k—1) —In(k+1))
k=2
=lnn—In(n+1)—In0+1In2
n
n+1

=In2+1n

o0
1
as n — oo we must have Zﬁ <In2ie
k=2

=1
k=1
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Question (2018 STEP II Q5)

In this question, you should ignore issues of convergence.

(i) Write down the binomial expansion, for |z| < 1, of 7

for |x| < 1.

(ii) Write down the series expansion in powers of z of e

1 and deduce that
T

* . Use this expansion to

show that 5 (5] ) ot
/ Q- oem+a) (o] <1).
0 T
(iii) Deduce the value of
Lopp — pd
d 1 1).
| T (<<
(i)
——=1l-z+a? -2+
1+
r q x
N EET / (—t)"dt
ST
B [i_(_t)mrl
o n+1 0
(2"
= In(1 = —
n(l+ z) ; -
(ii)
—axr __ — (_a)n n
e _Z o

T ot n!
oo X \n
= _/ Z a') " e
0 o n.
X \n 9]
-3 ( na‘) / O
n=1 ’ 0
o0
(=a)"
== L
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(iii)

v=(14qu,dv=(1+q)du: =

_ _z:l (—s)

=1In(1l+a)

L —| 1 p(1 — pa—
/ wo dx:/ A =27 4,
o Inz 0 Inz

dv
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Question (2018 STEP III Q8)
In this question, you should ignore issues of convergence.
(i) Let
1 =l
L [HiEh,
0 1 + x

where f(x) is a function for which the integral exists. Show that
o [ )
1=y [ AW qy
nz::l no y(1+y)
and deduce that, if f(x) = f(x + 1) for all z, then

1
N LGOI
0 1+$

)

(ii) The fractional part, {z}, of a real number z is defined to be = — || where
|| is the largest integer less than or equal to z. For example {3.2} = 0.2 and
{3} = 0. Use the result of part (i) to evaluate

1g,.—1 1go,.—1
2
/ {z }dxand / {22 }dx.
0 1 + z 0 ]. +
(iii) (Bonus) Use the same method to evaluate
1 -1
/ sz } dx .
0 1-— $2

(iv) (Bonus - harder) Use the same method to evaluate

14+
1
-1
w=z""du=—2z"2dz :/ f(u>1 —du
o L+ u

> 1 x n
iff(z) = f(x +1)Va :Z/O (x+£§(a;++7i+1)dx
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n=1 r
! 1

= f(x) Z dz

0 n=1

/ ( (x—l-n)(x—i-n—l-l))
:/Olf(x) (; :c—lkn a x—|—711+1>> de
:/Olf($) :U~1|—1>d$
|t

(ii) Since the fractional part is periodic with period 1, we can say

1y..—1 1
LB }daz: 7{36} dz
o 1+uz 0o z+1

1
:/ x dx
0 ZL'—|—1

1
1
:/1— dx
0 1:—|—1

— [o— (1 + )]}
=1—-1In2

/1 Qx_l}dx— ' {2m}dx
o 1+ Sy 21
1/2 9 19 _
:/ :E d:c+/ :17 1dx
0 $+1 1/2 $+1

1 1
-1
:2/ x d:E—I—/ dx
0 x—i—l 1/2.%'+1

=2-2In2— (In2—1In3)
=2-4In2+1n3
:2+1n13—6

(iii)

[ H e ([ )

Consider for f periodic with period 1

Va7 S
0 1—£L'd _/1 u(u—l)d
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_Z/ u—l du
U
_Z/ (u+n)( u—l—n—l)du
/Z f(u) du
(u+n)(u+n-—1)
1 1
- s )
u+n—1 u+n
:/ L“ d
0 u

[ e (] {fi - {f’fj i)

/ g, 1—12)

In2

So we have

—§‘§+§
1

=—1n2
2

(i) Notice that f(z) = = — tanhz has f'(z) = 1 — sech®?z = tanh®z > 0 so f(z) is
strictly increasing on (0,00) and f(0) = 0 therefore f(z) is positive for all z positive

(ii) Let f(x) = zsinhx —2coshx+2 then f'(z) = sinhz+x coshx —2sinhx = x cosh z —
sinhz = coshz(z — tanh z) > 0 by the first part. f(0) =0 so f(x) is positive for all
T positive.

(iii) Let f(x) = 2z cosh2z — 3sinh 2z + 4z then

f'(z) = 2cosh 2z + 4z sinh 2x — 6 cosh 2x + 4
= 4(xsinh 2z — cosh 2z + 1)
= 4(x2 cosh z sinh 2 — 2 cosh? z)

= 8cosh? z(x — tanh )

Which is always positive when z ; 0, f(0) =0 so f(x) > 0 for all positive .

Let f(z) = z(eosha) then

sinh x

L, _2 . 1
(coshz)3 sinha + 1z cosh™3 sinh? z — z(cosh z)3

f’(x) - sinh? z

cosh x sinh  + %(E sinh? z — z cosh? z

cosh x

P
cosh 23 x sinh? x
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_ 3coshzsinhz + z(sinh® x — 3 cosh? z)

3coshaszsinh? z
3 sinh 2z + 2(—2 cosh 2z — 2)

3 cosh m% xsinh? x
_ 3sinh 2z — 4z cosh 22 — 4x

2.
6 cosh 3z sinh?

which from the earlier part is always negative.

Y

Question (1989 STEP II Q3)

The real numbers  and y are related to the real numbers v and v by
2(u + iv) = Y — 7%,

Show that the line in the z-y plane given by x = a, where a is a positive constant,

corresponds to the ellipse
U N2 vo\2
=Nl
(sinha) + (cosha)

in the u-v plane. Show also that the line given by y = b, where b is a constant and
0 < sinb < 1, corresponds to one branch of a hyperbola in the u-v plane. Write down
the u and v coordinates of one point of intersection of the ellipse and hyperbola
branch, and show that the curves intersect at right-angles at this point. Make
a sketch of the u-v plane showing the ellipse, the hyperbola branch and the line
segments corresponding to:

(i) z=0;

(ii) y=3m, 0<z<a

2(u + iv) = ¥ — g7
= (ecosy —e “cosy) + (e*siny + e *siny)i

= 2sinhacosy + 2 cosh asinyi

N U
= cos
sinh a y
v .
= sin
cosha Y
1 u 2 v 2
= =
(sinha) * (cosha)
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2(u + ZU) _ ex+ib o efxfib

= 2sinh z cosb + 2 cosh x sin bi

= = sinhx
cos
)
—— =coshz
sin
1 v\ 2 u \2
= = ()~ (osp)
sin b cosb

v

Therefore all the points lie of a hyperbola, and since ;5 > 0 = v > 0 it’s one branch
of the hyperbola. (And all points on it are reachable as = varies from —oo < z < 0.

2(u + i’U) — ea+ib _ e—a—ib

= 2sinh acosb + 2 cosh a sin bi

so we can take u = sinh a cosb, v = cosh a sin b.

d 0= 2u i 2v  dv
du ~ sinh?a  cosh?adu
d

= L coth®a
du v
dv sinh a cosb
— = """ coth?
du [ww) coshasinb O ¢
= —cotbcotha
d 0— 2v dv 2u
du ~ sin?bdu cos?b
d
= &= Dtan?o
du v
dv | sinhacosb | b
= P an
du' @) T Coshasinb
= tanhatanb

Therefore they are negative reciprocals and hence perpendicular.
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1
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1
\ 1 1 ! 1 1
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' \ \ LI 1 I 1 ,
\ 1 I ! 1 1
\ \ | 1
\ \ \ [ ! 1 1
1
\ \ \ LI ! 1 1 ,
\ \ \ LI ! ] 1 ,
\ \ \ LI ! U !/ ’
\ \ \ (- ! 1 1 ,
\ \ \ v ! 1 7 ,
\\ \ \ vy ! ! ’ ,
\ \ \ ! / 4 ’
\ ' 1 7 ’
\ A \ \ 1 ’
\ \ 1 ’ 4
\ AY \ 1 4
\ \ W ’ 4 ’ ’
Al 1 ’
N \ WV 7 4 7
\ \ R\ V% ’ 4 .

Question (1989 STEP III Q5)

Given that y = cosh(n cosh™! z), for « > 1, prove that

(¢ + V=D + (o = VIE—T)"

Find ag, and show that
(i) a1 = (=1)F12k(k + 1)(2k +1)/3;

k
Find also the value of Z ar.
r=0

2

a0x+a1x3 —i—a2m5 + -+ agx

(ii) ag = (—1)*2(k — 1)k(k + 2)(2k + 1)/15.

2k+

Explain why, when n = 2k +1 and k € Z™, y can also be expressed as the polynomial

1

Recall, cosh™' z = In(z + V22 — 1)

cosh(n cosh™ z)

N =N =N

109
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Whenn=2k+1

cosh( ncosh™! % ( (x+Vz —Va? - 1)n)
% <2k+1 2k+ 1 L2kl ((\/ﬁi+ (—\/ﬂﬁ)z))

I
Mw

2 . .
< k + >x2k+1—22($2 1)
21

2 . .
< k + 1>x2(k—z)+1($2 o 1)1
i 29

I
<.
= |l
(@)

<.
I

Which is clearly a polynomial with only odd degree terms.

¥ <2"‘; 1) (206 = 1)+ 12202 = 1) 42 22607232 1))

= (-D*@2k+1)

(i)
2k + 1\ (k - 2kt -
"o ( 2h ><1>(‘”k - <2<k— 1>>(_1)k |
) 2k +1) -2k - (2k — 1)
= (DR (@2 Dk o
= () h e r PR
= (1) 122k + 1)k(k + 1)
(if)

AR o

o= () (o)t
(/;)( . <2k+1> <k11><_1)k_2+<2k;1)(_1)k_2
2%

2k + 1>
(%“)

+ 1\ k(k-1) 2k +1 2k +1
() < Jem+ (%57)
(2K + Dk(k 1) | (2k+ DRk 1) 2k + Dk2k ~ D(k - 1)(2k - 3)
= (-1 ( 3 * 5.2.3 )
= (—1)*(2k + 1)1% (15(k — 1) + 10(2k — 1) + (2k — 1)(k — 1)(2k — 3))
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Question (1990 STEP III Q9)

The real variables € and u are related by the equation tan 8 = sinhwu and 0 < 6 < %71
Let v = sechu. Prove that

(i) v = cos¥;
oy 40

2

d
(iii) sin260 = —2£ and  cos26 = — cosh ud—u;);

vy Lo dvdlu  fdu\E
df de?  do de? o)

(1)
v = sechu

1

coshu

S (u>0)

V1 + sinh?u

1

V1 + tan? 6
1

Vsec20

= cos¥f (0<0<3)

(if)
tan @ = sinhu

do
sec2 0 - au = coshu

=
\/ u
d
du
= — = coshu - cos? 6
du
1
e -1)2
v
=
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(iii)
sin 260 = 2sin 6 cos 6
do
—92¢inf - —
sin T
do
——2—-@ (cosf =)
dv
in20 = —2—
sin T
do d%v
:d> 200829-?:—2@
Tu
d?v 1
20 = ————
= cos R
d?v
= 902 coshu
(iv)
du_1
de v
R #u_ 1
dez  2de
1
— — gj 0
2 sin
dv .
W= sin 6
= @ = —cosf
do?
= —v
Therefore
dfu@—i—@@—i- du 2*1 (—v) 4 (—sin6) isin@ —i—i
df do? = do de? de ) v v2 v?2
_ qin2
_ 4 1 s;n 0
v
_ 1 cos22 0
v
=—1+1
=0
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Question (1991 STEP II QR)

dy
dx

(

which satisfies y = 0 and 3’ >
equation

which satisfies y =0 at x = 0.

d
sinh z (

Solve the quadratic equation u? + 2usinh2 — 1 = 0, giving u in terms of 2. Find the
solution of the differential equation

2% sinhz —1=0
dx

) +

0 at x = 0. Find the solution of the differential

y>2

d
+2—y—sinhx:0

dx dx

0 =u?+4 2usinhz — 1
=u?Fu(e® —e ) —e%e

=(u—e")(u+e)

—x T

u=-¢e * —e
dy\*> . dy .
0_<d:c> —|—2asmhx—1
@_e—m K
dr ’

y=—-e"+C,—e"+C
C =1 both cases

T

y=1—e"

0 = sinh zu® + 2u — sinh z

N 2+ V4 +4sinh’z
- 2sinh z
—1 4 cosh
= w = —cosech z + cothx
sinh z
dy\? d
0 =sinhx (di) + 2% — sinh x
dy
= —~ = —cosech x =+ cothxz
dx
= yz—ln(tanh%):&lnsinhx—i-c

For x — 0 to be defined, we need +, so

sinh x
C
tanh § > -
2sinh § cosh §
tanh %

yzln(

y=nn )+c
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=1In (2 cosh? z) +C
y(0) =0: 0=Ih2+C
= y =In(2cosh?z) — In2
y = 2In(cosh x)

Question (1991 STEP III Q6)

The transformation T from (z) to (;:) in two-dimensional space is given by

'\ _ (coshu sinhu) [z
(y’) - <sinhu coshu> (y) ’
where u is a positive real constant. Show that the curve with equation 22 — y% = 1
is transformed into itself. Find the equations of two straight lines through the origin
which transform into themselves. A line, not necessary through the origin, which
has gradient tanh v transforms under 7' into a line with gradient tanhv’. Show that
v/ = v+u. The lines ¢; and /5 with gradients tanh v; and tanh v9 transform under 7'
into lines with gradients tanh v and tanh v/, respectively. Find the relation satisfied
by v1 and v that is the necessary and sufficient for /1 and ¢5 to intersect at the same

angle as their transforms. In the case when ¢; and ¢5 meet at the origin, illustrate
in a diagram the relation between ¢1, 5 and their transforms.

None

Question (1992 STEP III Q1) (i) Given that
f(x) = In(1 + ),

prove that In[f’(x)] = = — f(z) and that f’(z) = f'(z) — [f(z)]?>. Hence, or
otherwise, expand f(z) as a series in powers of 2 up to the term in z*.

(ii) Given that
1

g(z) = sinh z cosh 2z’

explain why g(z) can not be expanded as a series of non-negative powers of z
but that xg(z) can be so expanded. Explain also why this latter expansion will
consist of even powers of x only. Expand zg(x) as a series as far as the term in

zt,

f@)= e
v
T lqer
= In[f(z)] =2 — In(1 + &%)
=z — f(x)
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(ii)

@
= oy =1 @
= 1'(@) = £'(z) — 11 (@)

(
(@) = (@) = 2f'(2) f" ()
(z) = f""(2) = 2[f" ()] = 2f'(2) f"(2)

—

f(0)=In2
f0) =3
70 =4 -1
-1
o) = 3 =24
=0
FO0) = -2 4
1
T8

Therefore f(z) =In2+ iz + t2? — oot + O(2)

As x — 0, g(z) — oo therefore there can be no power series about 0. But as

r — 0,z9(x) £ o0 as i— is well behaved.

T

We can also notice that zg(x) is an even function, since coshx is even and L i— is

even, therefore the power series will consist of even powers of x

. T T €T . 1
im ——— = lim - lim
z—0 sinhx cosh2x z—0sinhxz z—0 cosh 2z
=1
Notice that
T B 4x
sinhzcosh2z  (e? — e )(e2 4 e—27)
_ 4z
2+ % 4+ )2+ 422+ dxt .o 0)
1 1

142 420 14202 4+ 32t 4 -
< 1,2 $4 $2

5 )? + O(x6)> <1 — (22% + %:1:4) + (22%)? + O(;c6)>

1 7 10
(12,2 4 6 1— 92,2 4 6
( i +360x +O(x ))( x4+ 37 + O(z°)
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Question (1993 STEP III Q7)

The real numbers z and y satisfy the simultaneous equations
sinh(2z) = coshy and sinh(2y) = 2 cosh x.
Show that sinh?y is a root of the equation
43442 4 —-1=0

and demonstrate that this gives at most one valid solution for y. Show that the
relevant value of ¢ lies between 0.7 and 0.8, and use an iterative process to find ¢ to
6 decimal places. Find y and hence find x, checking your answers and stating the
final answers to four decimal places.

Let ¢t = sinh? y, then

sinh(2z) = coshy (1)
sinh(2y) = 2 cosh x (2)

cosh(2x) = 2cosh?z — 1

1
(2) : =5 sinh?(2y) — 1
1 2
1= <2 sinh?(2y) — 1> — cosh?y

1

=1 sinh?(2y) — sinh?(2y) + 1 — cosh?y
1

= 0= Z(cosh2(2y) —1)? — (cosh?(2y) — 1) — cosh?y

. 1 12 \2 2 12 \2 . 192

=1 ((1 + 2sinh y) — 1) — ((1 + 2sinh y) — 1) — (1 4 sinh* y)
1

= (L +40 448 —1)" = (L4448 = 1) = (L+0)

= i(4t+4t2)2—(4t+4t2)—1—t
=4(t+t*)* — 4 — 5t — 1

= 4t* + 883 + 42 — 4?2 — 5t — 1
=4t 4813 — 5t — 1

= (t+1)(4t3 + 42 — 4t - 1)

Since sinh?y is positive, we must be a root of the second cubic.

Let f(t) = 4t3 +4t2 — 4t — 1, then f(0) = —1 and f/(t) = 126>+ 8t —4 = 4(t +1)(3t — 1),
so we have turning points at —1 and %. Since f(—1) =3 > 0 and f(0) < 0 we must have
exactly one root larger than zero. Therefore there is a unique root.

f£(0.7) = —0.468 < 0 f(0.8) =0.408 > 0

since f is continuous and changes sign, the root must fall in the interval (0.7,0.8).

Let tp11 =1, — Jf,(é’;)), and tg = 0.75, then

to =0.75
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t1 = 0.7571428571
1o = 0.7570684728
t3 = 0.7570684647

So t ~ 0.757068, sinhy ~ 0.870097, y ~ 0.786474, = ~ 0.546965

Question (1996 STEP III Q1)

that
cosh? z — sinh? z = cosh 2z
and
cosh? z + sinh*z = % cosh4x + %.
Find ag, a1, ..., a, in terms of n such that

cosh™ x = ag + aq cosh z + a9 cosh 2z + - - - + a,, coshnz.

in terms of cosh kx, where k =0, ...,2m.

Define cosh x and sinh z in terms of exponentials and prove, from your definitions,

Hence, or otherwise, find expressions for cosh?™ z —sinh®™ z and cosh®™ z+sin

1
coshz = =(e* +e %)

1
sinhz = 5(69” —e )

cosh? z — sinh* 2 = (cosh?  — sinh? x)(cosh? x + sinh? )

4
= (cosh? z 4 sinh? z)
1 1
= <4 (€2$ + 2+ 6_235) + 1 (e% -2+ 6_23”))

— 1 (262$ + 26—2(2)

—

— 5 (62:1: + 672:1:)

= cosh 2z

= (1 (¥ 424 e727) — % (e** —2+ e”)) (cosh? z + sinh? z)

1 1
cosh*z + sinh*z = — (e“ + 4% + 6 + 4e7 2 + e*4x) + By} (64“ —4e® +6 — 472 + e*“)

24
1 3
= (e ey 4 2
1 3
= 1 cosh4dz + 1

cosh" z = Qin (ex + e_’“”)n
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1 n n n
- ne —nx (n—2)x —(n—2)x . (n—2k)x —(n—2k)x
_2"( n>(e e )+<n—1)(€ te >+ +<n—k)<e te )

1

n n
) cosh(n —2)z +--- + 51 (n B k> cosh(n — 2k)x + - - -

1 1
= coshnr + —— <

on—1 n-1\p—1

ie

1 2 1 2
cosh?™ . = Jom=T cosh 2ma + QzTWil cosh(2(m —1)x) +--- + 22ml< Z) cosh(2(m — k)x) + -

sinh?™ ¢ =

2m | 2m
S3mT cosh 2mz — Jom—1 cosh(2(m — 1)x) + -+ 4+ (=1) 22m_1< f ) cosh(2(m — k)

1 2
cosh?™ ¢ — sinh®™ z = % cosh(2(m — 1)z) +--- + Jom=2 (2/{7—7: 1) cosh(2(m — 2k — 1)x) + - - -

1

2
cosh®™  + sinh®™ 1 = cosh(2mz) + - - + Jam=2 < 27]?) cosh(2(m — 2k)x) + - - -

22m72

Question (2006 STEP III Q7) (i) Solve the equation u? + 2usinhz — 1 = 0 giving
u in terms of x. Find the solution of the differential equation

dy\*  .dy .
<dx) +2£smhaj—1—0

d
that satisfies y = 0 and d—y >0atxz=0.
x

(ii) Find the solution, not identically zero, of the differential equation

. dy 2 dy .
hy | —= 2— —sinhy =0
sinhy <dx> + dr sihy
that satisfies y = 0 at « = 0, expressing your solution in the form coshy = f(z).
Show that the asymptotes to the solution curve are y = +(—x + In4).
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Question (2007 STEP III Q5)

Let y = In(22 — 1), where z > 1, and let 7 and 6 be functions of = determined by
r =+vx? — 1 and cothf = z. Show that

dy  2coshf d?y 2 cosh 26
— = and — = ———
dz r dz? 72
d3y
and find an expression in terms of r and 6 for 13
95

n
Find, with proof, a similar formula for d—z in terms of r and 6.
55

y =In(z? — 1)
r=+vaz2-1
cothf =z
r= \/ coth?6 — 1 = \/ cosech?6 = cosechf
@ B 2x
der  22-1
~ 2cothd
==
B 2 cosh @
~ sinh - r - cosechd
~ 2coshf
N r

@ 2(x? — 1) — 422
dz? (22 —1)2
—2(1 + 2?)

2

cosech?r
2(1 + coth? #) sinh?
2

r

r
2(sinh? @ + cosh? 0)
)

2 cosh 20
2

Py —Az(z® - 1) — (—222 - 2)-2(z* - 1) - 22
dz3 (2 —1)4
—4z(z? — 1) + 8z(2* + 1)
@~ 1)

423 4 12z
(@ 1)
sinh® #(4 coth® 6 + 12 coth 6)

3
_ 4 cosh® @ + 12 cosh # sinh? 6

r3
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_ 4cosh 30
=—

Claim: 3¢ = (—1)”*1%‘711}*}1”9 Proof: By induction. Base cases already proven
dr x coth @
dx r2 _—1  cosechd €08
de
o sinh? 0
x

dntly d [2coshnf
DAy G Y 15 o OSSN Y Nl (it
dgntl (=)™ (n—1) dz ( rn )

: n dé n—1dr
2nsinhnf - r" - 92 — 2 coshnf - nr" =" &

— (_1)n+1

r2n
nt22n(coshnf cosh 6 + r sinh nf sinh? )
- (71) 1

2 cosh(n + 1)0
_ n+2
= ()"l

We can think of this as In(z? — 1) = In(z + 1) + In(z — 1) and also note z + 1 =

_ cosh@+sinhg _  e*?
cothf £1 = sinh 6 ~ sinh@

n

—In(z® - 1) = (n— )I(-1)"* ( S (z —1 1)">

dan (x+1)
e sinh™ @ sinh™ 0
=(-1)"Yn- 1)!< 7 s >

(=1)""1(n — 1)!2coshnf - sinh™ @

(1)1 (n — 1)!2 cosh nd

Tn

Question (2014 STEP III Q6)
Starting from the result that

h(t)>0for0<t<x:>/ h(t)t >0,
0

show that, if f”(t) > 0 for 0 < t < xg and f(0) = f/(0) = 0, then f(¢) > 0 for
0<t<xg.
(i) Show that, for 0 < z < 3,

cosxcoshz < 1.

(ii) Show that, for 0 < z < i,

1 sinzx T

cosh z x sinhz
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None

Question (2016 STEP III Q6)

Show, by finding R and <, that Asinhz 4+ Bcoshx can be written in the form
Rcosh(xz 4+ ) if B > A > 0. Determine the corresponding forms in the other cases
that arise, for A > 0, according to the value of B.
Two curves have equations y = x and y = atanhx + b, where a > 0.
(i) In the case b > a, show that if the curves intersect then the z-coordinates of the
points of intersection can be written in the form

(L tanh
)| S
(ii) Find the corresponding result in the case a > b > 0.

(iii) Find necessary and sufficient conditions on a and b for the curves to intersect at
two distinct points.

(iv) Find necessary and sufficient conditions on a and b for the curves to touch and,
given that they touch, express the y-coordinate of the point of contact in terms
of a.

Question (1987 STEP III Q4)

Two funnels A and B have surfaces formed by rotating the curves y = 22 and
y = 2sinh~!z (x > 0) above the y-axis. The bottom of B is one unit lower than the
bottom of A and they are connected by a thin rubber tube with a tap in it. The tap
is closed and A is filled with water to a depth of 4 units. The tap is then opened.
When the water comes to rest, both surfaces are at a height h above the bottom of
B, as shown in the diagram. Show that h satisfies the equation

h? — 3h + sinh h = 15.

The initial volume of water in A is:

4 4
7T/ x2dy:7r/ ydy
0 0
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We assume that no water is in the tube as it is ‘thin’.

Therefore we must have:
h—1 h
2 2
T / zody+m / x dy
0 0

h—1 h N2
7T/ ydy+7r/ <sinhf) dy
0 0 2

27h-1 h
-1 h
:”M +W/ “1tcoshy
0 0

8

2 2

(h—1)2 y sinhy]”
5 T2t

(h—1)2 h sinh h

=TT +7

2 2 2

= 0=h2—2h+1—h-+sinhh— 16
=h?—3h+sinhh — 15

= 15 = h?> — 3h +sinh h

=T
0

Question (1992 STEP II Q8)

Calculate the following integrals

“)/fz—wuﬂ—nd%

1
.. da
(i) /3cosm+4sina: &

1
de.
(1) /sinhx o

(1)
/fx—nuﬁ—ndx:/fx—n%x+ndx
1 1 1 q
/2(:5— 02 4z—1) 4@+
_ —%(93—1)_1+11n(x—1)—%111(90—1—1)-1—0
(ii)

/ ! dz —/ ! dx
3cosw +4sinz ) 5cos(z — cos~1(3/5))
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/sec(m —cos™ 1(3/5))dx

(In|sec(z — cos™*(3/5)) + tan(z — cos *(3/5))|) + C

(iii)

1 2
de= | ———
/sinh:c v /ew—e—x
2e”
:/621_1dx
x i

e e
= — d
/ew—l ew—l—l:p

=In(e®—1)+In(e"+1)+C

Question (2001 STEP III Q2)

Show that cosh™! 2 = In(2z 4+ v/22 — 1). Show that the area of the region defined by
the inequalities y* > 2% — 8 and 2 > 25y* — 16 is (72/5) In 2.

x = coshy
= z=3(e’+e7Y)
= 0=e% —2ze¥ +1

y 2 + VAz2 — 4
el = ————-—"-——
2
—r+V22 -1

= ey =x+4+ V2 -1 (by convention cosh™! > 0)

= y=1In(z + a2 —-1)
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3 3
A:4</ ;\/16+$2dm—/ \/x2—8dx>
0 2v/2

u=sinh~1(3/4)

3
x =4sinhu : / V42 + 22dx = / 42(1 + sinh? u)4 cosh udu
0 U

=0

sinh=1(3/4)
/ 16 cosh? udu
0

sinh~1(3/4)
/ (1 + cosh 2u)du
0

sinh~1(3/4)

|
o0

1
8 [u + —sinh 2u]
2 0

=8 <sinh_1(3/4) + %Sil’lh (2 sinh_1(3/4))>

4

(3.0
o \4 4

=1In2

2
sinh™1(3/4) = In 3. (3> +1

3 2In2 _ _—2In2
- / \/42+x2dx:81n2+4<66)
0

2
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1
:81n2+2-4—2-1

15
=8In2+ —
8n—|—2

3 u=cosh™! —3_
x = 2v2coshu : x? — 8dx = / e \/8(cosh? u — 1)2v/2sinh udu

2V2 u=0

cosh™1 —3_
22 .
=4 / 2 sinh? udu
0

cosh™1 3 _
= 4/ 2 cosh 2u — 1du

—-1_3
:|cosh 33

2[ 2 2
=2—-—2In2
:§721n2
2
1 15 3
=4. (2—1-2) In2
:BIHQ
5
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Question (2003 STEP III Q1)
Given that z +a > 0 and x + b > 0, and that b > a, show that

(x+a>: Vb—a
z+b) (z+bVa+b+2x

— arcsin
dx

and find d— arcosh(x—i_b).
dx r+a

Hence, or otherwise, integrate, for x > —1,

(i) / , )
(x+1)vVz+3 v

(ii) / , )
(x+$wx+1x

1
V1—22

d _ 1
and g- arcosh x = ]

d e —
[You may use the results - arcsinz = o

d . r+tay) 1 b—a
dxarcsm(a:+b)_ 1_( +a>2 ((w+b)2)
z+b
b—a
(z +b)y/ (@ +b) — (z +a)?
b—a
(z+b)/(b—a)2z+b+a)
b—a
(x+b)Va+b+2x

d r+b\ 1 B b—a
xaﬂ@ﬁl<aw+a> o 1( @%+aﬁ)
b—a
(z + a)\/(z +b)2 — (z + a)?
b—a
(@+a)/(b—a)(atb+2z)
vb—a
(x+a)vVa+b+2x

dx
/(l’-i-l\/l‘—i- /SC—I—l %2x+6)

—/ V2 dz
) @+ D2+ 145
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_\/Q/ vo—1 dz
2 ) (@ +DV2e+1+5
V2 x+5
= —7arcosh <$+ 1> +C
(ii)
/ 1 — dr = 1 de+C
(z+3)Vo+1 (+3)y/1(22+2)
_/ V3—-1 d
(x+3)vV2r+3—-1

. r—1
= arcsin
T+ 3

Question (2004 STEP III Q1)
Show that

a sinh x 1 V2cosha — 1 1 V241
————dr = In + In
o 2cosh“x —1 24/2 V2cosha + 1 2v/2 V2-1
and find
/“ cosh x
7‘2 dx .
o 1+ 2sinh”zx
Hence show that
/OO cosha:—sinhxd T 1 | V241
— Ax = —_ n o
0 1+ 2sinh? 2V/2 22 V2-1

By substituting v = €* in this result, or otherwise, find

* 1
/ .
1 1+u4

Question (2005 STEP III Q7)

1 m
Showthatif/du: u—i—c,then/ dx = (™) + ¢, where m # 0.
) 7 e ) 07 7
Find:
1
. da -
@) [ do
(i) / N
Var+a?
w=z", du=mam! /mdm = / wdzn
’ zf(z™) uf(u)
1

= [
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=F(u) +c
=F@™) +ec

fluy=u—1: _ 1n<1—xn1_1>+c

(ii)
1 1
_ _ ~1/2 _ ~1/2
v=vVu+1ldv=1(u+1) 2du /u\/mdU—/<v2_1)(u—l—1) 12qu

2
—/02_1dv

<1—\/u+1>
In| ——) +c¢
1+vu+1

1 1
——dox = | ——dx
/ Van 4 x? / Va2 41
1 (1—\/mn2+1>
= 5 In +c

fu)=vaz+1:

1+ Va2 +1

n —

Question (2008 STEP III Q4) (i) Show, with the aid of a sketch, that y > tanh(y/2)
for y > 0 and deduce that

—1
arcoshx > L forz > 1. (*)
|

=1l
(ii) By integrating (x), show that arcoshx > 0 Y " forz>1.

vr?—1

Va1
(iii) Show that arcoshz > 3% for z > 1.
X

[Note: arcoshz is another notation for cosh™! z.]
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(@)

If y = arcoshz, then tanh arcoshz/2 = \/w = /2= = 21

cosh arcoshz+1 z+1 21

(ii)
/ arcoshxdzr = [rarcoshz| — / S —T
Va?—1
= zarcoshz — Va2 -1+ C

r—1 3
— = /2?2 — 1 — arcoshx + C
V2 —1

Therefore

x s 4
/1 arcoshtdt > /1 ﬁdt

= zarcoshz — V22 —1 -0 > /22 — 1 — arcoshz — 0
= (x + 1)arcoshz > 2/ a2 — 1

2
¢ —1
= arcoshr > 2——
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(iii) Integrating both sides again,

/ arcoshtdt > 2 / dt
1 1 V2 -1

= rarcoshz — vVz2 —1>2 <\/ 2 —-1- arcoshx)
= (x + 2)arcoshz > 3/ 22 — 1

2 —1

= arcoshz > 3
T+ 2

Question (2010 STEP III Q2)
In this question, a is a positive constant.
(i) Express cosha in terms of exponentials. By using partial fractions, prove that

/1 1 a
5 dr = — .
o T?+2zxcosha+1 2sinha

(ii) Find, expressing your answers in terms of hyperbolic functions,

& 1
d
/1 22 + 2zsinha —1

and

o 1
i > dzx .
o x*+2zx?cosha+1

(i) cosha = (e +e7?)

1 1
— dx
—e *\xr+e? x + e’

/1 1 1
= - dz
2sinha Jy \z+e @ x+4e®

1 —a ay1
—2Sinha[ln(:c+e )fln(x+e)]0

1 a —a —a a
—2Sinha(ln(1+e)—ln(1+e ) — (Ine Ine®))

1 9% +1 1+ e
= a+1n
2sinh a 14¢e@
1
= (2a — a)

~ 2sinha
a

! 1 ! 1
/ 5 dx:/ dx
o o2+ 2xcosha+1 0 T2+ (e*+ e %)x + e%e
_/1 1
=
1

- 2sinh a

(ii)

/OO 1 d _/OO 1 d
1 22+ 2rsinha—1 e 1 (x+e?)(x—e9) v
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& 1 1 1
= — dx
1 er+et \rx—e? z+e?
1 o 1 1
= — dz
2cosha Jq r—e % zx4et

1 a
B 2cosha ln(a:—e )- ln(x+e )]

o)
1

m—e —a
2cosha x—i—e“

1 —e @
QCosha

_ 1—|-e
- 2COSh(Z 1—e a
a
- 1 th—)
2008ha<a+nco 2

and

o 1 o 1
1 2 dz = PRI E——
o x*+2x2cosha+1 o (x2+e?)(x?+e9)

/oo 1 1 1 d
= - x
g et—e @ \a2+e @ z24et

1 [1 .z 1 lx]oo

= | ——tan ' — —_tan' —
2sinha | e—2/2 1 e—a/2  ea/2 & ea/2 0

1 ™ T
_ a/2’ _ —a/2" )
2sinha (6 5 ¢ 50

nh a
= — 7 sinh —

2sinh a 2
7 sinh %

2sinh a
7 sinh %
: a a
4 sinh 5 cosh 5
T
4 cosh %
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Question (2011 STEP III Q4)

The following result applies to any function f which is continuous, has positive
gradient and satisfies f(0) =0:

a b
ab < /0 f(z)de + /0 F ) dy, )

where f~! denotes the inverse function of f, and a > 0 and b > 0.

(i) By considering the graph of y = f(z), explain briefly why the inequality (x)
holds. In the case a > 0 and b > 0, state a condition on a and b under which
equality holds.

1 1
(ii) By taking f(z) = P! in (x), where p > 1, show that if = + = = 1 then
p q

al b
ab < —+ —.
p q

Verify that equality holds under the condition you stated above.

iii) Show that, for 0 <a < irand 0<b <1,
2

ab < barcsinb+ /1 — b2 —cosa.

Deduce that, for t > 1,

arcsin(t_l) >t—\t2—1.

Question (2011 STEP III Q6)
The definite integrals T, U, V and X are defined by

1
= tanh t In3
T:/&MMldL U:/ 2 du,
1 t m2 2sinhu

W=

1 1

5 ] =In3

;/:_1/2 L ‘X:i/Q In(coth z) dz .
4 1— o2 %an

Show, without evaluating any of them, that 7', U, V and X are all equal.

T_ /é artanht a
1

t
31, (14t
2
= —In(—— | dt
1 2t 1-—t¢
3
=3
u=31t p=uv=l gy = 2 _ ¢ = ' ilnuLdu
1-t> ut1’ (ut1)? o 2t (u+1)2

3u+1 1
= Inu du
2 u—1 (u—|—1)2
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31
= / 5 In udu
2 us — ].

In3
U= / 2 qu
m2 2sinhwu

v=3
1 1
v=-¢" dv=ce"du :/ 2Y 2w

2
|
:_/ 2nu du
3U—1

31
= / 5 In udu
2 us — 1

1 1n3
X = / n(coth x) dz

In2
2 1
u = cothz,du = (1 —u”)dz = lnu sdu
u=3 l—u
31
= / 2nu du
2 U — 1
3 Inu
Therefore all integrals are equal to the same integral, namely / 5 1du
2 u”—

Question (2014 STEP III Q2) (i) Show, by means of the substitution u = coshz,
that

T =
cosh 2z V2coshz + 1

/ sinhxd \/§coshx—1 L C
2f

(ii) Use a similar substitution to find an expression for
coshz
/ dz
cosh 2z

(iii) Using parts (i) and (ii) above, show that

/1 1 74 2In(v/2 + 1)
cdu = :
o 1+u 44/2
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/ sinh x / sinh x
dzx

cosh 2:E cosh2 z—1
u = cosh z, du = sinh xdx / du

2u? —

/ 1 < 1 1 > d
U
2 \Vou—-1 \fu +1

(ii)

u = sinhx

(iii)

_ LT,
v=c: /0 1+u4

<ln(\@u —1) —In(v2u + 1)) +C

et () ve

2coshz —1
V2coshz + 1

/Coshm a:—/ cosh x .
cosh2z =~ 1+ 2sinh?z
1
:/ du
1+ 2u2
= —tan ' (vV2u) + C
7 (V2u)
1 -1
= — tan~}(v2sinhz) + C
7 ( )
0
/Ooe2x+62x €z
/0 coshx — sinh z .
"~ 2cosh2r
1 O coshz _1/0 sinh z
2 J_o cosh2x 2 J_o cosh2x
171 0 1] 1 2coshz — 1
{tan_l(\@sinhx)} - = In V2cosha
2 V2 e 2202 V2coshz + 1
_ 1 - _ 1 In vV2-1 —0
2v2 2 42 \V2+1
Cr—l((V2-1?)
42
7+ 2In(1 +v/2)
42
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Question (2025 STEP III Q7)

Let f(z) =v22+1—z.

(i) Using a binomial series, or otherwise, show that, for large |z|, vz2 + 1 ~ |$’+ﬁ
Sketch the graph y = f(z).

(ii) Let g(z) =tan~! f(z) and, for z # 0, let k(z) = £ tan' L.

a) Show that g(z) + g(—z) = .

b) Show that k(z) + k(—xz) = 0.

c¢) Show that tan k(z) = tan g(z) for = > 0.

d) Sketch the graphs y = g(z) and y = k(x) on the same axes.

e) Evaluate fol k(z) dz and hence write down the value of ff’l g(z) dz.

1
X
11 . 1
| ‘_’_1 1 n
= |T —_—— .« e
2 |z|
o] + o
~ |T -
2|x|
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(i) a)
tan(g(z) + g(—z)) = tan (tanfl(\/m —x)+ tanfl( 2 4+14+ x))
VaZ+l—a+Va2+1+a

1-1
= g@tg el 2.5}

But g(z),g(—x) > 0 and g(x),g(—x) € (=3, §), therefore it must be 7.

b)
tan(2(k(z) + k(—2))) = tan(tan' z + tan~' (—z))
=0
- k@) + k(=a) € {- =20, 2 }

But k(z) € (—7,7), therefore k(x) + k(—z) = 0.

c) Let t = tan k(x).

tam (tan_l 1) _ 2 tan (% tan™! %)
x 1 — tan? (% tan~! 1)
12t
= z 12
= 1—t? =2tz
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0=t>+2tx—1

=
= 0=(t+z)?—1-2?
= t=—x+\V1+22

Since t > 0, t = V1 + 22 —z = f(z) = tang(z)

Y

AN

Therefore / g(x)de = — S
~1
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Question (1988 STEP II Q10)

The surface S in 3-dimensional space is described by the equation

a-r+ar = a2,
where r is the position vector with respect to the origin O, a(# 0) is the position
vector of a fixed point, r = |r| and a = |a|. Show, with the aid of a diagram, that S
is the locus of points which are equidistant from the origin O and the plane r-a = a?.
The point P, with position vector p, lies in S, and the line joining P to O meets S
again at (). Find the position vector of (). The line through O orthogonal to p and
a meets S at T and 7”. Show that the position vectors of T and T" are

1
+——axp,

\/2ap — a?
where p = |p|. Show that the area of the triangle PQT is
ap?
2p—a’

The plane is the same as the plane (r — a) - a = 0, ie the plane through a whose normal
is parallel to a

The distance from r to the plane therefore is A where r + )\%a must be on the plane, ie
(r+2a—a)-a=0=\= @

But if a-r = a® — ar then A = r, ie the distance to the plane is the same as the distance
to the origin.

q = kp and so a- kp + alk|p = a® if k > 0 we will find k& = 1 the position vector we
already know about, therefore suppose k < 0 so:

a-kp — kap = a®

= k(a® — ap) — kap = a®
= k(a® — 2ap) = a®
2
= k= 2a7
a® — 2ap

2

Therefore q = z%5—p
The line through O orthogonal to p and a will be parallel to a x p. Therefore we
should consider points of the from sa x p on the surface S.

sa - (a x p) + sa’p|sin 0] = a*

The angle between cos § = —p o> Sl = [sing| =4/1 (a— p \/2ap

Therefore sa®y/2ap — a2 = a® = s = \/ﬁ and so the pomts are as required.
ap—a

Noting that |p x t| = |psin6p X (p x a)|= \psinap asinf| = pa
The area of triangle PQT is :

1 1
§I(P—t)><(Q—t)\:i\pxq—th—pxt—txt\
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N~ N

Question (1989 STEP III Q2)

The points A, B and C' lie on the surface of the ground, which is an inclined plane.
The point B is 100m due north of A, and C is 60m due east of B. The vertical
displacements from A to B, and from B to C, are each 5m downwards. A plane coal
seam lies below the surface and is to be located by making vertical bore-holes at
A, B and C. The bore-holes strike the coal seam at 95m, 45m and 76m below A, B
and C respectively. Show that the coal seam is inclined at cos_l(%) to the horizontal.
The coal seam comes to the surface along a line. Find the bearing of this line.

Set up a coordinate system so that x is E-W, y is N-S and z is the vertical direction.

0 0 60
Also assume B is the origin, then, A= [ =100 | ,B= (0|, C=1] 0 |..
5 0 -5
0 0 60
The coal seam has points: | —100 | , 0 , 0 ,
—-90 —45 —81

Therefore we can find the normal to the coal seam:

0 0 60 0
n= —100 | — 0 X 0 - 0
-90 —45 —81 —45
0 60
= | —100 | x 0
—45 —36
3600
= | —60-45
60 - 100
12
=300[ -9
20

To measure the incline 6 to the horizontal we can take a dot with R, to see:

20

cosl =
V122 4 (=9)% + 202V1% + 0% + 02
20

"2
4

5
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Therefore the angle is cos™* %

The equation of the seam is 12z — 9y + 20z = —900.
The equation of the surface is 5z + 3y + 60z = 0
We can compute the direction of the overlap again with a cross product:

12 5
d=|-9| x| 3
20 60
—600
= | —620
81

To get the bearing of this vector we just need to look at the x and y components, so it

; —1600 _ -1 30
will be tan g0 = tan™ " 53

Question (1992 STEP II Q9)

Let a,b and ¢ be the position vectors of points A, B and C' in three-dimensional
space. Suppose that A, B, C and the origin O are not all in the same plane. Describe
the locus of the point whose position vector r is given by

r=(1—-X—p)a+ b+ puc,

where A and p are scalar parameters. By writing this equation in the form r-n =p
for a suitable vector n and scalar p, show that

—(A4+pa-(bxc)+Ab:-(cxa)+puc-(axb)=0
for all scalars A, u. Deduce that

a-(bxc)=b-(cxa)=c-(axb).

Say briefly what happens if A, B,C and O are all in the same plane.

r=(1-A—pa+Ab+puc=a+ A(b—a)+pu(c—a)
Therefore it is the plane through a with direction vectors b — a and ¢ — a, ie it is the

plane through a, b, c.
The normal to this plane will be (b —a) x (c—a) =b xc—a x c—b X a, so we must

have:

r-(bxc—axc—bxa)=a-(bxc—axc—bxa)

=a-(bxc)
Therefore,
a-(bxc)=r-(bxc—axc—bxa)
=((1=A—pa+Ab+puc)-(bxc—axc—bxa)
=(1-X—pa-(bxc)—Ab-(axc)—puc-(bxa)
= 0=(-A—pa-(bxc)—Ab-(axc)—puc-(bxa)
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=—(A+pa-(bxc)+Ab-(cxa)+puc-(axb)

The result follows from setting u =0,A=1and p=1,A=0.
If they all lie in the same plane then the plane described is through the origin, and
those values are all the same, but equal to 0.

Question (1993 STEP II Q4)

Two non-parallel lines in 3-dimensional space are given by r = p; + t;m; and
r = po + temy respectively, where m; and my are unit vectors. Explain by means of
a sketch why the shortest distance between the two lines is

|(P1 — p2) - (M1 X my)|
[(my x my)| '

(i) Find the shortest distance between the lines in the case

p1=(21-1) py=(1,0,—-2) my;=1(4,3,0) 0,-3,1).

s =

(ii) Two aircraft, A; and A, are flying in the directions given by the unit vectors
m; and mo at constant speeds vy and vs. At time ¢ = 0 they pass the points
p1 and po, respectively. If d is the shortest distance between the two aircraft
during the flight, show that

d2 = Ip1 — P2|2 lvimy — 1121f1f12|2 —[(p1 —p2) - (vim; — U2m2)]2

luym; — vomy |

(iii) Suppose that vy is fixed. The pilot of As has chosen vy so that As comes as
close as possible to A;. How close is that, if p;, p2, m; and my are as in (i)?

Question (1995 STEP III Q8)

A plane 7 in 3-dimensional space is given by the vector equation r - n = p, where
n is a unit vector and p is a non-negative real number. If x is the position vector
of a general point X, find the equation of the normal to m through X and the
perpendicular distance of X from 7. The unit circles Cj, ¢ = 1,2, with centres r;,
lie in the planes 7; given by r - n; = p;, where the n; are unit vectors, and p; are
non-negative real numbers. Prove that there is a sphere whose surface contains both
circles only if there is a real number A such that

ri +An; = ro &+ Ans.
Hence, or otherwise, deduce the necessary conditions that
(I’1 —I'Q) o (n1 X ng) =0

and that
(1 —np -12)® = (p2 —ny - 11)%

Interpret each of these two conditions geometrically.
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The equation of the normal to 7 through X is x + An. The distance is |x - n — p|
We know that the centre of the sphere must lie above the centre of the circle following
the normal, ie c =r| + Ajn; =ro + Aony

We can also see that R?2 =1+ A2 = 1 + A3 = \; = £\, from which we obtain the
desired result.
Therefore the condition is

r; +An; = r9 + Any (1)
r; —ry = A(£n; — ny)
= (ri —ra) - (n; X ng) = (A(n; —ng)) - (ng X na)
= A(£n; - (n; X nz) —ny - (n; X ng))
=0
ng - (1) ry-ny+An;-n;=ry-n;£iny-n

pr+A=r9-n;+ Ansg - n;

ny - (1) ri-nNo+Anj-ng =ry-no+ Ang - no
ri-ng+An; -nyg =pyt A
FA—An;-ng =r;-nyg —po
=+(r2-n1 —p1)
= (p1 — 1 -12)* = (pp —my - 1)’
The first condition means the line between the centres lies in the plane spanned by the
normal of the two planes m; and ms.

The second condition means that the distance of the center to the other plane is the
same for both centres/planes.

142



SM UFM Pure (with Solutions)

Question (1998 STEP III Q8) (i) Show that the line r = b + Am, where m is a
unit vector, intersects the sphere r - r = a? at two points if

a*>>b-b—(b-m)%.

Write down the corresponding condition for there to be precisely one point of
intersection. If this point has position vector p, show that m - p = 0.

(i) Now consider a second sphere of radius a and a plane perpendicular to a unit
vector n. The centre of the sphere has position vector d and the minimum
distance from the origin to the plane is I. What is the condition for the plane to
be tangential to this second sphere?

(iii) Show that the first and second spheres intersect at right angles (i.e. the two
radii to each point of intersection are perpendicular) if

d-d=2d>.

Question (2000 STEP II Q7)

The line [ has vector equation r = As, where
s = (cosf +V3)i+ (/2 sinh) j+ (cosd —v3) k

and A is a scalar parameter. Find an expression for the angle between [ and the
line r = p(ai+ bj+ ck). Show that there is a line m through the origin such that,
whatever the value of 0, the acute angle between [ and m is 7/6.

A plane has equation z — z = 4v/3. The line | meets this plane at P. Show that,
as 0 varies, P describes a circle, with its centre on m. Find the radius of this circle.

Question (2000 STEP III Q5)

Given two non-zero vectors a = <Zl) andb = <21> define A(a,b) by A(a,b) = aibs — agb;.
2 2

Let A, B and C be points with position vectors a, b and ¢, respectively, no two
of which are parallel. Let P, Q and R be points with position vectors p, q and r,
respectively, none of which are parallel.

(i) Show that there exists a 2 x 2 matrix M such that P and @ are the images of
A and B under the transformation represented by M.

(ii) Show that A(a,b)c+ A(c,a)b + A(b,c)a = 0.

Hence, or otherwise, prove that a necessary and sufficient condition for the points
P, Q, and R to be the images of points A, B and C under the transformation
represented by some 2 x 2 matrix M is that

A(a,b) : A(b,c) : Alc,a) = A(p,q) : A(q,r) : A(r, p).
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Question (2005 STEP II Q7)

The position vectors, relative to an origin O, at time ¢ of the particles P and @) are
costi+sintj+0k and cos(t+ im) [3i+ %k] +3sin(t + 1m) j,
respectively, where 0 <t < 27.

(i) Give a geometrical description of the motion of P and Q.

(ii) Let 6 be the angle POQ at time ¢ that satisfies 0 < 6 < m. Show that

cosf = % — Lcos(2t + 1m) .

(iii) Show that the total time for which 6 > 17 is 3.

(i) P is travelling in a unit circle about the origin in the i — j plane. @ is travelling in a
circle (also about the origin, but in a different plane with radius 3).

(ii)

P q=|p|lq|cosd
3 costcos(t+ T) + 3sintsin(t + Z)
3
= %costcos(t + %) +sintsin(t + 7)
= 2(cos(2t + T) + cos(F)) + 3(cos(F) — cos(2t + T))

= 3%8/5 — Lcos(2t + %)

= cosf =

(iii) If > im, then cosf < ?
V2 _3V2 1 .
5 27y geos@td)
2
= \2[ > —cos(2t+ %)
1
= cos(2t + §) > ~ 7
= 2t+ 5 ¢ COF, ) U (47, 1)
= t¢ (5.5 V0T F)
which is is a time of 7, therefore the left over time is %7‘(‘
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Question (2006 STEP II Q8)

Show that the line through the points with position vectors x and y has equation
r=(1-a)x+ay,

where « is a scalar parameter. The sides OA and CB of a trapezium OABC are
parallel, and OA > C'B. The point E on OA is such that OF : FEA=1:2, and F
is the midpoint of C'B. The point D is the intersection of OC produced and AB
produced; the point G is the intersection of OB and EF'; and the point H is the
intersection of DG produced and OA. Let a and ¢ be the position vectors of the
points A and C, respectively, with respect to the origin O.

(i) Show that B has position vector A\a + ¢ for some scalar parameter .

(ii) Find, in terms of a, ¢ and A only, the position vectors of D, E, F, G and H.
Determine the ratio OH : HA.

1 2
Question (2007 STEP I Q7) (i) Theline L; has vector equationr = [ 0 | +A [ 2
2 -3
4 1
The line Lo has vector equationr = | =2 | +pu 2 | . Show that the distance
9 -2

D between a point on L; and a point on Lo can be expressed in the form
D?=(Bu—4r—5)2+(A—1)2+36.

Hence determine the minimum distance between these two lines and find the
coordinates of the points on the two lines that are the minimum distance apart.

2 0
(ii) The line L3 has vector equation r = | 3| +a [ 1| . The line Ly has vector
5 0

3 4k
equation r = 3]l +8|1—Fk] . Determine the minimum distance between
-2 —3k

these two lines, explaining geometrically the two different cases that arise
according to the value of k.
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Question (2007 STEP II Q8)

The points B and C have position vectors b and c, respectively, relative to the origin
A, and A, B and C are not collinear.

(i) The point X has position vector sb+ tc. Describe the locus of X when s+t = 1.

(ii) The point P has position vector b + yc, where 8 and v are non-zero, and
B+ v # 1. The line AP cuts the line BC' at D. Show that BD : DC =~ : .

(iii) The line BP cuts the line CA at E, and the line CP cuts the line AB at F.

Show that
AF BD CE

FBDC " EA =1

(i) X lies on the line including B and C.

(ii) points on the line AP have the form A\(8b + ~c¢), and the point D will be the point
where A\ + Ay = 1.

[BD| _ |b—A(Bb + ¢
|IDC] |A\(Bb 4+ yc) — ¢
_ (1= AB)b — M|
[ABb + (Ay — 1)c|
_[Mb = Ayc
~ [ABb — (AB)c]
;

T8

(iii) The line BP is b 4+ u(fb + vc) and will meet CA when 1+ uf =0, ie p = —%,

_2 ICE| _ 1+v/8 _ B+~
therefore FE is 56 and so BAl = /8 = 4

Similarly, F is — 5b and ;?g' 5/% = Wiﬁ, and so

AF BD CE _ B yf+7
FBDC “EA - ~v+8B8 ~
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Question (2008 STEP II Q8)

The points A and B have position vectors a and b, respectively, relative to the origin
O. The points A, B and O are not collinear. The point P lies on AB between A
and B such that

AP:PB=(1—-X):\.

Write down the position vector of P in terms of a, b and A. Given that OP bisects
ZAOB, determine A in terms of a and b, where a = |a| and b = ||. The point @ also
lies on AB between A and B, and is such that AP = B(Q. Prove that

0Q*> - OP? = (b—a)>.

Question (2009 STEP II Q8)

The non-collinear points A, B and C have position vectors a, b and c, respectively.
The points P and @ have position vectors p and q, respectively, given by

p=Xa+(1—-XNb and q=pa+(1—pu)c

where 0 < A < 1 and g > 1. Draw a diagram showing A, B, C', P and Q. Given
that CQ x BP = AB x AC, find p in terms of A, and show that, for all values of A,
the the line PQ passes through the fixed point D, with position vector d given by
d =—a+ b+ c. What can be said about the quadrilateral ABDC?

Question (2010 STEP I Q7)

Relative to a fixed origin O, the points A and B have position vectors a and b,
respectively. (The points O, A and B are not collinear.) The point C has position
vector ¢ given by

c=aa+ fb,

where « and S are positive constants with o+ 8 < 1. The lines OA and BC meet
at the point P with position vector p and the lines OB and AC meet at the point
() with position vector q. Show that

aa
1-3"

and write down q in terms of «, 8 and b.
Show further that the point R with position vector r given by

p:

_aa+ b
a+pB "’
lies on the lines OC and AB. The lines OB and PR intersect at the point S. Prove
that 29 _ 95
BQ BS
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Question (2010 STEP II Q5)

The points A and B have position vectors i + j + k& and 5i — j — k, respectively,

relative to the origin O. Find cos 2, where 2« is the angle ZAOB.

(1) The line Ly has equation r = \(mi+ nj + pk). Given that L is inclined equally
to OA and to OB, determine a relationship between m, n and p. Find also
values of m, n and p for which L is the angle bisector of ZAOB.

(ii) The line Lo has equation r = pu(ui + vj + wk). Given that Ls is inclined at an
angle a to OA, where 2a = ZAOB, determine a relationship between u, v and w.
Hence describe the surface with Cartesian equation 22 +y2+ 22 = 2(yz + 2z +y).

Question (2011 STEP II Q5)

The points A and B have position vectors a and b with respect to an origin O, and
O, A and B are non-collinear. The point C', with position vector c, is the reflection
of B in the line through O and A. Show that ¢ can be written in the form

c=MXa—b

2a.b

where A\ = i. The point D, with position vector d, is the reflection of C in the
a.a

line through O and B. Show that d can be written in the form

d=pub-—)a

for some scalar u to be determined. Given that A, B and D are collinear, find the
relationship between A and p. In the case A = —%, determine the cosine of ZAOB
and describe the relative positions of A, B and D.

Question (2012 STEP II Q7)

Three distinct points, X1, X9 and X3, with position vectors x1, X2 and x3 respectively,
lie on a circle of radius 1 with its centre at the origin O. The point G has position
vector %(Xl +x9+x3). The line through X; and G meets the circle again at the point

oy ——
Y1 and the points Y5 and Y3 are defined correspondingly. Given that GY; = —A\ G X1,
where )\ is a positive scalar, show that

071 = %((1 —221)x1 + (14 A1) (x2 + x3))
and hence that

_ 3-a—-B—-v
S 34+a—-26-2y’

A1

GX7 GXy GX
where o = x5 .x3, 8 = x3.%; and ¥ = X . X2. Deduce that GYll + GYQQ GY; =3.
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Y1 = (ﬁ‘i‘ﬁ
= %(Xl +x2+x3) — M\ <X1 - é(xl + X2+ X3))
_ é (1= 221)%1 + (14 A1) (x2 + x3))
l=yi-y1
— % (T —=2A1)x1 + (1 + A1) (x2 +x3)) - % (1 =2Xx)x1 4 (1 + A1) (%2 + x3))
1

= § ((1 - 2)\1)2 + 2(1 + )\1)2 =+ 2(1 — 2/\1)(1 + )\1)(X1 c X9 + X1 - X3) + 2(1 + )\1)2X2 . X3)

= 9=(1-2X\)2+2(1 + A1) +2(1 = 2X) (1 + M) (B +7) +2(1 + M)«
=34+6X2+2(8+47) =28+ —4X3(B+7) + 20 + A\ja + 223a

0=(=6+2(a+B8+7))+2(2a— (B+7)A + (6 +2(c — 2(8 +7)))A]
= 0=((a+B+7)=3)+ Ra—(B+1))A+ (B+a—2(8+7))A
=M+DE+a—=2B8+7)M + ((a+B+7) —3))
Lo = 3—(a+B+7)

3+a—2(8+7)

as required.
GX1

GY;

Since = /\% we must have,
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Question (2013 STEP III Q3)

The four vertices P; (i = 1,2,3,4) of a regular tetrahedron lie on the surface of a
sphere with centre at O and of radius 1. The position vector of P, with respect
to O is p; (i = 1,2,3,4). Use the fact that p; + py + p3 + p4 = 0 to show that
pP;-Pj = —% for ¢ # j. Let X be any point on the surface of the sphere, and let X P;
denote the length of the line joining X and P; (i = 1,2, 3,4).

(i) By writing (XP;)? as (p; — x) . (p; — x), where x is the position vector of X

with respect to O, show that

(ii) Given that P has coordinates (0,0,1) and that the coordinates of P» are of the
form (a,0,b), where a > 0, show that a = 2v/2/3 and b = —1/3, and find the
coordinates of P3 and Pj.

(iii) Show that
4
SXR) =430 - x.p)?.

i=1 i=1

4
By letting the coordinates of X be (z,y,2), show further that > (XP;)* is
i=1
independent of the position of X.

Question (2014 STEP I Q7)

In the triangle OAB, the point D divides the side BO in the ratio r : 1 (so that
BD = rDO), and the point E divides the side OA in the ratio s : 1 (so that
OFE = sEA), where r and s are both positive.

(i) The lines AD and BE intersect at G. Show that

TS 1
= a+
14+7r+rs 14+7r+rs

g

where a, b and g are the position vectors with respect to O of A, B and G,
respectively.

(ii) The line through G and O meets AB at F. Given that F' divides AB in the
ratio ¢ : 1, find an expression for ¢ in terms of r and s.
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Question (2014 STEP III Q7)

The four distinct points P; (i = 1, 2, 3, 4) are the vertices, labelled anticlockwise, of

a cyclic quadrilateral. The lines P, P3 and P» P, intersect at Q).

(i) By considering the triangles PiQP; and P,QPs; show that (PQ)(QPs;) =
(PQ)(QPy).

(ii) Let p; be the position vector of the point P; (i = 1, 2, 3, 4). Show that there
exist numbers a;, not all zero, such that

4

4
Zai =0 and Zaipi =0. (%)
i i=1

(iii) Let a; (¢ =1, 2, 3, 4) be any numbers, not all zero, that satisfy (*). Show that
a1 +as # 0 and that the lines P; P3 and P> Py intersect at the point with position

vector
aip1 + asps

ay +as
Deduce that ajaz(PiPs)? = azas(PaPy)?.

Question (2015 STEP II Q8)

xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=0,dotsize=3pt
0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25 (-2.94,-1.87)(7.07,3.86) (0,1)1.25
(3,0)0.55 [t1](5.33,-0.41) P (-2.44,-0.03)(6.18,-0.85) (-2.04,3.71)(6.55,-1.48)
[t1](-0.18,1.1)Cy [t]](2.85 ,0.15)C} [t1](-0.65,3.29) L [t](-1.5,-0.34)L

The diagram above shows two non-overlapping circles C| and Cy of different sizes.

The lines L and L’ are the two common tangents to C; and Cs such that the two

circles lie on the same side of each of the tangents. The lines L and L’ intersect at

the point P which is called the focus of C; and Cs.

(i) Let x; and x2 be the position vectors of the centres of C; and Co, respectively.
Show that the position vector of P is

r1X2 — Xy
rn —T9

where 1 and ro are the radii of C'; and Cs, respectively.

(ii) The circle C3 does not overlap either C; or C and its radius, rs, satisfies
r1 # r3 7% ro. The focus of C; and Cj is ), and the focus of Cy and Cj is R.
Show that P, @ and R lie on the same straight line.

(iii) Find a condition on 71, r2 and 73 for @ to lie half-way between P and R.
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Question (2016 STEP I Q6)

The sides OA and C'B of the quadrilateral OABC' are parallel. The point X lies on
OA, between O and A. The position vectors of A, B, C' and X relative to the origin
O are a, b, ¢ and x, respectively. Explain why ¢ and x can be written in the form

c=ka+b and x=ma,

where k and m are scalars, and state the range of values that each of k£ and m can
take.

The lines OB and AC intersect at D, the lines XD and BC intersect at Y and
the lines OY and AB intersect at Z. Show that the position vector of Z relative to

O can be written as
b + mka

mk+1
The lines DZ and OA intersect at 1. Show that

1 1 1

OTXOA:OXXTA and ﬁ:OiX‘i‘a,

where, for example, OT denotes the length of the line joining O and T'.

Question (2017 STEP II Q8)

All vectors in this question lie in the same plane.

The vertices of the non-right-angled triangle ABC have position vectors a, b and
c, respectively. The non-zero vectors u and v are perpendicular to BC' and C'A,
respectively.

Write down the vector equation of the line through A perpendicular to BC, in
terms of u, a and a parameter \.

The line through A perpendicular to BC' intersects the line through B perpendic-
ular to CA at P. Find the position vector of P in terms of a, b, ¢ and u.

Hence show that the line C'P is perpendicular to the line AB.

Question (2018 STEP II Q7)

The points O, A and B are the vertices of an acute-angled triangle. The points M
and N lie on the sides OA and OB respectively, and the lines AN and BM intersect
at ). The position vector of A with respect to O is a, and the position vectors of
the other points are labelled similarly.
Given that | M Q| = p|@B|, and that [NQ| = v|QA|, where p and v are positive
and pr < 1, show that ( )
14+ pv
14+v a
The point L lies on the side OB, and |OL| = A|OB|. Given that ML is parallel
to AN, express A in terms of y and v.
What is the geometrical significance of the condition pv < 17
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Question (2019 STEP I Q5) (i) The four points P, ), R and S are the vertices of
a plane quadrilateral. What is the geometrical shape of PQRS if PQ = SR?
What is the geometrical shape of PQRS if PQ = SR and |PQ| = |PS|?

(ii) A cube with edges of unit length has opposite vertices at (0,0,0) and (1,1,1).
The points

P(p,0,0), Q(1,¢,0), R(r,1,1) and S(0,s,1)

lie on edges of the cube. Given that the four points lie in the same plane, show
that

rg=(1-s)(1-p).

a) Show that P_Q = SR if and only if the centroid of the quadrilateral PQR.S
is at the centre of the cube. Note: the centroid of the quadrilateral PQR.S
is the point with position vector

]. - - - —
Z(OP +0Q +OR+ 095),
where O is the origin.

b) Given that PQ = SR and |PQ| = |PS|, express ¢, r and s in terms of p.

Show that
4p — 1

5—4p + 8p?’
Write down the values of p, ¢, » and s if PQRS is a square, and show that
the length of each side of this square is greater than %—(1).

cos PQR =

(i) It PQ = SR we have a parallelogram.
PQ = SR and |PQ| = |PS| then we have a rhombus.

(ii) If the four points lie in a plane then

(RS x RP)-RQ =0, so

—r p—r 1—7r
0=|[s—1] x| -1 g—1
0 -1 -1
1—5 1—r
( - qg—1
r+(p-—r)(l—ys) —1
=(1=-s)(1-r)=r@g=1)—r—(p-7)1-25)
=(1-s)(1—=r—p+r)—rgq
= rqg=(1-s)(1-p)
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Sl=r+p ; 1l=q+s

The centroid is %(p%— 147r,q+s+1,2) which is clearly %(1, 1,1) iff those equations

are true.
b)
|PQ| = |PS|
e (L=p?+q+0°=p" +5°+1)
& 1—2p+p*+¢=p* +s2+1
& —2p+q2:s2

From the previous equations we have r = 1 — p, and —2p + (1 — 5)? = s% =
72p+1725:O:>s:%7pandq:%+p

P-QR
cosPQR:M
|QPI|QR|
p—1 r—1
—q |- [1-9¢
0 1
V-1V )P (-2 1
p—1 —p
0 1
V- 12+ (= -2/ + (5 —p)2+ 12
N p—p° —g+p
\/p2—2p+1+%+p+p2\/p2+%—p+p2+l
B 4p —1
V8p% —4p +5/8p2 —4p +5
- 4p — 1
82 —4p+5

For PQRS to be a square cos PQR =0, ie p = % and so

pygirys) = (3,33 Y and |PQ| = /(1 -p2+¢ = \/7

notice that (%)2 33(1) <z (441 < 450) therefore the sides are at least as long
21
as 50
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Question (1989 STEP II Q9)
The matrix F is defined by

o0 1
_ T IM AN
F_I+§1n!tA,
n—=

-3

where A = < 3

_31> and t is a variable scalar. Evaluate A2, and show that
F =1Icosht+ Asinht.

dF
Show also that F~! = Icosht— A sinht, and that T FA. The vector r = (Zj(t))

satisfies the differential equation

dr
— +Ar=0
dt+ g ’

with £ = a and y = 8 at ¢t = 0. Solve this equation by means of a suitable matrix
integrating factor, and hence show that

x(t) = acosht + (3a + ) sinh ¢
y(t) = Bcosht — (8 + 303) sinh t.

(33) -

9-8 3—-3
24424 —-8+9

.
I(é )

Therefore:

[e's) 1

— T Un AN

F=I+ gln!t A
n=

1 > 1
— I 7t2n1 7t2n+1A
+n; (2n)! +;(2n+1)!

= cosh tI + sinh tA
Notice that

F(Icosht — Asinht) = (Icosht+ Asinht)(Icosht — Asinht)
= I%cosh?t + A(sinht cosht — coshtsinht) — A%sinh?t
= Icosh?t — Isinh?t
=1

Therefore F~1 = Icosht — A sinht
dF d =1
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I
N
K
£
| | =
=
.—H
3
N
>
3
N
~—
>

dr
— +Ar=0
a AT
N FE  FAr—o
ar r—
dt
d
Fr)=0
dt( )
= Fr=c
= r=Flc

= (Icosht — Asinht)c

o)

= r = (Icosht — Asinht) <g>

acosht —3a— B\ .
- (ﬁcosht) a <8a—|—36) sinh f
_ ( acosht + (3a + B3)sinht
N (ﬁ cosht — (8a 4 3f) sinh t)

as required

Question (1990 STEP I Q7)

Let y,u,v, P and @ all be functions of x. Show that the substitution y = uv in the

differential equation
d
Z+Py=Q
dx

. dv . . . .
leads to an equation for — in terms of x, @) and u, provided that u satisfies a suitable

75
first order differential equation. Hence or otherwise solve

dy 2y 5
< _ — 1)2
dr z+1 @R

given that y(1) = 0. For what set of values of z is the solution valid?

Suppose y = uv then and suppose % + Pu = 0 then

Yo py=q

dz
w4+ u'v 4+ Puv = Q
w' =Q
dv @
dz  u
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Consider
0:%_ 2u
dr z+1
= Inu=2In(l+z)+C
= u= A1+ z)?
and
dv 1 1
Db 1)32
G At
= = 2 er)itk
v=ggle
2
= y:§(x+1)%+k(a:+1)2
0=y(1)
2972 4 jo?
95/2
= k=——
3
e 22 2
= y=-(+1)"7?-"—(z+1)

Question (1990 STEP III Q8)
Let P,@ and R be functions of x. Prove that, for any function y of x, the function

Py"+Qy' + Ry

d

can be written in the form d—(py’ + qy), where p and ¢ are functions of z, if and
x

only if P” — Q'+ R = 0. Solve the differential equation

(x — 2y + (1 = 723)y — 922y = (23 + 322)e”,

given that when z = 2,y = 2¢% and 3 = 0.

Suppose Py” + Qy' + Ry = C%j(pyl + qy), then

d
Py"+Qy' + Ry = @(py’ + qy)

=py" +0Y +ay' +d'y
=y + (' +a)y +dy

Therefore P = p,Q = p' + q,R = ¢/, Therefore ¢ = Q — P’ and R = Q" — P" or
P'—Q +R=0.

(=) Suppose it can be written in that form, then the logic we have applied shows that
equation is true. (<) Suppose P” — @'+ R = 0, then letting p = P,q = Q — P’ we find
functions of the form which will be expressed correctly.

Notice that if P =z — 2%, Q = (1 — 72?), R = —922 then:

P"—@Q + R = —122% + 212? — 922
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=0

Therefore we can write our second order ODE as:

Suppose z = (z — 2*)y’ — 322y, then z = (2 — 2%) - 0 — 322 - 2¢%2 = —24¢? when z = 2.
and we have:

dz

EP (2 + 32%)e”
= z = /(m3 + 32%)e"dx
=23e" + ¢
= —48¢% = 2(8) + ¢
= c = —56e?
= z = e"(x%) — 56¢*

So our differential equation is:

(z — )y — 323y = 23e” — 5662

6 2
= (1— a2y — 32y = 2%e” — >
T
d 56€
= o (1= ’)y) = a’e” — ;
= (1—a23)y = (2% — 2z +2)e” — 56e*Inzx + k
= (1—2%)2e% = (22 —2-2+2)e® —56e*In2 + k
—~
=2
= k= —16¢” +56In2 - ¢
N (22 — 22 + 2)e® — 56e2Inx — 16e% + 56In 2 - €2

(1—9)
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Question (1995 STEP II QR)

If there are x micrograms of bacteria in a nutrient medium, the population of bacteria
will grow at the rate (2K — x)x micrograms per hour. Show that, if x = K when
t = 0, the population at time ¢ is given by

1— e—2Kt

Sketch, for ¢t > 0, the graph of x against t. What happens to z(t) as t — 0co?

Now suppose that the situation is as described in the first paragraph, except that
we remove the bacteria from the nutrient medium at a rate L micrograms per hour
where K? > L. We set a = VK2 — L. Write down the new differential equation
for . By considering a new variable y = x — K + «, or otherwise, show that, if
z(0) = K then z(t) - K + o as t — 0.

Question (2000 STEP II Q8) (i) Let y be the solution of the differential equation

d
é tdze P (y+3)2 =0 (z>0),

that satisfies the condition y = 6 when x = 0. Find y in terms of x and show
that y — 1 as ¢ — oc.

(ii) Let y be any solution of the differential equation
——xerQ(y+3)1_k:O (z >0).

Find a value of k such that, as ¢ — oo, e*3$2y tends to a finite non-zero limit,
which you should determine.
[The approximations, valid for small 6, sinf ~ 6 and cosf ~ 1 — %92 may be
assumed.]

Question (2003 STEP III Q8) (i) Show that the gradient at a point (z, y) on the
curve
(y+2l’)3(y—4l‘) =c,

where c is a constant, is given by

dy 16z —y

de 2y -5z’

(ii) By considering the derivative with respect to z of (y + az)" (y + bx), or other-
wise, find the general solution of the differential equation

dy 10z —4y
de  3z—y
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c=(y+2x)° (y —4z)

d d
— 2y — v 3(9Y _
= 0=3(y+2x) (y 4x)(dx+2>+(y+2x) <d:p 4)
dy dy
= —4 — 42 2 — —4
= 0=3(y w)(dx—i-)—i—(y—i- x)(dx >
d
= = é (3(y — 4z) + (y + 22)) + 6(y — 4x) — 4(y + 2x)
d
:£(4y—10$)+2y—32x
dy 16z —y
= @_Qy—&s
(ii)
c=(y+ax)" (y+ bx)
d d
_ n—1 7y n 7y
= 0=n(y+ax) (y+bx)<dx+a>+(y+ax) <dx+b>
_ dy dy
= O—n(y+bx)<dx+a>+(y—|—ax)<dx+b>
d
- ﬁ ((n+ 1)y + (nb+ a)z) + anly + bz) + by + baz
d
- ﬁ ((n+ 1)y + (nb+ a)z) + (an + b)y + ab(n + 1)z
N dy _ (an+b)y+ab(n+1)z

dr  (n+1)y+ (nb+a)x

We must have ab = 10,a + b= —7 so say a = —5,b = —2,n = 2 and we have

(y — 5z)?(y — 2) = c is our general solution to the differential equation

Question (2004 STEP III Q8)

Show that if q (@)
y _ gz
I = f@y+ Y
then the substitution u = 32 gives a linear differential equation for u(z). Hence or
otherwise solve the differential equation

dy _y _
dr =z

1

;-

Determine the solution curves of this equation which pass through (1,1), (2,2) and
(4,4) and sketch graphs of all three curves on the same axes.

Y~ fayy+ 1

y% = f(2)y* + g(z)
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d
=y S = Fayutgla)

Which is a linear differential equation for w.

1, 1
—u =—-u—1
2 T
;2
= U ——u=-—1
x
1, 2 1
- 2 BT T
U, 1
= Y =
(55) =
1
= %:—4—0
x x
= u=Cr’+ux
= 2=Cx?+2

If (1,1) is on the curve then 1 =C + 1= C =0 = 3 = z.
If (2,2) is on the curve then 4 =4C' +2 = C =
If (3,3) is on the curve then 9 =9C+3 = C =

[SSIINNITE

Y

AN

~
8
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Question (2012 STEP I Q8) (i) Show that substituting y = xv, where v is a func-
tion of x, in the differential equation

dy

dw+y2—2x2:0 (z #0)

Ty
leads to the differential equation
d
mv—v+2v2—2:0.
dx
Hence show that the general solution can be written in the form
x2(y2 - wZ) = C7

where C' is a constant.

(ii) Find the general solution of the differential equation

d
y£+6x+5y:0 (x #0).

dx
(1)
=zv
f=v+ a0
2 dv 2 2 2
= 0:xv<v+m)+(xv)—21:
dx
d
= 2m202+x311—v — 272
dx
d
= OZwv—v+2v2—2
dx
N v dv_2
1—v2de =
v
= /1_v2dv:2ln|x\
1
= —§ln\1—v2] =2In|z|+C
= 4In|z| +In|l —v?| = K
= (1 -v?) =K
= $2(932—y2):K

(ii)
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Question (2014 STEP II Q5)

d
Given that y = xu, where u is a function of z, write down an expression for d—y
75

(i) Use the substitution y = zu to solve

dy  2y+z
de  y—2x

given that the solution curve passes through the point (1,1). Give your answer
in the form of a quadratic in = and y.

(ii) Using the substitutions x = X + a and y = Y + b for appropriate values of a
and b, or otherwise, solve
dy z—-2y—4
de  2z+y—3’

given that the solution curve passes through the point (1,1).

Y-
dz dz y
d
:@(Uw)
d d
product rule
—u+x—u
N dz
(i)
@_Qy—l—x
de  y— 2z
2+ 1
u+xa— w_9
xdﬁ_Qu—l—u2+2u
de u— 2
2—u 1
——du= [ —d
= /u2—4u+1u /xx

2—-u 1
e e

1
—§ln\(u—2)2—5\zln:p—|—0

(x,y) =(1,1): —In2=C
= Inz? =In4 —In|5 — (u—2)?
4
2 _
- v 05— (u—2)2
= 1=2(6- (-2

= 52% — (y — 2x)?
= 2% + day — o>
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(ii) It would be convienient if z —2y—4 = X —2Y and 2z +y—3=2X+Y, iea—2b =4
and 2a+b=3,iea=2,b=—1.

Now our differential equation is:

dy X —2v
dX  2X+Y
dX 2X+Y
dy — X -2Y

This is the same differential equation we have already solved, just with the roles of x
and y interchanged with Y and X and with the point (0,3) being on the curve, ie:

Y2 +4XY — X? = cand ¢ = 9, therefore our equation is:

(y—1)2+4y—1)(z+2) —(z+2)*=9

Question (2018 STEP II Q8)(i) Use the substitution v = ,/y to solve the
differential equation

d
d—‘g:ay%—ﬁy (y>0, t>0),

where o and [ are positive constants. Find the non-constant solution y; ()
that satisfies y1(0) =0.

(ii) Solve the differential equation

d

4 = ays — By (y=>0, t>0),

dt

where v and [ are positive constants. Find the non-constant solution ys(x)

that satisfies y2(0) = 0.

(iii) In the case a = 3, sketch y1(z) and y2(x) on the same axes, indicating clearly
which is y1(z) and which is y2(z). You should explain how you determined
the positions of the curves relative to each other.

Question (1987 STEP I Q3)
By substituting y(x) = zv(z) in the differential equation

dv 1+ z%v?
gy By AT
:Cdx—f—xv (1—|—z2)1}’

or otherwise, find the solution v(x) that satisfies v = 1 when z = 1.

What value does this solution approach when x becomes large?
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Let y = zv then 3 = v + v’ and so 2%y’ = z?v + 230’ Our differential equation is
now:

ny/: 1"'3/2
(1422)¥
(1+y%)
= ry = 5
YT vty
d 1
- y &4 __
14+y?de  z(1+22)
y dy 1 x
= —_ = - — —
1+y2der =z 1+ 22
1 1
= 51n(1+y2)zlm;—§1n(1+x2)+c
1 1 x?
= “In(1+y%) =21 C
y L +y7) 2n<1+$2>+
Daz?
= 1442 =
Ty 1+ 22
= D=4 (zr=Lv=1y=1)
4x
2.2
= 14+ z%v =152
N 9 322 —1
v =
22(1 + 22)
N 3r2 -1
x2(1 + 22)

Asx — o0, v—0

Question (1988 STEP II Q5)

By considering the imaginary part of the equation 27 = 1, or otherwise, find all
the roots of the equation

t6 — 2142 + 35¢2 —7=0.

You should justify each step carefully. Hence, or otherwise, prove that

2 4
tan%r‘53u177rtam677T :\ﬁ.

Find the corresponding result for

27 47 (n—1)m
tan — tan — - - - tan ————
n n n

in the two cases n =9 and n = 11.

Suppose 27 = 1, then we can write z = cosd + isin  and we must have that:
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0 =Im((cos® + isinf)")

= (;) cos® fsinf — <Z> cos? fsin3 0 + (;) cos? fsin® 0 — sin” 6

= Tcos® sin§ — 35 cos? Osin® O + 21 cos® A sin® 6 — sin” 0
= —cos’ 6 (tan7 6 — 21 tan® 6 + 35 tan> 6 — 7 tan 0)
= cos’ 0 - t(t" — 21t* + 35t2 — 7)

Where ¢t = tan#. So if z is a root of 27 = 1 and cosf # 0,tan 6 # 0 then t is a root
of the equation. Thererefore the roots are:

tan@ where £k =1,2,...6.

Noting that tan 7 = — tan 67”, tan 37” = —tan 47“, tan 577r = —tan 2 < we can conclude
that:
k
k
7= tan %
k=1
¢ 27 ¢ 4 ¢ 6m\ >
= | tan — tan — tan —
7 7 7
a7 6m
= + —tan—tan—tan—
v 7 7 7

However, we know that tan <& 2” is positive, tan 4 =, tan 67“ are negative, therefore the
result must be positive, ie +\f

Using a similar method, we notice that:

0 =Im ((cos® + isinh)")
:cos"H-t(t"I-i---‘—( " >)

n—1

Therefore Hk 0 tan = n and since tan ZEEUT — ap (n=2R=Dm o map of all the

odd numbers to the even numbers (and vice versa) when n is odd. We also know

that the terms less where tan ¢ has 6 < § are positive, and the others even, we can
determine the signs:

¢ 2T ¢ ¢ 67rt 8 3
n =7 tan — tan - tan - =
a7yttt g tat T kAl oy

11 11 11 11 11

166



SM

UFM Pure (with Solutions)

Question (1989 STEP I Q8)

By using de Moivre’s theorem, or otherwise, show that

(i) cos40 = 8cos?f — 8cos? O + 1;

(ii) cos660 = 32cos®H — 48 cos* § + 18 cos?  — 1.

Hence, or otherwise, find all the real roots of the equation
162% — 282* + 132 — 1 = 0.

[No credit will be given for numerical approximations.]

Given that e = cosf + isinf we must have that
(i)
cos40 = Re <ei49)
= Re ((cosd +isinf)?)
=cos?f — <;L> cos® O sin? 0 + sin? 0

=cos? 0 — 6cos? O(1 — cos? 0) + (1 — cos? 6)?
=8cos?h — 8cos?H+ 1

(i) Similarly,
cos 60 = Re (eiﬁa)
= Re ((cos 6 + isin6)°)
6 6
= cos® 6 — <2> cos? fsin? 0 + (4> cos® fsin @ — sin® 4
= cos% 0 — 15cos? (1 — cos® §) + 15 cos? O(1 — cos? 0)? — (1 — cos? §)3

=31cos® 9 —45cos* @+ 15c0820 — 1 + 3 cos? 0 — 3cos* @ + cos®
=32cos® 9 — 48 cos? O + 18 cos?h — 1

0=162% — 282% + 1322 — 1
1
= 5(323:6 — 562 + 2627 — 1)

1
= 5(32x6 — 4827 + 1822 — 1 — (82* — 822 4+ 1))

Therefore if © = cos 8 then we are looking at solving cos 66 = cos 46.

cos 66 — cos4f = —2sinbfsinf = 0. So we should be looking at sin56 = 0 and
sinf = 0.

sinf = 0 = x = cosd = £1 both of which are roots.
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The other roots will be cos %, cos 2% etc but it’s unclear this is an acceptable form.

Alternatively, given our two roots, we can factorize

0=162% — 282% + 1322 — 1
= (z? —1)(162* — 1222 + 1)

We can solve 16y? — 12y + 1 = 0 to see that x> = % So our roots are:

z=-1,1, i\/73+8\/5, i\/Lf

2
(We might notice that 3 4+ /5 = <1+‘/5) so our final answer could be: z =

V2
1+v5 4 /5-1
—1,1,+ 7 ,iT)

Question (1990 STEP I Q2)

Let w = €*™/3. Show that 1 + w + w? = 0 and calculate the modulus and
argument of 14 w?. Let n be a positive integer. By evaluating (1 + w™)" in two
ways, taking r = 1,2 and 3, or otherwise, prove that

(5)+(3)+ (6) -+ (2) =5 (v 2ee (),

where k is the largest multiple of 3 less than or equal to n. Without using a

calculator, evaluate
25 I 25 PR 25
0 3 24

() () -+ (3):

Since w? = 1 and w # 1 we must have that (w — 1)(1 4+ w + w?) = 0 but by dividing
by w — 1 we obtain the desired result.

and

[225 = 33554432.]

l+w?=-wso |[l4+w? =|-w/=1and arg(l + w?) =arg(~w) =7 — L =2
(14+1)" = (Z)
k=0
(1+w)" = Z (Z)wk
k=0
(1+w?)" = (n)w%
k
k=0
n 2\n n __ - n - 2y (T
= 2"+ (—w?)"+ (—w)" = (1+1+1)<k>+ > (1+w+w)<k>+ |
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2"+ ((—w)") ™! + (—w)" = 2" + 2Re(—w") = 2" + 2 cos

Therefore our answer follows.
25 n 25 n
0 3

((4096 - 4096 - 2) + 1)
1184811

Notice that Sy = (3)-++-++ (2) = () -+ () = 51 and Sy = (3) +++++ () =
L)

Therefore since Sy + 2 - S = 22* we must have
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Question (1990 STEP III Q1)

Show, using de Moivre’s theorem, or otherwise, that

t(t? — 3)(t% — 33t* + 27¢2 - 3)

here t = tan 6.
(B2 —1)(3t6 —27t* + 332 — 1), oot An

tan 90 =

By considering the equation tan 90 = 0, or otherwise, obtain a cubic equation
with integer coefficients whose roots are

2 4
tan? (g) , tan? <;T> and tan? <5> .

2 4
tan® (g) + tan® <97r> + tan® (;) = 33273.

Writing ¢ = cos#, s = sin 6 then de Moivre states that:

Show that

cos 90 + isin 90 = (¢ + is)®
= +9ic®s — 36¢"s? — 84ic%s® + 126¢°s* + 126icts® — 84¢®s® — 36ic?s” + 9¢s® +
= (¢” —36¢"s* +126¢°s> — 84350 + 8¢s®) 4 i(9c®s — 7505 + 126¢ts® — 36¢%s” +
(9c8s — 75553 + 126¢1s® — 3652¢ + 57)
(¢? — 36¢7s2 + 126¢5s* — 84356 + 8cs?)
9t — 75t3 4 126s° — 36t7 + t*
T 1 3612 + 126t% — 8416 + 8¢5
t(t? — 3)(t% — 33t* + 2712 — 3)
T (32— 1)(3t6 — 27t + 3312 — 1)

= tan 960 =

If we consider tan 96 = 0 it will have the roots 0 = “*, n € Z, in particular, the numer-

ator of our fraction for tan 96 will be zero for ¢t = 0, tan ¢, tan %”, tan %”, tan %r, tan %”, tan %”, tan %r, tan
It’s worth noting all other values of 6 will repeat these values. Also note that

0,tan %, tan %” are the roots of ¢ and t?> — 3 respectively. Therefore the other values
are the roots of our sextic. However, also note that tan %’r = —tan g and similar,
therefore we can notice that all the roots in pairs can be mapped to tan g, tan %”
and tan %r and all those values are squared, so the roots of:

23 — 3322 4 27z — 3 will be tan? 5 tan? %’r and tan? %r.

The product of the roots will be 3, so

2 4
taantan2§tanQ§:3
T 2 47
= tan — tan — tan — = +£v/3
ang an 9 an 9 \[
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T 2 47
tan — tan — tan — =
= ang ang ang \/§

all positive

Notice that 23 + y3 + 23 — 3zyz = (v + y + 2)((z + y + 2)* — 3(zy + yz + 21))

Therefore

tan® (g) + tan® <2§> + tan® <4§> —33(332-3.27) +3-3

= 33273

Question (1990 STEP III Q4)

Given that sin 8 # 0, sum the series
cosa + cos(a + 253) + - - - + cos(a + 2rf) + - - - + cos(a + 2n[3)
and

cos o + (712) cos(a +208) + -+ + <:> cos(a + 2rf) + - - - + cos(a + 2nf).

Given that sin @ # 0, prove that

sin(n + 1)6 sec™

14-cos 6 sec -+cos 20 sec? O+ - -+cos 70 sec” O+ - -+cosnfh sec™ O = 0
sin

()i p(nt+1)Bi _ o—(n+1)Bi
ePi(efi — e=Pr)

i, (nt1)Bi o

_pe [ €™ 3111(7‘1—1—1)5
ebi sin 3
_ Re [ itenpsin(n +1)8
sin 8

_ cos(a+nf)sin(n+1)p
N sin 3
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Re (
= Re (eme"m(em + e_ﬁi)”>
= Re (eme"&?" cos” B)
= 2" cos(a + np) cos™ B

Z cosrfsec” § = Z Re(e'?) sec” 6
r=0 r=0

= Re (Zn: e sec” 9)

r=0
R ei(n-‘rl)a Secn—i—l 0 —1
= e -
e sech — 1

 Re (ei("ﬂ)@ sec™ 0 — cos 0)

€¥ — cosd
 Re (ei(”ﬂ)@ §e.c” 0 — cos 9)
3sin 6
1 .
_ i(n+1)0 . ,.np
sinOIm <e sec” 0 — cos 0)
_sin(n + 1)0sec™ 0

sin @

Question (1991 STEP I Q3)

A path is made up in the Argand diagram of a series of straight line segments
PP, PoP3, P3Py, ... such that each segment is d times as long as the previous
one, (d # 1), and the angle between one segment and the next is always 6 (where
the segments are directed from P; towards Pjy1, and all angles are measured in
the anticlockwise direction). If P; represents the complex number z;, express

Zn+1 — Zn
Zn — Zn—1

as a complex number (for each n > 2), briefly justifying your answer. If z; =0
and zo = 1, obtain an expression for z,11 when n > 2. By considering its
imaginary part, or otherwise, show that if § = %7[' and d = 2, then the path
crosses the real axis infinitely often.
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Zn — Zn—1
Zn+1
arg ( et ") = arg(znt1 — 2n) — arg(2n — 2n—1)
Zn T Zn—1

=
Zn T Zn—1

zZ1 = 0
z9 = 1

zZ3 — 292 _ deie

Z9 — 21

= z3 = de” +1

R4 — 23 dei@

zZ3 — 22
2y = (de'®)? 4 de'? + 1

(dew)" 1
el de?? — 1
.1
If d = 2,0 = g, then, 2¢'3™ =14 V/3i
26 3
Im(zp41)) = Im
267,371" _
2 237'('
=Im c
1 ke <2n )y L
\/5 \/5

Which clearly changes sign infinitely many times, ie crosses the origin infinitely many

times.
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Question (1992 STEP III Q8)
Show that

- 2n +1
sin(2n + 1) = sin®" 1 9 g (—1)”_T< B ) cot?" 0,
r
r=0

where n is a positive integer. Deduce that the equation
n
2 1
Z(_l)r< " )a:r =0
2r

r=0
has roots cot?(kr/(2n + 1)) for k=1,2,...,n
Show that

n

) km _ n(2n—1)
(I)Z::COtQ 2n+1)_ 3

= k
(i) ) tan’ 2n: 1) =n(2n + 1),
k=1
= 2 1
(iii) Z:cosec2 <2nj— 1) = (n3+ )

Question (1995 STEP I Q4)

By applying de Moivre’s theorem to cos 56 + isin 56, expanding the result using
the binomial theorem, and then equating imaginary parts, show that

sin 50 = sin @ (16 cos*h — 12cos? 6 + 1) .

Use this identity to evaluate cos? éw and deduce that cos 7r = %(1 +/5).

(cos@ +isinf)"™ = cosnb + isinnd

n=>5: cosbl+isin50 = (cosf +isinf)®

Im : sin 50 = <i) cos® fsin @ + <Z) cos? (—sin® 0) + (2) sin® @

= sin0(5 cos* @ — 10 cos? §sin? § 4 sin 9)

= sin0(5 cos? 6 — 10 cos® B(1 — cos? 0) + (1 — cos? 6)?)
=sin@((5+ 10 + 1) cos 6 + (=10 — 2) cos? 0 + 1)

= sin@(16 cos® § — 12cos? 0 + 1)

Suppose 6 = £, then sin 50 = 0,sin @ # 0, therefore if ¢ = cos § we must have
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0=16¢*— 122 +1

s 3+456
= o
8
625
16
_ (V5
N 16
1+
= c= =+ \/5
4
Since ¢ > 0 we either have cos %ﬂ' = 1+T‘/5 Or Cos %7‘( = 54_1, however /5 — 1 < 1.5
and so @ < % = coS %77 we must have cos %77 = HT\/E
Question (1995 STEP II Q6)
If u and v are the two roots of 22 +az+b = 0, show that a = —u—v and b = uw.

Let o = cos(27/7) +isin(27/7). Show that « is a root of 2% — 1 = 0 and express
the roots in terms of a. The number a+ a2 +a? is a root of a quadratic equation

22+ A2+B=0

where A and B are real. By guessing the other root, or otherwise, find the
numerical values of A and B.

Show that

27 4 8 1
0057 +cos7 +COS7 = 3
and evaluate
. 2r 4w 8«
sm7 + sm7 —+ sin 7,

making it clear how you determine the sign of your answer.

0=z2>4+az+b
=(z—u)(z —v)

=22~ (u+v)z+uw

Therefore by comparing coefficients, a = —u — v and b = uwv.

Suppose o = cos(27/7)+isin(27/7), then by De Moivre, a7 = cos(27)+isin(27) = 1,
SN
iea’—1=0.

Notice that (a + a? + a?) + (a® + @® + a%) = —1 and
P=(a+a*+ah)(a®+a’ +ab
=at+al+a"+a’+a"+af+a’ +a’ +al?
=3+a+a’+a’+a’+a° +af
=2
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Therefore it is aroot of 2’ + 2 +2=0=2 = %ﬁ
Therefore cos 27” + cos 47” + cos 87” =Re(a+a? +a) = _%

And sin 2 +sin 2F +sin ¥ = Im(a + o* + o) = j:g since it is positive it is

S

Question (1996 STEP III Q5)
Show, using de Moivre’s theorem, or otherwise, that

t(t5 — 21¢* + 35t2 — 7)

tan 76 =
an 7t6 —35t4 + 2142 — 1

where ¢ = tan 6.

(i) By considering the equation tan 760 = 0, or otherwise, obtain a cubic equation
with integer coefficients whose roots are

2
tan? (g) , tan? (;T) and tan? (?);T)

and deduce the value of
; (7r> . 2T . 3T
n(— n|— n|l—]).
am\7) e\ 7 ) e\
(ii) Find, without using a calculator, the value of

tan? (1)—|—tan2 3—7T +tan2 51 .
14 14 14

None

Question (1997 STEP III Q3)
By considering the solutions of the equation z" — 1 = 0, or otherwise, show that
(z—w(z—w?).. . z—w" D=14+2+224+... 421,

where z is any complex number and w = e2™/"_ Let Ay, Ag, As, ..., A, be points
equally spaced around a circle of radius r centred at O (so that they are the
vertices of a regular n-sided polygon). Show that

OA1 +0OAs + OA3+---+0A, =0.

Deduce, or prove otherwise, that

n
Z |A1 A2 = 2r%n.
k=1
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Question (2000 STEP II Q4)
Prove that

(cosf +isin@)(cos ¢ +isin ¢) = cos(f + ¢) +isin(0 + ¢)
and that, for every positive integer n,

(cosf +isinh)" = cosnf + isinnb.

By considering (5 —i)?(1 + i), or otherwise, prove that

tan (= ) + 2arctan (L) =
arctan 17 arctan )=
Prove also that

Sarctan ( = ) + arctan [ — ) + arct L\_"
arctan 4 arctan 20 arctan 1985 = 4 .

[Note that arctan @ is another notation for tan=!6.]

Question (2000 STEP III Q3)

Given that o = ¢™/3 | prove that 1+ a2 = a.

A triangle in the Argand plane has vertices A, B, and C represented by the
complex numbers p, ga? and —ra respectively, where p, ¢ and r are positive
real numbers. Sketch the triangle ABC.

Three equilateral triangles ABL, BCM and CAN (each lettered clockwise) are
erected on sides AB, BC and C A respectively. Show that the complex number
representing N is (1 — a)p — o?r and find similar expressions for the complex
numbers representing L and M.

Show that lines LC', M A and NB all meet at the origin, and that these three
line segments have the common length p + ¢ + r.
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Question (2005 STEP III Q6)

In this question, you may use without proof the results

4cosh®y — 3coshy = cosh(3y) and arcoshy = In(y + /y2 — 1).

[ Note: arcoshy is another notation for cosh™ y] Show that the equation
23 —3a%x = 2a3 cosh T is satisfied by 2a cosh (%T) and hence that, if 2> > 0,

b
one of the roots of the equation 23 —3bx = 2cis u+—, where u = (c4++/c2 — b3)% .
u

3

Show that the other two roots of the equation z° — 3bx = 2¢ are the roots of

the quadratic equation

2 b o b
T —i—(u—i-f):v%-u +—--0=0,
u u

and find these roots in terms of u, b and w, where w = 1(—1 +1v/3).

Solve completely the equation 23 — 6z = 6.

Question (2009 STEP III Q6)
Show that {e‘ﬂ - ew“ = 2sin %(ﬂ —a) for 0 < a < f < 27. Hence show that

‘ela_elﬂ} ‘ew_eﬁ‘ + ’elﬁ_ew‘ ‘ela_elé} — ‘ela_el"/’ |elﬂ_eu§’7

where 0 < o < 8 < 7 < § < 27. Interpret this result as a theorem about cyclic
quadrilaterals.

Question (2010 STEP III Q3)

For any given positive integer n, a number a (which may be complex) is said to
be a primitive nth root of unity if a™ = 1 and there is no integer m such that
0 <m < nand a™ = 1. Write down the two primitive 4th roots of unity. Let
C,(z) be the polynomial such that the roots of the equation C,(z) = 0 are the
primitive nth roots of unity, the coefficient of the highest power of x is one and
the equation has no repeated roots. Show that Cy(z) = 22 + 1.

(i) Find Cy(z), Ca(x), Cs(x), Cs(z) and Cg(x), giving your answers as unfac-
torised polynomials.

(ii) Find the value of n for which C,,(z) = z* + 1.

(iii) Given that p is prime, find an expression for C,(x), giving your answer as
an unfactorised polynomial.

(iv) Prove that there are no positive integers ¢, r and s such that C,(z) =

Cr(2)Cs(x) .
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The primitive 4th roots of unity are i and —i. (Since the other two roots of z* — 1
are also roots of 2 — 1

Cy(x) = (x —i)(z +4) = 22 + 1 as required.

(1)

Ci(z)=z—-1
Co(z)=2+1

Ca(x)=a? +x+1
C5(x)—:v +23 4224241
Co(x) =a? —x+1

(ii) Since (z* +1)(z* — 1) = 2® — 1 we must have n | 8. But n # 1,2,4 so n = 8.
(ili) Cplz) =P 1+ 2P 24+ +a+1

(iv) Suppose Cy(z) = C,(z)Cs(x), then if w is a primitive gth root of unity we must
Cy(w) = 0, but that means that one of C,(w), Cs(w) is 0. But that’s only possible
if r or s = ¢. If this were the case, then what would the other value be? There
are no possible values, hence it’s not possible.

Question (2011 STEP III Q3)
Show that, provided ¢? # 4p3, the polynomial

3 — 3pz + ¢ (p#0, ¢#0)
can be written in the form
a(x — a)3 +b(z — ﬂ)3 ,

where o and 3 are the roots of the quadratic equation pt? — gt + p?> = 0, and a
and b are constants which you should express in terms of o and 8. Hence show
that one solution of the equation z3 — 24z + 48 = 0 is

2(2 — 23)
123
and obtain similar expressions for the other two solutions in terms of w, where
_ o27i/3
w=e .

Find also the roots of 23 — 3pz + ¢ = 0 when p = r? and ¢ = 2r® for some
non-zero constant r.
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Question (2013 STEP III Q4)

Show that (z — ) (z — e™%) = 22 — 22 cos§ + 1. Write down the (2n)th roots
of —1 in the form eia, where —7m < 0 < 7, and deduce that

2241 = ﬁ (22 — 2z cos (M) +1>

Here, n is a positive integer, and the [ notation denotes the product.

(i) By substituting z = ¢ show that, when n is even,

cos (o) cos (%) cos (%) . COS ((2”2—711%) _ (_1)%”21—71 ‘

(ii) Show that, when n is odd,

cos? () cos? (3) cos? (35 -+ o (2527) =21,

You may use without proof the fact that 1+ 22" = (1 + 22)(1 — 22 + 2% —
-+ 4 2?"=2) when n is odd.

(z—e)(z—e ) =22 — (¥ + e )2 41
=22 —2cosfz +1

i(2k+1)7

The 2nth roots of —1 aree™ 2» k€ {-n,---,n—1}or e%,ke {-2n+1,-2n+
3,-+-,2n—3,2n — 1}

Z?n +1= (Z e~ i(2n— 1)/2n) . (z - e—i(2n—3)/2n) . (Z o ei(2n—3)/2n) . (z - ei(2n—1)/2n)

2k—1 2k—1
H (z—e 2n )(z—eil 2n ﬂ')

I (# -2 (2505 )

- 2k — U)m
177 4 | | 1 1 COS o +

= (—1)" 41 = (-1)"2"" H cos < (2k — L >

x>
—_

= ﬁ cos <(2k2—nl)77> = 2l (—1)"/? (ifn=0 (mod 2))

(ii) When n is odd, we notice that two of the roots are ¢ and —i, if we exclude those,
(ie by factoring out 22 + 1, we see that
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n
2k —1
1—22 424 22 = H <z2—2zcos<(2n)w)+1>

k=1,2k—1+#n

(n—1)/2 n
= <22 — 2z cos ((21{:21)7r> + 1) H <z2 — 2z cos <(2;
k=1 " k=(n+1)/2
(n—1)/2 (n—1)/2
_ 2 _ (2k —1)m 2 (2K -
= (z 2z cos < o +1 ,}:[1 z" + 2z cos 5

| e
—
= =

= 1-@4it = 1;[ (2“5( zkzn) >>(”§/2 <2COS<<2]€2_”1)7T>>

(n—1)/2
_ on-—1 2 (2k — )7
= n =2 kl_Il cos <2n
(n—1)/2
= COS2 M — ’I’LQl_n
Pt 2n
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Question (2013 STEP III Q8)
n—1
Evaluate Z e(@t1m/n) where « is a fixed angle and n > 2. The fixed point O

r=0
is a distance d from a fixed line D. For any point P, let s be the distance from

P to D and let r be the distance from P to O. Write down an expression for s
in terms of d, r and the angle 6, where 0 is as shown in the diagram below.

D

The curve E shown in the diagram is such that, for any point P on E, the
relation r = ks holds, where k is a fixed number with 0 < k < 1. Each of the n
lines Ly, ..., L, passes through O and the angle between adjacent lines is 7.

The line L; (j =1, ..., n) intersects E in two points forming a chord of length

l;. Show that, for n > 2,
z": 1 (2-F)n
C [, 4kd
j=1

n—1 n—1

Z Q2ilatrm/n) _ 2ia Z <e2i7r/n)r

r=0 r=0
_ 2ial— (e%ﬂ/n)n
- 1 — e2im/n
=0

d=s+rcosfic s=d—rcosb

Therefore d = ;+7cos = r = H,f%. The [; will come from r(a+%)+r(a+w+%)
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B kd n kd
_1+kcos(a+W) 1+kcos(a+w+@)
_ kd n kd
1+k:cos(a+@) 1—k:cos<a+@)
2kd

1 — k2 cos? (a + L;}”)

n oy nzl1—k*cos? (a—l—%)
1

- Z 2kd

5 n—1 .
_n & 2 JT
T 2%kd 2kd & <O‘+ n>

J

1

J=1

<

E2 n—11 4+ cos (2a + QJTW)
2kd  2kd p 2

j=

_n nk?
T 2kd  Akd
~ n(2-k?)
 4kd
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Question (2015 STEP III Q4)(i) If a, b and c are all real, show that the equa-
tion
Bra+bz+ec=0 (%)

has at least one real root.

(ii) Let
S1 =21+ 22 + 23, SQZZ%+Z%+Z§, S3ZZ?+Z§+Z§,

where 21, z9 and z3 are the roots of the equation (x). Express a and b in
terms of S and S5, and show that

6c = —S3 + 3515, — 253

(iii) The six real numbers 7 and 0y (k =1, 2, 3), where ry, > 0 and —7 < 0, < T,
satisfy

3 3 3
> orpsin(fr) =0, Y rZsin(205) =0, > risin(36)) =0.
k=1 k=1 k=1
Show that 6, = 0 for at least one value of k. Show further that if 1 =0
then 6y = —05.

(i) Let 2 € R and let 2 — 400 then 23 + az? + bz + ¢ changes sign, therefore
somewhere it must have a real root.

(ii)
B ta+bz4c=(2—2)(z — 2)(z — 23)
=2° — (21 + 22 + 23)2° + (2122 + 2223 + 2321)2 — (212223)
= S1 =214+ 20+ 23
=—a
= Sy =22+ 25+ 23
= (21 + 22 + 23)% — 2(2122 + 2223 + 2321)
=a>-2b
= a = —Sl
1
b=_(Si-S
L(st-s)
0=24azl + bz +c
= 0= 53+ aSy, +bS1 + 3¢

1
=S3—5182+§(S%—32)81+3C
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= 0 =253 — 3515, + S + 6¢

(iii) Let 2z = rpe®, then we have Im(S;) = 0 and so the polynomial with roots
z;. has real coefficients, and therefore at least one root is real. This root will
have 6, = 0. Moreover, since if w is a root of a real polynomial w is also a root,

and therefore if 8; = 0, we must have that zo and z3 are complex conjugate, ie
0y = —05

Question (2016 STEP III Q7)

Let w = e2™/™_ where n is a positive integer. Show that, for any complex number
Z?

(z—1)(z—w) (z—w" 1) =2"—1.
The points Xo, X1, ..., X,—1 lie on a circle with centre O and radius 1, and

are the vertices of a regular polygon.
(i) The point P is equidistant from Xy and X;. Show that, if n is even,
|PXo| X |PX1| x -+ X |PX,—1|=|OP|" +1,
where |PX}| denotes the distance from P to Xj.

Give the corresponding result when n is odd. (There are two cases to
consider.)

(ii) Show that
’X0X1| X ‘XOXQ’ X oo X ’X()Xn_1’ =nNn.

None
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Question (2017 STEP III Q2)

The transformation R in the complex plane is a rotation (anticlockwise) by an
angle 6 about the point represented by the complex number a. The transforma-
tion S in the complex plane is a rotation (anticlockwise) by an angle ¢ about
the point represented by the complex number b.

(i) The point P is represented by the complex number z. Show that the image
of P under R is represented by

%% 4+ a(1 —e?).
(ii) Show that the transformation SR (equivalent to R followed by S) is a
rotation about the point represented by ¢, where
csing(0+ ) = ael?/?sin 30+ be10/2 sin 3¢,
provided 0 + ¢ # 2nw for any integer n.
What is the transformation SR if § 4+ ¢ = 277

(iii) Under what circumstances is RS = SR?

(i) We can map a — 0, rotate the whole plane, then shift the plane back to a, so

2 (z—a) ez —a) = a+e?(z —a) =2+ a(l — )

(ii) 2= ez +a(l —e?) e (2 4+ a(1 — €?)) + b(1 — €'?)

el® (ewz +a(l— ei9)> +b(1 — €)= 0T 5 4 e’ — qe'0+9) 4 p(1 — €?)

Therefore this is rotation by angle ¢ + 6 and about

ae'® — qetl0+9) 1 b(1 — ew) e—i@ (aei@5 — qet0+9) b(1 — ei¢))
1 — ei(e+0) - JCE = R =]
<aei¢%9 it b(e‘iw — eiL;”))
B s e
aei%% sin(%) + be_ig% sin %
- 2i sin( 250

as required.

If ¢+ 60 = 27, then z +— 2 + (b — a)(1 — €'®) which is a translation.
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(iii) If ¢ + 0 # 27 then RS = ST if

ae??sin %9 +be 9 %sin %(b = bel??gin %(b + ae ??gin %6
a(e?? — ¢79/2)sin 30+ (e710/2 _ ¢+10/2) 5in 30=0
0 0
asin§sin§ — bsinisin§ =0
6
& a:borsingzoorsingzo

& a=borf=0o0r¢=0

If ¢ + 60 # 27 then RS = ST if b = a or €'® = € ie rotation through the same
angle.

Question (2018 STEP III Q7)(i) Use De Moivre’s theorem to show that, if
sinf #£ 0, then

(cot @ + 1) — (cot @ — )"t sin(2n+1)0
= Infly

2i sin

for any positive integer n. Deduce that the solutions of the equation

2 1 2 1
() (Y

z = cot? mr
2n+1

are

where m=1,2,...,n.

(ii) Hence show that

- mm n(2n —1)
t? = :
mZ::lCO <2n—|—1> 3

(iii) Given that 0 <sinf < 6 < tand for 0 < 6 < 3, show that

1
cot? 6 < ) <1+ cot? 6.

Hence show that

(1)

(cot @ + )" — (cot § — )* 1 (cos 0 + isin 0)*" T — (cos 6 — isin §)*" !

2i sin?nt1 g 2i
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Notice that:

1 et(2n+1)0 _ —i(2n+1)0

sin?"t1g 2i
sin(2n + 1)0

Sin2n+1 0

WAl o4 241 o0 4
2041 N2n41 _ Nz 2n+1—k N 2n41-
(cot 6 +1) — (cot @ —1) —kZO< i )(z) - cot Q—kzo( i >(—z) - cot
2n+1
2 1
_ Z < n]: > (Zk _ (—Z)k) _Cot2n+1—k9
k=0
_ Z (Z?if) (z’Ql“ (_i)le) cot2nt1—(2+1) g
=0
"L 2n+1
= (2?;+1>2z cot?(®=D g
1=0 +

Therefore if 6 satisfies

sn@nt)0 _ ) then » = cot? § satisfies the equation. But

sin?7+1 9
mm

0= %,m =1,2,...,n are n distinct all the roots must be cot? TRRE
2n+1
2 1)-2n-(2n—1
(ii) Notice that the sum of the roots will be (2 3 1) = @ntl)-2n-(2n-1) =
(”1*) 3-(2n+1)
-(2n—1
n<§> and so

(iii) For 0 <6 < i,

Therefore

n(2n—1)

n
Z cot? mr =
2n +1 3
m=1

0<sinf <0 < tanb

1 1
0 th < - <
< o 0 sinf
1
0<cot29<¥<20:1+cot29
N N N
nm (2N +1)? 5 nw
t2 N t
ZCO 2N+1<Z n27r2 +ZCO 2N_|_1
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N
1 N@2N -1 1 1 N@2N -1
. eN-1 _$ eN-1)
(2N 4+ 1) 3 ot n?m? (2N +1)? 3
N

, 1 N@2N-1) 1 , 1 N(2N —1)

1 1 — < 1 1
e I e e
= 1 3

- 1
6

Question (1987 STEP I Q7)

Sum each of the series

sin 3 sin 23 sin 3 sin 93 sin 3
in 2—7T — sin 61 ~+ sin 10—71- — — sin 38—7T —+ sin 4277r
Sz ) 7™M 23 ) T 23 S Tgg7) T 23 )

giving each answer in terms of the tangent of a single angle.

and

[No credit will be given for a numerical answer obtained purely by use of a
calculator.]

. 1T —ix 2w
sing = ¢ 22‘? . Also let z = e 23

isin ((4k;—32)7r> _ 10 . <exp ((4k —2|—32)7ri>>

k=0

zll(zll _ 2_11)

z
(=)
Sl 22

27 sin 2;)

enumsi

27
21 sin 53

sin
23 Im(zll)
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Similarly,

B s.in227r—3
a 2sin27r—3(:os27r—3
B 1 ¢ T
o tlog
10 )
4k + 2)mi
G
m(( 1) exp< 23 >>
k=0
0 (4k + 2)mi
=1 —1)k
m kzo( )exp( 53 >>

=0
22241
z
2241

z”(zn _1_2711)
=Im| z I
2(z 4 271)
21192 cos 222—; )
= Im — enumsi
2 cos 53
227
cos &
_ 23 11
= ——Im(z)
Ccos 55
227 i 22w
i COS 23 Sin 23
- 2
cos 53
s 447
_ s
- 2
2 cos 55
s 2T
_ 1 —sin 53
- 21
2 COS 57
1 ; 27
= ——tan —
2 23
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Question (1987 STEP II Q4)

Explain the geometrical relationship between the points in the Argand diagram
represented by the complex numbers z and zel?. Write down necessary and
sufficient conditions that the distinct complex numbers «, 8 and ~ represent the
vertices of an equilateral triangle taken in anticlockwise order. Show that «, 8
and v represent the vertices of an equilateral triangle (taken in any order) if and
only if

>+ B2 4+ —By—vya—aB=0.

Find necessary and sufficient conditions on the complex coefficients a,b and c
for the roots of the equation

24az2+bz+c=0

to lie at the vertices of an equilateral triangle in the Argand digram.

The point ze? is obtained by rotating the point z about 0 by an angle # anticlockwise.

The complex numbers «, 8 and v will form an equilateral triangle iff the angles
between each side are %, ie

7-B =e5(B-a)
a—y =e5(y=p)
B-—a =efa—9)

We don’t need all these equations, since the first two are equivalent to the third.

Combining the first two equations, we have

Y-8 _a—vy

B—a ~y-p
< (y=B)*=(a—7)(B8—a)
& ¥+ B -298=af - -8+«
& 2+ 4+ By —qya—aB=0

as required.

If the roots of 234+-az?+bz+c = 0 are o, 8,y then a+B+vy = —a and fy+ya+af = b.
We also have that a? —2b = a? + 3% +~2. Therefore there roots will lie at the vertices
of an equilateral triangle iff a®> — 3b =0
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Question (1987 STEP III Q3)(i) If z = = + iy, with x, y real, show that
|z cos a + |y[sina < |z] < fa] + [y

for all real a.

(ii) By considering (5 —i)*(1 + i), show that

1 1
. Atan (=) —tan ! [ — ).
4 5 239
Prove similarly that

E—3tam—1 1 +tan_1 i +tan_1 L
4 4 20 1985 ) °

(i) If z = 2 + iy then |2 = 2% +y? < 2 +y? + 2Jally| < (|=] + [y])*.

The LHS is Cauchy-Schwarz with the vectors =] and |7 , although
ly| sin «v

that’s not in the spirit of the question.

Consider €’z = (cos ax — sinay) + i(sin ax + cos ay) then ’Re(eio‘z)‘ < |z| for
all values of o and in particular we can choose o to match the signs of the x and
y to prove the result in question.

(ii) Consider (5 —i)*(1+1), then

arg ((5—1)*(1 +1)) = arg(5 — i)* + arg(1 +9)
=4arg(b —1) + arg(1 + 1)

1
= —4tan" ! 5 +tan~t1

= arg((24 — 104)%(1 + 1))
= arg(4(12 — 5i)%(1 + 1))
= arg((119 — 120¢)(1 + 1))
= arg(239 — i)
1

_ -1 _-
T T

Therefore T_ 4tan' = — tan~! i

4 5 239

Consider (4 —4)3(1 +)(20 — ) then

1 1
arg (4 —14)%(1+14)(20 — 7)) = —3tan™! it tan~' 1 — tan™! %

192



UFM Pure (with Solutions)

= arg ((15 — 8i)(4 — i) (1 +14)(20 — 7))
= arg ((52 — 474)(1 4+ 4)(20 — 7))
= arg ((99 + 57)(20 — 7))

= arg(1985 + 1)

™ 1
Therefore — = 3tan™' = + t — 4t
erefore 1 3tan 4+ an_ 20+ an— 1985

Question (2025 STEP III Q8)(i) Show that

Hence prove by induction that, for n > 1,

1 1) & 1
2 _ 2r—1
z”—zgn(z—z)ZG’” +er_1>

=il

Find similarly 22" — 22% as a product of (z + 1) and a sum.
(ii) i. By choosing z = €, show that

sin 2nf = 2sin 0 Y _ cos(2r — 1)0
r=1

. Use this result, with n = 2, to show that cos 2; = cos% — %

iii. Use this result, with n = 7, to show that cos 15 T tcos 4 15 T 1 cos 8 15 +cos 1ng =
1

3-

(iii) Show that sin & 47 — sin 14 T 1 sin E{Z = é

(1)

RHS = (z— 1) (Zm-l- 1) + (zm_l — 1_1>
z Zm zm

1 1 1
m+1 _ ,m—=1 _ m—1
A s Jrens m—1
1
_ Zm+1 _
Zm+1
=LHS
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1
2r—1
<Z s er1>

Claim: Forn > 1,

1 1\ —
22"—:<z—>
z2n z

r=1

Proof: (By Induction) Base Case: (n = 1).

=RHS

as required. Inductive step: Suppose our result is true for some n = k, then
consider n = k + 1.

k1
1 1
RHS ( > <er Ly = 1>
z T —
r=1
1\ & 1 1
_ 2r—1 2%k+1
(D)X () (D) ()
1 1 1
T 1 2%k+1
=z 2 + <Z z> <Z + Z2k+1)
1
2%+2
< S2k+2
=LHS

Therefore if our result is true for n = k is true, it is true for n = k + 1. Since it
is also true for n = 1 it is true for all n > 1 but the principle of mathematical
induction.

1 1
Since z™ T (z + > < > + (Zml - ml)’ we must have
z z
1 1\ 1
2 _ 2r—1
Zn_zzn_<Z+Z>Z<ZT _227«1)

r=1

(ii) i. Since

2n § 2r—1
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we have

ii. When n = 2,0

=

iii. Whenn =17,0

. 147r_

SIHE—

= 1

- 1
2

(iii) By using z = ¢

62n91 .

o—2nbi (eei - e—@i) zn: (6(27«—1)&' i 6—(27’—1)0i>

r=1

n
2isin2nf = 2isin 6 Z 2cos(2r —1)0
r=1

sin 2nf = 2sin 6 ZCOS(QT’ - 1)

r=1
= % we have:
. 4w 9 i 7T( ™ . 37T)
sin — = 2sin —(cos — + cos —
5 5 5 5
2
sin © = 2sin z(cos T cos —W)
5 5 5 5
1 T 27
— = COS — — COS —
2 5 5
2 T 1
COS — = COS — — —
5 5 2
= 15 we have:
T ! T
2sin — 2r —1)—
sin -+ ;cos( r )15
T oI ke T o T 1o ™ 4 oo LT 4 oo 137
cos 15 cos 5 cos 5 cos G cos G cos 5 T
167 +e 3T n 5m 8 + 91 47 2
— oS —— + coS — + CcOS — — COS — + COS — — COS — — COS —
15 15 15 15 15 15 15
cos2—+cos4— +c058—7r+co 1677r +cosz+cosz+cos3—7r
15 15 15 15 5 3 5
2w n 47 N KU n 167r n 1 1
COS — -+ COS — -+ €c0S — —+ co -+ —
15 15 15 15 2 2
2w n 47 n + 167
coS— + cos — + cos — + cos —
15 15 15 15
we have that:
1 1\ — 1
2 _ 2r—1
Zn_ﬁ_ <Z+Z>Z<2T _Z2rl>
r=1
n
€2n9i o 672n9i _ <69i + 6701') Z<6(2r71)9i o 6(2r71)0i)

r=1

n
2isin2nf = 2cos 6 »  2isin(2r — 1)0
r=1

n
sin 2nf = 2 cos Z sin(2r — 1)6
r=1
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When n = 3,0 = {; we must have:

sin o = 2cos (s n — +sin on + sin 57T)
2% 2 (sin — hdl hadl
7 14 14 14 14
9 <7r s ) ( n 3T n 577)
—2sin (Z — L) (sin -~ + sin 2~ + sin o
2 14 14 14 14
= 2sin - sin i sin A sin i
N 1 s 4 3 + %8
— =gin — + sin — +sin —
o ~ UMy TR TR Y
as required.
Question (1988 STEP III Q7)
For n =0,1,2,..., the functions y, satisfy the differential equation

d?y
dx; — w22y, = —(2n + Dwyy,

where w is a positive constant, and y, — 0 and dy,/dz — 0 as z — 400 and as
x — —oo. Verify that these conditions are satisfied, for n = 0 and n = 1, by

yo(z) =e” and yi(z) = ze >

for some constant A, to be determined. Show that

d < dyn a7

SO m~—y =% - mYn
dz dx dx) (m = n)wymy

and deduce that, if m # n,

/oo Y (T)yn () dz = 0.

—0o0

—z2

yo(z) =€
lim yo(x) =0 A>0

r—Fo00

mll}I:ItlooyO((L'): hrin 2z e

=0 A>0
yo(x) = 422 N\2e M 4 2NN

vy — w?2?yo + (204 Dwyo = e~ (4x2/\2 + 2\ — w?2? + w)

w
=0 A\=+—
2

Therefore yo satisfies if A = %

Similarly for yq,
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lim y1(x) =0 A>0

r—+o0
lim j(z) = lim (—29:2)\6_)‘m2+e_)‘x2)
r—+o0 r—+o00

=0 A>0

yo(x) = e N (42°X? — dz) — 22))
= e (49:3)\2 — 6z)\)
Yy — w2y + (214 Dwys = e N (4333)\2 — 62X — wz® + 3wz)
w
=0 A=+—
2

Therefore y; satisfies if A = %

d dy dy
o (ymd; - yn(L;rL) = Yralr, + YmYn — YnYrm — YnYrm

= Ym¥Yn — YnYm
= ym(w2w2yn — (2n+ DHwyy) — yn(waQym — (2m+ 1)wym)
= ymyn(Qm - Qn)w

= 2(m — n)WYmYn

Therefore:

> o 1 d dyn, dym
m n dx = - N~ a1 m~—3 _ — Yn—7 d
/Ooy (@)yn () dz /_Oo 2(m —n)dx (y dr "z ) v

L[, vy
2(m —n) Imdr T e

=0

— 00

This condition is known as Orthogonality. In fact this question is talking about a
Sturm-Liouville orthogonality condition, in particular for the quantum harmonic
oscillator, and the eigenfunctions are related to Hermite polynomials.

Question (1989 STEP II Q7)

By means of the substitution ¢, where « is a suitably chosen constant, find the
general solution for x > 0 of the differential equation
d? d
) Y 22b+1

z—2 — b= 4

=0
da? dx J ’

where b is a constant and b > —1. Show that, if b > 0, there exist solutions
which satisfy y — 1 and dy/dx — 0 as x — 0, but that these conditions do not
determine a unique solution. For what values of b do these conditions determine
a unique solution?

Let z = z%, g—; = az®"!, then
dy dydz
de  dzdz
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= a:va_l%
z
dz?2  dx dz
_ody _,d?y dz
_ a—2 a—1
=ala—1)z &qLozx 2 da
d d?
= oo — l)xa_Q(% + aszO‘_Qd—Zz
dy  dy g
0= x@ — bdf +x Y
_ody _ d2y _1dy
_ _ a—2>d 2, 200-2" J ) a—1>-9 2b+1
—:1:<a(a Dz dz+a x dz2> b(ax L + 9y

d? d
_ a2x2a—1dizlé + (a(a e bozxo‘_l) di: 42l

If we set @« = b+ 1 the middle term disappears, so we get

— (b4 1)2 2b+1d27fy 2b+1
=(b+1)x dz2+x y
d2y
= y:Asm(bj_1>+Bcos(bj_1>
b+1 b+1
=|Asin (Z+1)+Bcos (Z+1>
lim : y— B
x—0
d b+1 b+1
di—Axbcos<:+l>—mesin<:+1>
dy
b>0: — 0
> dx—>

So there are infinitely many different solutions with B = 1 and A is anything it
wants to be.

Ifb=0y — Aso A= 0 and unique.

If b < 0 2® — 0o so we need A = 0, unique. However, we also need y' — 0, so we
need to check ¥/ = —a®sin (“@ff) — 0,

b+1
y = —absin °
b+1
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5 P
R —T
b+1

x2b+1

b+1

soweneed2b+1>0:>b>—%.

Therefore the solution is unique on (—3, 0]

Question (1995 STEP I Q8)
Find functions f, g and h such that

2
U+t + a(w)y = h(a) (%)

is satisfied by all three of the solutions y = z,y =1 and y =2~ ! for 0 < z < 1.

If f,g and h are the functions you have found in the first paragraph, what
condition must the real numbers a,b and c satisfy in order that

c
y=axr+b+ —
75

should be a solution of (x)?

None

Question (1995 STEP III Q3)
What is the general solution of the differential equation

d?x dx

— +2k—4+2=0

ATE T
for each of the cases: (i) k > 1; (ii) £ = 1; (iii) 0 < < 17 In case (iii) the
equation represents damped simple harmonic motion with damping factor k.
Let (0) = 0 and let z1,x2,...,2y,... be the sequence of successive maxima
and minima, so that if z, is a maximum then x,; is the next minimum. Show
that |x,41/zy| takes a value a which is independent of n, and that

2 (na)?
2+ (Ina)?’

None
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Question (1995 STEP III Q5)

Show that y = sin?(msin~! z) satisfies the differential equation
(1 - a*)y® = zy® + 2m*(1 - 2y),
and deduce that, for all n > 1,
(1 -2y = @2n + 1)zy™tY + (n® — 4m?)y™,

where y(™ denotes the nth derivative of .

Derive the Maclaurin series for y, making it clear what the general term is.

Question (1996 STEP II Q8)

Suppose that
f'(z) + f(—x) = z + 3 cos 2z

and f(0) = 1, f'(0) = —1. If g(x) = f(z) + f(—x), find g(0) and show that
g’(0) = 0. Show that
/!
g"(x) + g(x) = 6 cos 2z,

and hence find g(x). Similarly, if h(z) = f(x) — f(—x), find h(z) and show that

f(x) = 2cosx — cos 2z — x.

Considering the homogeneous part, we should expected a solution of the form
g(x) = Asinx + Bcosz. Seeking an integrating factor of the form g(x) = C cos2x
we see that —4C cos 2z + C'cos 2z = 6 cos 2z = —3C = 6 = C = —2. Therefore the
general solution is

g(x) = Asinz + Bcosx — 2 cos 2z
(0)=B-2=
d0)=A=0
= g(z) =4cosxz — 2cos 2z
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W(z) = f'(z) + f'(-2)
h'(0) = f'(0) + f/(=0) = -2
W'(x) = f"(x) = f"(~=)
= W' (x) = h(x) = f'(x) = ' (—2) = (f(z) = f(~2))
= ["(z) + f(=2) = (f"(~2) + f(z))
=z + 3cos2z — (—x + 3 cos(—2x))

Considering the homogeneous part, we should expect a solution of the form Ae® +
Be™™. For a specific integral, we can take —2z, ie

oy
=
E »
[
!
[\
8

Therefore
f(@)=1(f(x) + f(—=z)) + 3(f(z) — f(—2)) = 2cosz — cos 2z — x

Question (1997 STEP III Q6)
Suppose that y,, satisfies the equations

d2yn dyn
(1 — $2) de — I‘a + nZyn = 0,

yn(1) =1, yn(z) = (=1)"yn(—2).
If £ = cos @, show that

de?
and hence obtain y, as a function of . Deduce that for |z| <1

y():l, =2z,

Yn+1 — 2xyn + Yn—1 = 0.
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Question (1999 STEP I Q7)

Show that sin(ksin~! x), where k is a constant, satisfies the differential equation

1-a) T a2y (+)
x
In the particular case when k = 3, find the solution of equation () of the form

y = Az + Bz? + Cz + D,

d
that satisfies y = 0 and d—y = 3 at z = 0. Use this result to express sin 360 in
75

terms of powers of sin 6.

Question (1999 STEP III Q8)

The function y(z) is defined for x > 0 and satisfies the conditions

d
y=0 and = at x = 0.
dz

When z is in the range 2(n — 1)7 < x < 2nm, where n is a positive integer, y(¢)
satisfies the differential equation

d?y
@—Fn y:O.

d
Both y and d—y are continuous at x = 2nw forn =0, 1, 2, ....
95

(i) Find y(z) for 0 < z < 27.
(ii) Show that y(z) = 3 sin 2z for 27 < z < 47, and find y(z) for all 2 > 0.

(iii) Show that

00 o 1
2
de =7 —.

Question (2001 STEP I Q8)

Given that y = z and y = 1 — 22 satisfy the differential equation
dy
dz?

show that () = —2x(1+2?)~! and (z) = 2(1+22)~!. Show also that az+b(1—x2)

satisfies the differential equation for any constants a and b. Given instead that
y = cos?(32?) and y = sin?(32?) satisfy the equation (x), find (z) and (z).
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Y =
y// =
= 0=0+p(x)+ zq(x) (1)
y=1-— z?
y = —2x
y" = -2
= 0=—2—2zp(x)+ (1 —2?)q(z) (2)
2z % (1) 4+ (2) : 2= (222 + 1 — 2?)q(x)
= q(z) =2(1 +2?)~!
= pla) = —2x(1+a2%) 7! (by (1))

d? d
— (az + b(1 — 2%)) + p(z) — (az + b(1 — 2?)) + q(z) (az + b(1 — z?))

dx? dz
2r 2 x
= a% + b% (1—2%) + ap(a?)j—x + bp(:c)% (1 —2%) + aq(x)x + bg(z)(1 — 2°)
2, " 2
=aqa (ij —}—p(l’)% + q(x)z:) +b <di}2 (1 — $2 +p(x)% (1 — :L'2) + q(z)(l — 1'2)) =0
201 2y _ L 2

y = cos”(52°) = B (1 + cos(z?))

y = —xsin(z?)

y" = —22% cos(x?) — sin(z?)
= 0 = —227 cos(z?) — sin(2?) + p(z)(—z sin(z?)) + % (1 + cos(z?)) q()
= 2z%cos(2?) 4 sin(z?) = —zsin(z?)p(z) + %(1 + cos(z?))q(z) (3)

2 271,22 1 2

y = sin“(52°) = B (1 — cos(z?))

y = wsin(z?)

y" = 227 cos(x?) + sin(z?)
= 0 = 222 cos(z?) + sin(z?) + p(z)z sin(z?) + % (1 — cos(z?)) q(z)
= —2z%cos(x?) — sin(z?) = p(z)z sin(z?) + % (1- cos(mQ)) q(x) (4)

(3)+(4): 0=q(x)
22 cos(z?) + sin(x?

= pla) = = x(sm)(;) -
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Question (2007 STEP III Q8)(i) Find functions a(x) and b(x) such that u = z
and u = e~% both satisfy the equation

d?u

d

dx

For these functions a(z) and b(z), write down the general solution of the

equation. Show that the substitution y = 3—d—u transforms the equation
u dx
dy 9 z 1
YL =
d:n+ Y +1—1—:L‘y 3(1+2) ()

into
d%u i z du 1
— — = u
dz?  14zdzx 14z
and hence show that the solution of equation (x) that satisfies y =0 at x =0
1—e™®
3z +e %)

is given by y =

(ii) Find the solution of the equation

dy 9 x 1
dx+y + 1-27 1-=z
that satisfies y =2 at x = 0.
Question (2008 STEP III Q6)
d
In this question, p denotes o .
dz
(i) Given that
y =p*+2zp,

show by differentiating with respect to = that

d 2
de 2@
dp p

Hence show that = = —%p + Ap~?, where A is an arbitrary constant. Find

y in terms of x if p = —3 when x = 2.

(ii) Given instead that
y = 2zp +plop,

and that p = 1 when z = —%, show that x = —%lnp—i and find y in terms
of x.
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(ii)

[e.9]
Question (2009 STEP III Q2)(i) Let y = Z anx™ , where the coefficients a,

n=0
are independent of z and are such that this series and all others in this

question converge. Show that

[e's)

! n—1

y =) napz" !,
n=1

and write down a similar expression for 3”. Write out explicitly each of the
three series as far as the term containing as.

It is given that y satisfies the differential equation
zy" —y + 423y =0.

By substituting the series of part (i) into the differential equation and
comparing coefficients, show that a; = 0. Show that, for n > 4,

4

= am=9)

an—4,

and that, if ag = 1 and ay = 0, then y = cos(x?) . Find the corresponding
result when ag = 0 and as = 1.

o0
(i) Lety = Z apz” then

n=0

n=1
o

= Zn(n — Dapz™ 2
n=1
o

= Z n(n — 1)a,z" >
n=2
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(ii)

y = ag + a1z + agx® + azxd + - -
Y = ay + 2asx + 3azz® + - -

"= 2a9 + 6azx + - - -
0=u2ay y' + dx’y
[o.¢] (o]
:xZnn—lan$ —Znanz" 1+4JISZ(1”$
n=2 n=1

|
]
3
3
L
$
8
lH
\ M8
3
$
&3
J:
2 10
S
s
&

n=2

oo
:Zn(n—lan:r Znan:r” 1+Z4an gzt

n=2

o
= (n(n — 1Da,, — na, + 4a,—4) 2" 4 2a92 + 6asz® — a1 — 2asx — 3azx?
= Z 2)an + 4a,_4) 2" + 3az2? — a;

4

Therefore since all coefficients are 0, a; = 0, ag = 0 and a,, = —ﬁan_4
n(n —

If ap = 1,a2 = 0, and since a1 = 0,a3 = 0 the only values which will take non-

zero value are a4r. We can compute these values as: a4 = —ma%ﬂ =
1 (=1)*

SH(2k=T) Y4k—r SO Gdk = Ry which are precisely the coefficients in the expansion

cos 2.

If ap = 0,a9 = 1 then since a; = 0, a3 = 0 the only values which take non-zero
values are ayi2 we can compute these values as:

_ 4 1 that G Vol
A4f+2 = (4k12)(4F) Aqf—2 — (2k+1)2ka4k_2 SO we can see atl A4k+2 = 2kt 1)
precisely the coefficients of sin 22
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Question (2009 STEP III Q7)(i) The functions fy(z) are defined for n =0, 1,
2, ..., by

dfn
fol@) =y wmd (e = D0

Prove, for n > 1, that

(1+22) fur1 (@) + 200 + D fu(@) + n(n + 1) fuo(@) = 0.

(ii) The functions P, (x) are defined for n =0, 1, 2, ... , by
Po(z) = (14 22" f.(2).
Find expressions for Py(z), Pi(x) and Pa(x).

Prove, for n > 0, that

Ppii(x) — (1+ :U2)

‘W +2(n+ 1)aPy(z) =0,

and that P, (z) is a polynomial of degree n.

Question (2009 STEP III Q10)

A light spring is fixed at its lower end and its axis is vertical. When a certain
particle P rests on the top of the spring, the compression is d. When, instead, P
is dropped onto the top of the spring from a height h above it, the compression at
time ¢ after P hits the top of the spring is . Obtain a second-order differential
equation relating x and ¢t for 0 <t < T, where T is the time at which P first
loses contact with the spring. Find the solution of this equation in the form

x = A+ Bcos(wt) + Csin(wt) ,

where the constants A, B, C' and w are to be given in terms of d, g and h as
appropriate. Show that

T= \/%<27T—2arctan\/m> :
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Question (2010 STEP I Q6)
Show that, if y = e”, then
>y dy

(x—l)@—xa—i—yzo. (%)

In order to find other solutions of this differential equation, now let y = ue®,
where u is a function of x. By substituting this into (), show that

du du
-1)— —2)— =0.
(0= 1) + (0= 2) (4
. du ) . . . .
By setting — = v in (%) and solving the resulting first order differential
x

equation for v, find u» in terms of x. Hence show that y = Az + Be® satisfies
(%), where A and B are any constants.

Question (2010 STEP III Q10)

A small bead B, of mass m, slides without friction on a fixed horizontal ring of
radius a. The centre of the ring is at O. The bead is attached by a light elastic
string to a fixed point P in the plane of the ring such that OP = b, where b > a.
The natural length of the elastic string is ¢, where ¢ < b — a, and its modulus of
elasticity is A. Show that the equation of motion of the bead is

asin ¢

mad = —\ < — 1> sin(f + ¢) ,

csin
where § = ZBPO and ¢ = ZBOP.

Given that 6 and ¢ are small, show that a(6 + ¢) =~ b. Hence find the period of
small oscillations about the equilibrium position 8 = ¢ = 0.
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Question (2011 STEP III Q1)(i) Find the general solution of the differential

equation
du T+ 2 0
— — u=20.
dx rz+1

(ii) Show that substitutingy = ze™® (where z is a function of x) into the second
order differential equation

2

dy  dy

d
leads to a first order differential equation for d—z . Find z and hence show
75

that the general solution of (x) is
y= Az + Be ™",

where A and B are arbitrary constants.

(iii) Find the general solution of the differential equation

d?y dy 2

O—d—u— T+ 2 "
dx z+1

1 1
= /du:/1+ dzx
U z+1

= Inju=z+hn|lz+1/+C
= u=A(z+1)e”

Y Y
—x d?z dz a dz a 7x
y=ze *: 0_($+1)((1932_2dx+2>6 —l—x((kg—z)e —ze
d?z dz
= 1)— 2)—
(z+ )dx2 (z+ )dm

A () (r+2) ds
dz \dz) \z+1/dx
Therefore £ = A(x + 1)e® and so

z
dz

z= A/(x+ 1)e*dx
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-y <[(:c +1)e”] — / exda:>

=A(z+1)e® — Ae" + B
y=Ax + Be™*

(iii) We have found the complementary solution. To find a particular integral consider
y = ax® + bx + ¢, then ¥ = 2ax + b, y” = 2a and we have

2?4+ 22+ 1 = 2a(x + 1) + z(2ax + b) — (az* + bz +¢)
= 2?2 +2x4+1=azr’+2ax+2a—c
= a=1lc=1

so the general solution should be

y=Azr+ Be 422 +1

Question (2012 STEP III Q1)

d 2
Given that z = y" <dy> , show that
77

dz  ,_1dy dy '\’ d?y
==V @ (”(dx T2 )
(i) Use the above result to show that the solution to the equation

dy 2 d2y _
(L) +2ga-vi >0

Wl

d
that satisfies y = 1 and d—y =0whenz =0isy = (%xQ + 1) .
x

(ii) Find the solution to the equation

dy ? d*y 2
a4y —0
(dx) Vi Y

d
that satisfies y = 1 and d—y = 0 when z = 0.
55

z=y" dy ;
— Y\

dz L (dy\? dy) (d%y
RS S B e noo( ) (2
- a Y (dx) ty <dx da?

1 ((dy dy\*  d%

_,n—1 > ~d - J

—Y <dx> <n (dx) +2ydx2
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(i) Let z = y(y')?, then

dz ,
a—y\/g
SN
= /zl/de:x—i—C
= 2Vz=2+C
xZO,Z:O: C:
1
= y(l//)221902
dy 1
- Yar = 2
= /\/ﬂdy:/2zdx
2 30 1,
z B K
= 3y 456 +
2
3 2/3
= y:<8m2+1>
(ii) Let 2 =y *(y)?
dz _3dy dy d?y
= I 922 il
dz dx( (d )+ da?
_qdy
3 2
= —2
Y dr Y
=27 (y) = 22
= 2z =22+ C
z=0,2=0 C=0
= 2 = 22
dy
= _— =
dr Y
1
= In|y\:§x2+K
z=0y=1; K=0
1,2
= Yy =e€2
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Question (2012 STEP III Q7)

A pain-killing drug is injected into the bloodstream. It then diffuses into the
brain, where it is absorbed. The quantities at time ¢ of the drug in the blood
and the brain respectively are y(t) and z(t). These satisfy

y=-2(y—2z), Z=—-y—3z,

where the dot denotes differentiation with respect to t. Obtain a second order
differential equation for y and hence derive the solution

y = Ae ! + Be Ot B = %Ae*t — 2Be~ %
where A and B are arbitrary constants.

(1) Obtain the solution that satisfies z(0) = 0 and y(0) = 5. The quantity of
the drug in the brain for this solution is denoted by z;(t).

(ii) Obtain the solution that satisfies z(0) = z(1) = ¢, where c is a given constant.
The quantity of the drug in the brain for this solution is denoted by za(t).

(iii) Show that for 0 <t <1,

0

)= Y ult—n),

n=—oo

provided c takes a particular value that you should find.
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Question (2013 STEP III Q7)(i) Let y(x) be a solution of the differential equa-

d? d
tion—y+y3:0Withy:1and—yzoatxzo, and let
dx? dw

dy >
B = (1) + 0.

Show by differentiation that E is constant and deduce that |y(z)| <1 for all
x.

2 d
(ii) Let v(x) be a solution of the differential equation Sl 2% L sinhv =0

g dz? dx
with v = In3 and v 0at x =0, and let
dz
dv \2
E(z) = <d::> + 2coshv.

E
Show that j— < 0 for > 0 and deduce that coshv(x) < % for x > 0.
T

(iii) Let w(z) be a solution of the differential equation

d? d
d—;;) + (5coshz — 4sinhz — 3)% + (wcoshw + 2sinhw) = 0
o dw 1 5
with — = — and w = 0 at = 0. Show that coshw(z) < 3 for 2 > 0.

dz 2

Question (2013 STEP III Q9)

A sphere of radius R and uniform density ps is floating in a large tank of liquid
of uniform density p. Given that the centre of the sphere is a distance x above
the level of the liquid, where x < R, show that the volume of liquid displaced is

g(2R3 — 3R%x 4 2%).

The sphere is acted upon by two forces only: its weight and an upward force
equal in magnitude to the weight of the liquid it has displaced. Show that

4R3ps(g + &) = (2R — 3R?x + 2°)pg .

Given that the sphere is in equilibrium when z = %R, find ps in terms of p.
Find, in terms of R and g, the period of small oscillations about this equilibrium
position.

None
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Question (2014 STEP III Q10)

Two particles X and Y, of equal mass m, lie on a smooth horizontal table
and are connected by a light elastic spring of natural length a and modulus of
elasticity A. Two more springs, identical to the first, connect X to a point P on
the table and Y to a point @ on the table. The distance between P and @) is 3a.

Initially, the particles are held so that XP = a, YQ = %a, and PXYQ is a
straight line. The particles are then released. At time t, the particle X is a
distance a + x from P and the particle Y is a distance a + y from ). Show that

d?z A
72

and find a similar expression involving Eg Deduce that

x —y = Acoswt + Bsinwt

where A and B are constants to be determined and maw? = \. Find a similar
expression for 4+ y. Show that Y will never return to its initial position.

Question (2018 STEP III Q3)

Show that the second-order differential equation
2.1 / 2 2 _

w7y + (1 =2p)zy + (p" —q )y = flz),

where p and ¢ are constants, can be written in the form
/
2% (z(2%y)') = f(2), (%)
where a, b and c are constants.
(i) Use (x) to derive the general solution of the equation
2y + (1 = 2p)ay’ + (p° — ¢*)y = 0

in the different cases that arise according to the values of p and gq.

(ii) Use (%) to derive the general solution of the equation

2%y + (1 - 2p)zy + pPy = 2"

in the different cases that arise according to the values of p and n.

Consider z°(z"(2°y)’)" then

29 (l’b(l‘cy)/)/ — 20 (b{L‘b_l(ZECy)/ + $b($cy)//)
= 2% (ba" (ca® Ly + %) + 2®(cle — 1)y + 2ca° Yy + a%y”)

— xa+b+cy// + (20$071+b+a + bxc+b71+a)y/ + (C(b +e— 1))xa+b+072y
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So we need:
a+b+c =2
2c+b =1—-2p
clb+c—1) =p>—¢*
= c((1-2p) —2¢c+c—1)=p* - ¢
= A+ 2pc = ¢ — p?

Question (1987 STEP III Q6)

The functions z(t) and y(t) satisfy the simultaneous differential equations

d
& 9w — By =0

dt
d
dii + ax — 2y = 2 cost,
. dy : .
subject to x = 0, — = 0 at t = 0. Solve these equations for x and y in the case

when a = 1. Without solving the equations explicitly, state briefly how the form
of the solutions for  and y if a > 1 would differ from the form when a = 1.

Letting x = (553) and A = <:z g) then our differential equation is x’ =

0
Ax + (2 cos t> '

Looking at the eigenvalues of A, we find:

-2—-X 5\ 2
det( 4 2_)\>—()\ —4) +5a

=X\ 4504

Therefore if a = 1, A = +i.
In which case we should expect the complementary solutions to be of the form
= <Asmt + Bcos t>. The first equation tells us that (A — 5D + B) cost+ (—B +

Csint + Dcost
5(D — C)sint + 5C’cost>

5C)sint = 0 so the complementary solution is:x = ( Csint+ Dcost

Looking for a particular integral, we should expect to try something like x =

FEtcost+ Ftsint and we find
Gtcost + Htsint
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Question (2019 STEP III Q1)

The coordinates of a particle at time ¢ are z and y. For ¢t > 0, they satisfy the
pair of coupled differential equations

T =-x—ky
y =x—y

where k is a constant. When t =0, x = 1 and y = 0.

(i) Let £k = 1. Find = and y in terms of ¢ and sketch y as a function of ¢. Sketch
the path of the particle in the z-y plane, giving the coordinates of the point
at which y is greatest and the coordinates of the point at which z is least.

(ii) Instead, let k = 0. Find = and y in terms of ¢ and sketch the path of the
particle in the z-y plane.

(i) Let kK =1, then

T=—-x—y
y=r—y
T—9y=-—2x
T=—-T—9
=—1& — (& + 2x)
=2z — 2z
T+y=—2y
j=i -7
— 2y -2

So we have an auxiliary equation for z and y which is A2 4+2A4+2 =0 = X\ = —1+i.

Therefore x = Ae tcost + Be tsint,y = Ce tcost + De 'sint. We also must
have that, A=1,C =0, s0 x = e ‘cost + Be !sint and y = De !sinx.

) = —De 'sint + De ' cost

=e lcosz+ Betsint — De tsint

therefore B=0,D =1 and v = e ‘cost,y = e !sint
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.,

(_;

—37/4 1 —3#/4) (
96 AN 96

y=e tsint
= —e 'sint +e 'cost
i =etcost —e tsint
Y
AN
L —m/4 1
3¢

e*’r/‘l)

S
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(ii)

y=xr—-y

Sor=e . g+y=etsoy=(t+ B)etandsoy=te "

Question (2025 STEP II Q7)
The differential equation
A’z .4z
a2z~ Tt
describes the motion of a particle with position x(¢) at time ¢t. At t =0, z = a,
where a > 0.

(i) Solve the differential equation in the case where fl—f = a? when ¢t = 0. What

happens to the particle as ¢ increases from 07

.o g g q q de __ 2 o
- - )
(ii) Solve the differential equation in the case where %7 = a® 4+ p when ¢t = 0

where p > 0. What happens to the particle as ¢ increases from 07

(iii) Solve the differential equation in the case where fli—f = a? — ¢*> when t = 0,

where ¢ > 0. What happens to the particle as t increases from 07 Give
conditions on a and ¢ for the different cases which arise.

Let v = g—f and notice that % ((é—f) = % (v) Ccll—f = U%‘ Also notice that:
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d
v£:2mv
dv

= — =2
dx *

= v=a2>+C

= & _»2ic
=
dt

(i) When t = 0,9 —(12 so C' = 0, therefore ¢ = 22 = t = —z~! 4+ k and so

k=a"'!and z = As t increases from 0 the particle heads to infinity at an

lat

increasing rate, ‘reaching’ infinity around t = a

(ii) Whent =0, 42 a = = a®+pso C = p. Therefore %—f =2’ 4p=t= % tan~! (%)4—0

When ¢ = _W tan~! (%), SO
L (m) (e
= (5) -5 ()
L e (420
b Vb az
= \/m = tan(/pt)
& V(@ — a) = tan(y/5t) (yB — az)
& a(yp+atan(yph) = p(tan(ypl) + o)
- _ Vp(tan(\/pt) + a)
/P + atan(,/pt)

The particle heads to %.

(iii) When ¢t =0, %f =a® — ¢% so C = —¢?. Therefore

1
= — — dx
2q r—q xT4+q
1

= ;q(ln(w—q) —In(z +q))
()
= —1In
2q r—+q
= L7494 _ g2t
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= A=2"14
~—~ a+q
t=0
a—q 2qt
= r—q=——e"(r+
1= T (z+q)
o x<1_Hezqt>:q(Ha—qem>
a—+q a—+q
1—1—2—;362“
= l':qaf“
1—m€qt
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