
SM UFM Pure (with Solutions)

Question (1989 STEP I Q2)

For x > 0 find
∫
x lnx dx. By approximating the area corresponding to

∫ 1
0 x ln(1/x) dx

by n rectangles of equal width and with their top right-hand vertices on the curve
y = x ln(1/x), show that, as n → ∞,

1

2

(
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1

n

)
lnn− 1

n2

[
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(
n!

0!

)
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(
n!

1!

)
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(
n!

2!

)
+ · · ·+ ln

(
n!

(n− 1)!

)]
→ 1

4
.

[You may assume that x lnx → 0 as x → 0.]

Integrating by parts we obtain:∫
x lnx dx = [

1

2
x2 lnx]−

∫
1

2
x2 · 1

x
dx

=
1

2
x2 lnx− 1

4
x2 + C

x

y

y = −x lnx

We should have:

∫ 1

0
x ln

1

x
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n→∞
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1

n
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n
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(n
i

)
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4
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= lim
n→∞
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n
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i

)
1

4
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n→∞

1
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n→∞

1
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(
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2
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n→∞

(
1

2
(1 +
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n
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= lim
n→∞

(
1

2
(1 +

1

n
) lnn− 1

n2

n−1∑
k=0

ln
n!

(n− k)!

)

Question (1989 STEP III Q9)

Obtain the sum to infinity of each of the following series.

(i) 1+
2

2
+

3

22
+

4

23
+ · · ·+ r

2r−1
+ · · · ;

(ii) 1+
1

2
× 1

2
+

1

3
× 1

22
+ · · ·+ 1

r
× 1

2r−1
+ · · · ;

(iii)
1× 3

2!
× 1

3
+

1× 3× 5

3!

1

32
+ · · ·+ 1× 3× · · · × (2k − 1)

k!
× 1

3k−1
+ · · · .

[Questions of convergence need not be considered.]

(i)

1

1− x
=

∞∑
r=0

xr

⇒︸︷︷︸
d
dx

1

(1− x)2
=

∞∑
r=0

rxr−1

⇒︸︷︷︸
x= 1

2

4 =
∞∑
r=0

r

2r−1

(ii)

1

1− x
=

∞∑
r=1

xr−1

⇒︸︷︷︸∫ − ln(1− x) =
∞∑
r=1

1

r
xr

⇒︸︷︷︸
x= 1

2

ln 2 =

∞∑
r=1

1

r
× 1

2r

⇒ 2 ln 2 =

∞∑
r=1

1

r
× 1

2r−1

(iii)

(1− x)−1/2 = 1 +
(−1

2)

1!
(−x) +

(−1
2)(−

3
2)

2!
(−x)2 + · · ·
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=

∞∑
r=0

1 · 3 · 5 · · · · (2r − 1)

2rr!
xr

⇒︸︷︷︸
x= 2

3

√
3 =

∞∑
r=0

1 · 3 · 5 · · · · (2r − 1)

r!

1

3r

= 1 +
1

1!

2

3
+

1

3

∞∑
r=2

1 · 3 · 5 · · · · (2r − 1)

r!

1

3r−1

⇒ 3
√
3− 5 =

∞∑
r=2

1 · 3 · 5 · · · · (2r − 1)

r!

1

3r−1

Question (1993 STEP III Q4)

Sum the following infinite series.

(i)

1 +
1

3

(
1

2

)2

+
1

5

(
1

2

)4

+ · · ·+ 1

2n+ 1

(
1

2

)2n

+ · · ·

.

(ii)
2− x− x3 + 2x4 − · · ·+ 2x4k − x4k+1 − x4k+3 + · · ·

where |x| < 1.

(iii)
∞∑
r=2

r 2r−2

3r−1

.

(iv)
∞∑
r=2

2

r(r2 − 1)

.

(i)

∞∑
i=0

x2i+1 =
x

1− x2

⇒ =
1

2

(
1

1− x
− 1

1 + x

)
⇒︸︷︷︸∫

∞∑
i=0

1

2i+ 1
x2i+2 =

1

2
(− ln(1− x)− ln(1 + x))

3
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⇒︸︷︷︸
x=1/2

∞∑
i=0

1

2i+ 1

(
1

2

)2i+2

= −1

2
ln

1

2
− 1

2
ln

3

2

= −1

2
ln

3

4

1

4

∞∑
i=0

1

2i+ 1

(
1

2

)2i

=
1

2
ln

4

3

⇒ S = 2 ln
4

3

(ii)

∞∑
k=0

(
2x4k − x4k+1 − x4k+3

)
=

∞∑
k=0

(
2− x1 − x3

)
x4k

=
2− x− x3

1− x4

=
(1− x)(2 + x+ x2)

(1− x)(1 + x+ x2 + x3)

=
2 + x+ x2

1 + x+ x2 + x3

(iii)

1

(1− x)2
=

∞∑
r=0

rxr−1

⇒ 9 =

∞∑
r=1

r

(
2

3

)r−1

⇒
∞∑
r=2

r

(
2r−2

3r−1

)
=

1

2
(9− 1)

= 4

(iv)

2

r(r2 − 1)
=

1

r − 1
− 2

r
+

1

r + 1

⇒
∞∑
r=2

(
1

r − 1
− 2

r
+

1

r + 1

)
=

∞∑
r=2

(
1

r − 1
− 1

r
− 1

r
+

1

r + 1

)

=
∞∑
r=2

(
1

r − 1
− 1

r

)
−

∞∑
r=2

(
1

r
− 1

r + 1

)
= 1− 1

2

=
1

2

4



SM UFM Pure (with Solutions)

Question (1997 STEP III Q7)

For each positive integer n, let

an =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · · ;

bn =
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · · .

(i) Evaluate bn.

(ii) Show that 0 < an < 1/n.

(iii) Deduce that an = n!e− [n!e] (where [x] is the integer part of x).

(iv) Hence show that e is irrational.

Question (1998 STEP II Q3)

Show that the sum SN of the first N terms of the series

1

1 · 2 · 3
+

3

·3 · 4
+

5

3 · 4 · 5
+ · · ·+ 2n− 1

n(n+ 1)(n+ 2)
+ · · ·

is
1

2

(
3

2
+

1

N + 1
− 5

N + 2

)
.

What is the limit of SN as N → ∞? The numbers an are such that

an
an−1

=
(n− 1)(2n− 1)

(n+ 2)(2n− 3)
.

Find an expression for an/a1 and hence, or otherwise, evaluate
∞∑
n=1

an when a1 =
2

9
.

First notice by partial fractions:

2n− 1

n(n+ 1)(n+ 2)
=

−1/2

n
+

3

n+ 1
+

−5/2

n+ 2

=
−1

2n
+

3

n+ 1
− 5

2(n+ 2)

And therefore:

N∑
n=1

2n− 1

n(n+ 1)(n+ 2)
= −1

2

N∑
n=1

1

n
+ 3

N∑
n=1

1

n+ 1
− 5

2

N∑
n=1

1

n+ 2

= −1

2
− 1

4
+

3

2
+

N∑
n=3

(3− 1

2
− 5

2
)
1

n
+

3

N + 1
− 5

2(N + 1)
− 5

2(N + 2)

=
1

2

(
3

2
+

1

N + 1
− 5

N + 2

)
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As N → ∞, SN → 3
4 .

an
an−1

=
(n− 1)(2n− 1)

(n+ 2)(2n− 3)

⇒ an
a1

=
an
an−1

· an−1

an−2
· · · a2

a1

=
(n− 1)(2n− 1)

(n+ 2)(2n− 3)
· (n− 2)(2n− 3)

(n+ 1)(2n− 5)
· · · (1)(3)

(4)(1)

=
(2n− 1)3 · 2 · 1
(n+ 2)(n+ 1)n

=
6(2n− 1)

n(n+ 1)(n+ 2)

Therefore an = 4
3

2n−1
n(n+1)(n+2) and so our sequence is 4

3 the earlier sum, ie 1

Question (1999 STEP III Q3)

Justify, by means of a sketch, the formula

lim
n→∞

{
1

n

n∑
m=1

f(1 +m/n)

}
=

∫ 2

1
f(x) dx .

Show that

lim
n→∞

{
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

}
= ln 2 .

Evaluate

lim
n→∞

{
n

n2 + 1
+

n

n2 + 4
+ · · ·+ n

n2 + n2

}
.
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x

y y = f(x)

1 2

f(1 + m
n
)

1 + m
n

1
n

Area ≈
∑ 1

n︸︷︷︸
width

× f
(
1 +

m

n

)
︸ ︷︷ ︸

height

V = lim
n→∞

{
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

}
= lim

n→∞

{
n∑

m=1

1

n+m

}

= lim
n→∞

{
1

n

n∑
m=1

1

1 + m
n

}

=

∫ 2

1

1

x
dx

= [lnx]21 = ln 2

V = lim
n→∞

{
n

n2 + 1
+

n

n2 + 4
+ · · ·+ n

n2 + n2

}
= lim

n→∞

{
n∑

m=1

n

n2 +m2

}

= lim
n→∞

{
1

n

n∑
m=1

1

1 +
(
m
n

)2
}

=

∫ 1

0

1

1 + x2
dx

=
[
tan−1 x

]1
0

=
π

4
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Question (1999 STEP III Q5)

The sequence u0, u1, u2, ... is defined by

u0 = 1, u1 = 1, un+1 = un + un−1 for n ≥ 1 .

Prove that
u2n+2 + u2n−1 = 2(u2n+1 + u2n) .

Using induction, or otherwise, prove the following result:

u2n = u2n + u2n−1 and u2n+1 = u2n+1 − u2n−1

for any positive integer n.

Claim: u2n+2 + u2n−1 = 2(u2n+1 + u2n)
Proof: (By Induction).
(Base Case): n = 1

LHS = u2n+2 + u2n−1

= u23 + u20

= 32 + 12 = 10

RHS = 2(u2n+1 + u2n)

= 2(22 + 12)

= 10

Therefore the base case is true.
(Inductive hypothesis) Suppose u2n+2 + u2n−1 = 2(u2n+1 + u2n) is true for some n = k, ie

u2k+2 + u2k−1 = 2(u2k+1 + u2k), the consider n = k + 1

LHS = u2k+1+2 + u2k+1−1

= (uk+1 + uk+2)
2 + u2k

= u2k+2 + u2k+1 + u2k + 2uk+1uk+2

= u2k+2 + u2k+1 + u2k + 2uk+1(uk+1 + uk)

= u2k+2 + u2k+1 + u2k + 2u2k+1 + 2uk+1uk

= u2k+1 + 2u2k+1 + u2k+1 + u2k + 2uk+1uk

= u2k+2 + 2u2k+1 + (uk+1 + uk)
2

= u2k+2 + 2u2k+1 + u2k+2

= 2(u2k+2 + u2k+1)

= RHS

Therefore it is true for n = k + 1.
Therefore by the principle of mathematical induction it is true for all n ≥ 1
Claim: u2n = u2n + u2n−1 and u2n+1 = u2n+1 − u2n−1

Proof: Notice that

(
un+1

un

)
=

(
1 1
1 0

)n(
1
1

)
, in particular(

un un−1

un−1 un−2

)
=

(
1 1
1 0

)n

8
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⇒
(

u2n u2n−1

u2n−1 u2n−2

)
=

(
1 1
1 0

)2n

=

(
1 1
1 0

)n(
1 1
1 0

)n

=

(
un un−1

un−1 un−2

)(
un un−1

un−1 un−2

)
=

(
u2n + u2n−1 un−1(un + un−2)

un−1(un + un−2) u2n−1 + u2n−2

)
Therefore u2n = u2n + u2n−1 and u2n+1 = un(un+1 + un−1) = (un+1 − un−1)(un+1 −

un−1) = u2n+1 − u2n−1

Question (2000 STEP III Q7)

Given that

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

r!
+ · · · ,

use the binomial theorem to show that(
1 +

1

n

)n
< e

for any positive integer n.
The product P(n) is defined, for any positive integer n, by

P(n) =
3

2
· 5
4
· 9
8
· . . . · 2

n + 1

2n
.

Use the arithmetic-geometric mean inequality,

a1 + a2 + · · ·+ an
n

≥ (a1 · a2 · . . . · an)
1
n ,

to show that P(n) < e for all n .
Explain briefly why P(n) tends to a limit as n → ∞. Show that this limit, L,

satisfies 2 < L ≤ e.

None

9
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Question (2003 STEP II Q7)

Show that, if n > 0 , then ∫ ∞

e1/n

lnx

xn+1
dx =

2

n2e
.

You may assume that
lnx

x
→ 0 as x → ∞ .

Explain why, if 1 < a < b , then∫ ∞

b

lnx

xn+1
dx <

∫ ∞

a

lnx

xn+1
dx .

Deduce that
N∑

n=1

1

n2
<

e

2

∫ ∞

e1/N

(
1− x−N

x2 − x

)
lnx dx ,

where N is any integer greater than 1.

None

Question (2003 STEP III Q6)

Show that

2 sin
1

2
θ cos rθ = sin

(
r +

1

2

)
θ − sin

(
r − 1

2

)
θ .

Hence, or otherwise, find all solutions of the equation

cos aθ + cos(a+ 1)θ + · · ·+ cos(b− 2)θ + cos(b− 1)θ = 0 ,

where a and b are positive integers with a < b− 1 .

sin

(
r +

1

2

)
θ − sin

(
r − 1

2

)
θ = sin rθ cos 1

2θ + cos rθ sin 1
2θ −

(
sin rθ cos 1

2θ − cos rθ sin 1
2θ
)

= 2 cos rθ sin 1
2θ

S = cos aθ + cos(a+ 1)θ + · · ·+ cos(b− 2)θ + cos(b− 1)θ

2 sin 1
2θS =

b−1∑
r=a

2 sin 1
2θ cos rθ

=

b−1∑
r=a

(
sin

(
r +

1

2

)
θ − sin

(
r − 1

2

)
θ

)
= sin

(
b− 1

2

)
θ − sin

(
a− 1

2

)
θ

⇒ sin

(
b− 1

2

)
θ = sin

(
a− 1

2

)
θ

Case 1: A = B + 2nπ

(
b− 1

2

)
θ =

(
a− 1

2

)
θ + 2nπ

10
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⇒ (b− a)θ = 2nπ

⇒ θ =
2nπ

b− a

Case 2: A = (2n+ 1)π −B

(
b− 1

2

)
θ = (2n+ 1)π −

(
a− 1

2

)
θ

⇒ (b+ a− 1)θ = (2n+ 1)π

⇒ θ =
2nπ

b+ a− 1

Question (2004 STEP I Q8)

A sequence t0, t1, t2, ... is said to be sl strictlyincreasingiftn+1 > tn for all n ≥ 0 .

(i) The terms of the sequence x0 , x1 , x2 , . . . satisfy

xn+1 =
x2n + 6

5

for n ≥ 0 . Prove that if x0 > 3 then the sequence is strictly increasing.

(ii) The terms of the sequence y0 , y1 , y2 , . . . satisfy

yn+1 = 5− 6

yn

for n ≥ 0 . Prove that if 2 < y0 < 3 then the sequence is strictly increasing but
that yn < 3 for all n .

11
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Question (2004 STEP III Q3)

Given that f ′′(x) > 0 when a ≤ x ≤ b , explain with the aid of a sketch why

(b− a) f
(a+ b

2

)
<

∫ b

a
f(x) dx < (b− a)

f(a) + f(b)

2
.

By choosing suitable a, b and f(x) , show that

4

(2n− 1)2
<

1

n− 1
− 1

n
<

1

2

(
1

n2
+

1

(n− 1)2

)
,

where n is an integer greater than 1. Deduce that

4

(
1

32
+

1

52
+

1

72
+ · · ·

)
< 1 <

1

2
+

(
1

22
+

1

32
+

1

42
+ · · ·

)
.

Show that
1

2

(
1

32
+

1

42
+

1

52
+

1

62
+ · · ·

)
<

1

32
+

1

52
+

1

72
+ · · ·

and hence show that
3

2
<

∞∑
n=1

1

n2
<

7

4
.

None

12
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Question (2004 STEP III Q6)

Given a sequence w0, w1, w2, . . . , the sequence F1, F2, . . . is defined by

Fn = w2
n + w2

n−1 − 4wnwn−1 .

Show that Fn − Fn−1 = (wn − wn−2) (wn + wn−2 − 4wn−1) for n ≥ 2 .

(i) The sequence u0, u1, u2, . . . has u0 = 1, and u1 = 2 and satisfies

un = 4un−1 − un−2 (n ≥ 2) .

Prove that u2n + u2n−1 = 4unun−1 − 3 for n ≥ 1 .

(ii) A sequence v0, v1, v2, . . . has v0 = 1 and satisfies

v2n + v2n−1 = 4vnvn−1 − 3 (n ≥ 1). (∗)

(a) Find v1 and prove that, for each n ≥ 2 , either vn = 4vn−1 − vn−2 or
vn = vn−2 .

(b) Show that the sequence, with period 2, defined by

vn =

{
1 for n even

2 for n odd

satisfies (∗). (c) Find a sequence vn with period 4 which has v0 = 1 , and
satisfies (∗).

Question (2005 STEP III Q4)

The sequence un (n = 1, 2, . . .) satisfies the recurrence relation

un+2 =
un+1

un
(kun − un+1)

where k is a constant.
If u1 = a and u2 = b , where a and b are non-zero and b ̸= ka , prove by induction

that

u2n =
( b
a

)
u2n−1

u2n+1 = cu2n

for n ≥ 1, where c is a constant to be found in terms of k, a and b. Hence express
u2n and u2n−1 in terms of a, b, c and n.
Find conditions on a, b and k in the three cases:

(i) the sequence un is geometric;

(ii) un has period 2;

(iii) the sequence un has period 4.

13
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Question (2006 STEP II Q1)

The sequence of real numbers u1, u2, u3, . . . is defined by

u1 = 2 , and un+1 = k − 36

un
for n ≥ 1, (∗)

where k is a constant.

(i) Determine the values of k for which the sequence (∗) is: (a) constant; (b)
periodic with period 2; (c) periodic with period 4.

(ii) In the case k = 37, show that un ≥ 2 for all n. Given that in this case the
sequence (∗) converges to a limit ℓ, find the value of ℓ.

Question (2008 STEP III Q2)

Let Sk(n) ≡
n∑

r=0
rk , where k is a positive integer, so that

S1(n) ≡ 1
2n(n+ 1) and S2(n) ≡ 1

6n(n+ 1)(2n+ 1) .

(i) By considering
n∑

r=0

[
(r + 1)k − rk

]
, show that

kSk−1(n) = (n+1)k−(n+1)−
(
k

2

)
Sk−2(n)−

(
k

3

)
Sk−3(n)−· · ·−

(
k

k − 1

)
S1(n) .

(∗)
Obtain simplified expressions for S3(n) and S4(n).

(ii) Explain, using (∗), why Sk(n) is a polynomial of degree k + 1 in n. Show that
in this polynomial the constant term is zero and the sum of the coefficients is
1.

(i)

(n+ 1)k =
n∑

r=0

[
(r + 1)k − rk

]
=

n∑
r=0

[((
k

0

)
rk +

(
k

1

)
rk−1 +

(
k

2

)
rk−2 + · · ·+

(
k

k

)
1

)
− rk

]

=

n∑
r=0

((
k

1

)
rk−1 +

(
k

2

)
rk−2 + · · ·+

(
k

k

)
1

)

= k
n∑

r=0

rk−1 +

(
k

2

) n∑
r=0

rk−2 + · · ·+
(
k

k

) n∑
r=0

1

= kSk−1(n) +

(
k

2

)
Sk−2(n) + · · ·+

(
k

k − 1

)
S1(n) + (n+ 1)

⇒ kSk−1(n) = (n+ 1)k − (n+ 1)−
(
k

2

)
Sk−2(n)− · · · −

(
k

k − 1

)
S1(n)

14



SM UFM Pure (with Solutions)

4S3(n) = (n+ 1)4 − (n+ 1)−
(
4

2

)
n(n+ 1)(2n+ 1)

6
−
(
4

3

)
n(n+ 1)

2

= (n+ 1)
(
(n+ 1)3 − 1− n(2n+ 1)− 2n

)
= (n+ 1)

(
n3 + 3n2 + 3n+ 1− 1− 2n2 − 3n

)
= (n+ 1)

(
n3 + n2

)
= n2(n+ 1)2

⇒ S3(n) =
n2(n+ 1)2

4

5S4(n) = (n+ 1)5 − (n+ 1)−
(
5

2

)
n2(n+ 1)2

4
−
(
5

3

)
n(n+ 1)(2n+ 1)

6
−
(
5

4

)
n(n+ 1)

2

= (n+ 1)

(
(n+ 1)4 − 1− 5n2(n+ 1)

2
− 5n(2n+ 1)

3
− 5n

2

)
=

n+ 1

6

(
6(n+ 1)4 − 6− 15n2(n+ 1)− 10n(2n+ 1)− 15n

)
=

n+ 1

6

(
6n4 + 24n3 + 36n2 + 24n+ 6− 6− 15n3 − 15n2 − 20n2 − 10n− 15n

)
=

n+ 1

6

(
6n4 + 9n3 + n2 − n

)
=

(n+ 1)n(2n+ 1)(3n2 + 3n− 1)

6

⇒ S4(n) =
(n+ 1)n(2n+ 1)(3n2 + 3n− 1)

30

(ii) Proceeding by induction, since Sk(n) is a polynomial of degree k + 1 for small k,
we can see that

(k+1)Sk(n) = (n+ 1)k+1︸ ︷︷ ︸
poly deg =k+1

− (n+ 1)︸ ︷︷ ︸
poly deg=1

−
(
k + 1

2

)
Sk−1(n)︸ ︷︷ ︸

poly deg=k

− · · ·︸︷︷︸
polys deg<k

−
(
k + 1

k

)
S1(n)︸ ︷︷ ︸

poly deg=1

therefore Sk(n) is a polynomial of degree k+ 1 (in fact with leading coefficient 1
k+1 .

Since Sk(0) =
∑0

r=0 r
k = 0 there is no constant term, and since Sk(1) =

∑1
r=0 r

k = 1
the sum of the coefficients is 1

15
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Question (2010 STEP III Q7)

Given that y = cos(m arcsinx), for |x| < 1, prove that

(1− x2)
d2y

dx2
− x

dy

dx
+m2y = 0 .

Obtain a similar equation relating
d3y

dx3
,

d2y

dx2
and

dy

dx
, and a similar equation

relating
d4y

dx4
,

d3y

dx3
and

d2y

dx2
. Conjecture and prove a relation between

dn+2y

dxn+2
,

dn+1y

dxn+1
and

dny

dxn
.

Obtain the first three non-zero terms of the Maclaurin series for y. Show that, if
m is an even integer, cosmθ may be written as a polynomial in sin θ beginning

1− m2 sin2 θ

2!
+

m2(m2 − 22) sin4 θ

4!
− · · · . (|θ| < 1

2π)

State the degree of the polynomial.

Question (2012 STEP I Q7)

A sequence of numbers t0, t1, t2, . . . satisfies

tn+2 = ptn+1 + qtn (n ≥ 0),

where p and q are real. Throughout this question, x, y and z are non-zero real
numbers.

(i) Show that, if tn = x for all values of n, then p + q = 1 and x can be any
(non-zero) real number.

(ii) Show that, if t2n = x and t2n+1 = y for all values of n, then q± p = 1. Deduce
that either x = y or x = −y, unless p and q take certain values that you should
identify.

(iii) Show that, if t3n = x, t3n+1 = y and t3n+2 = z for all values of n, then

p3 + q3 + 3pq − 1 = 0 .

Deduce that either p+ q = 1 or (p− q)2 + (p+ 1)2 + (q + 1)2 = 0. Hence show
that either x = y = z or x+ y + z = 0.

(i) Suppose tn = x for all n, then we must have

x = px+ qx

⇔ 1 = p+ q

and this clearly works for any value of x.

16
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(ii) Suppose t2n = x, t2n+1 = y for all n, then

x = py + qx

y = px+ qy

⇒ 0 = py + (q − 1)x

0 = px+ (q − 1)y

⇒ p = (q − 1)
x

y
= (q − 1)

y

x

⇒ y

x
= ±1 or q = 1, p = 0

⇒ y = ±x or (p, q) = (0, 1)

(iii) Suppose t3n = x, t3n+1 = y and t3n+2 = z , so

x = pz + qy

y = px+ qz

z = py + qx

z = p(px+ qz) + q(pz + qy)

= p2x+ 2pqz + q2y

= p2(pz + qy) + 2pqz + q2(px+ qz)

= p3z + p2qy + 2pqz + q2px+ q3z

= (p3 + q3 + 2pq)z + pq(py + qx)

= (p3 + q3 + 2pq)z + pqz

= (p3 + q3 + 3pq)z

⇒ 0 = p3 + q3 + 3pq − 1

= (p+ q − 1)(p2 + q2 + 1 + p+ q − pq)

= 1
2(p+ q − 1)((p− q)2 + (p+ 1)2 + (q + 1)2)

Therefore p+ q = 1 or (p− q)2 + (p+ 1)2 + (q + 1)2 = 0 ⇒ p = q = −1.

If p + q = 1, then z = py + (1 − p)x and x = p(py + (1 − p)x) + (1 − p)y ⇒
(1− p+ p2)x = (1− p+ p2)y ⇒ x = y ⇒ x = y = z.

If p = q = −1 then adding all the equations we get x+ y + z = −2(x+ y + z) ⇒
x+ y + z = 0

Note that what is actually going on here is that solutions must be of the form
tn = λn so the only way to be constant is for λ = 1 to be a root, the only way
for it to be 2-periodic is for λ = −1 to be a root, and the only way for it to be
3-periodic is for λ = 1, ω, ω2 to be the roots (although we see this via the classic
x3 + y3 + z3 − 3xyz = (x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz) which is because of the
real constraint in the question.

17
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Question (2012 STEP II Q8)

The positive numbers α, β and q satisfy β − α > q. Show that

α2 + β2 − q2

αβ
− 2 > 0 .

The sequence u0, u1, . . . is defined by u0 = α, u1 = β and

un+1 =
u2n − q2

un−1
(n ≥ 1),

where α, β and q are given positive numbers (and α and β are such that no term in
the sequence is zero). Prove that un(un + un+2) = un+1(un−1 + un+1) . Prove also
that

un+1 − pun + un−1 = 0

for some number p which you should express in terms of α, β and q. Hence, or
otherwise, show that if β > α + q, the sequence is strictly increasing (that is,
un+1 − un > 0 for all n). Comment on the case β = α+ q.

β − α > q

⇒ (β − α)2 > q2

⇒ β2 + α2 − 2βα > q2

⇒ α2 + β2 − q2 − 2βα > 0

⇒ α2 + β2 − q2

αβ
− 2 > 0

un(un + un+2) = un ·
(
un +

u2n+1 − q2

un

)
= u2n + u2n+1 − q2

= u2n + u2n+1 − (u2n − un−1un+1)

= u2n+1 + un+1un−1

= un+1(un−1 + un+1)

un+1 − pun + un−1 = −pun +
un(un−2 + un)

un−1

=
un(un − pun−1 + un−2)

un−1

Therefore if u2 − pu1 + u0 = 0 it is always zero, ie if

u2 = pβ − α

u2 =
β2 − q2

α

⇒ β2 − q2

α
= pβ − α

⇒ p =
α2 + β2 − q2

αβ

18
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If β > α + q we must have that p > 2, and so un+1 − un = (p − 1)un − un−1 >
un − un−1 > 0, therefore the sequence is strictly increasing.

If β = α+ q the sequence follows un+1− 2un+un−1 = 0 and so un+1−un = un−un−1

for all n (which is still increasing - it’s an arithmetic progression with common difference
β − α).

Question (2012 STEP III Q2)

In this question, |x| < 1 and you may ignore issues of convergence.

(i) Simplify
(1− x)(1 + x)(1 + x2)(1 + x4) · · · (1 + x2

n
) ,

where n is a positive integer, and deduce that

1

1− x
= (1 + x)(1 + x2)(1 + x4) · · · (1 + x2

n
) +

x2
n+1

1− x
.

Deduce further that

ln(1− x) = −
∞∑
r=0

ln
(
1 + x2

r)
,

and hence that

1

1− x
=

1

1 + x
+

2x

1 + x2
+

4x3

1 + x4
+ · · · .

(ii) Show that

1 + 2x

1 + x+ x2
=

1− 2x

1− x+ x2
+

2x− 4x3

1− x2 + x4
+

4x3 − 8x7

1− x4 + x8
+ · · · .

(i)

(1− x)(1 + x)(1 + x2)(1 + x4) · · · (1 + x2
n
)

= (1− x2)(1 + x2)(1 + x4) · · · (1 + x2
n
)

= (1− x4)(1 + x4) · · · (1 + x2
n
)

= 1− x2
n+1

Therefore,

1

1− x
− x2

n+1

1− x
= (1 + x)(1 + x2) · · · (1 + x2

n
)

⇒ 1

1− x
= (1 + x)(1 + x2) · · · (1 + x2

n
) +

x2
n+1

1− x

⇒ − ln(1− x) =
∞∑
r=0

ln(1 + x2
r
)

19



SM UFM Pure (with Solutions)

⇒ ln(1− x) = −
∞∑
r=0

ln(1 + x2
r
)

⇒︸︷︷︸
d
dx

1

1− x
=

∞∑
r=0

2rx2
r−1

1 + x2r

=
1

1 + x
+

2x

1 + x2
+

4x3

1 + x4
+ · · ·

(ii) Consider

(1 + x+ x2)(1− x+ x2)(1− x2 + x4) · · · (1− x2
n
+ x2

n+1
)

= (1 + x2 + x4)(1− x2 + x4) · · · (1− x2
n
+ x2

n+1
)

= (1− x2
n+1

+ x2
n+2

)

Therefore,

1

1 + x+ x2
= (1− x+ x2)(1− x2 + x4) · · · (1− x2

n
+ x2

n+1
) +

x2
n+1

1 + x+ x2
− x2

n+2

1 + x+ x2

⇒ − ln(1 + x+ x2) =
∞∑
r=0

ln(1− x2
r
+ x2

r+1
)

⇒︸︷︷︸
d
dx

− 1 + 2x

1 + x+ x2
=

∞∑
r=0

−2rx2
r−1 + 2r+1x2

r+1−1

1− x2r + x2r+1

=
−1 + 2x

1− x+ x2
+

−2x+ 4x3

1− x2 + x4
+

−4x3 + 8x7

1− x4 + x8
+ · · ·

Which is the desired result when we multiply both sides by −1
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Question (2012 STEP III Q8)

The sequence F0, F1, F2, . . . is defined by F0 = 0, F1 = 1 and, for n ≥ 0,

Fn+2 = Fn+1 + Fn .

(i) Show that F0F3 − F1F2 = F2F5 − F3F4 .

(ii) Find the values of FnFn+3 − Fn+1Fn+2 in the two cases that arise.

(iii) Prove that, for r = 1, 2, 3, . . . ,

arctan

(
1

F2r

)
= arctan

(
1

F2r+1

)
+ arctan

(
1

F2r+2

)
and hence evaluate the following sum (which you may assume converges):

∞∑
r=1

arctan

(
1

F2r+1

)
.

Question (2013 STEP II Q6)

In this question, the following theorem may be used.
slLetu1, u2, . . . be a sequence of (real) numbers. If the sequence is bounded above
(that is, un ≤ b for all n, where b is some fixed number) and increasing (that is,
un ≥ un−1 for all n), then the sequence tends to a limit (that is, converges). The
sequence u1, u2, . . . is defined by u1 = 1 and

un+1 = 1 +
1

un
(n ≥ 1) . (∗)

(i) Show that, for n ≥ 3,

un+2 − un =
un − un−2

(1 + un)(1 + un−2)
.

(ii) Prove, by induction or otherwise, that 1 ≤ un ≤ 2 for all n.

(iii) Show that the sequence u1, u3, u5, . . . tends to a limit, and that the sequence
u2, u4, u6, . . . tends to a limit. Find these limits and deduce that the sequence
u1, u2, u3, . . . tends to a limit. Would this conclusion change if the sequence
were defined by (∗) and u1 = 3?
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Question (2014 STEP III Q8)

The numbers ḟ(r) satisfy ḟ(r) > ḟ(r + 1) for r = 1, 2, . . . . Show that, for any
non-negative integer n,

kn(k − 1) ḟ(kn+1) ≤
kn+1−1∑
r=kn

ḟ(r) ≤ kn(k − 1) ḟ(kn)

where k is an integer greater than 1.

(i) By taking ḟ(r) = 1/r, show that

N + 1

2
≤

2N+1−1∑
r=1

1

r
≤ N + 1 .

Deduce that the sum
∞∑
r=1

1
r does not converge.

(ii) By taking ḟ(r) = 1/r3, show that

∞∑
r=1

1

r3
≤ 11

3 .

(iii) Let S(n) be the set of positive integers less than n which do not have a 2 in
their decimal representation and let σ(n) be the sum of the reciprocals of the
numbers in S(n), so for example σ(5) = 1+ 1

3 +
1
4 . Show that S(1000) contains

93 − 1 distinct numbers. Show that σ(n) < 80 for all n.
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Question (2016 STEP II Q8)

Evaluate the integral ∫ ∞

m− 1
2

1

x2
dx (m > 1

2) .

Show by means of a sketch that

n∑
r=m

1

r2
≈
∫ n+ 1

2

m− 1
2

1

x2
dx , (∗)

where m and n are positive integers with m < n.

(i) You are given that the infinite series

∞∑
r=1

1

r2
converges to a value denoted by E.

Use (∗) to obtain the following approximations for E:

E ≈ 2 ; E ≈ 5

3
; E ≈ 33

20
.

(ii) Show that, when r is large, the error in approximating
1

r2
by

∫ r+ 1
2

r− 1
2

1

x2
dx is

approximately
1

4r4
.

Given that E ≈ 1.645, show that
∞∑
r=1

1

r4
≈ 1.08 .
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Question (2016 STEP III Q4) (i) By considering
1

1 + xr
− 1

1 + xr+1
for |x| ≠ 1,

simplify
N∑
r=1

xr

(1 + xr)(1 + xr+1)
.

Show that, for |x| < 1,

∞∑
r=1

xr

(1 + xr)(1 + xr+1)
=

x

1− x2
.

(ii) Deduce that
∞∑
r=1

(ry)((r + 1)y) = 2e−y(2y)

for y > 0.

Hence simplify
∞∑

r=−∞
(ry)((r + 1)y) ,

for y > 0.

Question (2017 STEP III Q1) (i) Prove that, for any positive integers n and r,

1
n+r
r+1

=
r + 1

r

(
1

n+r−1
r

− 1
n+r
r

)
.

Hence determine
∞∑
n=1

1
n+r
r+1

,

and deduce that
∞∑
n=2

1
n+2
3

=
1

2
.

(ii) Show that, for n ≥ 3 ,

3!

n3
<

1
n+1
3

and
20
n+1
3

− 1
n+2
5

<
5!

n3
.

By summing these inequalities for n ≥ 3 , show that

115

96
<

∞∑
n=1

1

n3
<

116

96
.

Note: n
r is another notation for

(
n

r

)
.

r + 1

r

(
1

n+r−1
r

− 1
n+r
r

)
=

r + 1

r

(
r!(n− 1)!

(n+ r − 1)!
− r!n!

(n+ r)!

)
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=
(r + 1)!(n− 1)!

r(n+ r − 1)!

(
1− n

n+ r

)
=

(r + 1)!(n− 1)!

r(n+ r − 1)!

r

n+ r

=
(r + 1)!n!

(n+ r)!

=
1

n+r
r+1

∞∑
n=1

1
n+r
r+1

=
∞∑
n=1

(
r + 1

r

(
1

n+r−1
r

− 1
n+r
r

))

=
r + 1

r

∞∑
n=1

(
1

n+r−1
r

− 1
n+r
r

)

=
r + 1

r
lim

N→∞

N∑
n=1

(
1

n+r−1
r

− 1
n+r
r

)
=

r + 1

r
lim

N→∞

(
1

1+r−1
r

− 1
N+r
r

)
=

r + 1

r

1
1+r−1
r

(since 1
N+r
r

→ 0)

=
r + 1

r

When r = 2, we have:

3

2
=

∞∑
n=1

1
n+2
3

=
1

1+2
3

+
∞∑
n=2

1
n+2
3

= 1 +

∞∑
n=2

1
n+2
3

⇒
∞∑
n=2

1
n+2
3

=
1

2

1
n+1
3

=
3!

(n+ 1)n(n− 1)

=
3!

n3 − n

>
3!

n3

20
n+1
3

− 1
n+2
5

=
5!

(n+ 1)n(n− 1)
− 5!

(n+ 2)(n+ 1)n(n− 1)(n− 2)
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=
5!

n3

n2

n2 − 1

(
1− 1

n2 − 4

)
=

5!

n3

n2

n2 − 1

(
n2 − 5

n2 − 4

)
=

5!

n3

n2(n2 − 5)

(n2 − 1)(n2 − 4)

<
5!

n3

Since k(k − 5) < (k − 1)(k − 4) ⇔ 0 < 4, this only makes sense if n ≥ 3

3!

n3
<

1
n+1
3

(if n ≥ 3)

⇒
∞∑
n=3

3!

n3
<

∞∑
n=3

1
n+1
3

⇒ 6

13
+

6

23
+

∞∑
n=3

3!

n3
<

6

13
+

6

23
+

∞∑
n=3

1
n+1
3

⇒
∞∑
n=1

3!

n3
< 6 +

3

4
+

∞∑
n=2

1
n+2
2+1

⇒
∞∑
n=1

3!

n3
< 6 +

3

4
+

1

2
=

29

4

⇒
∞∑
n=1

1

n3
<

29

24
=

116

96

20
n+1
3

− 1
n+2
5

<
5!

n3

⇒
∞∑
n=3

(
20
n+1
3

− 1
n+2
5

)
<

∞∑
n=3

5!

n3

⇒ 120

13
+

120

23
+

∞∑
n=3

20
n+1
3

−
∞∑
n=3

1
n+2
5

<
120

13
+

120

23
+

∞∑
n=3

5!

n3

⇒ 120

13
+

120

23
+

∞∑
n=2

20
n+2
2+1

−
∞∑
n=1

1
n+4
4+1

<
120

13
+

120

23
+

∞∑
n=3

5!

n3

⇒ 120

13
+

120

23
+

20

2
− 4 + 1

4
<

∞∑
n=1

5!

n3

⇒ 115

96
<

∞∑
n=1

1

n3
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Question (2017 STEP III Q8)

Prove that, for any numbers a1, a2, . . . , and b1, b2, . . . , and for n ≥ 1,

n∑
m=1

am(bm+1 − bm) = an+1bn+1 − a1b1 −
n∑

m=1

bm+1(am+1 − am) .

(i) By setting bm = sinmx, show that

n∑
m=1

cos(m+ 1
2)x = 1

2

(
sin(n+ 1)x− sinx

)
1
2x .

Note: sinA− sinB = 2 cos
(A+B

2

)
sin
(A−B

2

)
.

(ii) Show that
n∑

m=1

m sinmx =
(
p sin(n+ 1)x+ q sinnx

)2 1
2x ,

where p and q are to be determined in terms of n.

Note: 2 sinA sinB = cos(A−B)− cos(A+B) ;

2 cosA sinB = sin(A+B)− sin(A−B) .

Question (1987 STEP I Q4)

Show that the sum of the infinite series

log2 e− log4 e + log16 e− . . .+ (−1)n log22n e + . . .

is
1

ln(2
√
2)
.

[loga b = c is equivalent to ac = b.]

Let S = log2 e− log4 e + log16 e− . . .+ (−1)n log22n e + . . . then

S =
∞∑
n=0

(−1)n log22n e

=
∞∑
n=0

(−1)n
log e

log 22n

=
∞∑
n=0

(−1)n
log e

2n log 2

=
log e

log 2

∞∑
n=0

(−1)n

2n

=
1

loge 2

1

1 + 1
2
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=
1

ln(23/2)

=
1

ln(2
√
2)

Question (1987 STEP II Q5)

If y = f(x), then the inverse of f (when it exists) can be obtained from Lagrange’s
identity. This identity, which you may use without proof, is

f−1(y) = y +
∞∑
n=1

1

n!

dn−1

dyn−1
[y − f (y)]n ,

provided the series converges.

(i) Verify Lagrange’s identity when f(x) = αx, (0 < α < 2).

(ii) Show that one root of the equation

1
2 = x− 1

4x
3

is

x =

∞∑
n=0

(3n)!

n! (2n+ 1)!24n+1

(iii) Find a solution for x, as a series in λ, of the equation

x = eλx.

[You may assume that the series in part (ii) converges, and that the series in part
(iii) converges for suitable λ.]

(i) If f(x) = αx then f−1(x) = 1
αx.

dn−1

dyn−1
[y − αy]n =

dn−1

dyn−1
[(1− α)nyn]

= (1− α)nn!y

⇒ y +
∞∑
n=1

1

n!

dn−1

dyn−1
[y − αy]n = y +

∞∑
n=1

(1− α)ny

= y + y

(
1

1− (1− α)
− 1

)
=

1

α
y

Where we can sum the geometric progression if |1− α| < 1 ⇔ 0 < α < 2

(ii) Suppose that f(x) = x− 1
4x

3. We would like to find f−1(12).
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dn−1

dyn−1
[y − (y +

1

4
y3)]n =

dn−1

dyn−1
[
1

4n
y3n]

=
1

4n
(3n)!

(2n+ 1)!
y2n+1

⇒ f−1(
1

2
) =

1

2
+

∞∑
n=1

1

4n
(3n)!

n!(2n+ 1)!

1

22n+1

=
1

2
+

∞∑
n=1

(3n)!

n!(2n+ 1)!

1

24n+1

Since when n = 0 0!
0!1!

1
20+1 = 1

2 we can include the wayward 1
2 in our infinite sum

and so we have the required result.

(iii) Consider f(x) = x− eλx we are interested in f−1(0).

dn−1

dyn−1
[y − (y − eλy)]n =

dn−1

dyn−1
[enλy]

= nn−1λn−1enλy

⇒ f−1(0) =

∞∑
n=1

1

n!
nn−1λn−1

We don’t care about convergence, but it’s worth noting this has a radius of
convergence of 1

e (ie this series is valid if |λ| < 1
e ).

Question (1987 STEP III Q7)

Prove that

tan−1 t = t− t3

3
+

t5

5
− · · ·+ (−1)nt2n+1

2n+ 1
+ (−1)n+1

∫ t

0

x2n+2

1 + x2
dx.

Hence show that, if 0 ⩽ t ⩽ 1, then

t2n+3

2(2n+ 3)
⩽

∣∣∣∣∣tan−1 t−
n∑

r=0

(−1)rt2r+1

2r + 1

∣∣∣∣∣ ⩽ t2n+3

2n+ 3
.

Show that, as n → ∞,

4
n∑

r=0

(−1)r

(2r + 1)
→ π,

but that the error in approximating π by 4
n∑

r=0

(−1)r

(2r + 1)
is at least 10−2 if n is less

than or equal to 98.
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We start by noticing that tan−1 t =

∫ t

0

1

1 + x2
dx.

Consider the geometric series 1− x2 + (−x2)2 + · · ·+ (−x2)n = 1−(−x2)n+1

1+x2 . Therefore,

(1 + x2)(1− x2 + (−x2)2 + · · ·+ (−x2)n) = 1− (−x2)n+1 or
1 = (1 + x2)(1− x2 + x4 − · · ·+ (−1)nx2n) + (−1)n+1x2n+2

tan−1 t =

∫ t

0

1

1 + x2
dx

=

∫ t

0

(1 + x2)(1− x2 + x4 − · · ·+ (−1)nx2n) + (−1)n+1x2n+2

x2 + 1
dx

=

∫ t

0
(1− x2 + x4 − · · ·+ (−1)nx2n)dx+

∫ t

0

(−1)n+1x2n+2

x2 + 1
dx

= t− t3

3
+

t5

5
− · · ·+ (−1)n

t2n+1

2n+ 1
+

∫ t

0

(−1)n+1x2n+2

x2 + 1
dx

=

n∑
r=0

(−1)rt2r+1

2r + 1
+

∫ t

0

(−1)n+1x2n+2

x2 + 1
dx

Therefore we can say (for 0 ≤ t ≤ 1)

∣∣∣∣∣tan−1 t−
n∑

r=0

(−1)rt2r+1

2r + 1

∣∣∣∣∣ =
∣∣∣∣∫ t

0

(−1)n+1x2n+2

x2 + 1
dx

∣∣∣∣
≤
∣∣∣∣∫ t

0
x2n+2dx

∣∣∣∣
=

t2n+3

2n+ 3

∣∣∣∣∣tan−1 t−
n∑

r=0

(−1)rt2r+1

2r + 1

∣∣∣∣∣ =
∣∣∣∣∫ t

0

(−1)n+1x2n+2

x2 + 1
dx

∣∣∣∣
≥
∣∣∣∣∫ t

0

(−1)n+1x2n+2

1 + 1
dx

∣∣∣∣
=

t2n+3

2(2n+ 3)

Since tan−1 1 = π
4 we must have that:

lim
n→∞

∣∣∣∣∣π4 −
n∑

r=0

(−1)r

(2r + 1)

∣∣∣∣∣→ 0 ⇒ lim
n→∞

4
n∑

r=0

(−1)r

(2r + 1)
→ π

However,

∣∣∣∣∣4
n∑

r=0

(−1)r

(2r + 1)
− π

∣∣∣∣∣ ≥ 4
1

2(2n+ 3)
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=
2

2n+ 3

2

2n+ 3
≥ 10−2

⇔ 200 ≥ 2n+ 3

⇔ 197 ≥ 2n

⇔ 98.5 ≥ n

Therefore we need more than 98 terms to get two decimal places of accuracy. Not
great!

Question (1991 STEP III Q10)

The equation
xn − qxn−1 + r = 0,

where n ⩾ 5 and q and r are real constants, has roots α1, α2, . . . , αn. The sum of the
products of m distinct roots is denoted by Σm (so that, for example, Σ3 =

∑
αiαjαk

where the sum runs over the values of i, j and k with n ⩾ i > j > k ⩾ 1). The sum

of mth powers of the roots is denoted by Sm (so that, for example, S3 =
n∑

i=1
α3
i ).

Prove that Sp = qp for 1 ⩽ p ⩽ n− 1.
You may assume that for any nth degree equation and 1 ⩽ p ⩽ n

Sp − Sp−1Σ1 + Sp−2Σ2 − · · ·+ (−1)p−1S1Σp−1 + (−1)ppΣp = 0.]

Find expressions for Sn, Sn+1 and Sn+2 in terms of q, r and n. Suggest an expression
for Sn+m, where m < n, and prove its validity by induction.

Claim: Sp = qp for 1 ≤ p ≤ n− 1
Proof: When p = 1, Sp = Σ1 = q as expected.
Note that Σi = 0 for i = 2, · · · , n− 1.
Using Sp = Sp−1Σ1 − Sp−2Σ2 + · · ·+ (−1)p−1+1S1Σp−1 + (−1)p+1pΣp, we can see that
Sp = qSp−q when 1 ≤ p ≤ n− 1, ie Sp = qp.
Note that

Sn =
∑

αn
i

= q
∑

αn−1
i −

∑
r

= qSn−1 − nr

= qn − nr

Sn+1 =
∑

αn+1
i

= q
∑

αn
i − r

∑
αi

= qn+1 − rq

Sn+2 =
∑

αn+2
i
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= q
∑

αn+1
i − r

∑
α2
i

= qn+2 − rq2

Claim: Sn+m = qn+m − rqm

Proof: The obvious

Question (1992 STEP II Q7)

The cubic equation
x3 − px2 + qx− r = 0

has roots a, b and c. Express p, q and r in terms of a, b and c.

(i) If p = 0 and two of the roots are equal to each other, show that

4q3 + 27r2 = 0.

(ii) Show that, if two of the roots of the original equation are equal to each other,
then

4

(
q − p2

3

)3

+ 27

(
2p3

27
− pq

3
+ r

)2

= 0.

p = a+ b+ c, q = ab+ bc+ ca, r = abc

(i) Suppose two roots are equal to each other, this means that one of the roots is also
a root of the derivative. ie

0 = x3 + qx− r

0 = 3x2 + q

have a common root, but this root must satisfy x2 = − q
3 . Then

0 = x3 + qx− r

= x3 − 3x3 − r

= −2x3 − r

⇒ r2 = 4x6

= 4
(
−q

3

)3
⇒ 0 = 27r2 + 4q3

(ii) Consider x = z + p
3 , then the equation is:

x3 − px2 + qx− r = (z +
p

3
)3 − p(z +

p

3
)2 + q(z +

p

3
)− r

= z3 + pz2 +
p2

3
z +

p3

27
−
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− pz2 − 2p2

3
z − p3

9
+

qz +
pq

3
− r

= z3 +

(
p2

3
− 2p2

3
+ q

)
z +

(
p3

27
− p3

9
+

pq

3
− r

)
= z3 +

(
−p2

3
+ q

)
z +

(
−2p3

27
+

pq

3
− r

)

Since this equation must also have repeated roots we must have:

4

(
−p2

3
+ q

)3

+ 27

(
−2p3

27
+

pq

3
− r

)2

= 0

which is exactly our desired result

Question (1996 STEP III Q7) (i) If x+y+z = α, xy+yz+zx = β and xyz = γ,
find numbers A,B and C such that

x3 + y3 + z3 = Aα3 +Bαβ + Cγ.

Solve the equations

x+ y + z = 1

x2 + y2 + z2 = 3

x3 + y3 + z3 = 4.

(ii) The area of a triangle whose sides are a, b and c is given by the formula

area =
√

s(s− a)(s− b)(s− c)

where s is the semi-perimeter 1
2(a+ b+ c). If a, b and c are the roots of the

equation
x3 − 16x2 + 81x− 128 = 0,

find the area of the triangle.

(i)

(x+ y + z)3 = x3 + y3 + z3+

3xy2 + 3xz2 + 3yx2 + · · ·+ 3zy2

+ 6xyz

(x+ y + z)(xy + yz + zx) = x2y + x2z + · · ·+ z2x+ 3xyz

x3 + y3 + z3 = (x+ y + z)3 − 3(xy2 + · · ·+ zy2)− 6xyz

= α3 − 3(αβ − 3γ)− 6γ

33



SM UFM Pure (with Solutions)

= α3 − 3αβ + 3γ

Since 4 = 13 − 3 · 1 · (−1) + 3γ ⇒ γ = 0, therefore one of x, y, z = 0. WLOG x = 0,
so

y + z = 1, y2 + z2 = 3 ⇒ y2 + (1− y)2 = 3 ⇒ y2 − y − 1 = 0 ⇒ y = 1±
√
5

2 , so we
have

(x, y, z) = (0, 1+
√
5

2 , 1−
√
5

2 ) and permutations.

(ii)

A2 = s(s− a)(s− b)(s− c)

Notice the second part is the same as plugging s = 16/2 = 8 into our polynomial

Therefore

A2 = 8 · (83 − 16 · 82 + 81 · 8− 128)

= 8 · 8(82 − 16 · 8 + 81− 16)

= 64(−64 + 81− 16)

= 64

Therefore A = 8
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Question (1997 STEP III Q4)

In this question, you may assume that if k1, . . . , kn are distinct positive real numbers,
then

1

n

n∑
r=1

kr >

(
n∏

r=1

kr

)1
n

,

i.e. their arithmetic mean is greater than their geometric mean. Suppose that a, b, c
and d are positive real numbers such that the polynomial

f(x) = x4 − 4ax3 + 6b2x2 − 4c3x+ d4

has four distinct positive roots.

(i) Show that pqr, qrs, rsp and spq are distinct, where p, q, r and s are the roots
of the polynomial f.

(ii) By considering the relationship between the coefficients of f and its roots, show
that c > d.

(iii) Explain why the polynomial f ′(x) must have three distinct roots.

(iv) By differentiating f, show that b > c.

(v) Show that a > b.

(i) Suppose pqr = qrs, since the roots are positive, we can divide by qr to obtain p = s
(a contradiction. Therefore all those terms are distinct.

(ii) 4c3 = pqr + qrs+ rsp+ spq, d4 = pqrs.

Applying AM-GM, we obtain:

c3 =
pqr + qrs+ rsp+ spq

4
> 4
√
p3q3r3s3 = d3

⇒ c > d

(iii) There must be a turning point between each root (since there are no repeated
roots).

(iv) f ′(x) = 4x3 − 12ax2 + 12b2 − 4c3 = 4(x3 − 3ax2 + 3b2 − c3). Letting the roots of
this polynomial be α, β, γ and again applying AM-GM, we must have:

b2 =
αβ + βγ + γα

3
> 3
√
α2β2γ2 = c2
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⇒ b > c

(v) Again, since there are turning points between the roots of f ′(x) we must have
distinct roots for f ′′(x), ie:

f ′′(x) = 3x2 − 6ax+ 6b2 = 3(x2 − 2ax+ b2) has distinct real roots. But for this to
occur we must have that (2a)2 − 4b2 = 4(a2 − b2) > 0, ie a > b

Question (2007 STEP III Q1)

In this question, do not consider the special cases in which the denominators of any
of your expressions are zero. Express tan(θ1 + θ2 + θ3 + θ4) in terms of ti, where
t1 = tan θ1 , etc. Given that tan θ1, tan θ2, tan θ3 and tan θ4 are the four roots of the
equation

at4 + bt3 + ct2 + dt+ e = 0

(where a ̸= 0), find an expression in terms of a, b, c, d and e for tan(θ1+ θ2+ θ3+ θ4).
The four real numbers θ1, θ2, θ3 and θ4 lie in the range 0 ≤ θi < 2π and satisfy the
equation

p cos 2θ + cos(θ − α) + p = 0 ,

where p and α are independent of θ. Show that θ1 + θ2 + θ3 + θ4 = nπ for some
integer n.

tan(θ1 + θ2 + θ3 + θ4) =
tan(θ1 + θ2) + tan(θ3 + θ4)

1− tan(θ1 + θ2) tan(θ3 + θ4)

=
t1+t2
1−t1t2

+ t3+t4
1−t3t4

1− t1+t2
1−t1t2

t3+t4
1−t3t4

=
(t1 + t2)(1− t3t4) + (t3 + t4)(1− t1t2)

(1− t1t2)(1− t3t4)− (t1 + t2)(t3 + t4)

=
t1 + t2 + t3 + t4 − (t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4)

1− t1t2 − t1t3 − t1t4 − t2t3 − t2t4 − t3t4

If t1, t2, t3, t4 are the roots of at4 + bt3 + ct2 + dt + e = 0, then t1 + t2 + t3 + t4 =
− b

a , t1t2+t1t3+t1t4+t2t3+t2t4+t3t4 = c
a , t1t2t3+t1t2t4+t1t3t4+t2t3t4 = −d

a , therefore
the expression is:

tan(θ1 + θ2 + θ3 + θ4) =
− b

a + d
a

1− c
a

=
d− b

a− c

0 = p cos 2θ + cos(θ − α) + p

= p(2 cos2 θ − 1) + cos θ cosα− sin θ sinα+ p

= 2p cos2 θ + cos θ cosα− sin θ sinα

⇒ 0 = 2p cos θ + cosα− tan θ sinα

⇒ −2p cos θ = cosα− tan θ sinα
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⇒ 4p2 cos2 θ = cos2 α− 2 sinα cosα tan θ + sin2 α tan2 θ

4p2
1

1 + tan2 θ
= cos2 α− sin 2α tan θ + sin2 α tan2 θ

⇒ 4p2 = cos2 α− sin 2αt+ t2 − sin 2αt3 + sin2 αt4

⇒ tan(θ1 + θ2 + θ3 + θ4) =
0

sin2 α− 1

= 0

⇒ θ1 + θ2 + θ3 + θ4 = nπ

Question (2008 STEP III Q1)

Find all values of a, b, x and y that satisfy the simultaneous equations

a+ b = 1

ax+ by = 1
3

ax2 + by2 = 1
5

ax3 + by3 = 1
7 .

[ Hint: you may wish to start by multiplying the second equation by x+ y. ]

This is a second order recurrence relation, so we need to find m and n such that;

1

5
= m

1

3
+ n

1

7
= m

1

5
+ n

1

3

⇒ m,n =
6

7
,− 3

35

So we now need to solve the characteristic equation:
λ2 − 6

7λ+ 3
35 = 0

So x, y = 15±2
√
30

35 .
We need,

1 = a+ b

1

3
= a

15 + 2
√
30

35
+ b

15− 2
√
30

35

1

3
=

15

35
+

2
√
30

35
(a− b)

⇒ −
√
30

18
= a− b

⇒ a =
18−

√
30

36

b =
18 +

√
30

38

So our two answers are:
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(a, b, x, y) =

(
18±

√
30

36
,
18∓

√
30

36
,
15± 2

√
30

35
,
15∓ 2

√
30

35
,

)

Question (2009 STEP III Q5)

The numbers x, y and z satisfy

x+ y + z = 1

x2 + y2 + z2 = 2

x3 + y3 + z3 = 3 .

Show that

yz + zx+ xy = −1

2
.

Show also that x2y + x2z + y2z + y2x+ z2x+ z2y = −1 , and hence that

xyz =
1

6
.

Let Sn = xn + yn + zn . Use the above results to find numbers a, b and c such that
the relation

Sn+1 = aSn + bSn−1 + cSn−2 ,

holds for all n.

(x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)

⇒ 12 = 2 + 2(xy + yz + zx)

⇒ xy + yz + zx = −1

2

1 · 2 = (x+ y + z)(x2 + y2 + z2)

= x3 + y3 + z3 + x2y + x2z + y2z + y2x+ z2x+ z2y

= 3 + x2y + x2z + y2z + y2x+ z2x+ z2y

⇒ −1 = x2y + x2z + y2z + y2x+ z2x+ z2y

(x+ y + z)3 = x3 + y3 + z3+

3xy2 + 3xz2 + · · ·+ 3zx2 + 3zy2+

6xyz

⇒ 1 = 3 + 3(−1) + 6xyz

⇒ xyz =
1

6

Since we have f(t) = (t− x)(t− y)(t− z) = t3 − t2 − 1
2 t−

1
6 is zero for x, y, z we can

notice that:
tn+1 = tn + 1

2 t
n−1 + 1

6 t
n−2 is also true for x, y, z (by multiplying by tn−2.

Therefore:
Sn+1 = Sn + 1

2Sn−1 +
1
6Sn−2
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Question (2014 STEP III Q1)

Let a, b and c be real numbers such that a+ b+ c = 0 and let

(1 + ax)(1 + bx)(1 + cx) = 1 + qx2 + rx3

for all real x. Show that q = bc+ ca+ ab and r = abc.

(i) Show that the coefficient of xn in the series expansion (in ascending powers of
x) of ln(1 + qx2 + rx3) is (−1)n+1Sn where

Sn =
an + bn + cn

n
, (n ≥ 1).

(ii) Find, in terms of q and r, the coefficients of x2, x3 and x5 in the series expansion
(in ascending powers of x) of ln(1+ qx2 + rx3) and hence show that S2S3 = S5.

(iii) Show that S2S5 = S7.

(iv) Give a proof of, or find a counterexample to, the claim that S2S7 = S9.

(1 + ax)(1 + bx)(1 + cx) = (1 + (a+ b)x+ abx2)(1 + cx)

= 1 + (a+ b+ c)x+ (ab+ bc+ ca)x2 + abcx3

Therefore by comparing coefficients, q = bc+ ca+ ab and r = abc as required.

(i)

ln(1 + qx2 + rx3) = ln(1 + ax) + ln(1 + bx) + ln(1 + cx)

= −
∞∑
n=1

(−ax)n

n
−

∞∑
n=1

(−bx)n

n
−

∞∑
n=1

(−cx)n

n

=
∞∑
n=1

(−1)n+1(an + bn + cn)

n
xn

=

∞∑
n=1

(−1)n+1Snx
n

(ii)

ln(1 + qx2 + rx3) = (qx2 + rx3)− (qx2 + rx3)2

2
+O(x6)

= qx2 + rx3 − 1

2
q2x4 − qrx5 +O(x6)

Comparing coefficients we see that S2 = −q and S3 = r, we also must have
S5 = −qr = S2S3 as required.
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(iii)

ln(1 + qx2 + rx3) = (qx2 + rx3)− (qx2 + rx3)2

2
+

(qx2 + rx3)3

3
+O(x8)

= qx2 + rx3 − 1

2
q2x4 − qrx5 +

1

2
rx6 +

1

3
q3x6 + q2rx7 +O(x8)

= qx2 + rx3 − 1

2
q2x4 − qrx5 +

(
1

2
r +

1

3
q3
)
x6 + q2rx7

Comparing coefficients we see that S2 = −q and S5 = −qr, we also must have
S7 = q2r = S2S5 as required.

(iv) Let a = b = 1, c = −2, then S2 = 12+12+(−2)2

2 = 3, S7 = 12+12+(−2)7

7 = −18, S9 =
11+12+(−2)9

9 = 2−512
9 ̸= 3 · (−18)

Question (2015 STEP III Q6) (i) Let w and z be complex numbers, and let u =
w + z and v = w2 + z2. Prove that w and z are real if and only if u and v are
real and u2 ≤ 2v.

(ii) The complex numbers u, w and z satisfy the equations

w + z − u = 0

w2 + z2 − u2 = −2
3

w3 + z3 − λu = −λ

where λ is a positive real number. Show that for all values of λ except one
(which you should find) there are three possible values of u, all real.

Are w and z necessarily real? Give a proof or counterexample.

(i) Notice that u2 = v+2wz, so w, z are roots of the quadratic t2−ut+ u2−v
2 . Therefore

they are both real if u2 ≥ 2(u2 − v) ⇒ 2v ≥ u2.

(ii)

w + z = u

w2 + z2 = u2 − 2
3

w3 + z3 = λ(u− 1)

wz =
u2 − (u2 − 2

3)

2
= 1

3

(w + z)(w2 + z2) = w3 + z3 + wz(w + z)

u(u2 − 2
3) = λ(u− 1) +

1

3
u

⇒ u3 − u = λ(u− 1)
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⇒ 0 = (u− 1)(u(u+ 1)− λ)

⇒ 0 = (u− 1)(u2 + u− λ)

Therefore there will be at most 3 values for u, unless 1 is a root of u2 + u− λ, ie
λ = 2.

Suppose u = 1, then we have:

w + z = 1, wz = 1/3 ⇒ w, z =
−1±

√
−1/3

2 which are clearly complex.

Question (2017 STEP III Q3)

Let α, β, γ and δ be the roots of the quartic equation

x4 + px3 + qx2 + rx+ s = 0 .

You are given that, for any such equation, αβ + γδ , αγ + βδ and αδ + βγ satisfy a
cubic equation of the form

y3 +Ay2 + (pr − 4s)y + (4qs− p2s− r2) = 0 .

Determine A. Now consider the quartic equation given by p = 0 , q = 3 , r = −6
and s = 10 .

(i) Find the value of αβ+ γδ, given that it is the largest root of the corresponding
cubic equation.

(ii) Hence, using the values of q and s, find the value of (α+ β)(γ + δ) and the
value of αβ given that αβ > γδ .

(iii) Using these results, and the values of p and r, solve the quartic equation.

A = −(αβ + γδ + αγ + βδ + αδ + βγ)

= −q

(i) The corresponding cubic equation is:

0 = y3 − 3y2 − 40y + (120− 36)

= y3 − 3y2 − 40y + 84

= (y − 7)(y − 2)(y + 6)

Therefore αβ + γδ = 7

(ii)

(α+ β)(γ + δ) = αγ + αδ + βγ + βδ
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= 3− (αβ + γδ)

= 3− 7 = −4

Let αβ and γδ be the roots of a quadratic; then the quadratic will be t2− 7t+10 =
0 ⇒ t = 2, 5 so αβ = 5

(iii) αβ = 5, γδ = 2

Consider the quadratic with roots α+ β and γ + δ, then

t2 − 4 = 0 ⇒ t = ±2.

Suppose α+ β = 2, γ + δ = −2 then

α, β = 1± 2i, γ, δ = −1± i

αβγ + βγδ + γδα+ δαβ = 5γ + 2β + 2α+ 5δ = −6 ̸= 6

Suppose α+ β = −2, γ + δ = 2 then

α, β = −1± 2i, γ, δ = 1± i

αβγ + βγδ + γδα+ δαβ = 5γ + 2β + 2α+ 5δ = 6, therefore these are there roots.
(In some order):

1± i,−1± 2i
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Question (2018 STEP III Q1) (i) The function f is given by

f(β) = β − 1

β
− 1

β2
(β ̸= 0) .

Find the stationary point of the curve y = f(β) and sketch the curve. Sketch
also the curve y = g(β) , where

g(β) = β +
3

β
− 1

β2
(β ̸= 0) .

(ii) Let u and v be the roots of the equation

x2 + αx+ β = 0 ,

where β ̸= 0 . Obtain expressions in terms of α and β for u + v +
1

uv
and

1

u
+

1

v
+ uv .

(iii) Given that u+v+
1

uv
= −1 , and that u and v are real, show that

1

u
+
1

v
+uv ≤

−1 .

(iv) Given instead that u+ v+
1

uv
= 3 , and that u and v are real, find the greatest

value of
1

u
+

1

v
+ uv .

(i)

f(β) = β − 1

β
− 1

β2

⇒ f ′(β) = 1 +
1

β2
+

2

β3

⇒ 0 = f ′(β)

= 1 +
1

β2
+

2

β3

⇒ 0 = β3 + β + 2

= (β + 1)(β2 − β + 2)

Therefore the only stationary point is at β = −1, f(−1) = −1

43



SM UFM Pure (with Solutions)

x

y

x = 0 y = x

g(β) = β +
3

β
− 1

β2

⇒ g′(β) = 1− 3

β2
+

2

β3

⇒ 0 = f ′(β)

= 1− 3

β2
+

2

β3

⇒ 0 = β3 − 3β + 2

= (β − 1)2(β + 2)

Therefore there are stationary points at β = 1, f(1) = 3, β = −2, f(−2) = 1
4
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x

y

x = 0 y = x

(ii) Let u, v be the roots of x2 + αx+ β = 0, then since (x − u)(x − v) = 0 we must
have α = −(u+ v), β = uv.

Therefore:

u+ v +
1

uv
= −α+

1

β
1

u
+

1

v
+ uv =

u+ v

uv
+ uv

= −α

β
+ β

Given u+ v + 1
uv = −1, ie −α+ 1

β = −1. Since the roots are real, we must also

have that α2 − 4β ≥ 0, so

45



SM UFM Pure (with Solutions)

−α+
1

β
= −1

⇒ α = 1 +
1

β

⇒ −α

β
+ β = − 1

β

(
1 +

1

β

)
+ β

= β − 1

β
− 1

β2

So we want to maximise f(β) subject to α2 − 4β ≥ 0

0 ≤ α2 − 4β

=

(
1 +

1

β

)2

− 4β

= 1 +
2

β
+

1

β2
− 4β

⇔ 0 ≤ −4β3 + β2 + 2β + 1

= −(β − 1)(4β2 + 3β + 1)

⇔ β ≤ 1

But we know f(β) ≤ −1 on (−∞, 1] so we’re done.

(iii) Given that −α+ 1
β = 3 we have

−α+
1

β
= 3

⇒ α = −3 +
1

β

⇒ −α

β
+ β = − 1

β

(
−3 +

1

β

)
+ β

= β +
3

β
− 1

β2

which we want to maximise, subject to:

0 ≤ α2 − 4β

=

(
−3 +

1

β

)2

− 4β

= 9− 6

β
+

1

β2
− 4β

⇔ 0 ≤ −4β3 + 9β2 − 6β + 1

= −(β − 1)2(4β − 1)

46



SM UFM Pure (with Solutions)

⇔ β ≤ 1

4

Therefore the maximum will either be f(−2) = 1
4 or f(14) = −15

4 . Therefore the
maximum is 1

4

Question (2019 STEP III Q4)

The nth degree polynomial P(x) is said to be reflexive if:

(a) P(x) is of the form xn − a1x
n−1 + a2x

n−2 − · · ·+ (−1)nan where n ≥ 1;

(b) a1, a2, . . . , an are real;

(c) the n (not necessarily distinct) roots of the equation P(x) = 0 are a1, a2, . . . , an.

(i) Find all reflexive polynomials of degree less than or equal to 3.

(ii) For a reflexive polynomial with n > 3, show that

2a2 = −a22 − a23 − · · · − a2n.

Deduce that, if all the coefficients of a reflexive polynomial of degree n are
integers and an ̸= 0, then n ≤ 3.

(iii) Determine all reflexive polynomials with integer coefficients.

(i) Suppose n = 1, then all polynomials are reflexive (since x− a1 has the root a1.

Suppose n = 2, then we want

x2 − a1x+ a2 = (x− a1)(x− a2)

= x2 − (a1 + a2)x+ a1a2

⇒ a2 = 0

So all polynomials of the form x2 − a1x work and no others.

Suppose n = 3 then we want

x3 − a1x
2 + a2x− a3 = (x− a1)(x− a2)(x− a3)

= x3 − (a1 + a2 + a3)x+ (a1a2 + a1a3 + a2a3)x− a1a2a3

⇒ a2 + a3 = 0

a2a3 = a2

⇒ −a22 = a2
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⇒ a2 = 0,−1

−a1a
2
2 = −a2

⇒ a2 = 0, a2 = 1/a1

So we need either x3 − a1x or (x+ 1)2(x− 1) = x3 + x2 − x− 1

(ii) Suppose n > 3 then

∑
a2i =

(∑
ai

)2
− 2

∑
i<j

aiaj

= a21 − 2a2

⇒ 2a2 = a21 −
∑

a2i

= −a22 − a23 − · · · − a2n

So (a2 + 1)2 = 1− a23 − · · · − a2n so if an > 0 (or any other ai, i > 2 for that matter)
then we must have an = ±1, a3, . . . an−1 = 0, but if an = ±1 x = 0 is not a root.
Therefore we must have a0 and ai = 0 for all i > 3

(iii) The only reflexive polynomials therefore must be xn − kxn−1 and xn+3 + xn+2 −
xn+1 − xn

Question (2025 STEP III Q6) (i) Let a, b and c be three non-zero complex num-
bers with the properties a+ b+ c = 0 and a2 + b2 + c2 = 0. Show that a, b and
c cannot all be real. Show further that a, b and c all have the same modulus.

(ii) Show that it is not possible to find three non-zero complex numbers a, b and c
with the properties a+ b+ c = 0 and a3 + b3 + c3 = 0.

(iii) Show that if any four non-zero complex numbers a, b, c and d have the
properties a + b + c + d = 0 and a3 + b3 + c3 + d3 = 0, then at least two of
them must have the same modulus.

(iv) Show, by taking c = 1, d = −2 and e = 3 that it is possible to find five real
numbers a, b, c, d and e with distinct magnitudes and with the properties
a+ b+ c+ d+ e = 0 and a3 + b3 + c3 + d3 + e3 = 0.

(i) If a, b, c were all real then a2 + b2 + c2 = 0 ⇒ a, b, c = 0 but they are non-zero.
Therefore they cannot all be real.

Since (a+ b+ c)2 = 0 we must have ab+ bc+ ca = 0. Therefore a, b, c must satisfy
x3 − abc = 0 ⇒ they all have the same modulus, since they are all cube roots of
the same number.
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(ii) Notice that a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) ⇒ abc = 0
but therefore they cannot all be non-zero.

(iii) Suppose a+b+c+d = 0 then note that a2+b2+c2+d2 = (a+b+c+d)2−2
∑
sym

ab

and

a3 + b3 + c3 + d3 = (a+ b+ c+ d)3 − 3(a+ b+ c+ d)(ab+ ac+ ad+ bc+ bd+ cd) +
3(abc+ abd+ acd+ bcd) ⇒ abc+ abd+ acd+ bcd = 0. Therefore a, b, c, d are roots
of a polynomial of the form x4 − kx2 + l = 0, but this means they must come in
pairs with the same modulus.

(iv) Suppose c = 1, d = −2, e = 3 so c+ d+ e = 2 and c3 + d3 + e3 = 1− 8 + 27 = 20,
so we need to find a, b satisfying a + b = −2, a2 + b2 = −20, ie 4 = (a + b)2 =
−20 + 2ab ⇒ ab = 12, so we need the roots of x2 + 2x+ 12 = 0 which clearly have
different modulus.

Question (1989 STEP II Q5) (i) Show that in polar coordinates, the gradient of
any curve at the point (r, θ) is(

dr

dθ
tan θ + r

)/(
dr

dθ
− r tan θ

)
.

L
O

(ii) A mirror is designed so that any ray of light which hits one side of the mirror
and which is parallel to a certain fixed line L is reflected through a fixed point
O on L. For any ray hitting the mirror, the normal to the mirror at the point
of reflection bisects the angle between the incident ray and the reflected ray,
as shown in the figure. Prove that the mirror intersects any plane containing
L in a parabola.

(i) Suppose our curve is r(θ), then y = r sin θ, x = r cos θ and

dy

dθ
=

dr

dθ
sin θ + r cos θ
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dx

dθ
=

dr

dθ
cos θ − r sin θ

⇒ dy

dx
=

dy

dθ

/
dx

dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
dr
dθ tan θ + r
dr
dθ − r tan θ

as required.

(ii) Set up a system of polar coordinates such that the origin is at O and all points in
the plane containing L are represented by (r, θ).

The constraint we have is that the angle of the normal, is 1
2θ. Let tan

1
2θ = t, then

tan θ = 2t
1−t2

tan
1

2
θ = −

dr
dθ − r tan θ
dr
dθ tan θ + r

⇒ t = −
r′ − r 2t

1−t2

r′ 2t
1−t2

+ r

=
2tr − (1− t2)r′

2tr′ + (1− t2)r

⇒ (2t2 + 1− t2)r′ = (2t− t+ t3)r

(1 + t2)r′ = t(t2 + 1)r

⇒ r′ = tr

⇒ dr

dθ
= tan 1

2θr

⇒
∫

1

r
dr =

∫
tan

1

2
θdθ

ln r = −2 ln cos 1
2θ + C

⇒ r cos2
1

2
θ = C

⇒ r + r cos θ = D

⇒ r = D − x

⇒ x2 + y2 = D2 − 2Dx+ x2

⇒ y2 = D2 − 2Dx

Therefore it is a parabola
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Question (1989 STEP III Q6)

Show that, for a given constant γ (sin γ ≠ 0) and with suitable choice of the constants
A and B, the line with cartesian equation lx+my = 1 has polar equations

1

r
= A cos θ +B cos(θ − γ).

The distinct points P and Q on the conic with polar equations

a

r
= 1 + e cos θ

correspond to θ = γ − δ and θ = γ + δ respectively, and cos δ ̸= 0. Obtain the polar
equation of the chord PQ. Hence, or otherwise, obtain the equation of the tangent
at the point where θ = γ. The tangents at L and M to a conic with focus S meet at
T. Show that ST bisects the angle LSM and find the position of the intersection of
ST and LM in terms of your chosen parameters for L and M.

1

r
= A cos θ +B cos(θ − γ)

= A cos θ +B cos θ cos γ +B sin θ sin γ

= (A+B cos γ) cos θ +B sin γ sin θ

⇐⇒ 1 = (A+B cos γ)x+B sin γy

So if we choose B = m
sin γ and A = l −m cot γ we have the desired result.

1 + e cos(γ − δ)

a
= A cos(γ − δ) +B cos(γ − δ − γ)

= A cos(γ − δ) +B cos δ

1 + e cos(γ + δ)

a
= A cos(γ + δ) +B cos(γ + δ − γ)

= A cos(γ + δ) +B cos δ

⇒ 1

r
=

e

a
cos θ +

1

a cos δ
cos(θ − γ)

lim δ → 0
1

r
=

e

a
cos θ +

1

a
cos(θ − γ)

Suppose we have have points L and M with θ = γL, γM then our tangents are:

a

r
= cos θ + cos(θ − γL)

a

r
= cos θ + cos(θ − γM )

⇒ 0 = cos(θ − γL)− cos(θ − γM )

= −2 sin
(θ − γL) + (θ − γM )

2
sin

(θ − γL)− (θ − γM )

2

= −2 sin

(
θ − γL + γM

2

)
sin

(
γM − γL

2

)
⇒ θ =

γL + γM
2
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Therefore clearly ST bisects LSM .
The line LM can be seen as the chord from the points γL+γM

2 ± γL−γM
2 , so the line is:

a

r
= e cos θ +

1

cos
(γL−γM

2

) cos(θ − γL + γM
2

)
and we want the point on the line where θ = γL+γM

2 so

a

r
= e cos

(
γL + γM

2

)
+

1

cos
(γL−γM

2

)
⇒ r =

a

e cos
(γL+γM

2

)
+ 1

cos
(

γL−γM
2

)

Question (1990 STEP II Q9)

Show by means of a sketch that the parabola r(1 + cos θ) = 1 cuts the interior of the
cardioid r = 4(1 + cos θ) into two parts. Show that the total length of the boundary
of the part that includes the point r = 1, θ = 0 is 18

√
3 + ln(2 +

√
3).

x

y

The curves will intersect when:

1

1 + cos θ
= 4(1 + cos θ)

⇒ 1 + cos θ = ±1

2
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⇒ cos θ = −1

2

⇒ θ = ±2π

3
,

Therefore we can measure the two sides of the boundaries. For the cardioid it will be:

s =

∫ 2π/3

−2π/3

√
r2 +

(
dr

dθ

)2

dθ

=

∫ 2π/3

−2π/3

√
r2 +

(
dr

dθ

)2

dθ

=

∫ 2π/3

−2π/3

√
16(1 + cos θ)2 + 16 sin2 θdθ

= 4

∫ 2π/3

−2π/3

√
2 + 2 cos θdθ

= 8

∫ 2π/3

−2π/3

√
cos2

θ

2
dθ

= 8

∫ 2π/3

−2π/3
| cos θ

2
|dθ

= 16

∫ 2π/3

π
(− cos

θ

2
)dθ + 8

∫ π

−π
cos

θ

2
dθ

= 16 ·
[
2 sin

θ

2

]2π/3
π

+ 8 · 4

= 16 · (
√
3− 2) + 8 · 4

= 16
√
3

For the parabola we have that
√
x2 + y2+x = 1 ⇒ x2+y2 = 1−2x+x2 ⇒ y2 = 1−2x.

So we can parameterise our parabola as y = t, x = 1−t2

2 . And we are interested in the

points t = −
√
3 and t =

√
3

s =

∫ √
3

√
(dx

dt )
2
+(dy

dt )
2
dt

−
√
3

=

∫ √
3
√
t2+12dt

−
√
3

sinhu = t,
dt

du
= coshu =

∫ sinh−1
√
3

− sinh−1
√
3
cosh2 udu

=

[
1

2
u+

1

4
sinh(2u)

]sinh−1
√
3

− sinh−1
√
3

= sinh−1
√
3 + 2

√
3

= ln(2 +
√
3) + 2

√
3

Therefore the total distance is as required.
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Question (1991 STEP III Q5)

The curve C has the differential equation in polar coordinates

d2r

dθ2
+ 4r = 5 sin 3θ, for

π

5
⩽ θ ⩽

3π

5
,

and, when θ =
π

2
, r = 1 and

dr

dθ
= −2. Show that C forms a closed loop and that

the area of the region enclosed by C is

π

5
+

25

48

[
sin
(π
5

)
− sin

(
2π

5

)]
.

First we seek the complementary function.

d2r

dθ2
+ 4r = 0

⇒ r = A sin 2θ +B cos 2θ

Next we seek a particular integral, of the form r = C sin 3θ.

d2r

dθ2
+ 4r = 5 sin 3θ

⇒ −9C sin 3θ + 4C sin 3θ = 5 sin 3θ

⇒ C = −1

So our general solution is A sin 2θ +B cos 2θ − sin 3θ.
Plugging in boundary conditions we obtain:

θ =
π

2
, r = 1 : 1 = −B + 1

⇒ B = 0

θ =
π

2
,
dr

dθ
= −2 : −2 = −2A

⇒ A = 1

So the general solution is r = sin 2θ − sin 3θ = 2 sin
(−θ

2

)
cos
(
5θ
2

)
First notice that for θ ∈

[
π
5 ,

3π
5

]
this is positive, and it is zero on the end points,

therefore we are tracing out a a loop.
The area of the loop will be:

A =

∫ 3π/5

π/5

1

2
(sin 2θ − sin 3θ)2 dθ

=
1

2

∫ 3π/5

π/5
sin2 2θ + sin2 3θ − 2 sin 2θ cos 3θdθ

=
1

2

∫ 3π/5

π/5

1− 2 cos 4θ

2
+

1− 2 cos 6θ

2
− sin 5θ − cos θdθ
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=
1

2

[
θ − 1

4
sin 4θ − 1

6
sin 6θ +

1

5
cos 5θ − sin θ

]3π/5
π/5

=
π

5
+

25

48

[
sin
(π
5

)
− sin

(
2π

5

)]

Question (1991 STEP III Q9)

The parametric equations E1 and E2 define the same ellipse, in terms of the parame-
ters θ1 and θ2, (though not referred to the same coordinate axes).

E1 : x = a cos θ1, y = b sin θ1,

E2 : x =
k cos θ2

1 + e cos θ2
, y =

k sin θ2
1 + e cos θ2

,

where 0 < b < a, 0 < e < 1 and 0 < k. Find the position of the axes for E2 relative
to the axes for E1 and show that k = a(1− e2) and b2 = a2(1− e2). [The standard

polar equation of an ellipse is r =
ℓ

1 + e cos θ
.] By considering expressions for the

length of the perimeter of the ellipse, or otherwise, prove that∫ π

0

√
1− e2 cos2 θ dθ =

∫ π

0

1− e2

(1 + e cos θ)2

√
1 + e2 + 2e cos θ dθ.

Given that e is so small that e6 may be neglected, show that the value of either
integral is

1
64π(64− 16e2 − 3e4).

None

Question (1992 STEP III Q10)

Sketch the curve C whose polar equation is

r = 4a cos 2θ for − 1
4π < θ < 1

4π.

The ellipse E has parametric equations

x = 2a cosϕ, y = a sinϕ.

Show, without evaluating the integrals, that the perimeters of C and E are equal.
Show also that the areas of the regions enclosed by C and E are equal.
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Perimeter(C) =

∫ π/4

−π/4

√
r2 +

(
dr

dθ

)2

dθ

=

∫ π/4

−π/4

√
16a2 cos2 2θ + 64a2 sin2 2θdθ

=

∫ π/4

−π/4
4a
√

1 + 3 sin2 2θdθ

Perimeter(D) =

∫ 2π

0

√(
dx

dϕ

)2

+

(
dy

dϕ

)2

dϕ

=

∫ 2π

0

√
4a2 sin2 ϕ+ a2 cos2 ϕdϕ

= a2
∫ 2π

0

√
1 + 3 sin2 ϕdϕ

But clearly these two integrals are equal.

A(C) =
1

2

∫ π/4

−π/4
r2dθ

=
1

2

∫ π/4

−π/4
16a2 cos2 2θdθ
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= 8a2
∫ π/4

−π/4
cos2 2θdθ

= 8a2
π

4
= 2πa2

A(D) = 2πa2

Question (1993 STEP II Q5)

xunit=1.0cm,yunit=1.0cm,algebraic=true,dotstyle=o,dotsize=3pt
0,linewidth=0.5pt,arrowsize=3pt 2,arrowinset=0.25 (-0.57,-0.63)(8.51,6.23)

(0,0)(7,5) (7,5)(7.75,1.98) (7.75,1.98)(0,0) -
0.67408182176363680.222081901905479941*5.52*cos(t)+0*5.52*sin(t)+1.48—0*5.52*cos(t)+1*5.52*sin(t)+4.9

(7,5)(5.79,1.45) [tl](-0.4,-0.02)O [tl](5.76,1.29)P [tl](8.1,2.01)R [tl](7.2,5.26)Q
(7.67,2.29)(7.37,2.22) (7.37,2.22)(7.45,1.91)

In the diagram, O is the origin, P is a point of a curve r = r(θ) with coordinates
(r, θ) and Q is another point of the curve, close to P , with coordinates (r+δr, θ+δθ).
The angle ∠PRQ is a right angle. By calculating tan∠QPR, show that the angle
at which the curve cuts OP is

tan−1

(
r
dθ

dr

)
.

Let α be a constant angle, 0 < α < 1
2π. The curve with the equation

r = eθ cotα

in polar coordinates is called an equiangular spiral. Show that it cuts every radius
line at an angle α. Sketch the spiral.
Find the length of the complete turn of the spiral beginning at r = 1 and going

outwards. What is the total length of the part of the spiral for which r ⩽ 1?
[You may assume that the arc length s of the curve satisfies(

ds

dθ

)2

= r2 +

(
dr

dθ

)2

.]

Question (1993 STEP III Q2)

The curve C has the equation x3 + y3 = 3xy.

(i) Show that there is no point of inflection on C. You may assume that the origin
is not a point of inflection.

(ii) The part of C which lies in the first quadrant is a closed loop touching the
axes at the origin. By converting to polar coordinates, or otherwise, evaluate
the area of this loop.
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Question (1998 STEP III Q4)

Show that the equation (in plane polar coordinates) r = cos θ, for −1
2π ≤ θ ≤ 1

2π,
represents a circle. Sketch the curve r = cos 2θ for 0 ≤ θ ≤ 2π, and describe the
curves r = cos 2nθ, where n is an integer. Show that the area enclosed by such a
curve is independent of n. Sketch also the curve r = cos 3θ for 0 ≤ θ ≤ 2π.

Question (2006 STEP III Q6)

Show that in polar coordinates the gradient of any curve at the point (r, θ) is

dr

dθ
tan θ + r

dr

dθ
− r tan θ

.
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A mirror is designed so that if an incident ray of light is parallel to a fixed line L the
reflected ray passes through a fixed point O on L. Prove that the mirror intersects
any plane containing L in a parabola. You should assume that the angle between
the incident ray and the normal to the mirror is the same as the angle between the
reflected ray and the normal.
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Question (2011 STEP III Q5)

A movable point P has cartesian coordinates (x, y), where x and y are functions of t.
The polar coordinates of P with respect to the origin O are r and θ. Starting with
the expression

1
2

∫
r2 dθ

for the area swept out by OP , obtain the equivalent expression

1
2

∫ (
x
dy

dt
− y

dx

dt

)
dt . (∗)

The ends of a thin straight rod AB lie on a closed convex curve C. The point P
on the rod is a fixed distance a from A and a fixed distance b from B. The angle
between AB and the positive x direction is t. As A and B move anticlockwise round
C, the angle t increases from 0 to 2π and P traces a closed convex curve D inside C,
with the origin O lying inside D, as shown in the diagram.

P

b

a

B

A O

D

C

t

y

x

Let (x, y) be the coordinates of P . Write down the coordinates of A and B in terms
of a, b, x, y and t. The areas swept out by OA, OB and OP are denoted by [A], [B]
and [P ], respectively. Show, using (∗), that

[A] = [P ] + πa2 − af

where

f = 1
2

∫ 2π

0

((
x+

dy

dt

)
cos t+

(
y − dx

dt

)
sin t

)
dt .

Obtain a corresponding expression for [B] involving b. Hence show that the area
between the curves C and D is πab.

tan θ = y/x
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⇒ sec2 θ
dθ

dt
=

xdy
dt − y dx

dt

x2

⇒ dθ

dt
=

(
x
dy

dt
− y

dx

dt

)
cos2 θ

x2

=

(
x
dy

dt
− y

dx

dt

)
cos2 θ

r2 cos2 θ

=

(
x
dy

dt
− y

dx

dt

)
1

r2

1
2

∫
r2 dθ = 1

2

∫ (
x
dy

dt
− y

dx

dt

)
dt

A = (x− a cos t, y − a sin t), B = (x+ b cos t, y + b sin t)

[A] = 1
2

∫ 2π

0

(
(x− a cos t)

d(y − a sin t)

dt
− (y − a sin t)

d(x− a cos t)

dt

)
dt

= 1
2

∫ 2π

0

(
(x− a cos t)

(
dy

dt
− a cos t

)
− (y − a sin t)

(
dx

dt
+ a sin t

))
dt

= 1
2

∫ 2π

0

(
x
dy

dt
− y

dx

dt
− a cos t

dy

dt
− ax cos t+ a2 cos2 t+ a sin t

dx

dt
− ya sin t+ a2 sin2 t

)
dt

= 1
2

∫ 2π

0

x
dy

dt
− y

dx

dt︸ ︷︷ ︸
[P ]

−a

(
(x+

dy

dx
) cos t+ (y − dx

dt
) sin t

)
+ a2︸︷︷︸

πa2

dt

= [P ] + πa2 − af

[B] = 1
2

∫ 2π

0

(
(x+ b cos t)

d(y + b sin t)

dt
− (y + b sin t)

d(x+ b cos t)

dt

)
dt

= 1
2

∫ 2π

0

(
(x+ b cos t)(

dy

dt
+ b cos t)− (y + b sin t)(

dx

dt
− b sin t)

)
dt

= 1
2

∫ 2π

0

(
x
dy

dt
− y

dx

dt
+ b2 + b(cos t(x+

dy

dt
) + (y − dx

dt
) sin t

)
dt

= [P ] + πb2 + bf

Since A and B trace out the same area, we must have πa2 − af = πb2 + bf ⇒
π(a2 − b2) = f(b+ a) ⇒ f = π(a− b).
In particular the area inbetween is [A]− [P ] = πa2 − aπ(a− b)
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Question (2015 STEP III Q3)

In this question, r and θ are polar coordinates with r ≥ 0 and −π < θ ≤ π, and a
and b are positive constants. Let L be a fixed line and let A be a fixed point not
lying on L. Then the locus of points that are a fixed distance (call it d) from L
measured along lines through A is called a conchoid of Nicomedes.

(i) Show that if
|r − a sec θ| = b , (∗)

where a > b, then sec θ > 0. Show that all points with coordinates satisfying
(∗) lie on a certain conchoid of Nicomedes (you should identify L, d and A).
Sketch the locus of these points.

(ii) In the case a < b, sketch the curve (including the loop for which sec θ < 0)
given by

|r − a sec θ| = b .

Find the area of the loop in the case a = 1 and b = 2.

[Note:
∫
sec θ dθ = ln | sec θ + tan θ|+ C .]

(i) r = a sec θ ± b. The points on r = a sec θ ⇔ r cos θ = a ⇔ x = a are points on the
line x = a. Therefore points on the curve r = a sec θ ± b are points which are a
distance b from the line x = a measured towards O. So A is the origin and d = b.

x

y

A

L
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(ii)

x

y

A

L

The loop starts and ends when r = a sec θ−b = 0 ⇒ cos θ = a
b , so when a = 1, b = 2,

this is −π
3 to π

3

A =
1

2

∫
r2dθ

=
1

2

∫ π/3

−π/3
(sec θ − 2)2 dθ

=
1

2

∫ π/3

−π/3

(
sec2 θ − 4 sec θ + 4

)
dθ

=
1

2
[tan θ − 4 ln | sec θ + tan θ|+ 4θ]

π/3
−π/3

=
1

2

((
tan

π

3
− 4 ln | sec π

3
+ tan

π

3
|+ 4

(π
3

))
−
(
tan

(
−π

3

)
− 4 ln | sec

(
−π

3

)
+ tan

(
−π

3

)
|+ 4

(
−π

3

)))
=

1

2

(
2
√
3− 4 ln |2 +

√
3|+ 4 ln |2−

√
3|+ 8π

3

)
=

√
3 + 2 ln

2−
√
3

2 +
√
3
+

4π

3

=
√
3 + 4 ln(2−

√
3) +

4π

3
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Question (2015 STEP III Q8) (i) Show that under the changes of variable x =
r cos θ and y = r sin θ, where r is a function of θ with r > 0, the differential
equation

(y + x)
dy

dx
= y − x

becomes
dr

dθ
+ r = 0 .

Sketch a solution in the x-y plane.

(ii) Show that the solutions of

(
y + x− x(x2 + y2)

) dy

dx
= y − x− y(x2 + y2)

can be written in the form

r2 =
1

1 +Ae2θ

and sketch the different forms of solution that arise according to the value of
A.

(i)

(y + x)
dy

dx
= y − x

⇒ (r sin θ + r cos θ)
dy
dθ
dx
dθ

= (r sin θ − r cos θ)

⇒ (sin θ + cos θ)
dy

dθ
= (sin θ − cos θ)

dx

dθ

⇒ (sin θ + cos θ)

(
dr

dθ
cos θ − r sin θ

)
= (sin θ − cos θ)

(
dr

dθ
sin θ + r cos θ

)
⇒ dr

dθ

(
sin θ cos θ + cos2 θ − sin2 θ + sin θ cos θ

)
= r

(
sin θ cos θ − cos2 θ + sin2 θ + sin θ cos θ

)
⇒ dr

dθ
= −r

Therefore r = Ae−θ

(ii) (
y + x− x(x2 + y2)

) dy

dx
= y − x− y(x2 + y2)

⇒
(
r sin θ + r cos θ − r3 cos θ

) dy

dθ
=
(
r sin θ − r cos θ − r3 sin θ

) dx
dθ
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⇒
(
r sin θ + r cos θ − r3 cos θ

) (dr

dθ
sin θ + r cos θ

)
=

(
r sin θ − r cos θ − r3 sin θ

)(dr

dθ
cos θ − r sin θ

)
⇒ dr

dθ

(
sin θ(sin θ + cos θ − r2 cos θ)− cos θ(sin θ − cos θ − r2 sin θ)

)
=

r(− sin θ(sin θ − cos θ − r2 sin θ)− cos θ(sin θ + cos θ − r2 cos θ))

⇒ dr

dθ
= r(−1 + r2)

⇒
∫

1

r(r − 1)(r + 1)
dr =

∫
dθ

⇒
∫ (

−1

r
+

1

2(r − 1)
+

1

2(r + 1)

)
dr =

∫
dθ

⇒
(
− log r +

1

2
log(1 + r) +

1

2
log(1− r)

)
+ C = θ

⇒ 1

2
log

(
1− r2

r2

)
+ C = θ

⇒ log

(
1

r2
− 1

)
+ C = 2θ

⇒ r =
1

1 +Ae2θ

64



SM UFM Pure (with Solutions)

Question (2017 STEP III Q5)

The point with cartesian coordinates (x, y) lies on a curve with polar equation

r = f(θ) . Find an expression for
dy

dx
in terms of f(θ), f ′(θ) and tan θ .

Two curves, with polar equations r = f(θ) and r = g(θ), meet at right angles.
Show that where they meet

f ′(θ)g′(θ) + f(θ)g(θ) = 0 .

The curve C has polar equation r = f(θ) and passes through the point given
by r = 4, θ = −1

2π. For each positive value of a, the curve with polar equation
r = a(1 + sin θ) meets C at right angles. Find f(θ) .
Sketch on a single diagram the three curves with polar equations r = 1 + sin θ ,

r = 4(1 + sin θ) and r = f(θ) .

(x, y) = (f(θ) cos(θ), f(θ) sin(θ)) so

dy

dθ
= −f(θ) sin(θ) + f ′(θ) cos(θ)

dx

dθ
= f(θ) cos(θ) + f ′(θ) sin(θ)

dy

dx
=

−f(θ) sin(θ) + f ′(θ) cos(θ)

f(θ) cos(θ) + f ′(θ) sin(θ)

=
−f(θ) tan(θ) + f ′(θ)

f(θ) + f ′(θ) tan(θ)

If the curves meet at right angles then the product of their gradients is −1, ie

−f(θ) tan(θ) + f ′(θ)

f(θ) + f ′(θ) tan(θ)
· −g(θ) tan(θ) + g′(θ)

g(θ) + g′(θ) tan(θ)
= −1

f(θ)g(θ) tan2 θ − f(θ)g′(θ) tan θ − f ′(θ)g(θ) tan θ + f ′(θ)g′(θ) =

−
(
f(θ)g(θ) + f(θ)g′(θ) tan(θ) + f ′(θ)g(θ) tan(θ) + f ′(θ)g′(θ) tan2 θ

)
tan2 θ

(
f(θ)g(θ) + f ′(θ)g′(θ)

)
+ f ′(θ)g′(θ) + f(θ)g(θ) = 0
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(tan2 θ + 1)
(
f(θ)g(θ) + f ′(θ)g′(θ)

)
= 0

f(θ)g(θ) + f ′(θ)g′(θ) = 0

g(θ) = a(1 + sin θ), g′(θ) = a cos θ
Therefore f ′(θ)a cos θ + f(θ)a(1 + sin(θ)) = 0

f ′(θ)

f(θ)
= − sec(θ)− tan(θ)

⇒ ln(f(θ)) = − ln | tan(θ) + sec(θ)|+ ln | cos(θ)|+ C

⇒ f(θ) = A
cos θ

tan θ + sec θ

= A
cos2 θ

sin θ + 1

= A
1− sin2 θ

sin θ + 1

= A(1− sin θ)

When θ = −1
2π, r = 4, so A = 2.
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Question (2018 STEP III Q4)

The point P (a sec θ, b tan θ) lies on the hyperbola

x2

a2
− y2

b2
= 1 ,

where a > b > 0 . Show that the equation of the tangent to the hyperbola at P can
be written as

bx− ay sin θ = ab cos θ .

(i) This tangent meets the lines
x

a
=

y

b
and

x

a
= −y

b
at S and T , respectively.

How is the mid-point of ST related to P?

(ii) The point Q(a secϕ, b tanϕ) also lies on the hyperbola and the tangents to
the hyperbola at P and Q are perpendicular. These two tangents intersect
at (x, y). Obtain expressions for x2 and y2 in terms of a, θ and ϕ. Hence, or
otherwise, show that x2 + y2 = a2 − b2.

Note that

da sec θ

dθ
= a sec θ tan θ

db tan θ

dθ
= b sec2 θ

⇒ dy

dx
=

b sec2 θ

a sec θ tan θ

=
b

a

1

sin θ

⇒ y − b tan θ

x− a sec θ
=

b

a

1

sin θ

⇒ a sin θy − ab tan θ sin θ = bx− ab sec θ

⇒ bx− ay sin θ = ab secx(1− sin2 θ)

= ab cos θ

(i)

S :

{
bx− ay = 0

bx− ay sin θ = ab cos θ

⇒ ay(1− sin θ) = ab cos θ

⇒ y =
b cos θ

1− sin θ

x =
a cos θ

1− sin θ

T :

{
bx+ ay = 0

bx− ay sin θ = ab cos θ

⇒ ay(1 + sin θ) = −ab cos θ

⇒ y =
−b cos θ

1 + sin θ

x =
a cos θ

1 + sin θ
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M : x =
a cos θ

2

2

1− sin2 θ

= a sec θ

y =
b cos θ

2

2 sin θ

1− sin2 θ

= b tan θ

The midpoint of ST is the same as P .

(ii) The tangents are perpendicular, therefore b
aθ = −a

b sinϕ, ie b2 = −a2 sinϕ sin θ

The will intersect at:

{
bx− ay sin θ = ab cos θ

bx− ay sinϕ = ab cosϕ

⇒ ay(sin θ − sinϕ) = ab(cosϕ− cos θ)

⇒ y =
b(cosϕ− cos θ)

(sin θ − sinϕ)

y2 =
−a2 sinϕ sin θ(cosϕ− cos θ)2

(sin θ − sinϕ)2

⇒ bx(sinϕ− sin θ) = ab(cos θ sinϕ− cosϕ sin θ)

⇒ x =
a(cos θ sinϕ− cosϕ sin θ)

sinϕ− sin θ

=
a2(cos θ sinϕ− cosϕ sin θ)2

(sinϕ− sin θ)2

Therefore

x2 + y2 =
a2

(sinϕ− sin θ)2
(
(cos θ sinϕ− cosϕ sin θ)2 − sinϕ sin θ(cosϕ− cos θ)2

)
=

a2

(sinϕ− sin θ)2
(
(sinϕ− sin θ)(cos2 θ sinϕ− sin θ cos2 ϕ)

)
= a2 − b2
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Question (1988 STEP III Q8)

Find the equations of the tangent and normal to the parabola y2 = 4ax at the point
(at2, 2at). For i = 1, 2, and 3, let Pi be the point (at2i , 2ati), where t1, t2 and t3 are
all distinct. Let A1 be the area of the triangle formed by the tangents at P1, P2

and P3, and let A2 be the area of the triangle formed by the normals at P1, P2 and
P3. Using the fact that the area of the triangle with vertices at (x1, y1), (x2, y2) and
(x3, y3) is the absolute value of

1
2 det

x1 y1 1
x2 y2 1
x3 y3 1

 ,

show that A3 = (t1 + t2 + t3)
2A1. Deduce a necessary and sufficient condition in

terms of t1, t2 and t3 for the normals at P1, P2 and P3 to be concurrent.

dy
dt = 2a, dxdt = 2at ⇒ dy

dx = 1
t .

Therefore the equation of the tangent will be y−2at
x−at2

= 1
t ⇒ y = 1

tx+ at and normal

will be y−2at
x−at2

= −t ⇒ y = t(at2 − x+ 2a).
The tangents will meet when: {

tiy − x = at2i
tjy − x = at2j

⇒ (ti − tj)y = a(ti − tj)(ti + tj)

⇒ y = a(ti + tj)

x = atitj

The normals will meet when:{
y + tix = at3i + 2ati

y + tjx = at3j + 2atj

⇒ (ti − tj)x = a(ti − tj)(t
2
i + titj + t2j + 2)

⇒ x = a(t2i + titj + t2j + 2)

y = −atitj(ti + tj)

Therefore the area of our triangles will be:

1
2 det

at1t2 a(t1 + t2) 1
at2t3 a(t2 + t3) 1
at3t1 a(t3 + t1) 1

 =
a2

2
det

t1t2 (t1 + t2) 1
t2t3 (t2 + t3) 1
t3t1 (t3 + t1) 1


=

a2

2
det

 t1t2 (t1 + t2) 1
t2(t3 − t1) (t3 − t1) 0
t1(t3 − t2) (t3 − t2) 0


=

a2

2
|(t2 − t1)(t3 − t2)(t1 − t3)|

and

1
2 det

a(t21 + t1t2 + t22 + 2) −at1t2(t1 + t2) 1
a(t22 + t2t3 + t23 + 2) −at2t3(t2 + t3) 1
a(t23 + t3t1 + t21 + 2) −at3t1(t3 + t1) 1

 =
a2

2
det

(t21 + t1t2 + t22 + 2) −t1t2(t1 + t2) 1
(t22 + t2t3 + t23 + 2) −t2t3(t2 + t3) 1
(t23 + t3t1 + t21 + 2) −t3t1(t3 + t1) 1


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=
a2

2
det

 (t21 + t1t2 + t22 + 2) −t1t2(t1 + t2) 1
t23 − t21 + t2(t3 − t1) t2(t

2
1 + t1t2 − t2t3 − t23) 0

t23 − t22 + t1(t3 − t2) t1(t
2
2 + t2t1 − t1t3 − t23) 0


=

a2

2
det

 (t21 + t1t2 + t22 + 2) −t1t2(t1 + t2) 1
(t3 − t1)(t3 + t2 + t1) t2(t1 − t3)(t1 + t3 + t2) 0
(t3 − t2)(t3 + t2 + t1) t1(t2 − t3)(t1 + t2 + t3) 0


=

a2

2
(t1 + t2 + t3)

2|(t2 − t1)(t3 − t2)(t1 − t3)|

as required.
The normals will be concurrent iff the area of their triangle is 0. This is certainly true

if t1 + t2 + t3 = 0. In fact the only if is also true, since no 3 tangents can be concurrent.

Question (1992 STEP III Q9)

The straight line OSA, where O is the origin, bisects the angle between the positive
x and y axes. The ellipse E has S as focus. In polar coordinates with S as pole and
SA as the initial line, E has equation ℓ = r(1 + e cos θ). Show that, at the point on
E given by θ = α, the gradient of the tangent to the ellipse is given by

dy

dx
=

sinα− cosα− e

sinα+ cosα+ e
.

The points on E given by θ = α and θ = β are the ends of a diameter of E. Show
that

tan(α/2) tan(β/2) = −1 + e

1− e
.

[Hint. A diameter of an ellipse is a chord through its centre.]

(x, y)

S

ℓ = r(1 + e cos θ)

⇒ 0 =
dr

dθ
(1 + e cos θ)− re sin θ
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⇒ dr

dθ
=

re sin θ

1 + e cos θ

Suppose we consider the (x′, y′) plane, which is essentially the x− y plan rotated by
45◦, then we would have

dy′

dx′
=

dy′

dθ
dx′

dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
re sin θ
1+e cos θ sin θ + r cos θ
re sin θ
1+e cos θ cos θ − r sin θ

=
re sin2 θ + r cos θ(1 + e cos θ)

re sin θ cos θ − r sin θ(1 + e cos θ)

=
cos θ + e cos2 θ + e sin2 θ

− sin θ

=
cos θ + e

− sin θ

Since our frame is rotated by 45◦ we need to consider the appropriate gradient for this.
We know that m = tan θ so m′ = tan(θ + 45◦) = 1+m

1−m
therefore we should have

dy

dx
=

1 + cos θ+e
− sin θ

1− cos θ+e
− sin θ

=
cos θ − sin θ + e

− sin θ − cos θ − e

=
sin θ − cos θ − e

sin θ + cos θ + e

As required.
The tangents at those points are parallel, therefore

cosα+ e

sinα
=

cosβ + e

sinβ

⇒
1−tan2 α

2

1+tan2 α
2
+ e

2 tan α
2

1+tan2 α
2

=

1−tan2 β
2

1+tan2 β
2

+ e

2 tan β
2

1+tan2 β
2

1− tan2 α
2 + e(1 + tan2 α

2 )

2 tan α
2

=
1− tan2 β

2 + e(1 + tan2 β
2 )

2 tan β
2

(1 + e) + (e− 1) tan2 α
2

2 tan α
2

=
(1 + e) + (e− 1) tan2 β

2

2 tan β
2

(1 + e)

tan α
2

− (1− e) tan
α

2
=

(1 + e)

tan β
2

− (1− e) tan
β

2

ie both tan α
2 and tan β

2 are roots of a quadratic of the form (1− e)x2 − cx− (1 + e)
but this means the product of the roots is −1+e

1−e
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Question (1994 STEP I Q5)

A parabola has the equation y = x2. The points P and Q with coordinates (p, p2)
and (q, q2) respectively move on the parabola in such a way that ∠POQ is always a
right angle.

(i) Find and sketch the locus of the midpoint R of the chord PQ.

(ii) Find and sketch the locus of the point T where the tangents to the parabola
at P and Q intersect.

(i) The line PO has gradient p2

p = p and teh line QO has gradient q, therefore we must
have that pq = −1. Therefore, R is the point

R =

(
p− 1

p

2
,
p2 + 1

p2

2

)

=

(
1

2

(
p− 1

p

)
, 2

(
1

2

(
p− 1

p

))2

+ 1

)
=
(
t, 2t2 + 1

)
So we are looking at another parabola.

π
x

y

(ii) The tangents are y = 2px+ c, ie p2 = 2p2 + c, ie y = 2px− p2 so we have

y − 2px = −p2
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y − 2qx = −q2

⇒ (2p− 2q)x = p2 − q2

⇒ x =
1

2
(p+ q)

y = p(p+ q)− p2

y = pq = −1

Therefore x = 1
2(p−

1
p), y = −1, so we have the line y = −1 (the directrix)

x

y

Question (2003 STEP III Q7)

In the x–y plane, the point A has coordinates (a , 0) and the point B has coordinates
(0 , b) , where a and b are positive. The point P , which is distinct from A and B,
has coordinates (s, t) . X and Y are the feet of the perpendiculars from P to the
x–axis and y–axis respectively, and N is the foot of the perpendicular from P to the
line AB . Show that the coordinates (x , y) of N are given by

x =
ab2 − a(bt− as)

a2 + b2
, y =

a2b+ b(bt− as)

a2 + b2
.

Show that, if

(
t− b

s

)(
t

s− a

)
= −1 , then N lies on the line XY .

Give a geometrical interpretation of this result.
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Question (2005 STEP III Q5)

Let P be the point on the curve y = ax2 + bx+ c (where a is non-zero) at which the
gradient is m. Show that the equation of the tangent at P is

y −mx = c− (m− b)2

4a
.

Show that the curves y = a1x
2 + b1x+ c1 and y = a2x

2 + b2x+ c2 (where a1 and
a2 are non-zero) have a common tangent with gradient m if and only if

(a2 − a1)m
2 + 2(a1b2 − a2b1)m+ 4a1a2(c2 − c1) + a2b

2
1 − a1b

2
2 = 0 .

Show that, in the case a1 ̸= a2 , the two curves have exactly one common tangent if
and only if they touch each other. In the case a1 = a2 , find a necessary and sufficient
condition for the two curves to have exactly one common tangent.

y′ = 2ax+ b

⇒ m = 2axt + b

⇒ xt =
m− b

2a

Therefore we must have

mxt = 2ax2t + bxt

y −mx = ax2t + bxt + c−mxt

= ax2t + bxt + c− (2ax2t + bxt)

= c− ax2t

= c− a

(
m− b

2a

)2

= c− (m− b)2

4a

They will have a common tangent if and only if the constant terms are equal, ie

c1 −
(m− b1)

2

4a1
= c2 −

(m− b2)
2

4a2

⇔ (c1 − c2) =
(m− b1)

2

4a1
− (m− b2)

2

4a2
⇔ 4a1a2(c1 − c2) = a2(m− b1)

2 − a1(m− b2)
2

= (a2 − a1)m
2 + 2(a1b2 − a2b1)m+ a2b

2
1 − a1b

2
2

as required.
Treating this as a polynomial in m, we can see that the two curves will have exactly

one common tangent iff ∆ = 0, ie:

0 = ∆

= (2(a1b2 − a2b1))
2 − 4(a2 − a1)(4a1a2(c2 − c1) + a2b

2
1 − a1b

2
2)
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= 4a21b
2
2 − 8a1a2b1b2 + 4a2b

2
1 − 4a22b

2
1 − 4a21b

2
2 + 4a1a2(b

2
1 + b22)− 16(a2 − a1)a1a2(c2 − c1)

= −8a1a2b1b2 + 4a1a2(b
2
1 + b22)− 16(a2 − a1)a1a2(c2 − c1)

= a1a2(4(b1 − b2)
2 − 16(a2 − a1)(c2 − c1))

= 4a1a2((b2 − b1)
2 − 4(a2 − a1)(c2 − c1)

But this is just the discriminant of the difference, ie equivalent to the two parabolas
just touching. (Assuming a1 − a2 ̸= 0 and we do end up with a quadratic).
If a1 = a2 = a then we need exactly one solution to 2a(b1 − b2)m + 4a2(c2 − c1) +

a(b21 − b22) = 0, ie b1 ̸= b2.

Question (2008 STEP III Q3)

The point P (a cos θ , b sin θ), where a > b > 0, lies on the ellipse

x2

a2
+

y2

b2
= 1 .

The point S(−ea , 0), where b2 = a2(1− e2) , is a focus of the ellipse. The point N
is the foot of the perpendicular from the origin, O, to the tangent to the ellipse at
P . The lines SP and ON intersect at T . Show that the y-coordinate of T is

b sin θ

1 + e cos θ
.

Show that T lies on the circle with centre S and radius a.

Find the gradient of the tangent of the ellipse at P :

2x

a2
+

2y

b2
dy

dx
= 0

⇒ dy

dx
= −2xb2

2ya2

= −a cos θb2

b sin θa2

= − b

a
cot θ

Therefore the gradient of ON is a
b tan θ.

y =
a

b
tan θx

y − 0

x− (−ea)
=

b sin θ − 0

a cos θ − (−ea)

y =
b sin θ

a(e+ cos θ)
(x+ ea)

⇒ y =
b sin θ

a(cos θ + e)

b

a
cot θy +

eb sin θ

cos θ + e

=
b2 cos θ

a2(cos θ + e)
y +

eb sin θ

cos θ + e

⇒ (cos θ + e)y = (1− e2) cos θy + eb sin θ

e(1 + e cos θ)y = eb sin θ

75



SM UFM Pure (with Solutions)

⇒ y =
b sin θ

1 + e cos θ

x =
b sin θ

1 + e cos θ

b

a
cot θ

=
b2 cos θ

a(1 + e cos θ)

Therefore T

(
b2 cos θ

a(1 + e cos θ)
,

b sin θ

1 + e cos θ

)
.

Finally, we can look at the distance of T from S

d2 =

(
b2 cos θ

a(1 + e cos θ)
− (−ea)

)2

+

(
b sin θ

1 + e cos θ
− 0

)2

=

(
b2 cos θ + ea2(1 + e cos θ)

)2
+ (ab sin θ)2

a2(1 + e cos θ)2

=
b4 cos2 θ + e2a4(1 + e cos θ)2 + 2ea2b2(1 + e cos θ) + a2b2 sin2 θ

a2(1 + e cos θ)2

=
a4(1− e2)2 cos2 θ + e2a4(1 + e cos θ)2 + 2ea2a2(1− e2)(1 + e cos θ) + a4(1− e2) sin2 θ

a2(1 + e cos θ)2

= a2
(
(1− e2)2 cos2 θ + e2(1 + e cos θ)2 + 2e(1− e2)(1 + e cos θ) + (1− e2)(1− cos2 θ)

(1 + e cos θ)2

)
= a2

(
e2(1 + e cos θ)2 + (1− e2)((1− e2) cos2 θ + 2e(1 + e cos θ) + (1− cos2 θ))

(1 + e cos θ)2

)
= a2

(
e2(1 + e cos θ)2 + (1− e2)(1 + e cos θ)2

(1 + e cos θ)2

)
= a2

Therefore a circle radius a centre S.

S(−ea, 0)
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Question (2014 STEP III Q3) (i) The line L has equation y = mx + c, where
m > 0 and c > 0. Show that, in the case mc > a > 0, the shortest distance
between L and the parabola y2 = 4ax is

mc− a

m
√
m2 + 1

.

What is the shortest distance in the case that mc ≤ a?

(ii) Find the shortest distance between the point (p, 0), where p > 0, and the
parabola y2 = 4ax, where a > 0, in the different cases that arise according to
the value of p/a. [You may wish to use the parametric coordinates (at2, 2at) of
points on the parabola.] Hence find the shortest distance between the circle
(x− p)2 + y2 = b2, where p > 0 and b > 0, and the parabola y2 = 4ax, where
a > 0, in the different cases that arise according to the values of p, a and b.

Question (2016 STEP III Q2)

The distinct points P (ap2, 2ap), Q(aq2, 2aq) and R(ar2, 2ar) lie on the parabola
y2 = 4ax, where a > 0. The points are such that the normal to the parabola at Q
and the normal to the parabola at R both pass through P .

(i) Show that q2 + qp+ 2 = 0.

(ii) Show that QR passes through a certain point that is independent of the choice
of P .

(iii) Let T be the point of intersection of OP and QR, where O is the coordinate
origin. Show that T lies on a line that is independent of the choice of P . Show

further that the distance from the x-axis to T is less than
a√
2
.

(i)

2y
dy

dx
= 4a

⇒ dy

dx
=

2a

y

Therefore we must have

−2aq

2a︸ ︷︷ ︸
gradient of normal

=
2ap− 2aq

ap2 − aq2︸ ︷︷ ︸
∆y/∆x

⇒ −q =
2

p+ q

0 = 2 + pq + q2
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(ii) We must have that q, r are the two roots of x2 + px+ 2 = 0

QR has the equation:

y − 2aq

x− aq2
=

2ar − 2aq

ar2 − aq2

⇒ y − 2aq

x− aq2
=

2

r + q

⇒ y =
2

q + r
(x− aq2) + 2aq

y = −2

p
x+ 2a

(
q − q2

q + r

)
y = −2

p
x+ 2a

qr

q + r

y = −2

p
x− 2a

2

p

y = −2

p
(x+ 2a)

Therefore the point (−2a, 0) lies on all such lines.

(iii) OP has equation y = 2
px

y =
2

p
x

y = −2

p
(x+ 2a)

2y = −4a

p

⇒ y = −2a

p

x = −a

Therefore T
(
−a,−2a

p

)
always lies on the line x = −a

The distance to the x-axis from T is 2a
|p| . We need to show that p can’t be too small.

Specifically x2 + px+ 2 = 0 must have 2 real roots, ie ∆ = p2 − 8 ≥ 0 ⇒ |p| ≥ 2
√
2,

ie 2a
|p| ≤

2a
2
√
2
= a√

2
as required.
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Question (1989 STEP II Q2)

Let

tanx =

∞∑
n=0

anx
n for small x,

x cotx = 1 +
∞∑
n=1

bnx
n for small x and not zero.

Using the relation
cotx− tanx = 2 cot 2x, (*)

or otherwise, prove that an−1 = (1− 2n)bn, for n ⩾ 1. Let

xcosecx = 1 +
∞∑
n=1

cnx
n for small x ̸= 0.

Using a relation similar to (∗) involving 2cosec2x, or otherwise, prove that

cn =
2n−1 − 1

2n − 1

1

2n−1
an−1 (n ⩾ 1).

cotx− tanx = 2 cot 2x

⇒ x cotx− x tanx = 2x cot 2x

⇒ 1 +
∞∑
n=1

bnx
n −

∞∑
n=0

anx
n+1 = 1 +

∞∑
n=1

bn(2x)
n

⇒
∞∑
n=1

(1− 2n)bnx
n =

∞∑
n=1

an−1x
n

⇒ an−1 = (1− 2n)bn if n ≥ 1

cotx+ tanx = 22x

So

cotx+ tanx = 22x

⇒ x cotx+ x tanx = 2x2x

⇒ 1 +

∞∑
n=1

bnx
n +

∞∑
n=0

anx
n+1 = 1 +

∞∑
n=1

cn(2x)
n

⇒
∞∑
n=1

1

1− 2n
an−1 +

∞∑
n=1

an−1x
n =

∞∑
n=1

2ncnx
n

⇒ cn =
1

2n

(
1 +

1

1− 2n

)
an−1

=
1

2n
2n − 2

2n − 1
an−1

=
1

2n−1

2n−1 − 1

2n − 1
an−1
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Question (1990 STEP III Q7)

The points P (0, a), Q (a, 0) and R (a,−a) lie on the curve C with cartesian equation

xy2 + x3 + a2y − a3 = 0, where a > 0.

At each of P,Q and R, express y as a Taylor series in h, where h is a small increment
in x, as far as the term in h2. Hence, or otherwise, sketch the shape of C near each
of these points. Show that, if (x, y) lies on C, then

4x4 − 4a3x− a4 ⩽ 0.

Sketch the graph of y = 4x4 − 4a3x− a4. Given that the y-axis is an asymptote to
C, sketch the curve C.

0 = xy2 + x3 + a2y − a3

d

dx
: 0 = y2 + 2xyy′ + 3x2 + a2y′

⇒ y′ = − y2 + 3x2

a2 + 2xy

d2

dx2
: 0 = 2yy′ + 2yy′ + 2x(y′)2 + 2xyy′′ + 6x+ a2y′′

⇒ y′′ = −4yy′ + 2x(y′)2 + 6x

a2 + 2xy

P : y = a

y′ = −a2

a2
= −1

y′′ = −−4a

a2
=

4

a

⇒ y ≈ a− h+
2

a
h2

Q : y = 0

y′ = −3a2

a2
= −3

y′′ = −18a+ 6a

a2
= −24

a

⇒ y ≈ 0− 3h− 12

a
h

R : y = −a

y′ = −a2 + 3a2

a2 − 2a2
= 4

y′′ = −−16a+ 32a+ 6a

a2 − 2a2
=

22

a

⇒ y ≈ −a+ 4h+
11

a
h2
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Alternatively:

0 = xy2 + x3 + a2y − a3

P (0, a) : y ≈ a+ c1h+ c2h
2

0 = h(a+ c1h)
2 + a2(a+ c1h+ c2h

2)− a3

= a3 − a3 + (a2 + a2c1)h+ (2ac1 + a2c2)h
2

⇒ c1 = −1, c2 =
2

a

⇒ y ≈ a− h+
2

a
h2

Q(a, 0) : y ≈ c1h+ c2h
2

0 = (a+ h)(c1h)
2 + (a+ h)3 + a2(c1h+ c2h

2)− a3

= a3 − a3 + (3a2 + a2c1)h+ (ac21 + 3a+ a2c2)h
2 + · · ·

⇒ c1 = −3, c2 = −12

a

⇒ y ≈ −3h− 12

a
h

R(a,−a) : y ≈ −a+ c1h+ c2h
2

0 = (a+ h)(−a+ c1h+ c2h
2)2 + (a+ h)3 + a2(−a+ c1h+ c2h

2)− a3

= (a2 − 2a2c1 + 3a2 + a2c1)h+ (−2ac1 + c21 + · · · )h2

⇒ c1 = 4, c2 =
11

a

⇒ y ≈ −a+ 4h+
11

a
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a

(a,−a)

(0, a)

x

y

If (x, y) lies on the curve, then viewing it as a quadratic in y we must have ∆ =
(a2)2 − 4 · x · (x3 − a3) ≥ 0 ⇒ a4 − 4x4 + 4xa3 ≥ 0 ⇒ 4x4 − 4a3x− a4 ≤ 0

x

y
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a

(a,−a)

(0, a)

x

y

Question (1991 STEP III Q1) (i) Evaluate

n∑
r=1

6

r(r + 1)(r + 3)
.

(ii) Expand ln(1 + x+ x2 + x3) as a series in powers of x, where |x| < 1, giving
the first five non-zero terms and the general term.

(iii) Expand ex ln(1+x) as a series in powers of x, where −1 < x ⩽ 1, as far as the
term in x4.

(i)

6

r(r + 1)(r + 3)
=

2

r
− 3

r + 1
+

1

r + 3

⇒
n∑

r=1

6

r(r + 1)(r + 3)
=

n∑
r=1

(
2

r
− 3

r + 1
+

1

r + 3

)

=
n∑

r=1

2

r
−

n∑
r=1

3

r + 1
+

n∑
r=1

1

r + 3

=

n∑
r=1

2

r
−

n+1∑
r=2

3

r
+

n+2∑
r=3

1

r

=
2

1
+

2

2
− 3

2
− 3

n+ 1
+

1

n+ 1
+

1

n+ 2
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=
3

2
− 2

n+ 1
+

1

n+ 2

(ii)

ln(1 + x+ x2 + x3) = ln

(
1− x4

1− x

)
= ln(1− x4)− ln(1− x)

=
∞∑
k=1

−x4k

k
−

∞∑
k=1

−xk

k

= x+
1

2
x2 +

1

3
x3 − 3

4
x4 +

1

5
x5 + · · ·

=

∞∑
k=1

akx
k

Where ak = 1
k if k ̸= 0 (mod 4) otherwise ak = − 3

k if k ≡ 0 (mod 4)

(iii)

exp(x ln(1 + x)) = exp

(
x

(
x− 1

2
x2 +

1

3
x3 − · · ·

))
= exp

(
x2 − 1

2
x3 +

1

3
x4
)

= 1 +

(
x2 − 1

2
x3 +

1

3
x4
)
+

1

2

(
x2 − 1

2
x3 +

1

3
x4
)2

+ · · ·

= 1 + x2 − 1

2
x3 +

1

3
x4 +

1

2
x4 + · · ·

= 1 + x2 − 1

2
x3 +

5

6
x4 + · · ·

Question (1994 STEP III Q5)

The function f is given by f(x) = sin−1 x for −1 < x < 1. Prove that

(1− x2)f ′′(x)− xf ′(x) = 0.

Prove also that

(1− x2)f(n+2)(x)− (2n+ 1)xf(n+1)(x)− n2f(n)(x) = 0,

for all n > 0, where f(n) denotes the nth derivative of f. Hence express f(x) as a
Maclaurin series. The function g is given by

g(x) = ln

√
1 + x

1− x
,

for −1 < x < 1. Write down a power series expression for g(x), and show that the
coefficient of x2n+1 is greater than that in the expansion of f, for each n > 0.

None
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Question (1997 STEP III Q1) (i) By considering the series expansion of (x2 +
5x+ 4) ex show that

10 e = 4 +
32

1!
+

42

2!
+

52

3!
+ · · · .

(ii) Show that

5 e = 1 +
22

1!
+

32

2!
+

42

3!
+ · · · .

(iii) Evaluate

1 +
23

1!
+

33

2!
+

43

3!
+ · · · .

(i)

(x2 + 5x+ 4)ex =

∞∑
k=0

1

k!
xk+2 +

∞∑
k=0

5

k!
xk+1 +

∞∑
k=0

4

k!
xk

=

∞∑
k=0

(
1

k!
+

5

(k + 1)!
+

4

(k + 2)!

)
xk+2 + 5x+ 4 + 4x

= 4 + 9x+

∞∑
k=0

(
(k + 2)(k + 1)

(k + 2)!
+

5(k + 2)

(k + 2)!
+

4

(k + 2)!

)
xk+2

= 4 + 9x+

∞∑
k=0

(
k2 + 3k + 2 + 5k + 10 + 4

(k + 2)!

)
xk+2

= 4 + 9x+
∞∑
k=0

(k + 4)2

(k + 2)!
xk+2

= 4 + 9x+

∞∑
k=2

(k + 2)2

k!
xk

So when x = 1 we have

10e = 4 +
32

1!
+

42

2!
+

52

3!
+ · · ·

(ii)

(x2 + 3x+ 1)ex =
∞∑
k=0

1

k!
xk+2 +

∞∑
k=0

3
1

k!
xk+1 +

∞∑
k=0

1

k!
xk

= 1 + 3x+
∞∑
k=1

(
1

(k − 1)!
+

3

k!
+

1

(k + 1)!

)
xk+1

= 1 + 3x+

∞∑
k=1

(k + 1)k + 3(k + 1) + 1

(k + 1)!
xk+1
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= 1 + 3x+

∞∑
k=1

k2 + 4k + 4

(k + 1)!
xk+1

= 1 + 3x+

∞∑
k=0

(k + 2)2

(k + 1)!
xk+1

= 1 + 3x+

∞∑
k=1

(k + 1)2

k!
xk

Plugging in x = 1 we get the desired result.

(iii)

xex =
∞∑
k=0

xk+1

k!

x
d

dx
: x(1 + x)ex =

∞∑
k=0

(k + 1)xk+1

k!

x
d

dx
: x(x(1 + x) + 1 + 2x)ex =

∞∑
k=0

(k + 1)2xk+1

k!

(x3 + 3x2 + x)ex =
∞∑
k=0

(k + 1)2xk+1

k!

d

dx
: ex(x3 + 3x2 + x+ 3x2 + 6x+ 1) =

∞∑
k=0

(k + 1)3xk

k!

⇒ 15e = 1 +
23

1!
+

33

2!
+ · · ·
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Question (1998 STEP III Q5)

The exponential of a square matrix A is defined to be

exp(A) =
∞∑
r=0

1

r!
Ar ,

where A0 = I and I is the identity matrix. Let

M =

(
0 −1
1 0

)
.

Show that M2 = −I and hence express exp(θM) as a single 2× 2 matrix, where θ is
a real number. Explain the geometrical significance of exp(θM). Let

N =

(
0 1
0 0

)
.

Express similarly exp(sN), where s is a real number, and explain the geometrical
significance of exp(sN). For which values of θ does

exp(sN) exp(θM) = exp(θM) exp(sN)

for all s? Interpret this fact geometrically.

M2 =

(
0 −1
1 0

)2

=

(
0 · 0 + (−1) · 1 0 · (−1) + (−1) · 0
1 · 0 + 0 · 1 1 · (−1) + 0 · 0

)
=

(
−1 0
0 −1

)
= −I

exp(θM) =
∞∑
r=0

1

r!
(θM)r

=
∞∑
r=0

1

r!
θrMr

= cos θI+ sin θM

=

(
cos θ − sin θ
sin θ cos θ

)
This is a rotation of θ degrees about the origin.

N2 =

(
0 1
0 0

)2

=

(
0 0
0 0

)

87



SM UFM Pure (with Solutions)

⇒ exp(sN) =

∞∑
r=0

1

r!
(sN)r

= I+ sN

=

(
1 s
0 1

)
This is a shear, leaving the y-axis invariant, sending (1, 1) to (1 + s, 1).
Suppose those matrices commute, for all s, ie(

1 s
0 1

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1 s
0 1

)
⇒

(
cos θ − s sin θ − sin θ + s cos θ

sin θ cos θ

)
=

(
cos θ s cos θ − sin θ
sin θ s sin θ + cos θ

)
⇒ sin θ = 0

⇒ θ = nπ, n ∈ Z

Clearly it doesn’t matter when we do nothing. If we are rotating by π then it also
doesn’t matter which order we do it in as the stretch happens in both directions equally.

Question (1998 STEP III Q7)

Sketch the graph of f(s) = es(s − 3) + 3 for 0 ≤ s < ∞. Taking e ≈ 2.7, find the
smallest positive integer, m, such that f(m) > 0. Now let

b(x) =
x3

ex/T − 1

where T is a positive constant. Show that b(x) has a single turning point in
0 < x < ∞. By considering the behaviour for small x and for large x, sketch b(x)
for 0 ≤ x < ∞. Let ∫ ∞

0
b(x) dx = B,

which may be assumed to be finite. Show that B = KTn where K is a constant,

and n is an integer which you should determine. Given that B ≈ 2

∫ Tm

0
b(x) dx, use

your graph of b(x) to find a rough estimate for K.

None
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Question (2001 STEP III Q1)

Given that y = ln(x +
√
x2 + 1), show that

dy

dx
=

1√
x2 + 1

. Prove by induction

that, for n ≥ 0 , (
x2 + 1

)
y(n+2) + (2n+ 1)xy(n+1) + n2y(n) = 0 ,

where y(n) =
dny

dxn
and y(0) = y . Using this result in the case x = 0 , or otherwise,

show that the Maclaurin series for y begins

x− x3

6
+

3x5

40

and find the next non-zero term.

y = ln(x+
√

x2 + 1)

⇒ dy

dx
=

1

x+
√
x2 + 1

· d

dx

(
x+

√
x2 + 1

)
=

1

x+
√
x2 + 1

(
1 +

1

2

2x√
x2 + 1

)
=

1

x+
√
x2 + 1

(√
x2 + 1 + x√
x2 + 1

)
=

1√
x2 + 1

Note that y(2) = −1

2

2x

(x2 + 1)3/2
= − x

(x2 + 1)3/2
, and in particular (x2+1)y(2)+xy(1) =

0.
Now applying Leibnitz formula:

0 =
(
(x2 + 1)y(2) + xy(1)

)(n)
=
(
(x2 + 1)y(2)

)(n)
+
(
xy(1)

)(n)
= (x2 + 1)y(n+2) + n2xy(n+1) +

(
n

2

)
2y(n) + xy(n+1) + ny(n)

= (x2 + 1)y(n+2) + (2n+ 1)xy(n+1) + (n2 − n+ n)y(n)

= (x2 + 1)y(n+2) + (2n+ 1)xy(n+1) + n2y(n)

as required.
When x = 0:

y(0) = ln(0 +
√
02 + 1)

= ln 1 = 0

y′(0) =
1√

02 + 1
= 1

y(n+2) = −n2y(n)
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y(2k) = 0

y(3) = −1

y(5) = 32

y(7) = −52 · 32

Therefore the Maclaurin series about x = 0 is

y = x− 1

3!
x3 +

32

5!
x5 − 32 · 52

7!
x7 + · · ·

= x− 1

6
x3 +

3

1 · 2 · 4 · 5
x5 − 5

1 · 2 · 4 · 2 · 7
x7 + · · ·

= x− 1

6
x3 +

3

40
x5 − 5

56
x7 + · · ·

Question (2006 STEP III Q3) (i) Let

tanx =
∞∑
n=0

anx
n and cotx =

1

x
+

∞∑
n=0

bnx
n

for 0 < x < 1
2π . Explain why an = 0 for even n. Prove the identity

cotx− tanx ≡ 2 cot 2x

and show that
an = (1− 2n+1)bn .

(ii) Let cosec x =
1

x
+

∞∑
n=0

cnx
n for 0 < x < 1

2π . By considering cotx+ tanx, or

otherwise, show that
cn = (2−n − 1)bn .

(iii) Show that (
1 + x

∞∑
n=0

bnx
n

)2

+ x2 =

(
1 + x

∞∑
n=0

cnx
n

)2

.

Deduce from this and the previous results that a1 = 1, and find a3.

(i) Since tan(−x) = − tanx, tan is an odd function, and in particular all it’s even
coefficients are zero.

2 cot 2x ≡ 2cos2x

sin 2x

≡ 2(cos2 x− sin2 x)

2 sinx cosx

≡ cosx

sinx
− sinx

cosx
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≡ cotx− tanx

Therefore

1

x
+

∞∑
n=0

bnx
n

︸ ︷︷ ︸
cotx

−
∞∑
n=0

anx
n

︸ ︷︷ ︸
tanx

= 2

 1

2x
+

∞∑
n=0

bn(2x)
n

︸ ︷︷ ︸
cot 2x


⇒

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n − 2

∞∑
n=0

bn(2x)
n

=

∞∑
n=0

bn(1− 2n+1)xn

[xn] : an = (1− 2n+1)bn

(ii)

cotx+ tanx =
cosx

sinx
+

sinx

cosx

=
1

sinx cosx
= 22x

⇒ 1

x
+

∞∑
n=0

bnx
n

︸ ︷︷ ︸
cotx

+

∞∑
n=0

anx
n

︸ ︷︷ ︸
tanx

= 2

 1

2x
+

∞∑
n=0

cn(2x)
n

︸ ︷︷ ︸
2x


⇒

∞∑
n=0

2n+1cnx
n =

∞∑
n=0

(an + bn)x
n

=
∞∑
n=0

(
(1− 2n+1)bn + bn

)
xn

=

∞∑
n=0

(
2− 2n+1

)
bnx

n

[xn] : cn = (2−n − 1)bn

(iii)

cot2 x+ 1 =2 x

⇒ x2 cot2 x+ x2 = x22x

⇒ x2

1

x
+

∞∑
n=0

bnx
n

︸ ︷︷ ︸
cotx


2

+ x2 = x2

1

x
+

∞∑
n=0

cnx
n

︸ ︷︷ ︸
x


2
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⇒

(
1 + x

∞∑
n=0

bnx
n

)2

+ x2 =

(
1 + x

∞∑
n=0

cnx
n

)2

⇒
(
1 + x(b1x+ b3x

3 + · · · )
)2

+ x2 =
(
1 + x(c1x+ c3x

3 + · · · )
)2

⇒ 1 + (1 + 2b1)x
2 + (2b3 + b21)x

4 + · · · = 1 + 2c1x
2 + (2c3 + c21)x

4 + · · ·
⇒ 1 + 2b1 = 2(2−1 − 1)b1

⇒ b1 = −1

3
⇒ a1 = (1− 22)(−1

3) = 1

c1 =
1

6

⇒ 2b3 +
1

9
= 2c3 +

1

36

⇒ 2b3 − 2(2−3 − 1)b3 = − 1

12

⇒ 15

4
b3 = − 1

12

⇒ b3 = − 1

45

⇒ a3 = −(1− 24)
1

45
=

1

3

Question (2006 STEP III Q4)

The function f satisfies the identity

f(x) + f(y) ≡ f(x+ y) (∗)

for all x and y. Show that 2f(x) ≡ f(2x) and deduce that f ′′(0) = 0. By considering
the Maclaurin series for f(x), find the most general function that satisfies (∗). [Do
not consider issues of existence or convergence of Maclaurin series in this question.]

(i) By considering the function , defined by ln
(
g(x)

)
= (x), find the most general

function that, for all x and y, satisfies the identity

g(x)g(y) ≡ g(x+ y) .

(ii) By considering the function H, defined by h(eu) = H(u), find the most general
function that satisfies, for all positive x and y, the identity

h(x) + h(y) ≡ h(xy) .

(iii) Find the most general function t that, for all x and y, satisfies the identity

t(x) + t(y) ≡ t(z) ,

where z =
x+ y

1− xy
.
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2f(x) ≡ f(x) + f(x)

≡ f(x+ x)

≡ f(2x)

⇒ 2f(0) = f(0)

⇒ f(0) = 0

f ′′(0) = lim
h→0

f(2h)− 2f(0) + f(−2h)

h2

= lim
h→0

f(2h) + f(−2h)

h2

= lim
h→0

f(0)

h2

= 0

⇒ f ′′(0) = 0

If f(x) satisfies the equation, then f ′(x) satisfies the equation. In particular this means
that f (n)(0) = 0 for all n ≥ 2. Therefore the only non-zero term in the Maclaurin series
is x1. Therefore f(x) = cx

(i) Suppose g(x)g(y) ≡ g(x+ y), then if G(x) = ln g(x) we must have G(x) +G(y) ≡
G(x+ y), ie G(x) = cx ⇒ g(x) = ecx

(ii) Suppose h(x)+h(y) ≡ h(xy), then if h(eu) = H(u) we must have thatH(u)+H(v) ≡
h(eu) + h(ev) ≡ h(eu+v) ≡ H(u + v).Therefore H(u) = cu, ie h(eu) = cu or
h(x) = h(elnx) = c lnx.

(iii) Finally if t(x) + t(y) ≡ t(z), the considering T (w) = t(tanw) then T (x) + T (y) ≡
t(tanx)+t(tan y) ≡ t( tanx+tan y

1−tanx tan y ) ≡ t(tan(x+y)) ≡ T (x+y). Therefore T (x) = cx

Therefore t(tanw) = cw ⇒ t(x) = c tan−1 x

et = 1 + t+ t2

2 + · · · , therefore

lim
t→0

f(t) = lim
t→0

t

et − 1

= lim
t→0

t

t+ t2

2 + o(t3)

= lim
t→0

1

1 + t
2 + o(t2)

→ 1

f ′(t) =
(et − 1)− tet

(et − 1)2

lim
t→0

f ′(t) = lim
t→0

(et − 1)− tet

(et − 1)2

= lim
t→0

t+ t2

2 + o(t3)−
(
t+ t2 + t3

2 + o(t4)
)

(t+ t2

2 + o(t3))2

93



SM UFM Pure (with Solutions)

= lim
t→0

− t2

2 + o(t3)

t2 + o(t3)

= lim
t→0

−1
2 + o(t)

1 + o(t)

→ −1

2

Claim f(t) + 1
2 t is an even function. Proof: Consider f(−t)− 1

2 t, then

f(−t)− 1

2
t =

−t

e−t − 1
− 1

2
t

=
−tet

1− et
− 1

2
t

=
t(1− et)− t

1− et
− 1

2
t

= t− t

1− et
− 1

2
t

=
t

et − 1
+

1

2
t

So it is even.

(i)(ii)

x

y

(0, 1)

y = e−x

y = 1− x

Drawing the tangent to y = e−x at (0, 1) we find that e−t ≥ (1 − t) for all t, in
particular, et(1− t) ≤ 1

f ′(t) = (et(1−t)−1
(et−1)2

≤ 0 and f ′(t) = −1
2 when t = 0
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x

y

(0, 1)

y = x
ex−1

[Note: This is the exponential generating function for the Bernoulli numbers]
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Question (2012 STEP II Q4)

In this question, you may assume that the infinite series

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n+1x

n

n
+ · · ·

is valid for |x| < 1.

(i) Let n be an integer greater than 1. Show that, for any positive integer k,

1

(k + 1)nk+1
<

1

knk
.

Hence show that ln

(
1 +

1

n

)
<

1

n
. Deduce that

(
1 +

1

n

)n
< e .

(ii) Show, using an expansion in powers of
1

y
, that ln

(
2y + 1

2y − 1

)
>

1

y
for y > 1

2 .

Deduce that, for any positive integer n,

e <

(
1 +

1

n

)n+ 1
2

.

(iii) Use parts (i) and (ii) to show that as n → ∞(
1 +

1

n

)n
→ e .

(i) Since k ≥ 1 we have nk+1 > nk and (k + 1) > k, therefore (k + 1)nk+1 > knk ⇒
1

(k+1)nk+1 < 1
knk

ln

(
1 +

1

n

)
=

1

n
− 1

2n2
+

1

3n3
− 1

4n4
+ · · ·

=
1

n
−
(

1

2n2
− 1

3n3

)
︸ ︷︷ ︸

>0

−
(

1

4n4
− 1

5n5

)
︸ ︷︷ ︸

>0

−·

<
1

n

⇒ n ln

(
1 +

1

n

)
< 1

⇒ ln

((
1 +

1

n

)n)
< 1

⇒
(
1 +

1

n

)n

< e
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(ii)

ln

(
2y + 1

2y − 1

)
= ln

(
1 +

1

2y

)
− ln

(
1− 1

2y

)
=

1

2y
− 1

2(2y)2
+

1

3(2y)3
− · · · −

(
− 1

2y
− 1

2(2y)2
− 1

3(2y)3
− · · ·

)
=

1

y
+

2

3(2y)3
+

2

5(2y)5

=
∞∑
r=1

2

(2r − 1)(2y)2r−1

>
1

y

⇒ ln

(
1 +

1

y − 1
2

)
>

1

y

⇒ ln

(
1 +

1

n

)
>

1

n+ 1
2

⇒ (n+ 1
2) ln

(
1 +

1

n

)
> 1

⇒ ln

(1 + 1

n

)n+
1
2

 > 1

⇒
(
1 +

1

n

)n+
1
2
> e

Since
(
1 + 1

n

)n
is both bounded above, and increasing, it must tend to some limit L.

lim
n→∞

(
1 +

1

n

)n

≤ e ≤ lim
n→∞

(
1 +

1

n

)n+ 1
2

⇒ lim
n→∞

(
1 +

1

n

)n

≤ e ≤ lim
n→∞

(
1 +

1

n

)n

lim
n→∞

√
1 +

1

n

⇒ lim
n→∞

(
1 +

1

n

)n

≤ e ≤ lim
n→∞

(
1 +

1

n

)n

And therefore equality must hold.
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Question (2012 STEP III Q4) (i) Show that

∞∑
n=1

n+ 1

n!
= 2e− 1

and
∞∑
n=1

(n+ 1)2

n!
= 5e− 1 .

Sum the series
∞∑
n=1

(2n− 1)3

n!
.

(ii) Sum the series

∞∑
n=0

(n2 + 1)2−n

(n+ 1)(n+ 2)
, giving your answer in terms of natural

logarithms.

(i)

∞∑
n=1

n+ 1

n!
=

∞∑
n=1

(
1

(n− 1)!
+

1

n!

)

=
∞∑
n=0

1

n!
+

∞∑
n=1

1

n!

=

∞∑
n=0

1

n!
+

∞∑
n=0

1

n!
− 1

= e+ e− 1

= 2e− 1

∞∑
n=1

(n+ 1)2

n!
=

∞∑
n=1

n(n− 1) + 3n+ 1

n!

=
∞∑
n=2

1

(n− 2)!
+ 3

∞∑
n=1

1

(n− 1)!
+

∞∑
n=1

1

n!

=

∞∑
n=0

1

n!
+ 3

∞∑
n=0

1

n!
+

∞∑
n=0

1

n!
− 1

= 5e− 1

∞∑
n=1

(2n− 1)3

n!
=

∞∑
n=1

8n3 − 12n2 + 6n− 1

n!

=
∞∑
n=1

8n(n− 1)(n− 2) + 12n2 − 10n− 1

n!
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=

∞∑
n=1

8n(n− 1)(n− 2) + 12n(n− 1) + 2n− 1

n!

= 8e+ 12e+ 2e− (e− 1)

= 21e+ 1

(ii)

∑∞
n=0

(n2+1)2−n

(n+1)(n+2) =
∑∞

n=0 2
−n + 2

∑∞
n=0

2−n

n+1 − 5
∑∞

n=0
2−n

n+2

= 2 + 2 log 2− 5
∑∞

n=2
2−n+2

n
= 2 + 2 log 2− 5 (2 log 2− 2)
= 12− 8 log 2

Question (2013 STEP III Q2)

In this question, you may ignore questions of convergence. Let y =
arcsinx√
1− x2

. Show

that

(1− x2)
dy

dx
− xy − 1 = 0

and prove that, for any positive integer n,

(1− x2)
dn+2y

dxn+2
− (2n+ 3)x

dn+1y

dxn+1
− (n+ 1)2

dny

dxn
= 0 .

Hence obtain the Maclaurin series for
arcsinx√
1− x2

, giving the general term for odd and

for even powers of x. Evaluate the infinite sum

1 +
1

3!
+

22

5!
+

22 × 32

7!
+ · · ·+ 22 × 32 × · · · × n2

(2n+ 1)!
+ · · · .

y =
arcsinx√
1− x2

dy

dx
=

(1− x2)−1/2 · (1− x2)1/2 − arcsinx · (−x)(1− x2)−1/2

1− x2

=
1 + xy

1− x2

⇒ 0 = (1− x2)
dy

dx
− xy − 1

dn

dxn+1
: 0 =

(
(1− x2)y′

)(n+1) − (xy)(n+1)

⇒ 0 = (1− x2)y(n+2) +

(
n+ 1

1

)
(1− x2)(1)y(n+1) +

(
n+ 1

2

)
(1− x2)(2)y(n) − (xy(n+1) +

(
n+ 1

1

)
y(n))

= (1− x2)y(n+2) + ((n+ 1) · (−2x)− x) y(n+1) +

(
(n+ 1)n

2
· (−2)− (n+ 1)

)
y(n)
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= (1− x2)y(n+2) − (2n+ 3)xy(n+1) − ((n+ 1)n+ (n+ 1)) y(n)

= (1− x2)y(n+2) − (2n+ 3)xy(n+1) − (n+ 1)2 y(n)

Since y(0) = 0, y′(0) = 1 we can look at the recursion: y(n+2) − (n+ 1)2y(n) for larger
terms, ie y(2k)(0) = 0
y(1)(0) = 1, y(3)(0) = (1 + 1)2 · 1 = 22, y(5)(0) = (3 + 1)2y(3) = 42 · 22 and y(2k+1)(0) =

(2k)2 · (2k − 2)2 · · · 22 · 12 = 22k · (k!)2. Therefore

arcsinx√
1− x2

=

∞∑
k=0

22k · (k!)2

(2k + 1)!
x2k+1

⇒
arcsin 1

2√
1−

(
1
2

)2 =
∞∑
k=0

22k · (k!)2

(2k + 1)!
2−2k−1

=
1

2

∞∑
k=0

(k!)2

(2k + 1)!

=
1

2

(
1 +

1

3!
+

22

5!
+ · · ·+

)
⇒ S = 2

2π
6√
3
=

2π

3
√
6

Question (2015 STEP II Q1) (i) By use of calculus, show that x − ln(1 + x) is
positive for all positive x. Use this result to show that

n∑
k=1

1

k
> ln(n+ 1) .

(ii) By considering x+ ln(1− x), show that

∞∑
k=1

1

k2
< 1 + ln 2 .

(i) Consider f(x) = x− ln(1 + x), then f ′(x) = 1− 1
1+x = x

1+x > 0 if x > 0.

Therefore f(x) is strictly increasing on the positive reals. Since f(0) = 0 we must
have f(x) > 0 for all positive x, ie x− ln(1 + x) is positive for all positive x.

n∑
k=1

1

k
>︸︷︷︸

x>ln(1+x)

n∑
k=1

ln

(
1 +

1

k

)

=

n∑
k=1

ln

(
k + 1

k

)
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=

n∑
k=1

(ln(k + 1)− ln(k))

= ln(n+ 1)− ln 1

= ln(n+ 1)

(ii) Let g(x) = x + ln(1 − x) ,then g′(x) = 1 − 1
1−x = −x

1−x < 0 if 0 < x < 1 and
g(0) = 0. Therefore g(x) is decreasing and hence negative on 0 < x < 1, in
particular x < − ln(1− x)

n∑
k=2

1

k2
<︸︷︷︸

x<− ln(1+x)

n∑
k=2

− ln

(
1− 1

k2

)

= −
n∑

k=2

ln

(
k2 − 1

k2

)

=
n∑

k=2

(2 ln k − ln(k − 1)− ln(k + 1))

= lnn− ln(n+ 1)− ln 0 + ln 2

= ln 2 + ln
n

n+ 1

as n → ∞ we must have
∞∑
k=2

1

k2
< ln 2 ie

∞∑
k=1

1

k2
< 1 + ln 2
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Question (2018 STEP II Q5)

In this question, you should ignore issues of convergence.

(i) Write down the binomial expansion, for |x| < 1 , of
1

1 + x
and deduce that

ln(1 + x) = −
∞∑
n=1

(−x)n

n

for |x| < 1 .

(ii) Write down the series expansion in powers of x of e−ax . Use this expansion to
show that ∫ ∞

0

(1− e−ax) e−x

x
dx = ln(1 + a) (|a| < 1) .

(iii) Deduce the value of ∫ 1

0

xp − xq

lnx
dx (|p| < 1, |q| < 1) .

(i)

1

1 + x
= 1− x+ x2 − x3 + · · ·

⇒
∫ x

0

1

1 + t
dt =

∫ x

0

∞∑
n=0

(−t)ndt

=

[ ∞∑
n=0

−(−t)n+1

n+ 1

]x
0

⇒ ln(1 + x) = −
∞∑
n=1

(−x)n

n

(ii)

e−ax =

∞∑
n=0

(−a)n

n!
xn

⇒
∫ ∞

0

1

x

(
1− e−ax

)
e−xdx =

∫ ∞

0

1

x

(
−

∞∑
n=1

(−a)n

n!
xn

)
e−xdx

= −
∫ ∞

0

∞∑
n=1

(−a)n

n!
xn−1e−xdx

= −
∞∑
n=1

(−a)n

n!

∫ ∞

0
xn−1e−xdx

= −
∞∑
n=1

(−a)n

n!
(n− 1)!
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= −
∞∑
n=1

(−a)n

n

= ln(1 + a)

(iii) ∫ 1

0

xp − xq

lnx
dx =

∫ 1

0

xp(1− xq−p)

lnx
dx

e−u = x,dx = −e−udu : =

∫ 0

u=∞

e−pu − e−qu

−u
(−e−u)du

=

∫ ∞

0

e−u(e−qu − e−pu)

u
du

=

∫ ∞

0

e−(1+q)u(1− e−(p−q)u)

u
du

v = (1 + q)u,dv = (1 + q)du : =

∫ ∞

0

e−v(1− e
−
(

p−q
1+q

)
v

v
dv

= ln

(
1 +

p− q

1 + q

)
= ln

(
1 + p

1 + q

)
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Question (2018 STEP III Q8)

In this question, you should ignore issues of convergence.

(i) Let

I =

∫ 1

0

f(x−1)

1 + x
dx ,

where f(x) is a function for which the integral exists. Show that

I =
∞∑
n=1

∫ n+1

n

f(y)

y(1 + y)
dy

and deduce that, if f(x) = f(x+ 1) for all x, then

I =

∫ 1

0

f(x)

1 + x
dx .

(ii) The fractional part, {x}, of a real number x is defined to be x − ⌊x⌋ where
⌊x⌋ is the largest integer less than or equal to x. For example {3.2} = 0.2 and
{3} = 0 . Use the result of part (i) to evaluate∫ 1

0

{x−1}
1 + x

dx and

∫ 1

0

{2x−1}
1 + x

dx .

(iii) (Bonus) Use the same method to evaluate∫ 1

0

x{x−1}
1− x2

dx .

(iv) (Bonus - harder) Use the same method to evaluate∫ 1

0

x2{x−1}
1− x2

dx .

(i)

I =

∫ 1

0

f(x−1)

1 + x
dx

u = x−1, du = −x−2dx : =

∫ 1

∞

f(u)

1 + 1
u

−1

u2
du

=

∫ ∞

1

f(u)

u(1 + u)
du

=
∞∑
n=1

∫ n+1

n

f(u)

u(u+ 1)
du

iff(x) = f(x+ 1) ∀x =
∞∑
n=1

∫ 1

0

f(x+ n)

(x+ n)(x+ n+ 1)
dx
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=

∞∑
n=1

∫ 1

0

f(x)

(x+ n)(x+ n+ 1)
dx

=

∫ 1

0
f(x)

( ∞∑
n=1

1

(x+ n)(x+ n+ 1)

)
dx

=

∫ 1

0
f(x)

( ∞∑
n=1

(
1

x+ n
− 1

x+ n+ 1

))
dx

=

∫ 1

0
f(x)

(
1

x+ 1

)
dx

=

∫ 1

0

f(x)

x+ 1
dx

(ii) Since the fractional part is periodic with period 1, we can say∫ 1

0

{x−1}
1 + x

dx =

∫ 1

0

{x}
x+ 1

dx

=

∫ 1

0

x

x+ 1
dx

=

∫ 1

0
1− 1

x+ 1
dx

= [x− ln(1 + x)]10

= 1− ln 2

∫ 1

0

{2x−1}
1 + x

dx =

∫ 1

0

{2x}
x+ 1

dx

=

∫ 1/2

0

2x

x+ 1
dx+

∫ 1

1/2

2x− 1

x+ 1
dx

= 2

∫ 1

0

x

x+ 1
dx+

∫ 1

1/2

−1

x+ 1
dx

= 2− 2 ln 2−
(
ln 2− ln 3

2

)
= 2− 4 ln 2 + ln 3

= 2 + ln 3
16

(iii) ∫ 1

0

x{x−1}
1− x2

dx =
1

2

(∫ 1

0

{x−1}
1− x

− {x−1}
1 + x

dx

)

Consider for f periodic with period 1

∫ 1

0

f(x−1)

1− x
dx =

∫ ∞

1

f(u)

u(u− 1)
du
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=

∞∑
n=1

∫ n+1

n

f(u)

u(u− 1)
du

=
∞∑
n=1

∫ 1

0

f(u)

(u+ n)(u+ n− 1)
du

=

∫ 1

0

∞∑
n=1

f(u)

(u+ n)(u+ n− 1)
du

=

∫ 1

0
f(u)

∞∑
n=1

(
1

u+ n− 1
− 1

u+ n

)
du

=

∫ 1

0

f(u)

u
du

So we have ∫ 1

0

x{x−1}
1− x2

dx =
1

2

(∫ 1

0

{x−1}
1− x

− {x−1}
1 + x

dx

)
=

1

2

∫ 1

0

{x}
x

dx− 1

2
(1− ln 2)

=
1

2
− 1

2
+

1

2
ln 2

=
1

2
ln 2

(i) Notice that f(x) = x − tanhx has f ′(x) = 1 − sech2x = tanh2 x > 0 so f(x) is
strictly increasing on (0,∞) and f(0) = 0 therefore f(x) is positive for all x positive

(ii) Let f(x) = x sinhx−2 coshx+2 then f ′(x) = sinhx+x coshx−2 sinhx = x coshx−
sinhx = coshx(x− tanhx) > 0 by the first part. f(0) = 0 so f(x) is positive for all
x positive.

(iii) Let f(x) = 2x cosh 2x− 3 sinh 2x+ 4x then

f ′(x) = 2 cosh 2x+ 4x sinh 2x− 6 cosh 2x+ 4

= 4(x sinh 2x− cosh 2x+ 1)

= 4(x2 coshx sinhx− 2 cosh2 x)

= 8 cosh2 x(x− tanhx)

Which is always positive when x ¿ 0, f(0) = 0 so f(x) > 0 for all positive x.

Let f(x) = x(coshx)
1
3

sinhx then

f ′(x) =
(coshx)

1
3 sinhx+ 1

3x cosh
− 2

3 x sinh2 x− x(coshx)
1
3 coshx

sinh2 x

=
coshx sinhx+ 1

3x sinh
2 x− x cosh2 x

coshx
2
3x sinh2 x
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=
3 coshx sinhx+ x(sinh2 x− 3 cosh2 x)

3 coshx
2
3x sinh2 x

=
3
2 sinh 2x+ x(−2 cosh 2x− 2)

3 coshx
2
3x sinh2 x

=
3 sinh 2x− 4x cosh 2x− 4x

6 coshx
2
3x sinh2 x

which from the earlier part is always negative.

x

y

Question (1989 STEP II Q3)

The real numbers x and y are related to the real numbers u and v by

2(u+ iv) = ex+iy − e−x−iy.

Show that the line in the x-y plane given by x = a, where a is a positive constant,
corresponds to the ellipse ( u

sinh a

)2
+
( v

cosh a

)2
= 1

in the u-v plane. Show also that the line given by y = b, where b is a constant and
0 < sin b < 1, corresponds to one branch of a hyperbola in the u-v plane. Write down
the u and v coordinates of one point of intersection of the ellipse and hyperbola
branch, and show that the curves intersect at right-angles at this point. Make
a sketch of the u-v plane showing the ellipse, the hyperbola branch and the line
segments corresponding to:

(i) x = 0;

(ii) y = 1
2π, 0 ⩽ x ⩽ a.

2(u+ iv) = ea+iy − e−a−iy

= (ea cos y − e−a cos y) + (ea sin y + e−a sin y)i

= 2 sinh a cos y + 2 cosh a sin yi

⇒ u

sinh a
= cos y

v

cosh a
= sin y

⇒ 1 =
( u

sinh a

)2
+
( v

cosh a

)2
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2(u+ iv) = ex+ib − e−x−ib

= 2 sinhx cos b+ 2 coshx sin bi

⇒ u

cos b
= sinhx

v

sin b
= coshx

⇒ 1 =
( v

sin b

)2
−
( u

cos b

)2
Therefore all the points lie of a hyperbola, and since v

sin b > 0 ⇒ v > 0 it’s one branch
of the hyperbola. (And all points on it are reachable as x varies from −∞ < x < ∞.

2(u+ iv) = ea+ib − e−a−ib

= 2 sinh a cos b+ 2 cosh a sin bi

so we can take u = sinh a cos b, v = cosh a sin b.

d

du
0 =

2u

sinh2 a
+

2v

cosh2 a

dv

du

⇒ dv

du
= −u

v
coth2 a

dv

du
|(u,v) = −sinh a cos b

cosh a sin b
coth2 a

= − cot b coth a

d

du
0 =

2v

sin2 b

dv

du
− 2u

cos2 b

⇒ dv

du
=

u

v
tan2 b

dv

du
|(u,v) =

sinh a cos b

cosh a sin b
tan2 b

= tanh a tan b

Therefore they are negative reciprocals and hence perpendicular.
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x

y

Question (1989 STEP III Q5)

Given that y = cosh(n cosh−1 x), for x ⩾ 1, prove that

y =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
.

Explain why, when n = 2k+1 and k ∈ Z+, y can also be expressed as the polynomial

a0x+ a1x
3 + a2x

5 + · · ·+ akx
2k+1.

Find a0, and show that

(i) a1 = (−1)k−12k(k + 1)(2k + 1)/3;

(ii) a2 = (−1)k2(k − 1)k(k + 2)(2k + 1)/15.

Find also the value of
k∑

r=0

ar.

Recall, cosh−1 x = ln(x+
√
x2 − 1)

cosh(n cosh−1 x) =
1

2

(
exp(n cosh−1 x) + exp(−n cosh−1 x)

)
=

1

2

(
(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n

)
=

1

2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)

109



SM UFM Pure (with Solutions)

When n = 2k + 1

cosh(n cosh−1 x) =
1

2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)
=

1

2

(
2k+1∑
i=0

(
2k + 1

i

)
x2k+1−i

(
(
√

x2 − 1
i
+ (−

√
x2 − 1)i

))

=
k∑

i=0

(
2k + 1

2i

)
x2k+1−2i(x2 − 1)i

=
k∑

i=0

(
2k + 1

2i

)
x2(k−i)+1(x2 − 1)i

Which is clearly a polynomial with only odd degree terms.

a0 =
dy

dx
|x=0

=
k∑

i=0

(
2k + 1

2i

)(
(2(k − i) + 1)x2(k−i)(x2 − 1)i + 2i · x2(k−i)+2(x2 − 1)

)
=

(
2k + 1

2k

)
(−1)k

= (−1)k(2k + 1)

(i)

a1 =

(
2k + 1

2k

)(
k

1

)
(−1)k−1 +

(
2k + 1

2(k − 1)

)
(−1)k−1

= (−1)k−1 · ((2k + 1)k +
(2k + 1) · 2k · (2k − 1)

3!
)

= (−1)k−1(2k + 1)k
3 + 2k − 1

3

= (−1)k−12(2k + 1)k(k + 1)

(ii)

a2 =

(
2k + 1

2k

)(
k

2

)
(−1)k−2 +

(
2k + 1

2(k − 1)

)(
k − 1

1

)
(−1)k−2 +

(
2k + 1

2(k − 2)

)
(−1)k−2

=

(
2k + 1

1

)(
k

2

)
(−1)k−2 +

(
2k + 1

3

)(
k − 1

1

)
(−1)k−2 +

(
2k + 1

5

)
(−1)k−2

= (−1)k
((

2k + 1

1

)
k(k − 1)

2
+

(
2k + 1

3

)
(k − 1) +

(
2k + 1

5

))
= (−1)k

(
(2k + 1)k(k − 1)

2
+

(2k + 1)k(2k − 1)

3
+

(2k + 1)k(2k − 1)(k − 1)(2k − 3)

5 · 2 · 3

)
= (−1)k(2k + 1)k

1

30
(15(k − 1) + 10(2k − 1) + (2k − 1)(k − 1)(2k − 3))
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k∑
r=0

ak =
1

2

(
(1 +

√
12 − 1)n + (1−

√
12 − 1)n

)
= 1

Question (1990 STEP III Q9)

The real variables θ and u are related by the equation tan θ = sinhu and 0 ⩽ θ < 1
2π.

Let v = sechu. Prove that

(i) v = cos θ;

(ii)
dθ

du
= v;

(iii) sin 2θ = −2
dv

du
and cos 2θ = − coshu

d2v

du2
;

(iv)
du

dθ

d2v

dθ2
+

dv

dθ

d2u

dθ2
+

(
du

dθ

)2

= 0.

(i)

v = sechu

=
1

coshu

=
1√

1 + sinh2u
(u > 0)

=
1√

1 + tan2 θ

=
1√
sec2θ

= cos θ (0 < θ < π
2 )

(ii)

tan θ = sinhu

⇒︸︷︷︸
d
du

sec2 θ · dθ
du

= coshu

⇒ dθ

du
= coshu · cos2 θ

=
1

v
· v2

= v
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(iii)

sin 2θ = 2 sin θ cos θ

= 2 sin θ · dθ
du

= −2
dv

dθ
· dθ
du

(cos θ = v)

= −2
dv

du

sin 2θ = −2
dv

du

⇒︸︷︷︸
d
du

2 cos 2θ · dθ
du

= −2
d2v

du2

⇒ cos 2θ = −d2v

du2
1

v

= −d2v

du2
coshu

(iv)

du

dθ
=

1

v

⇒ d2u

dθ2
= − 1

v2
dv

dθ

=
1

v2
sin θ

dv

dθ
= − sin θ

⇒ d2v

dθ2
= − cos θ

= −v

Therefore

du

dθ

d2v

dθ2
+

dv

dθ

d2u

dθ2
+

(
du

dθ

)2

=
1

v
· (−v) + (− sin θ) ·

(
1

v2
sin θ

)
+

1

v2

= −1 +
1− sin2 θ

v2

= −1 +
cos2 θ

v2

= −1 + 1

= 0
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Question (1991 STEP II Q8)

Solve the quadratic equation u2 + 2u sinhx− 1 = 0, giving u in terms of x. Find the
solution of the differential equation(

dy

dx

)2

+ 2
dy

dx
sinhx− 1 = 0

which satisfies y = 0 and y′ > 0 at x = 0. Find the solution of the differential
equation

sinhx

(
dy

dx

)2

+ 2
dy

dx
− sinhx = 0

which satisfies y = 0 at x = 0.

0 = u2 + 2u sinhx− 1

= u2 + u(ex − e−x)− exe−x

= (u− e−x)(u+ ex)

⇒ u = e−x,−ex

0 =

(
dy

dx

)2

+ 2
dy

dx
sinhx− 1

⇒ dy

dx
= e−x,−ex

⇒ y = −e−x + C,−ex + C

y(0) = 0 : C = 1 both cases

y′(0) > 0 : y = 1− e−x

0 = sinhxu2 + 2u− sinhx

⇒ u =
−2±

√
4 + 4 sinh2 x

2 sinhx

=
−1± coshx

sinhx
= −cosech x± cothx

0 = sinhx

(
dy

dx

)2

+ 2
dy

dx
− sinhx

⇒ dy

dx
= −cosech x± cothx

⇒ y = − ln
(
tanh

x

2

)
± ln sinhx+ C

For x → 0 to be defined, we need +, so

y = ln

(
sinhx

tanh x
2

)
+ C

y = ln

(
2 sinh x

2 cosh
x
2

tanh x
2

)
+ C
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= ln
(
2 cosh2 x

)
+ C

y(0) = 0 : 0 = ln 2 + C

⇒ y = ln(2 cosh2 x)− ln 2

y = 2 ln(coshx)

Question (1991 STEP III Q6)

The transformation T from
(
x
y

)
to
(
x′

y′

)
in two-dimensional space is given by(

x′

y′

)
=

(
coshu sinhu
sinhu coshu

)(
x
y

)
,

where u is a positive real constant. Show that the curve with equation x2 − y2 = 1
is transformed into itself. Find the equations of two straight lines through the origin
which transform into themselves. A line, not necessary through the origin, which
has gradient tanh v transforms under T into a line with gradient tanh v′. Show that
v′ = v+u. The lines ℓ1 and ℓ2 with gradients tanh v1 and tanh v2 transform under T
into lines with gradients tanh v′1 and tanh v′2 respectively. Find the relation satisfied
by v1 and v2 that is the necessary and sufficient for ℓ1 and ℓ2 to intersect at the same
angle as their transforms. In the case when ℓ1 and ℓ2 meet at the origin, illustrate
in a diagram the relation between ℓ1, ℓ2 and their transforms.

None

Question (1992 STEP III Q1) (i) Given that

f(x) = ln(1 + ex),

prove that ln[f ′(x)] = x − f(x) and that f ′′(x) = f ′(x) − [f ′(x)]2. Hence, or
otherwise, expand f(x) as a series in powers of x up to the term in x4.

(ii) Given that

g(x) =
1

sinhx cosh 2x
,

explain why g(x) can not be expanded as a series of non-negative powers of x
but that xg(x) can be so expanded. Explain also why this latter expansion will
consist of even powers of x only. Expand xg(x) as a series as far as the term in
x4.

(i)

f(x) = ln(1 + ex)

f ′(x) =
1

1 + ex
· ex

=
ex

1 + ex

⇒ ln[f ′(x)] = x− ln(1 + ex)

= x− f(x)
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⇒ f ′′(x)

f ′(x)
= 1− f ′(x)

⇒ f ′′(x) = f ′(x)− [f ′(x)]2

f ′′′(x) = f ′′(x)− 2f ′(x)f ′′(x)

f (4)(x) = f ′′′(x)− 2[f ′′(x)]2 − 2f ′(x)f ′′′(x)

f(0) = ln 2

f ′(0) = 1
2

f ′′(0) = 1
2 − 1

4

= 1
4

f ′′′(0) = 1
4 − 21

2
1
4

= 0

f (4)(0) = −2 · 1
16

= −1

8

Therefore f(x) = ln 2 + 1
2x+ 1

8x
2 − 1

8·4!x
4 +O(x5)

(ii) As x → 0, g(x) → ∞ therefore there can be no power series about 0. But as
x → 0, xg(x) ̸→ ∞ as x

sinhx is well behaved.

We can also notice that xg(x) is an even function, since coshx is even and x
sinhx is

even, therefore the power series will consist of even powers of x

lim
x→0

x

sinhx cosh 2x
= lim

x→0

x

sinhx
· lim
x→0

1

cosh 2x

= 1

Notice that

x

sinhx cosh 2x
=

4x

(ex − e−x)(e2x + e−2x)

=
4x

(2x+ x3

3 + · · · )(2 + 4x2 + 4
3x

4 + · · · )

=
1

1 + x2

6 + x4

5! + · · ·
1

1 + 2x2 + 2
3x

4 + · · ·

=

(
1− (

x2

6
+

x4

5!
) + (

x2

6
)2 +O(x6)

)(
1− (2x2 +

2

3
x4) + (2x2)2 +O(x6)

)
=

(
1− 1

6
x2 +

7

360
x4 +O(x6)

)(
1− 2x2 +

10

3
x4 +O(x6)

)
= 1− 13

6
x2 +

1327

360
x4 +O(x6)
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Question (1993 STEP III Q7)

The real numbers x and y satisfy the simultaneous equations

sinh(2x) = cosh y and sinh(2y) = 2 coshx.

Show that sinh2 y is a root of the equation

4t3 + 4t2 − 4t− 1 = 0

and demonstrate that this gives at most one valid solution for y. Show that the
relevant value of t lies between 0.7 and 0.8, and use an iterative process to find t to
6 decimal places. Find y and hence find x, checking your answers and stating the
final answers to four decimal places.

Let t = sinh2 y, then

sinh(2x) = cosh y (1)

sinh(2y) = 2 coshx (2)

cosh(2x) = 2 cosh2 x− 1

(2) : =
1

2
sinh2(2y)− 1

1 =

(
1

2
sinh2(2y)− 1

)2

− cosh2 y

=
1

4
sinh4(2y)− sinh2(2y) + 1− cosh2 y

⇒ 0 =
1

4
(cosh2(2y)− 1)2 − (cosh2(2y)− 1)− cosh2 y

=
1

4

((
1 + 2 sinh2 y

)2 − 1
)2

−
((

1 + 2 sinh2 y
)2 − 1

)
− (1 + sinh2 y)

=
1

4

(
1 + 4t+ 4t2 − 1

)2 − (1 + 4t+ 4t2 − 1
)
− (1 + t)

=
1

4
(4t+ 4t2)2 − (4t+ 4t2)− 1− t

= 4(t+ t2)2 − 4t2 − 5t− 1

= 4t4 + 8t3 + 4t2 − 4t2 − 5t− 1

= 4t4 + 8t3 − 5t− 1

= (t+ 1)(4t3 + 4t2 − 4t− 1)

Since sinh2 y is positive, we must be a root of the second cubic.
Let f(t) = 4t3+4t2−4t−1, then f(0) = −1 and f ′(t) = 12t2+8t−4 = 4(t+1)(3t−1),

so we have turning points at −1 and 1
3 . Since f(−1) = 3 > 0 and f(0) < 0 we must have

exactly one root larger than zero. Therefore there is a unique root.
f(0.7) = −0.468 < 0 f(0.8) = 0.408 > 0
since f is continuous and changes sign, the root must fall in the interval (0.7, 0.8).

Let tn+1 = tn − f(tn)
f ′(tn)

, and t0 = 0.75, then

t0 = 0.75
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t1 = 0.7571428571

t2 = 0.7570684728

t3 = 0.7570684647

So t ≈ 0.757068, sinh y ≈ 0.870097, y ≈ 0.786474, x ≈ 0.546965

Question (1996 STEP III Q1)

Define coshx and sinhx in terms of exponentials and prove, from your definitions,
that

cosh4 x− sinh4 x = cosh 2x

and
cosh4 x+ sinh4 x = 1

4 cosh 4x+ 3
4 .

Find a0, a1, . . . , an in terms of n such that

coshn x = a0 + a1 coshx+ a2 cosh 2x+ · · ·+ an coshnx.

Hence, or otherwise, find expressions for cosh2m x−sinh2m x and cosh2m x+sinh2m x,
in terms of cosh kx, where k = 0, . . . , 2m.

coshx =
1

2
(ex + e−x)

sinhx =
1

2
(ex − e−x)

cosh4 x− sinh4 x = (cosh2 x− sinh2 x)(cosh2 x+ sinh2 x)

=

(
1

4

(
e2x + 2 + e−2x

)
− 1

4

(
e2x − 2 + e−2x

))
(cosh2 x+ sinh2 x)

= (cosh2 x+ sinh2 x)

=

(
1

4

(
e2x + 2 + e−2x

)
+

1

4

(
e2x − 2 + e−2x

))
=

1

4

(
2e2x + 2e−2x

)
=

1

2

(
e2x + e−2x

)
= cosh 2x

cosh4 x+ sinh4 x =
1

24
(
e4x + 4e2x + 6 + 4e−2x + e−4x

)
+

1

24
(
e4x − 4e2x + 6− 4e−2x + e−4x

)
=

1

8
(e4x + e−4x) +

3

4

=
1

4
cosh 4x+

3

4

coshn x =
1

2n
(
ex + e−x

)n
117



SM UFM Pure (with Solutions)

=
1

2n

n∑
k=0

(
n

k

)
ekxe−(n−k)x

=
1

2n

n∑
k=0

(
n

k

)
e2kx−nx

=
1

2n

((
n

n

)(
enx + e−nx

)
+

(
n

n− 1

)(
e(n−2)x + e−(n−2)x

)
+ · · ·+

(
n

n− k

)(
e(n−2k)x + e−(n−2k)x

)
+ · · ·

)
=

1

2n−1
coshnx+

1

2n−1

(
n

n− 1

)
cosh(n− 2)x+ · · ·+ 1

2n−1

(
n

n− k

)
cosh(n− 2k)x+ · · ·

ie

cosh2m x =
1

22m−1
cosh 2mx+

2m

22m−1
cosh(2(m− 1)x) + · · ·+ 1

22m−1

(
2m

k

)
cosh(2(m− k)x) + · · ·+ 1

22m−1

(
2m

m

)
sinh2m x =

1

22m−1
cosh 2mx− 2m

22m−1
cosh(2(m− 1)x) + · · ·+ (−1)k

1

22m−1

(
2m

k

)
cosh(2(m− k)x) + · · ·+ (−1)m

1

22m−1

(
2m

m

)
cosh2m x− sinh2m x =

m

22m−3
cosh(2(m− 1)x) + · · ·+ 1

22m−2

(
2m

2k + 1

)
cosh(2(m− 2k − 1)x) + · · ·

cosh2m x+ sinh2m x =
1

22m−2
cosh(2mx) + · · ·+ 1

22m−2

(
2m

2k

)
cosh(2(m− 2k)x) + · · ·

Question (2006 STEP III Q7) (i) Solve the equation u2 + 2u sinhx− 1 = 0 giving
u in terms of x. Find the solution of the differential equation(

dy

dx

)2
+ 2

dy

dx
sinhx− 1 = 0

that satisfies y = 0 and
dy

dx
> 0 at x = 0.

(ii) Find the solution, not identically zero, of the differential equation

sinh y

(
dy

dx

)2
+ 2

dy

dx
− sinh y = 0

that satisfies y = 0 at x = 0, expressing your solution in the form cosh y = f(x).
Show that the asymptotes to the solution curve are y = ±(−x+ ln 4).
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Question (2007 STEP III Q5)

Let y = ln(x2 − 1) , where x > 1, and let r and θ be functions of x determined by
r =

√
x2 − 1 and coth θ = x. Show that

dy

dx
=

2 cosh θ

r
and

d2y

dx2
= −2 cosh 2θ

r2
,

and find an expression in terms of r and θ for
d3y

dx3
.

Find, with proof, a similar formula for
dny

dxn
in terms of r and θ.

y = ln(x2 − 1)

r =
√

x2 − 1

coth θ = x

r =
√

coth2 θ − 1 =
√

cosech2θ = cosechθ

dy

dx
=

2x

x2 − 1

=
2 coth θ

r2

=
2 cosh θ

sinh θ · r · cosechθ

=
2 cosh θ

r

d2y

dx2
=

2(x2 − 1)− 4x2

(x2 − 1)2

=
−2(1 + x2)

r2cosech2r

= −2(1 + coth2 θ) sinh2 θ

r2

= −2(sinh2 θ + cosh2 θ)

r2

= −2 cosh 2θ

r2

d3y

dx3
=

−4x(x2 − 1)2 − (−2x2 − 2) · 2(x2 − 1) · 2x
(x2 − 1)4

=
−4x(x2 − 1) + 8x(x2 + 1)

(x2 − 1)3

=
4x3 + 12x

(x2 − 1)3

=
sinh3 θ(4 coth3 θ + 12 coth θ)

r3

=
4 cosh3 θ + 12 cosh θ sinh2 θ

r3
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=
4 cosh 3θ

r3

Claim: dny
dxn = (−1)n+1 2(n−1)! coshnθ

rn Proof: By induction. Base cases already proven

dr

dx
=

x√
x2 − 1

=
coth θ

cosechθ
= cosh θ

dθ

dx
= − sinh2 θ

dn+1y

dxn+1
= (−1)n+1(n− 1)!

d

dx

(
2 coshnθ

rn

)
= (−1)n+1 2n sinhnθ · rn · dθ

dx − 2 coshnθ · nrn−1 dr
dx

r2n

= (−1)n+2 2n(coshnθ cosh θ + r sinhnθ sinh2 θ)

rn+1

= (−1)n+2n!
2 cosh(n+ 1)θ

rn+1

We can think of this as ln(x2 − 1) = ln(x + 1) + ln(x − 1) and also note x ± 1 =

coth θ ± 1 = cosh θ±sinh θ
sinh θ = e±θ

sinh θ

dn

dxn
ln(x2 − 1) = (n− 1)!(−1)n−1

(
1

(x+ 1)n
+

1

(x− 1)n

)
= (−1)n−1(n− 1)!

(
sinhn θ

enθ
+

sinhn θ

e−nθ

)
= (−1)n−1(n− 1)!2 coshnθ · sinhn θ

= (−1)n−1(n− 1)!
2 coshnθ

rn

Question (2014 STEP III Q6)

Starting from the result that

ḣ(t) > 0 for 0 < t < x =⇒
∫ x

0
ḣ(t)t > 0 ,

show that, if ḟ ′′(t) > 0 for 0 < t < x0 and ḟ(0) = ḟ ′(0) = 0, then ḟ(t) > 0 for
0 < t < x0.

(i) Show that, for 0 < x < 1
2π,

cosx coshx < 1 .

(ii) Show that, for 0 < x < 1
2π,

1

coshx
<

sinx

x
<

x

sinhx
.
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None

Question (2016 STEP III Q6)

Show, by finding R and γ, that A sinhx + B coshx can be written in the form
R cosh(x+ γ) if B > A > 0. Determine the corresponding forms in the other cases
that arise, for A > 0, according to the value of B.
Two curves have equations y = x and y = a tanhx+ b , where a > 0.

(i) In the case b > a, show that if the curves intersect then the x-coordinates of the
points of intersection can be written in the form

±
(

1√
b2 − a2

)
− artanh

a

b
.

(ii) Find the corresponding result in the case a > b > 0 .

(iii) Find necessary and sufficient conditions on a and b for the curves to intersect at
two distinct points.

(iv) Find necessary and sufficient conditions on a and b for the curves to touch and,
given that they touch, express the y-coordinate of the point of contact in terms
of a.

Question (1987 STEP III Q4)

A B

1 unit

h

Two funnels A and B have surfaces formed by rotating the curves y = x2 and
y = 2 sinh−1 x (x > 0) above the y-axis. The bottom of B is one unit lower than the
bottom of A and they are connected by a thin rubber tube with a tap in it. The tap
is closed and A is filled with water to a depth of 4 units. The tap is then opened.
When the water comes to rest, both surfaces are at a height h above the bottom of
B, as shown in the diagram. Show that h satisfies the equation

h2 − 3h+ sinhh = 15.

The initial volume of water in A is:

π

∫ 4

0
x2 dy = π

∫ 4

0
ydy
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= π[
y2

2
]40

= 8π

We assume that no water is in the tube as it is ‘thin’.
Therefore we must have:

8π = π

∫ h−1

0
x2dy + π

∫ h

0
x2dy

= π

∫ h−1

0
ydy + π

∫ h

0

(
sinh

x

2

)2
dy

= π

[
y2

2

]h−1

0

+ π

∫ h

0

−1 + cosh y

2
dy

= π
(h− 1)2

2
+ π

[
−y

2
+

sinh y

2

]h
0

= π
(h− 1)2

2
− π

h

2
+ π

sinhh

2
⇒ 0 = h2 − 2h+ 1− h+ sinhh− 16

= h2 − 3h+ sinhh− 15

⇒ 15 = h2 − 3h+ sinhh

Question (1992 STEP II Q8)

Calculate the following integrals

(i)

∫
x

(x− 1)(x2 − 1)
dx;

(ii)

∫
1

3 cosx+ 4 sinx
dx;

(iii)

∫
1

sinhx
dx.

(i) ∫
x

(x− 1)(x2 − 1)
dx =

∫
x

(x− 1)2(x+ 1)
dx

=

∫
1

2(x− 1)2
+

1

4(x− 1)
− 1

4(x+ 1)
dx

= −1

2
(x− 1)−1 +

1

4
ln(x− 1)− 1

4
ln(x+ 1) + C

(ii) ∫
1

3 cosx+ 4 sinx
dx =

∫
1

5 cos(x− cos−1(3/5))
dx
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=
1

5

∫
sec(x− cos−1(3/5))dx

=
1

5

(
ln | sec(x− cos−1(3/5)) + tan(x− cos−1(3/5))|

)
+ C

(iii) ∫
1

sinhx
dx =

∫
2

ex − e−x

=

∫
2ex

e2x − 1
dx

=

∫
ex

ex − 1
− ex

ex + 1
dx

= ln(ex − 1) + ln(ex + 1) + C

Question (2001 STEP III Q2)

Show that cosh−1 x = ln(x+
√
x2 − 1). Show that the area of the region defined by

the inequalities y2 ≥ x2 − 8 and x2 ≥ 25y2 − 16 is (72/5) ln 2.

x = cosh y

⇒ x = 1
2(e

y + e−y)

⇒ 0 = e2y − 2xey + 1

⇒ ey =
2x±

√
4x2 − 4

2

= x±
√
x2 − 1

⇒ ey = x+
√
x2 − 1 (by convention cosh−1 > 0)

⇒ y = ln(x+
√

x2 − 1)

123



SM UFM Pure (with Solutions)

(3, 1)

(3,−1)

(−3, 1)

(−3,−1)

x2 − y2 = 8

25y2 − x2 = 16

x

y

A = 4

(∫ 3

0

1

5

√
16 + x2dx−

∫ 3

2
√
2

√
x2 − 8dx

)

x = 4 sinhu :

∫ 3

0

√
42 + x2dx =

∫ u=sinh−1(3/4)

u=0

√
42(1 + sinh2 u)4 coshudu

=

∫ sinh−1(3/4)

0
16 cosh2 udu

= 8

∫ sinh−1(3/4)

0
(1 + cosh 2u)du

= 8

[
u+

1

2
sinh 2u

]sinh−1(3/4)

0

= 8

(
sinh−1(3/4) +

1

2
sinh

(
2 sinh−1(3/4)

))

sinh−1(3/4) = ln

3

4
+

√(
3

4

)2

+ 1


= ln

(
3

4
+

5

4

)
= ln 2

⇒
∫ 3

0

√
42 + x2dx = 8 ln 2 + 4

(
e2 ln 2 − e−2 ln 2

2

)
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= 8 ln 2 + 2 · 4− 2 · 1
4

= 8 ln 2 +
15

2

x = 2
√
2 coshu :

∫ 3

2
√
2

√
x2 − 8dx =

∫ u=cosh−1 3
2
√
2

u=0

√
8(cosh2 u− 1)2

√
2 sinhudu

=

∫ cosh−1 3
2
√
2

0
8 sinh2 udu

= 4

∫ cosh−1 3
2
√
2

0
2 sinh2 udu

= 4

∫ cosh−1 3
2
√
2

0
cosh 2u− 1du

= 4

[
1

2
sinh 2u− u

]cosh−1 3
2
√
2

0

cosh−1 3

2
√
2
= ln

 3

2
√
2
+

√(
3

2
√
2

)2

− 1


= ln

(
3

2
√
2
+

√
9

8
− 1

)

= ln

(
3

2
√
2
+

√
1

8

)
= ln

4

2
√
2

=
1

2
ln 2

∫ 3

2
√
2

√
x2 − 8dx = 4

(
1

2

eln 2 − e− ln 2

2
− 1

2
ln 2

)
= 2− 1

2
− 2 ln 2

=
3

2
− 2 ln 2

A = 4

(
1

5

(
8 ln 2 +

15

2

)
−
(
3

2
− 2 ln 2

))
= 4 ·

(
8

5
+ 2

)
ln 2

=
72

5
ln 2
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Question (2003 STEP III Q1)

Given that x+ a > 0 and x+ b > 0 , and that b > a , show that

d

dx
arcsin

(
x+ a

x+ b

)
=

√
b− a

(x+ b)
√
a+ b+ 2x

and find
d

dx
arcosh

(
x+ b

x+ a

)
.

Hence, or otherwise, integrate, for x > −1 ,

(i) ∫
1

(x+ 1)
√
x+ 3

dx

(ii) ∫
1

(x+ 3)
√
x+ 1

dx

.

[You may use the results d
dx arcsinx = 1√

1−x2
and d

dx arcosh x = 1√
x2−1

. ]

d

dx
arcsin

(
x+ a

x+ b

)
=

1√
1−

(
x+a
x+b

)2
(

b− a

(x+ b)2

)

=
b− a

(x+ b)
√
(x+ b)2 − (x+ a)2

=
b− a

(x+ b)
√
(b− a)(2x+ b+ a)

=

√
b− a

(x+ b)
√
a+ b+ 2x

d

dx
arcosh

(
x+ b

x+ a

)
=

1√(
x+b
x+a

)2
− 1

(
− b− a

(x+ a)2

)

= − b− a

(x+ a)
√
(x+ b)2 − (x+ a)2

= − b− a

(x+ a)
√
(b− a)(a+ b+ 2x)

= −
√
b− a

(x+ a)
√
a+ b+ 2x

(i) ∫
1

(x+ 1)
√
x+ 3

dx =

∫
1

(x+ 1)
√

1
2(2x+ 6)

dx

=

∫ √
2

(x+ 1)
√
2x+ 1 + 5

dx
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=

√
2

2

∫ √
5− 1

(x+ 1)
√
2x+ 1 + 5

dx

= −
√
2

2
arcosh

(
x+ 5

x+ 1

)
+ C

(ii) ∫
1

(x+ 3)
√
x+ 1

dx =

∫
1

(x+ 3)
√

1
2(2x+ 2)

dx+ C

=

∫ √
3− 1

(x+ 3)
√
2x+ 3− 1

dx

= arcsin

(
x− 1

x+ 3

)

Question (2004 STEP III Q1)

Show that∫ a

0

sinhx

2 cosh2 x− 1
dx =

1

2
√
2
ln

(√
2 cosh a− 1√
2 cosh a+ 1

)
+

1

2
√
2
ln

(√
2 + 1√
2− 1

)

and find ∫ a

0

coshx

1 + 2 sinh2 x
dx .

Hence show that∫ ∞

0

coshx− sinhx

1 + 2 sinh2 x
dx =

π

2
√
2
− 1

2
√
2
ln

(√
2 + 1√
2− 1

)
.

By substituting u = ex in this result, or otherwise, find∫ ∞

1

1

1 + u4
du .

Question (2005 STEP III Q7)

Show that if

∫
1

u f(u)
du = (u) + c , then

∫
m

xf(xm)
dx = (xm) + c , where m ̸= 0.

Find:

(i)

∫
1

xn − x
dx ;

(ii)

∫
1√

xn + x2
dx .

u = xm,du = mxm−1

∫
m

xf(xm)
dx =

∫
mxm−1

uf(u)
dx

=

∫
1

uf(u)
du
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= F (u) + c

= F (xm) + c

(i) ∫
1

u(u− 1)
du =

∫ (
1

u− 1
− 1

u

)
du

= ln

(
u− 1

u

)
+ c

= ln

(
1− 1

u

)
+ c∫

1

xn − x
dx =

∫
1

x(xn−1 − 1)
dx

f(u) = u− 1 : =
1

n− 1
ln

(
1− 1

xn−1

)
+ c

(ii)

v =
√
u+ 1,dv = 1

2(u+ 1)−1/2du

∫
1

u
√
u+ 1

du =

∫
1

(v2 − 1)
(u+ 1)−1/2du

=

∫
2

v2 − 1
dv

= ln
1− v

1 + v
+ c

= ln

(
1−

√
u+ 1

1 +
√
u+ 1

)
+ c

f(u) =
√
x+ 1 :

∫
1√

xn + x2
dx =

∫
1

x
√
xn−2 + 1

dx

=
1

n− 2
ln

(
1−

√
xn−2 + 1

1 +
√
xn−2 + 1

)
+ c

Question (2008 STEP III Q4) (i) Show, with the aid of a sketch, that y > tanh(y/2)
for y > 0 and deduce that

arcoshx >
x− 1√
x2 − 1

for x > 1. (∗)

(ii) By integrating (∗), show that arcoshx > 2
x− 1√
x2 − 1

for x > 1.

(iii) Show that arcoshx > 3

√
x2 − 1

x+ 2
for x > 1.

[Note: arcoshx is another notation for cosh−1 x.]
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(i)

x

y

If y = arcoshx, then tanh arcoshx/2 =
√

cosh arcoshx−1
cosh arcoshx+1 =

√
x−1
x+1 = x−1√

x2−1

(ii) ∫
arcoshxdx = [xarcoshx]−

∫
x√

x2 − 1
dx

= xarcoshx−
√
x2 − 1 + C∫

x− 1√
x2 − 1

=
√
x2 − 1− arcoshx+ C

Therefore

∫ x

1
arcoshtdt >

∫ x

1

t− 1√
t2 − 1

dt

⇒ xarcoshx−
√

x2 − 1− 0 >
√

x2 − 1− arcoshx− 0

⇒ (x+ 1)arcoshx > 2
√
x2 − 1

⇒ arcoshx > 2

√
x2 − 1

x+ 1

= 2

√
x− 1√
x+ 1

= 2
x− 1√
x2 − 1
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(iii) Integrating both sides again, ∫ x

1
arcoshtdt > 2

∫ x

1

t− 1√
t2 − 1

dt

⇒ xarcoshx−
√

x2 − 1 > 2
(√

x2 − 1− arcoshx
)

⇒ (x+ 2)arcoshx > 3
√
x2 − 1

⇒ arcoshx > 3

√
x2 − 1

x+ 2

Question (2010 STEP III Q2)

In this question, a is a positive constant.

(i) Express cosh a in terms of exponentials. By using partial fractions, prove that∫ 1

0

1

x2 + 2x cosh a+ 1
dx =

a

2 sinh a
.

(ii) Find, expressing your answers in terms of hyperbolic functions,∫ ∞

1

1

x2 + 2x sinh a− 1
dx

and ∫ ∞

0

1

x4 + 2x2 cosh a+ 1
dx .

(i) cosh a = 1
2(e

a + e−a)

∫ 1

0

1

x2 + 2x cosh a+ 1
dx =

∫ 1

0

1

x2 + (ea + e−a)x+ eae−a
dx

=

∫ 1

0

1

ea − e−a

(
1

x+ e−a
− 1

x+ ea

)
dx

=
1

2 sinh a

∫ 1

0

(
1

x+ e−a
− 1

x+ ea

)
dx

=
1

2 sinh a

[
ln(x+ e−a)− ln(x+ ea)

]1
0

=
1

2 sinh a

(
ln(1 + ea)− ln(1 + e−a)− (ln e−a − ln ea)

)
=

1

2 sinh a

(
2a+ ln

1 + ea

1 + e−a

)
=

1

2 sinh a
(2a− a)

=
a

2 sinh a

(ii) ∫ ∞

1

1

x2 + 2x sinh a− 1
dx =

∫ ∞

1

1

(x+ ea)(x− e−a)
dx

130



SM UFM Pure (with Solutions)

=

∫ ∞

1

1

ea + e−a

(
1

x− e−a
− 1

x+ ea

)
dx

=
1

2 cosh a

∫ ∞

1

(
1

x− e−a
− 1

x+ ea

)
dx

=
1

2 cosh a

[
ln(x− e−a)− ln(x+ ea)

]∞
1

=
1

2 cosh a

[
ln

x− e−a

x+ ea

]∞
1

=
1

2 cosh a

(
0− ln

1− e−a

1 + ea

)
=

1

2 cosh a
ln

1 + ea

1− e−a

=
1

2 cosh a

(
a+ ln coth

a

2

)
and∫ ∞

0

1

x4 + 2x2 cosh a+ 1
dx =

∫ ∞

0

1

(x2 + ea)(x2 + e−a)
dx

=

∫ ∞

0

1

ea − e−a

(
1

x2 + e−a
− 1

x2 + ea

)
dx

=
1

2 sinh a

[
1

e−a/2
tan−1 x

e−a/2
− 1

ea/2
tan−1 x

ea/2

]∞
0

=
1

2 sinh a

(
ea/2

π

2
− e−a/2π

2
− 0
)

=
1

2 sinh a
π sinh

a

2

=
π sinh a

2

2 sinh a

=
π sinh a

2

4 sinh a
2 cosh

a
2

=
π

4 cosh a
2
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Question (2011 STEP III Q4)

The following result applies to any function f which is continuous, has positive
gradient and satisfies f(0) = 0 :

ab ≤
∫ a

0
f(x) dx+

∫ b

0
f−1(y) dy , (∗)

where f−1 denotes the inverse function of f , and a ≥ 0 and b ≥ 0.

(i) By considering the graph of y = f(x), explain briefly why the inequality (∗)
holds. In the case a > 0 and b > 0, state a condition on a and b under which
equality holds.

(ii) By taking f(x) = xp−1 in (∗), where p > 1, show that if
1

p
+

1

q
= 1 then

ab ≤ ap

p
+

bq

q
.

Verify that equality holds under the condition you stated above.

(iii) Show that, for 0 ≤ a ≤ 1
2π and 0 ≤ b ≤ 1,

ab ≤ b arcsin b+
√
1− b2 − cos a .

Deduce that, for t ≥ 1,

arcsin(t−1) ≥ t−
√
t2 − 1 .

Question (2011 STEP III Q6)

The definite integrals T , U , V and X are defined by

T =

∫ 1
2

1
3

artanh t

t
dt , U =

∫ ln 3

ln 2

u

2 sinhu
du ,

V = −
∫ 1

2

1
3

ln v

1− v2
dv , X =

∫ 1
2
ln 3

1
2
ln 2

ln(cothx) dx .

Show, without evaluating any of them, that T , U , V and X are all equal.

T =

∫ 1
2

1
3

artanh t

t
dt

=

∫ 1
2

1
3

1

2t
ln

(
1 + t

1− t

)
dt

u = 1+t
1−t , t =

u−1
u+1 , dt =

2
(u+1)2

dt =

∫ u=3

u=2

1

2t
lnu

2

(u+ 1)2
du

=

∫ 3

2

u+ 1

u− 1
lnu

1

(u+ 1)2
du
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=

∫ 3

2

1

u2 − 1
lnudu

U =

∫ ln 3

ln 2

u

2 sinhu
du

v = eu, dv = eudu =

∫ v=3

v=2

ln v

v − 1
v

1

v
dv

=

∫ 3

2

1

v2 − 1
ln vdv

V = −
∫ 1

2

1
3

ln v

1− v2
dv

u = 1
v ,du = − 1

v2
dv = −

∫ u=2

u=3

− lnu

1− 1
u2

−1

u2
du

= −
∫ 2

3

lnu

u2 − 1
du

=

∫ 3

2

1

u2 − 1
lnudu

X =

∫ 1
2
ln 3

1
2
ln 2

ln(cothx) dx

u = cothx,du = (1− u2)dx =

∫ u=2

u=3
lnu

1

1− u2
du

=

∫ 3

2

lnu

u2 − 1
du

Therefore all integrals are equal to the same integral, namely

∫ 3

2

lnu

u2 − 1
du

Question (2014 STEP III Q2) (i) Show, by means of the substitution u = coshx ,
that ∫

sinhx

cosh 2x
dx =

1

2
√
2
ln

∣∣∣∣∣
√
2 coshx− 1√
2 coshx+ 1

∣∣∣∣∣+ C .

(ii) Use a similar substitution to find an expression for∫
coshx

cosh 2x
dx .

(iii) Using parts (i) and (ii) above, show that∫ 1

0

1

1 + u4
du =

π + 2 ln(
√
2 + 1)

4
√
2

.
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(i) ∫
sinhx

cosh 2x
dx =

∫
sinhx

2 cosh2 x− 1
dx

u = coshx,du = sinhxdx =

∫
1

2u2 − 1
du

=

∫
1

2

(
1√

2u− 1
− 1√

2u+ 1

)
du

=
1

2
√
2

(
ln(

√
2u− 1)− ln(

√
2u+ 1)

)
+ C

=
1

2
√
2
ln

(√
2 coshx− 1√
2 coshx+ 1

)
+ C

(ii) ∫
coshx

cosh 2x
dx =

∫
coshx

1 + 2 sinh2 x
dx

u = sinhx =

∫
1

1 + 2u2
du

=
1√
2
tan−1(

√
2u) + C

=
1√
2
tan−1(

√
2 sinhx) + C

(iii)

u = ex :

∫ 1

0

1

1 + u4
du =

∫ x=0

x=−∞

1

1 + e4x
exdx

=

∫ 0

−∞

e−x

e2x + e−2x
dx

=

∫ 0

−∞

coshx− sinhx

2 cosh 2x
dx

=
1

2

∫ 0

−∞

coshx

cosh 2x
dx− 1

2

∫ 0

−∞

sinhx

cosh 2x

=
1

2

[
1√
2
tan−1(

√
2 sinhx)

]0
−∞

− 1

2

[
1

2
√
2
ln

(√
2 coshx− 1√
2 coshx+ 1

)]0
−∞

= 0− 1

2
√
2

−π

2
−

(
1

4
√
2
ln

(√
2− 1√
2 + 1

)
− 0

)

=
π − ln((

√
2− 1)2)

4
√
2

=
π + 2 ln(1 +

√
2)

4
√
2
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Question (2025 STEP III Q7)

Let f(x) =
√
x2 + 1− x.

(i) Using a binomial series, or otherwise, show that, for large |x|,
√
x2 + 1 ≈ |x|+ 1

2|x| .

Sketch the graph y = f(x).

(ii) Let g(x) = tan−1 f(x) and, for x ̸= 0, let k(x) = 1
2 tan

−1 1
x .

a) Show that g(x) + g(−x) = 1
2π.

b) Show that k(x) + k(−x) = 0.

c) Show that tan k(x) = tan g(x) for x > 0.

d) Sketch the graphs y = g(x) and y = k(x) on the same axes.

e) Evaluate
∫ 1
0 k(x) dx and hence write down the value of

∫ 0
−1 g(x) dx.

(i)

√
x2 + 1 = |x|

√
1 +

1

x2

= |x|
(
1 +

1

2

1

x2
+ · · ·

)
if

(
1

x2
< 1

)
= |x|+ 1

2

1

|x|
+ · · ·

≈ |x|+ 1

2|x|
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y = 1
2x

y = −2x

x

y

(ii) a)

tan(g(x) + g(−x)) = tan
(
tan−1(

√
x2 + 1− x) + tan−1(

√
x2 + 1 + x)

)
=

√
x2 + 1− x+

√
x2 + 1 + x

1− 1

⇒ g(x) + g(−x) ∈
{
· · · ,−π

2
,
π

2
, · · ·

}
But g(x), g(−x) > 0 and g(x), g(−x) ∈ (−π

2 ,
π
2 ), therefore it must be π

2 .

b)

tan(2(k(x) + k(−x))) = tan(tan−1 x+ tan−1(−x))

= 0

⇒ k(x) + k(−x) ∈
{
· · · ,−π

2
, 0,

π

2
, · · ·

}

But k(x) ∈ (−π
4 ,

π
4 ), therefore k(x) + k(−x) = 0.

c) Let t = tan k(x).

tan

(
tan−1 1

x

)
=

2 tan
(
1
2 tan

−1 1
x

)
1− tan2

(
1
2 tan

−1 1
x

)
⇒ 1

x
=

2t

1− t2

⇒ 1− t2 = 2tx
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⇒ 0 = t2 + 2tx− 1

⇒ 0 = (t+ x)2 − 1− x2

⇒ t = −x±
√
1 + x2

Since t > 0, t =
√
1 + x2 − x = f(x) = tan g(x)

d)

x

y

e) ∫ 1

0
k(x)dx =

∫ 1

0

1

2
tan−1

(
1

x

)
dx

=

[
x

2
tan−1

(
1

x

)]1
0

−
∫ 1

0

x

2

−1/x2

1 + 1/x2
dx

=

[
x

2
tan−1

(
1

x

)]1
0

+
1

4

∫ 1

0

2x

1 + x2
dx

=
1

2

π

4
+

1

4
ln(2)

=
π + ln 4

8

Therefore

∫ 0

−1
g(x)dx = −π + ln 4

8
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Question (1988 STEP II Q10)

The surface S in 3-dimensional space is described by the equation

a · r+ ar = a2,

where r is the position vector with respect to the origin O, a( ̸= 0) is the position
vector of a fixed point, r = |r| and a = |a| . Show, with the aid of a diagram, that S
is the locus of points which are equidistant from the origin O and the plane r ·a = a2.
The point P , with position vector p, lies in S, and the line joining P to O meets S
again at Q. Find the position vector of Q. The line through O orthogonal to p and
a meets S at T and T ′. Show that the position vectors of T and T ′ are

± 1√
2ap− a2

a× p,

where p = |p| . Show that the area of the triangle PQT is

ap2

2p− a
.

The plane is the same as the plane (r− a) · a = 0, ie the plane through a whose normal
is parallel to a

The distance from r to the plane therefore is λ where r+ λ 1
aa must be on the plane, ie

(r+ λ
aa− a) · a = 0 ⇒ λ = a2−a·r

a
But if a ·r = a2−ar then λ = r, ie the distance to the plane is the same as the distance

to the origin.
q = kp and so a · kp+ a|k|p = a2 if k > 0 we will find k = 1 the position vector we

already know about, therefore suppose k < 0 so:

a · kp− kap = a2

⇒ k(a2 − ap)− kap = a2

⇒ k(a2 − 2ap) = a2

⇒ k =
a2

a2 − 2ap

Therefore q = a2

a2−2ap
p

The line through O orthogonal to p and a will be parallel to a × p. Therefore we
should consider points of the from sa× p on the surface S.

sa · (a× p) + sa2p| sin θ| = a2

The angle between cos θ = a·p
ap = a2−ap

ap ⇒ | sin θ| =
√
1− (a−p)2

p2
= 1

p

√
2ap− a2

Therefore sa2
√

2ap− a2 = a2 ⇒ s = 1√
2ap−a2

and so the points are as required.

Noting that |p× t| = | 1
p sin θp× (p× a)| = | 1

p sin θp
2a sin θ| = pa

The area of triangle PQT is :

1

2
|(p− t)× (q− t)| = 1

2
|p× q− t× q− p× t− t× t|
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=
1

2
|t× (p− q)|

=
1

2
· (1− a2

a2 − 2ap
)|t× p|

=
1

2

2ap

a2 − 2ap
· ap

=
ap2

a2 − ap

Question (1989 STEP III Q2)

The points A,B and C lie on the surface of the ground, which is an inclined plane.
The point B is 100m due north of A, and C is 60m due east of B. The vertical
displacements from A to B, and from B to C, are each 5m downwards. A plane coal
seam lies below the surface and is to be located by making vertical bore-holes at
A,B and C. The bore-holes strike the coal seam at 95m, 45m and 76m below A,B
and C respectively. Show that the coal seam is inclined at cos−1(45) to the horizontal.
The coal seam comes to the surface along a line. Find the bearing of this line.

Set up a coordinate system so that x is E-W, y is N-S and z is the vertical direction.

Also assume B is the origin, then, A =

 0
−100
5

 , B =

0
0
0

 , C =

60
0
−5

 ,.

The coal seam has points:

 0
−100
−90

 ,

 0
0

−45

 ,

 60
0

−81

 ,

Therefore we can find the normal to the coal seam:

n =

 0
−100
−90

−

 0
0

−45

×

 60
0

−81

−

 0
0

−45


=

 0
−100
−45

×

 60
0

−36


=

 3600
−60 · 45
60 · 100


= 300

12
−9
20


To measure the incline θ to the horizontal we can take a dot with k̂, to see:

cos θ =
20√

122 + (−9)2 + 202
√
12 + 02 + 02

=
20

25

=
4

5
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Therefore the angle is cos−1 4
5

The equation of the seam is 12x− 9y + 20z = −900.
The equation of the surface is 5x+ 3y + 60z = 0
We can compute the direction of the overlap again with a cross product:

d =

12
−9
20

×

 5
3
60


=

−600
−620
81


To get the bearing of this vector we just need to look at the x and y components, so it

will be tan−1 600
620 = tan−1 30

31

Question (1992 STEP II Q9)

Let a,b and c be the position vectors of points A,B and C in three-dimensional
space. Suppose that A,B,C and the origin O are not all in the same plane. Describe
the locus of the point whose position vector r is given by

r = (1− λ− µ)a+ λb+ µc,

where λ and µ are scalar parameters. By writing this equation in the form r · n = p
for a suitable vector n and scalar p, show that

−(λ+ µ)a · (b× c) + λb · (c× a) + µc · (a× b) = 0

for all scalars λ, µ. Deduce that

a · (b× c) = b · (c× a) = c · (a× b).

Say briefly what happens if A,B,C and O are all in the same plane.

r = (1− λ− µ)a+ λb+ µc = a+ λ(b− a) + µ(c− a)
Therefore it is the plane through a with direction vectors b− a and c− a, ie it is the

plane through a,b, c.
The normal to this plane will be (b− a)× (c− a) = b× c− a× c− b× a, so we must

have:

r · (b× c− a× c− b× a) = a · (b× c− a× c− b× a)

= a · (b× c)

Therefore,

a · (b× c) = r · (b× c− a× c− b× a)

= ((1− λ− µ)a+ λb+ µc) · (b× c− a× c− b× a)

= (1− λ− µ)a · (b× c)− λb · (a× c)− µc · (b× a)

⇒ 0 = (−λ− µ)a · (b× c)− λb · (a× c)− µc · (b× a)
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= −(λ+ µ)a · (b× c) + λb · (c× a) + µc · (a× b)

The result follows from setting µ = 0, λ = 1 and µ = 1, λ = 0.
If they all lie in the same plane then the plane described is through the origin, and

those values are all the same, but equal to 0.

Question (1993 STEP II Q4)

Two non-parallel lines in 3-dimensional space are given by r = p1 + t1m1 and
r = p2 + t2m2 respectively, where m1 and m2 are unit vectors. Explain by means of
a sketch why the shortest distance between the two lines is

|(p1 − p2) · (m1 ×m2)|
|(m1 ×m2)|

.

(i) Find the shortest distance between the lines in the case

p1 = (2, 1,−1) p2 = (1, 0,−2) m1 =
1
5(4, 3, 0) m2 =

1√
10
(0,−3, 1).

(ii) Two aircraft, A1 and A2, are flying in the directions given by the unit vectors
m1 and m2 at constant speeds v1 and v2. At time t = 0 they pass the points
p1 and p2, respectively. If d is the shortest distance between the two aircraft
during the flight, show that

d2 =
|p1 − p2|2 |v1m1 − v2m2|2 − [(p1 − p2) · (v1m1 − v2m2)]

2

|v1m1 − v2m2|2
.

(iii) Suppose that v1 is fixed. The pilot of A2 has chosen v2 so that A2 comes as
close as possible to A1. How close is that, if p1,p2,m1 and m2 are as in (i)?

Question (1995 STEP III Q8)

A plane π in 3-dimensional space is given by the vector equation r · n = p, where
n is a unit vector and p is a non-negative real number. If x is the position vector
of a general point X, find the equation of the normal to π through X and the
perpendicular distance of X from π. The unit circles Ci, i = 1, 2, with centres ri,
lie in the planes πi given by r · ni = pi, where the ni are unit vectors, and pi are
non-negative real numbers. Prove that there is a sphere whose surface contains both
circles only if there is a real number λ such that

r1 + λn1 = r2 ± λn2.

Hence, or otherwise, deduce the necessary conditions that

(r1 − r2) · (n1 × n2) = 0

and that
(p1 − n1 · r2)2 = (p2 − n2 · r1)2.

Interpret each of these two conditions geometrically.
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The equation of the normal to π through X is x+ λn. The distance is |x · n− p|
We know that the centre of the sphere must lie above the centre of the circle following

the normal, ie c = r1 + λ1n1 = r2 + λ2n2

λi

1

R

c

ri

We can also see that R2 = 1 + λ2
1 = 1 + λ2

2 ⇒ λ1 = ±λ2, from which we obtain the
desired result.
Therefore the condition is

r1 + λn1 = r2 ± λn2 (1)

r1 − r2 = λ(±n1 − n2)

⇒ (r1 − r2) · (n1 × n2) = (λ(±n1 − n2)) · (n1 × n2)

= λ (±n1 · (n1 × n2)− n2 · (n1 × n2))

= 0

n1 · (1) r1 · n1 + λn1 · n1 = r2 · n1 ± λn2 · n1

p1 + λ = r2 · n1 ± λn2 · n1

n2 · (1) r1 · n2 + λn1 · n2 = r2 · n2 ± λn2 · n2

r1 · n2 + λn1 · n2 = p2 ± λ

±λ− λn1 · n2 = r1 · n2 − p2

= ±(r2 · n1 − p1)

⇒ (p1 − n1 · r2)2 = (p2 − n2 · r1)2

The first condition means the line between the centres lies in the plane spanned by the
normal of the two planes π1 and π2.
The second condition means that the distance of the center to the other plane is the

same for both centres/planes.
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Question (1998 STEP III Q8) (i) Show that the line r = b + λm, where m is a
unit vector, intersects the sphere r · r = a2 at two points if

a2 > b · b− (b ·m)2 .

Write down the corresponding condition for there to be precisely one point of
intersection. If this point has position vector p, show that m · p = 0.

(ii) Now consider a second sphere of radius a and a plane perpendicular to a unit
vector n. The centre of the sphere has position vector d and the minimum
distance from the origin to the plane is l. What is the condition for the plane to
be tangential to this second sphere?

(iii) Show that the first and second spheres intersect at right angles (i.e. the two
radii to each point of intersection are perpendicular) if

d · d = 2a2 .

Question (2000 STEP II Q7)

The line l has vector equation r = λs, where

s = (cos θ +
√
3 ) i+ (

√
2 sin θ) j+ (cos θ −

√
3 ) k

and λ is a scalar parameter. Find an expression for the angle between l and the
line r = µ(a i+ b j+ ck). Show that there is a line m through the origin such that,
whatever the value of θ, the acute angle between l and m is π/6.

A plane has equation x− z = 4
√
3. The line l meets this plane at P . Show that,

as θ varies, P describes a circle, with its centre on m. Find the radius of this circle.

Question (2000 STEP III Q5)

Given two non-zero vectors a =

(
a1
a2

)
and b =

(
b1
b2

)
define ∆(a,b) by ∆(a,b) = a1b2 − a2b1.

Let A, B and C be points with position vectors a, b and c, respectively, no two
of which are parallel. Let P , Q and R be points with position vectors p, q and r,
respectively, none of which are parallel.

(i) Show that there exists a 2× 2 matrix M such that P and Q are the images of
A and B under the transformation represented by M.

(ii) Show that ∆(a,b) c+∆(c,a)b+∆(b, c)a = 0.

Hence, or otherwise, prove that a necessary and sufficient condition for the points
P , Q, and R to be the images of points A, B and C under the transformation
represented by some 2× 2 matrix M is that

∆(a,b) : ∆(b, c) : ∆(c,a) = ∆(p,q) : ∆(q, r) : ∆(r,p) .
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Question (2005 STEP II Q7)

The position vectors, relative to an origin O, at time t of the particles P and Q are

cos t i+ sin t j+ 0 k and cos(t+ 1
4π)

[
3
2 i+

3
√
3

2 k
]
+ 3 sin(t+ 1

4π) j ,

respectively, where 0 ≤ t ≤ 2π .

(i) Give a geometrical description of the motion of P and Q.

(ii) Let θ be the angle POQ at time t that satisfies 0 ≤ θ ≤ π . Show that

cos θ = 3
√
2

8 − 1
4 cos(2t+

1
4π) .

(iii) Show that the total time for which θ ≥ 1
4π is 3

2π .

(i) P is travelling in a unit circle about the origin in the i− j plane. Q is travelling in a
circle (also about the origin, but in a different plane with radius 3).

(ii)

p · q = |p||q| cos θ

⇒ cos θ =
3
2 cos t cos(t+

π
4 ) + 3 sin t sin(t+ π

4 )

3
= 1

2 cos t cos(t+
π
4 ) + sin t sin(t+ π

4 )

= 1
4(cos(2t+

π
4 ) + cos(π4 )) +

1
2(cos(

π
4 )− cos(2t+ π

4 ))

= 3
√
2

8 − 1
4 cos(2t+

π
4 )

(iii) If θ ≥ 1
4π, then cos θ ≤

√
2
2

√
2

2
≥ 3

√
2

8
− 1

4
cos(2t+ π

4 )

⇒
√
2

2
≥ − cos(2t+ π

4 )

⇒ cos(2t+ π
4 ) ≥ − 1√

2

⇒ 2t+ π
4 ̸∈ (3π4 , 5π4 ) ∪ (11π4 , 13π4 )

⇒ t ̸∈ (π4 ,
π
2 ) ∪ (5π4 , 3π2 )

which is is a time of π
2 , therefore the left over time is 3

2π
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Question (2006 STEP II Q8)

Show that the line through the points with position vectors x and y has equation

r = (1− α)x+ αy ,

where α is a scalar parameter. The sides OA and CB of a trapezium OABC are
parallel, and OA > CB. The point E on OA is such that OE : EA = 1 : 2, and F
is the midpoint of CB. The point D is the intersection of OC produced and AB
produced; the point G is the intersection of OB and EF ; and the point H is the
intersection of DG produced and OA. Let a and c be the position vectors of the
points A and C, respectively, with respect to the origin O.

(i) Show that B has position vector λa+ c for some scalar parameter λ.

(ii) Find, in terms of a, c and λ only, the position vectors of D, E, F , G and H.
Determine the ratio OH : HA.

Question (2007 STEP I Q7) (i) The line L1 has vector equation r =

1
0
2

+λ

 2
2

−3

.

The line L2 has vector equation r =

 4
−2
9

+ µ

 1
2

−2

 . Show that the distance

D between a point on L1 and a point on L2 can be expressed in the form

D2 = (3µ− 4λ− 5)2 + (λ− 1)2 + 36 .

Hence determine the minimum distance between these two lines and find the
coordinates of the points on the two lines that are the minimum distance apart.

(ii) The line L3 has vector equation r =

2
3
5

 + α

0
1
0

 . The line L4 has vector

equation r =

 3
3

−2

+ β

 4k
1− k
−3k

 . Determine the minimum distance between

these two lines, explaining geometrically the two different cases that arise
according to the value of k.
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Question (2007 STEP II Q8)

The points B and C have position vectors b and c, respectively, relative to the origin
A, and A, B and C are not collinear.

(i) The point X has position vector sb+ tc. Describe the locus of X when s+ t = 1.

(ii) The point P has position vector βb + γc, where β and γ are non-zero, and
β + γ ̸= 1. The line AP cuts the line BC at D. Show that BD : DC = γ : β.

(iii) The line BP cuts the line CA at E, and the line CP cuts the line AB at F .
Show that

AF

FB
× BD

DC
× CE

EA
= 1 .

(i) X lies on the line including B and C.

(ii) points on the line AP have the form λ(βb+ γc), and the point D will be the point
where λβ + λγ = 1.

|BD|
|DC|

=
|b− λ(βb+ γc)|
|λ(βb+ γc)− c|

=
|(1− λβ)b− λγc|
|λβb+ (λγ − 1)c|

=
|λγb− λγc|
|λβb− (λβ)c|

=
γ

β

(iii) The line BP is b + µ(βb + γc) and will meet CA when 1 + µβ = 0, ie µ = − 1
β ,

therefore E is − γ
βc, and so |CE|

|EA| =
1+γ/β
γ/β = β+γ

γ .

Similarly, F is −β
γb and |AF |

|FB| =
β/γ

1+β
γ

= β
γ+β , and so

AF

FB
× BD

DC
× CE

EA
=

β

γ + β

γ

β

β + γ

γ
= 1
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Question (2008 STEP II Q8)

The points A and B have position vectors a and b, respectively, relative to the origin
O. The points A, B and O are not collinear. The point P lies on AB between A
and B such that

AP : PB = (1− λ) : λ .

Write down the position vector of P in terms of a, b and λ. Given that OP bisects
∠AOB, determine λ in terms of a and b, where a = |a| and b = ||. The point Q also
lies on AB between A and B, and is such that AP = BQ. Prove that

OQ2 −OP 2 = (b− a)2 .

Question (2009 STEP II Q8)

The non-collinear points A, B and C have position vectors a, b and c, respectively.
The points P and Q have position vectors p and q, respectively, given by

p = λa+ (1− λ)b and q = µa+ (1− µ)c

where 0 < λ < 1 and µ > 1. Draw a diagram showing A, B, C, P and Q. Given
that CQ×BP = AB ×AC, find µ in terms of λ, and show that, for all values of λ,
the the line PQ passes through the fixed point D, with position vector d given by
d = −a+ b+ c . What can be said about the quadrilateral ABDC?

Question (2010 STEP I Q7)

Relative to a fixed origin O, the points A and B have position vectors a and b,
respectively. (The points O, A and B are not collinear.) The point C has position
vector c given by

c = αa+ βb ,

where α and β are positive constants with α+ β < 1 . The lines OA and BC meet
at the point P with position vector p and the lines OB and AC meet at the point
Q with position vector q. Show that

p =
αa

1− β
,

and write down q in terms of α, β and b.
Show further that the point R with position vector r given by

r =
αa+ βb

α+ β
,

lies on the lines OC and AB. The lines OB and PR intersect at the point S. Prove

that
OQ

BQ
=

OS

BS
.
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Question (2010 STEP II Q5)

The points A and B have position vectors i + j + k and 5i − j − k, respectively,
relative to the origin O. Find cos 2α, where 2α is the angle ∠AOB.

(i) The line L1 has equation r = λ(mi+ nj+ pk). Given that L1 is inclined equally
to OA and to OB, determine a relationship between m, n and p. Find also
values of m, n and p for which L1 is the angle bisector of ∠AOB.

(ii) The line L2 has equation r = µ(ui+ vj+ wk). Given that L2 is inclined at an
angle α to OA, where 2α = ∠AOB, determine a relationship between u, v and w.
Hence describe the surface with Cartesian equation x2+y2+z2 = 2(yz+zx+xy).

Question (2011 STEP II Q5)

The points A and B have position vectors a and b with respect to an origin O, and
O, A and B are non-collinear. The point C, with position vector c, is the reflection
of B in the line through O and A. Show that c can be written in the form

c = λa− b

where λ =
2a.b

a.a
. The point D, with position vector d, is the reflection of C in the

line through O and B. Show that d can be written in the form

d = µb− λa

for some scalar µ to be determined. Given that A, B and D are collinear, find the
relationship between λ and µ. In the case λ = −1

2 , determine the cosine of ∠AOB
and describe the relative positions of A, B and D.

Question (2012 STEP II Q7)

Three distinct points, X1, X2 andX3, with position vectors x1, x2 and x3 respectively,
lie on a circle of radius 1 with its centre at the origin O. The point G has position
vector 1

3(x1+x2+x3). The line through X1 and G meets the circle again at the point

Y1 and the points Y2 and Y3 are defined correspondingly. Given that
−−→
GY1 = −λ1

−−→
GX1,

where λ1 is a positive scalar, show that

−−→
OY1 =

1
3

(
(1− 2λ1)x1 + (1 + λ1)(x2 + x3)

)
and hence that

λ1 =
3− α− β − γ

3 + α− 2β − 2γ
,

where α = x2 .x3, β = x3 .x1 and γ = x1 .x2. Deduce that
GX1

GY1
+
GX2

GY2
+
GX3

GY3
= 3 .
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X1

X2

X3

G
O

Y1

Y2

Y3

y1 =
−−→
OG+

−−→
GY1

=
1

3
(x1 + x2 + x3)− λ1

(
x1 −

1

3
(x1 + x2 + x3)

)
=

1

3
((1− 2λ1)x1 + (1 + λ1)(x2 + x3))

1 = y1 · y1

=
1

3
((1− 2λ1)x1 + (1 + λ1)(x2 + x3)) ·

1

3
((1− 2λ1)x1 + (1 + λ1)(x2 + x3))

=
1

9

(
(1− 2λ1)

2 + 2(1 + λ1)
2 + 2(1− 2λ1)(1 + λ1)(x1 · x2 + x1 · x3) + 2(1 + λ1)

2x2 · x3

)
⇒ 9 = (1− 2λ1)

2 + 2(1 + λ1)
2 + 2(1− 2λ1)(1 + λ1)(β + γ) + 2(1 + λ1)

2α

= 3 + 6λ2
1 + 2(β + γ)− 2(β + γ)λ1 − 4λ2

1(β + γ) + 2α+ 4λ1α+ 2λ2
1α

0 = (−6 + 2(α+ β + γ)) + 2(2α− (β + γ))λ1 + (6 + 2(α− 2(β + γ)))λ2
1

⇒ 0 = ((α+ β + γ)− 3) + (2α− (β + γ))λ1 + (3 + α− 2(β + γ))λ2
1

= (λ1 + 1)((3 + α− 2(β + γ))λ1 + ((α+ β + γ)− 3))

⇒ λ1 =
3− (α+ β + γ)

3 + α− 2(β + γ)

as required.

Since
GX1

GY1
= 1

λ1
we must have,
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Question (2013 STEP III Q3)

The four vertices Pi (i = 1, 2, 3, 4) of a regular tetrahedron lie on the surface of a
sphere with centre at O and of radius 1. The position vector of Pi with respect
to O is pi (i = 1, 2, 3, 4). Use the fact that p1 + p2 + p3 + p4 = 0 to show that
pi .pj = −1

3 for i ̸= j. Let X be any point on the surface of the sphere, and let XPi

denote the length of the line joining X and Pi (i = 1, 2, 3, 4).

(i) By writing (XPi)
2 as (pi − x) . (pi − x), where x is the position vector of X

with respect to O, show that

4∑
i=1

(XPi)
2 = 8 .

(ii) Given that P1 has coordinates (0, 0, 1) and that the coordinates of P2 are of the
form (a, 0, b), where a > 0, show that a = 2

√
2/3 and b = −1/3, and find the

coordinates of P3 and P4.

(iii) Show that
4∑

i=1

(XPi)
4 = 4

4∑
i=1

(1− x .pi)
2 .

By letting the coordinates of X be (x, y, z), show further that
4∑

i=1
(XPi)

4 is

independent of the position of X.

Question (2014 STEP I Q7)

In the triangle OAB, the point D divides the side BO in the ratio r : 1 (so that
BD = rDO), and the point E divides the side OA in the ratio s : 1 (so that
OE = sEA), where r and s are both positive.

(i) The lines AD and BE intersect at G. Show that

g =
rs

1 + r + rs
a+

1

1 + r + rs
b ,

where a, b and g are the position vectors with respect to O of A, B and G,
respectively.

(ii) The line through G and O meets AB at F . Given that F divides AB in the
ratio t : 1, find an expression for t in terms of r and s.
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Question (2014 STEP III Q7)

The four distinct points Pi (i = 1, 2, 3, 4) are the vertices, labelled anticlockwise, of
a cyclic quadrilateral. The lines P1P3 and P2P4 intersect at Q.

(i) By considering the triangles P1QP4 and P2QP3 show that (P1Q)(QP3) =
(P2Q)(QP4) .

(ii) Let pi be the position vector of the point Pi (i = 1, 2, 3, 4). Show that there
exist numbers ai, not all zero, such that

4∑
i=1

ai = 0 and

4∑
i=1

aipi = 0 . (∗)

(iii) Let ai (i = 1, 2, 3, 4) be any numbers, not all zero, that satisfy (∗). Show that
a1+a3 ̸= 0 and that the lines P1P3 and P2P4 intersect at the point with position
vector

a1p1 + a3p3
a1 + a3

.

Deduce that a1a3(P1P3)
2 = a2a4(P2P4)

2 .

Question (2015 STEP II Q8)

xunit=1.0cm,yunit=1.0cm,algebraic=true,dimen=middle,dotstyle=o,dotsize=3pt
0,linewidth=0.3pt,arrowsize=3pt 2,arrowinset=0.25 (-2.94,-1.87)(7.07,3.86) (0,1)1.25

(3,0)0.55 [tl](5.33,-0.41)P (-2.44,-0.03)(6.18,-0.85) (-2.04,3.71)(6.55,-1.48)
[tl](-0.18,1.1)C1 [tl](2.85 ,0.15)C2 [tl](-0.65,3.29)L′ [tl](-1.5,-0.34)L

The diagram above shows two non-overlapping circles C1 and C2 of different sizes.
The lines L and L′ are the two common tangents to C1 and C2 such that the two
circles lie on the same side of each of the tangents. The lines L and L′ intersect at
the point P which is called the focus of C1 and C2.

(i) Let x1 and x2 be the position vectors of the centres of C1 and C2, respectively.
Show that the position vector of P is

r1x2 − r2x1

r1 − r2
,

where r1 and r2 are the radii of C1 and C2, respectively.

(ii) The circle C3 does not overlap either C1 or C2 and its radius, r3, satisfies
r1 ̸= r3 ̸= r2. The focus of C1 and C3 is Q, and the focus of C2 and C3 is R.
Show that P , Q and R lie on the same straight line.

(iii) Find a condition on r1, r2 and r3 for Q to lie half-way between P and R.
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Question (2016 STEP I Q6)

The sides OA and CB of the quadrilateral OABC are parallel. The point X lies on
OA, between O and A. The position vectors of A, B, C and X relative to the origin
O are a, b, c and x, respectively. Explain why c and x can be written in the form

c = ka+ b and x = ma ,

where k and m are scalars, and state the range of values that each of k and m can
take.
The lines OB and AC intersect at D, the lines XD and BC intersect at Y and

the lines OY and AB intersect at Z. Show that the position vector of Z relative to
O can be written as

b+mka

mk + 1
.

The lines DZ and OA intersect at T . Show that

OT ×OA = OX × TA and
1

OT
=

1

OX
+

1

OA
,

where, for example, OT denotes the length of the line joining O and T .

Question (2017 STEP II Q8)

All vectors in this question lie in the same plane.
The vertices of the non-right-angled triangle ABC have position vectors a, b and

c, respectively. The non-zero vectors u and v are perpendicular to BC and CA,
respectively.
Write down the vector equation of the line through A perpendicular to BC, in

terms of u, a and a parameter λ.
The line through A perpendicular to BC intersects the line through B perpendic-

ular to CA at P . Find the position vector of P in terms of a, b, c and u.
Hence show that the line CP is perpendicular to the line AB.

Question (2018 STEP II Q7)

The points O, A and B are the vertices of an acute-angled triangle. The points M
and N lie on the sides OA and OB respectively, and the lines AN and BM intersect
at Q. The position vector of A with respect to O is a, and the position vectors of
the other points are labelled similarly.
Given that |MQ| = µ|QB|, and that |NQ| = ν|QA|, where µ and ν are positive

and µν < 1, show that

m =
(1 + µ)ν

1 + ν
a .

The point L lies on the side OB, and |OL| = λ|OB| . Given that ML is parallel
to AN , express λ in terms of µ and ν.

What is the geometrical significance of the condition µν < 1 ?
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Question (2019 STEP I Q5) (i) The four points P , Q, R and S are the vertices of
a plane quadrilateral. What is the geometrical shape of PQRS if P⃗Q = S⃗R?
What is the geometrical shape of PQRS if P⃗Q = S⃗R and |P⃗Q| = |P⃗S|?

(ii) A cube with edges of unit length has opposite vertices at (0, 0, 0) and (1, 1, 1).
The points

P (p, 0, 0), Q(1, q, 0), R(r, 1, 1) and S(0, s, 1)

lie on edges of the cube. Given that the four points lie in the same plane, show
that

rq = (1− s)(1− p).

a) Show that P⃗Q = S⃗R if and only if the centroid of the quadrilateral PQRS
is at the centre of the cube. Note: the centroid of the quadrilateral PQRS
is the point with position vector

1

4
(O⃗P + O⃗Q+ O⃗R+ O⃗S),

where O is the origin.

b) Given that P⃗Q = S⃗R and |P⃗Q| = |P⃗S|, express q, r and s in terms of p.
Show that

cosPQR =
4p− 1

5− 4p+ 8p2
.

Write down the values of p, q, r and s if PQRS is a square, and show that
the length of each side of this square is greater than 21

20 .

(i) If P⃗Q = S⃗R we have a parallelogram.

P⃗Q = S⃗R and |P⃗Q| = |P⃗S| then we have a rhombus.

(ii) If the four points lie in a plane then

(R⃗S × R⃗P ) · R⃗Q = 0, so

0 =

 −r
s− 1
0

×

p− r
−1
−1

 ·

1− r
q − 1
−1


=

 1− s
−r

r + (p− r)(1− s)

 ·

1− r
q − 1
−1


= (1− s)(1− r)− r(q − 1)− r − (p− r)(1− s)

= (1− s)(1− r − p+ r)− rq

⇒ rq = (1− s)(1− p)

a)

153



SM UFM Pure (with Solutions)

⇔ 1 = r + p ; 1 = q + s

The centroid is 1
4(p+1+r, q+s+1, 2) which is clearly 1

2(1, 1, 1) iff those equations
are true.

b)

|P⃗Q| = |P⃗S|
⇔ (1− p)2 + q2 + 02 = p2 + s2 + 1)

⇔ 1− 2p+ p2 + q2 = p2 + s2 + 1

⇔ −2p+ q2 = s2

From the previous equations we have r = 1 − p, and −2p + (1 − s)2 = s2 ⇒
−2p+ 1− 2s = 0 ⇒ s = 1

2 − p and q = 1
2 + p

cosPQR =
Q⃗P · Q⃗R

|Q⃗P ||Q⃗R|

=

p− 1
−q
0

 ·

r − 1
1− q
1


√

(p− 1)2 + q2
√

(r − 1)2 + (1− q)2 + 12

=

 p− 1
−1

2 − p
0

 ·

 −p
1
2 − p
1


√

(p− 1)2 + (−1
2 − p)2

√
p2 + (12 − p)2 + 12

=
p− p2 − 1

4 + p2√
p2 − 2p+ 1 + 1

4 + p+ p2
√
p2 + 1

4 − p+ p2 + 1

=
4p− 1√

8p2 − 4p+ 5
√
8p2 − 4p+ 5

=
4p− 1

8p2 − 4p+ 5

For PQRS to be a square cosPQR = 0, ie p = 1
4 and so

(p, q, r, s) = (14 ,
3
4 ,

3
4 ,

1
4) and |PQ| =

√
(1− p)2 + q2 =

√(
3
4

)2
+
(
3
4

)2
= 3

√
2

4 ,

notice that
(
21
20

)2
= 441

400 < 9
8 (441 < 450) therefore the sides are at least as long

as 21
20
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Question (1989 STEP II Q9)

The matrix F is defined by

F = I+
∞∑
n=1

1

n!
tnAn,

where A =

(
−3 −1
8 3

)
and t is a variable scalar. Evaluate A2, and show that

F = I cosh t+A sinh t.

Show also that F−1 = I cosh t−A sinh t, and that
dF

dt
= FA. The vector r =

(
x(t)
y(t)

)
satisfies the differential equation

dr

dt
+Ar = 0,

with x = α and y = β at t = 0. Solve this equation by means of a suitable matrix
integrating factor, and hence show that

x(t) = α cosh t+ (3α+ β) sinh t

y(t) = β cosh t− (8α+ 3β) sinh t.

(
−3 −1
8 3

)2

=

(
9− 8 3− 3

−24 + 24 −8 + 9

)
=

(
1 0
0 1

)
= I

Therefore:

F = I+
∞∑
n=1

1

n!
tnAn

= I+

∞∑
n=1

1

(2n)!
t2nI+

∞∑
n=0

1

(2n+ 1)!
t2n+1A

= cosh tI+ sinh tA

Notice that

F(I cosh t−A sinh t) = (I cosh t+A sinh t)(I cosh t−A sinh t)

= I2 cosh2 t+A(sinh t cosh t− cosh t sinh t)−A2 sinh2 t

= I cosh2 t− I sinh2 t

= I

Therefore F−1 = I cosh t−A sinh t

dF

dt
=

d

dt

[
I+

∞∑
n=1

1

n!
tnAn

]
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=

∞∑
n=1

1

(n− 1)!
tn−1An

=

( ∞∑
n=1

1

(n− 1)!
tn−1An−1

)
A

= FA

dr

dt
+Ar = 0

⇒ F
dr

dt
+ FAr = 0

d

dt
(Fr) = 0

⇒ Fr = c

⇒ r = F−1c

= (I cosh t−A sinh t)c

t = 0 :

(
α

β

)
= c

⇒ r = (I cosh t−A sinh t)

(
α

β

)
=

(
α cosh t

β cosh t

)
−
(
−3α− β

8α+ 3β

)
sinh t

=

(
α cosh t+ (3α+ β) sinh t

β cosh t− (8α+ 3β) sinh t

)
as required

Question (1990 STEP I Q7)

Let y, u, v, P and Q all be functions of x. Show that the substitution y = uv in the
differential equation

dy

dx
+ Py = Q

leads to an equation for
dv

dx
in terms of x,Q and u, provided that u satisfies a suitable

first order differential equation. Hence or otherwise solve

dy

dx
− 2y

x+ 1
= (x+ 1)

5
2 ,

given that y(1) = 0. For what set of values of x is the solution valid?

Suppose y = uv then and suppose du
dx + Pu = 0 then

dy

dx
+ Py = Q

uv′ + u′v + Puv = Q

uv′ = Q

dv

dx
=

Q

u
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Consider

0 =
du

dx
− 2u

x+ 1

⇒ lnu = 2 ln(1 + x) + C

⇒ u = A(1 + x)2

and

dv

dx
=

1

A
(x+ 1)

1
2

⇒ v =
2

3A
(x+ 1)

3
2 + k

⇒ y =
2

3
(x+ 1)

7
2 + k(x+ 1)2

0 = y(1)

=
2

3
27/2 + k22

⇒ k = −25/2

3

⇒ y =
2

3
(x+ 1)7/2 − 25/2

3
(x+ 1)2

Question (1990 STEP III Q8)

Let P,Q and R be functions of x. Prove that, for any function y of x, the function

Py′′ +Qy′ +Ry

can be written in the form
d

dx
(py′ + qy), where p and q are functions of x, if and

only if P ′′ −Q′ +R = 0. Solve the differential equation

(x− x4)y′′ + (1− 7x3)y′ − 9x2y = (x3 + 3x2)ex,

given that when x = 2, y = 2e2 and y′ = 0.

Suppose Py′′ +Qy′ +Ry = d
dx(py

′ + qy), then

Py′′ +Qy′ +Ry =
d

dx
(py′ + qy)

= py′′ + p′y′ + qy′ + q′y

= py′′ + (p′ + q)y′ + q′y

Therefore P = p,Q = p′ + q,R = q′, Therefore q = Q − P ′ and R = Q′ − P ′′ or
P ′′ −Q′ +R = 0.

(⇒) Suppose it can be written in that form, then the logic we have applied shows that
equation is true. (⇐) Suppose P ′′ −Q′ +R = 0, then letting p = P, q = Q− P ′ we find
functions of the form which will be expressed correctly.
Notice that if P = x− x4, Q = (1− 7x3), R = −9x2 then:

P ′′ −Q′ +R = −12x2 + 21x2 − 9x2
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= 0

Therefore we can write our second order ODE as:

(x3 + 3x)ex =
d

dx

(
(x− x4)y′ + (1− 7x3 − (1− 4x3))y

)
=

d

dx

(
(x− x4)y′ − 3x3y

)
Suppose z = (x− x4)y′ − 3x2y, then z = (2− 24) · 0− 3 · 22 · 2e2 = −24e2 when x = 2.

and we have:

dz

dx
= (x3 + 3x2)ex

⇒ z =

∫
(x3 + 3x2)exdx

= x3ex + c

⇒ −48e2 = e2(8) + c

⇒ c = −56e2

⇒ z = ex(x3)− 56e2

So our differential equation is:

(x− x4)y′ − 3x3y = x3ex − 56e2

⇒ (1− x3)y′ − 3x2y = x2ex − 6e2

x

⇒ d

dx

(
(1− x3)y

)
= x2ex − 56e2

x
⇒ (1− x3)y = (x2 − 2x+ 2)ex − 56e2 lnx+ k

⇒︸︷︷︸
x=2

(1− 23)2e2 = (22 − 2 · 2 + 2)e2 − 56e2 ln 2 + k

⇒ k = −16e2 + 56 ln 2 · e2

⇒ y =
(x2 − 2x+ 2)ex − 56e2 lnx− 16e2 + 56 ln 2 · e2

(1− x3)

158



SM UFM Pure (with Solutions)

Question (1995 STEP II Q8)

If there are x micrograms of bacteria in a nutrient medium, the population of bacteria
will grow at the rate (2K − x)x micrograms per hour. Show that, if x = K when
t = 0, the population at time t is given by

x(t) = K +K
1− e−2Kt

1 + e−2Kt
.

Sketch, for t ⩾ 0, the graph of x against t. What happens to x(t) as t → ∞?
Now suppose that the situation is as described in the first paragraph, except that

we remove the bacteria from the nutrient medium at a rate L micrograms per hour
where K2 > L. We set α =

√
K2 − L. Write down the new differential equation

for x. By considering a new variable y = x − K + α, or otherwise, show that, if
x(0) = K then x(t) → K + α as t → ∞.

Question (2000 STEP II Q8) (i) Let y be the solution of the differential equation

dy

dx
+ 4xe−x2

(y + 3)
1
2 = 0 (x ≥ 0),

that satisfies the condition y = 6 when x = 0. Find y in terms of x and show
that y → 1 as x → ∞.

(ii) Let y be any solution of the differential equation

dy

dx
− xe6x

2
(y + 3)1−k = 0 (x ≥ 0).

Find a value of k such that, as x → ∞, e−3x2
y tends to a finite non-zero limit,

which you should determine.
[The approximations, valid for small θ, sin θ ≈ θ and cos θ ≈ 1 − 1

2 θ
2 may be

assumed.]

Question (2003 STEP III Q8) (i) Show that the gradient at a point (x , y) on the
curve

(y + 2x)3 (y − 4x) = c ,

where c is a constant, is given by

dy

dx
=

16x− y

2y − 5x
.

(ii) By considering the derivative with respect to x of (y + ax)n (y + bx) , or other-
wise, find the general solution of the differential equation

dy

dx
=

10x− 4y

3x− y
.
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(i)

c = (y + 2x)3 (y − 4x)

⇒ 0 = 3 (y + 2x)2 (y − 4x)

(
dy

dx
+ 2

)
+ (y + 2x)3

(
dy

dx
− 4

)
⇒ 0 = 3(y − 4x)

(
dy

dx
+ 2

)
+ (y + 2x)

(
dy

dx
− 4

)
⇒ =

dy

dx
(3(y − 4x) + (y + 2x)) + 6(y − 4x)− 4(y + 2x)

=
dy

dx
(4y − 10x) + 2y − 32x

⇒ dy

dx
=

16x− y

2y − 5x

(ii)

c = (y + ax)n (y + bx)

⇒ 0 = n (y + ax)n−1 (y + bx)

(
dy

dx
+ a

)
+ (y + ax)n

(
dy

dx
+ b

)
⇒ 0 = n (y + bx)

(
dy

dx
+ a

)
+ (y + ax)

(
dy

dx
+ b

)
=

dy

dx
((n+ 1)y + (nb+ a)x) + an(y + bx) + by + bax

=
dy

dx
((n+ 1)y + (nb+ a)x) + (an+ b)y + ab(n+ 1)x

⇒ dy

dx
= −(an+ b)y + ab(n+ 1)x

(n+ 1)y + (nb+ a)x

We must have ab = 10, a+ b = −7 so say a = −5, b = −2, n = 2 and we have

(y − 5x)2(y − 2) = c is our general solution to the differential equation

Question (2004 STEP III Q8)

Show that if
dy

dx
= f(x)y +

g(x)

y

then the substitution u = y2 gives a linear differential equation for u(x) . Hence or
otherwise solve the differential equation

dy

dx
=

y

x
− 1

y
.

Determine the solution curves of this equation which pass through (1 , 1) , (2 , 2) and
(4 , 4) and sketch graphs of all three curves on the same axes.

dy

dx
= f(x)y +

g(x)

y

y
dy

dx
= f(x)y2 + g(x)
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u = y2 :
1

2

du

dx
= f(x)u+ g(x)

Which is a linear differential equation for u.

1

2
u′ =

1

x
u− 1

⇒ u′ − 2

x
u = −1

⇒ 1

x2
u′ − 2

x3
u = − 1

x2

⇒ (
u

x2
)′ = − 1

x2

⇒ u

x2
=

1

x
+ C

⇒ u = Cx2 + x

⇒ y2 = Cx2 + x

If (1, 1) is on the curve then 1 = C + 1 ⇒ C = 0 ⇒ y2 = x.
If (2, 2) is on the curve then 4 = 4C + 2 ⇒ C = 1

2 ⇒ y2 = x+ 1
2x

2.
If (3, 3) is on the curve then 9 = 9C + 3 ⇒ C = 2

3 ⇒ y2 = x+ 2
3x

2

x

y
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Question (2012 STEP I Q8) (i) Show that substituting y = xv, where v is a func-
tion of x, in the differential equation

xy
dy

dx
+ y2 − 2x2 = 0 (x ̸= 0)

leads to the differential equation

xv
dv

dx
+ 2v2 − 2 = 0 .

Hence show that the general solution can be written in the form

x2(y2 − x2) = C ,

where C is a constant.

(ii) Find the general solution of the differential equation

y
dy

dx
+ 6x+ 5y = 0 (x ̸= 0).

(i)

y = xv

y′ = v + xv′

⇒ 0 = x2v

(
v + x

dv

dx

)
+ (x2v2)− 2x2

= 2x2v2 + x3v
dv

dx
− 2x2

⇒ 0 = xv
dv

dx
+ 2v2 − 2

⇒ v

1− v2
dv

dx
=

2

x

⇒
∫

v

1− v2
dv = 2 ln |x|

⇒ −1

2
ln |1− v2| = 2 ln |x|+ C

⇒ 4 ln |x|+ ln |1− v2| = K

⇒ x4(1− v2) = K

⇒ x2(x2 − y2) = K

(ii)
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Question (2014 STEP II Q5)

Given that y = xu, where u is a function of x, write down an expression for
dy

dx
.

(i) Use the substitution y = xu to solve

dy

dx
=

2y + x

y − 2x

given that the solution curve passes through the point (1, 1). Give your answer
in the form of a quadratic in x and y.

(ii) Using the substitutions x = X + a and y = Y + b for appropriate values of a
and b, or otherwise, solve

dy

dx
=

x− 2y − 4

2x+ y − 3
,

given that the solution curve passes through the point (1, 1).

dy

dx
=

d

dx
(y)

=
d

dx
(xu)

=︸︷︷︸
product rule

d

dx
(x)u+ x

d

dx
(u)

= u+ x
du

dx

(i)

dy

dx
=

2y + x

y − 2x

u+ x
du

dx
=

2u+ 1

u− 2

x
du

dx
=

2u− 1− u2 + 2u

u− 2

⇒
∫

2− u

u2 − 4u+ 1
du =

∫
1

x
dx∫

2− u

(u− 2)2 − 5
du =

∫
1

x
dx

−1

2
ln |(u− 2)2 − 5| = lnx+ C

(x, y) = (1, 1) : − ln 2 = C

⇒ lnx2 = ln 4− ln |5− (u− 2)2|

⇒ x2 =
4

5− (u− 2)2

⇒ 4 = x2(5− (
y

x
− 2)2)

= 5x2 − (y − 2x)2

= x2 + 4xy − y2
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(ii) It would be convienient if x−2y−4 = X−2Y and 2x+y−3 = 2X+Y , ie a−2b = 4
and 2a+ b = 3, ie a = 2, b = −1.

Now our differential equation is:

dY

dX
=

X − 2Y

2X + Y
dX

dY
=

2X + Y

X − 2Y

This is the same differential equation we have already solved, just with the roles of x
and y interchanged with Y and X and with the point (0, 3) being on the curve, ie:

Y 2 + 4XY −X2 = c and c = 9, therefore our equation is:

(y − 1)2 + 4(y − 1)(x+ 2)− (x+ 2)2 = 9

Question (2018 STEP II Q8)(i) Use the substitution v =
√
y to solve the

differential equation

dy

dt
= αy

1
2 − βy (y ≥ 0, t ≥ 0) ,

where α and β are positive constants. Find the non-constant solution y1(x)
that satisfies y1(0) = 0 .

(ii) Solve the differential equation

dy

dt
= αy

2
3 − βy (y ≥ 0, t ≥ 0) ,

where α and β are positive constants. Find the non-constant solution y2(x)
that satisfies y2(0) = 0 .

(iii) In the case α = β, sketch y1(x) and y2(x) on the same axes, indicating clearly
which is y1(x) and which is y2(x). You should explain how you determined
the positions of the curves relative to each other.

Question (1987 STEP I Q3)

By substituting y(x) = xv(x) in the differential equation

x3
dv

dx
+ x2v =

1 + x2v2

(1 + x2) v
,

or otherwise, find the solution v(x) that satisfies v = 1 when x = 1.

What value does this solution approach when x becomes large?
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Let y = xv then y′ = v + xv′ and so x2y′ = x2v + x3v′ Our differential equation is
now:

x2y′ =
1 + y2

(1 + x2) yx

⇒ xy′ =
(1 + y2)

(1 + x2)y

⇒ y

1 + y2
dy

dx
=

1

x(1 + x2)

⇒ y

1 + y2
dy

dx
=

1

x
− x

1 + x2

⇒ 1

2
ln(1 + y2) = lnx− 1

2
ln(1 + x2) + C

⇒ 1

2
ln(1 + y2) =

1

2
ln

(
x2

1 + x2

)
+ C

⇒ 1 + y2 =
Dx2

1 + x2

⇒ D = 4 : (x = 1, v = 1, y = 1)

⇒ 1 + x2v2 =
4x2

1 + x2

⇒ v2 =
3x2 − 1

x2(1 + x2)

⇒ v =

√
3x2 − 1

x2(1 + x2)

As x → ∞, v → 0

Question (1988 STEP II Q5)

By considering the imaginary part of the equation z7 = 1, or otherwise, find all
the roots of the equation

t6 − 21t4 + 35t2 − 7 = 0.

You should justify each step carefully. Hence, or otherwise, prove that

tan
2π

7
tan

4π

7
tan

6π

7
=

√
7.

Find the corresponding result for

tan
2π

n
tan

4π

n
· · · tan (n− 1)π

n

in the two cases n = 9 and n = 11.

Suppose z7 = 1, then we can write z = cos θ + i sin θ and we must have that:
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0 = Im((cos θ + i sin θ)7)

=

(
7

6

)
cos6 θ sin θ −

(
7

4

)
cos4 θ sin3 θ +

(
7

2

)
cos2 θ sin5 θ − sin7 θ

= 7 cos6 sin θ − 35 cos4 θ sin3 θ + 21 cos2 θ sin5 θ − sin7 θ

= − cos7 θ
(
tan7 θ − 21 tan5 θ + 35 tan3 θ − 7 tan θ

)
= cos7 θ · t(t7 − 21t4 + 35t2 − 7)

Where t = tan θ. So if z is a root of z7 = 1 and cos θ ̸= 0, tan θ ̸= 0 then t is a root
of the equation. Thererefore the roots are:

tan 2πk
7 where k = 1, 2, . . . 6.

Noting that tan π
7 = − tan 6π

7 , tan 3π
7 = − tan 4π

7 , tan 5π
7 = − tan 2π

7 we can conclude
that:

7 =
k∏

k=1

tan
kπ

6

=

(
tan

2π

7
tan

4π

7
tan

6π

7

)2

⇒ ±
√
7 = tan

2π

7
tan

4π

7
tan

6π

7

However, we know that tan 2π
7 is positive, tan 4π

7 , tan 6π
7 are negative, therefore the

result must be positive, ie +
√
7

Using a similar method, we notice that:

0 = Im ((cos θ + i sin θ)n)

= cosn θ · t(tn−1 + · · · −
(

n

n− 1

)
)

Therefore
∏n−1

k=0 tan
kπ
n = n and since tan (2k+1)π

n = tan (n−2k−1)π
n is a map of all the

odd numbers to the even numbers (and vice versa) when n is odd. We also know
that the terms less where tan θ has θ < π

2 are positive, and the others even, we can
determine the signs:

tan
2π

9
tan

4π

9
tan

6π

9
tan

8π

9
= 3

tan
2π

11
tan

4π

11
tan

6π

11
tan

8π

11
tan

10π

11
= −

√
11
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Question (1989 STEP I Q8)

By using de Moivre’s theorem, or otherwise, show that

(i) cos 4θ = 8 cos4 θ − 8 cos2 θ + 1;

(ii) cos 6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.

Hence, or otherwise, find all the real roots of the equation

16x6 − 28x4 + 13x2 − 1 = 0.

[No credit will be given for numerical approximations.]

Given that eiθ = cos θ + i sin θ we must have that

(i)

cos 4θ = Re
(
ei4θ
)

= Re
(
(cos θ + i sin θ)4

)
= cos4 θ −

(
4

2

)
cos2 θ sin2 θ + sin4 θ

= cos4 θ − 6 cos2 θ(1− cos2 θ) + (1− cos2 θ)2

= 8 cos4 θ − 8 cos2 θ + 1

(ii) Similarly,

cos 6θ = Re
(
ei6θ
)

= Re
(
(cos θ + i sin θ)6

)
= cos6 θ −

(
6

2

)
cos4 θ sin2 θ +

(
6

4

)
cos2 θ sin4 θ − sin6 θ

= cos6 θ − 15 cos4 θ(1− cos2 θ) + 15 cos2 θ(1− cos2 θ)2 − (1− cos2 θ)3

= 31 cos6 θ − 45 cos4 θ + 15 cos2 θ − 1 + 3 cos2 θ − 3 cos4 θ + cos6 θ

= 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1

0 = 16x6 − 28x4 + 13x2 − 1

=
1

2
(32x6 − 56x4 + 26x2 − 1)

=
1

2
(32x6 − 48x4 + 18x2 − 1− (8x4 − 8x2 + 1))

Therefore if x = cos θ then we are looking at solving cos 6θ = cos 4θ.

cos 6θ − cos 4θ = −2 sin 5θ sin θ = 0. So we should be looking at sin 5θ = 0 and
sin θ = 0.

sin θ = 0 ⇒ x = cos θ = ±1 both of which are roots.
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The other roots will be cos π
5 , cos

2π
5 etc but it’s unclear this is an acceptable form.

Alternatively, given our two roots, we can factorize

0 = 16x6 − 28x4 + 13x2 − 1

= (x2 − 1)(16x4 − 12x2 + 1)

We can solve 16y2 − 12y + 1 = 0 to see that x2 = 3±
√
5

8 so our roots are:

x = −1, 1,±
√

3+
√
5

8 ,±
√

3−
√
5

8

(We might notice that 3 +
√
5 =

(
1+

√
5√

2

)2
so our final answer could be: x =

−1, 1,±1+
√
5

4 ,±
√
5−1
4 )

Question (1990 STEP I Q2)

Let ω = e2πi/3. Show that 1 + ω + ω2 = 0 and calculate the modulus and
argument of 1 + ω2. Let n be a positive integer. By evaluating (1 + ωr)n in two
ways, taking r = 1, 2 and 3, or otherwise, prove that(

n

0

)
+

(
n

3

)
+

(
n

6

)
+ · · ·+

(
n

k

)
=

1

3

(
2n + 2 cos

(nπ
3

))
,

where k is the largest multiple of 3 less than or equal to n. Without using a
calculator, evaluate (

25

0

)
+

(
25

3

)
+ · · ·+

(
25

24

)
and (

24

2

)
+

(
24

5

)
+ · · ·+

(
24

23

)
.

[225 = 33554432.]

Since ω3 = 1 and ω ≠ 1 we must have that (ω − 1)(1 + ω + ω2) = 0 but by dividing
by ω − 1 we obtain the desired result.

1 + ω2 = −ω so |1 + ω2| = | − ω| = 1 and arg(1 + ω2) = arg(−ω) = π − 2π
3 = π

3

(1 + 1)n =

n∑
k=0

(
n

k

)

(1 + ω)n =

n∑
k=0

(
n

k

)
ωk

(1 + ω2)n =
n∑

k=0

(
n

k

)
ω2k

⇒ 2n + (−ω2)n + (−ω)n =

n∑
k=0,k≡0 (mod 3)

(1 + 1 + 1)

(
n

k

)
+

n∑
k=0,k≡1 (mod 3)

(1 + ω + ω2)

(
n

k

)
+

n∑
k=0,k≡2 (mod 3)

(1 + ω2 + ω)

(
n

k

)
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⇒ 2n + ((−ω)n)−1 + (−ω)n =
n∑

k=0,k≡0 (mod 3)

(
n

k

)

2n + ((−ω)n)−1 + (−ω)n = 2n + 2Re(−ωn) = 2n + 2 cos nπ
3

Therefore our answer follows.

(
25

0

)
+

(
25

3

)
+ · · ·+

(
25

24

)
=

1

3

(
225 + 2 cos(

25π

3
)

)
=

1

3

(
225 + 2 cos

π

3

)
=

1

3

(
225 + 1

)
=

1

3
((4096 · 4096 · 2) + 1)

= 11 184 811

Notice that S2 =
(
24
2

)
+ · · ·+

(
24
23

)
=
(
24
1

)
+ · · ·+

(
24
22

)
= S1 and S0 =

(
24
0

)
+ · · ·+

(
24
21

)
=

1
3

(
224 + 2

)
Therefore since S0 + 2 · S2 = 224 we must have

S2 =
1

2

(
224 − 1

3

(
224 + 2

))
=

1

3

(
224 − 1

)
=

1

3
(16777216− 1)

=
1

3
· 16777215

= 5 592 405
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Question (1990 STEP III Q1)

Show, using de Moivre’s theorem, or otherwise, that

tan 9θ =
t(t2 − 3)(t6 − 33t4 + 27t2 − 3)

(3t2 − 1)(3t6 − 27t4 + 33t2 − 1)
, where t = tan θ.

By considering the equation tan 9θ = 0, or otherwise, obtain a cubic equation
with integer coefficients whose roots are

tan2
(π
9

)
, tan2

(
2π

9

)
and tan2

(
4π

9

)
.

Deduce the value of

tan
(π
9

)
tan

(
2π

9

)
tan

(
4π

9

)
.

Show that

tan6
(π
9

)
+ tan6

(
2π

9

)
+ tan6

(
4π

9

)
= 33273.

Writing c = cos θ, s = sin θ then de Moivre states that:

cos 9θ + i sin 9θ = (c+ is)9

= c9 + 9ic8s− 36c7s2 − 84ic6s3 + 126c5s4 + 126ic4s5 − 84c3s6 − 36ic2s7 + 9cs8 + is9

= (c9 − 36c7s2 + 126c5s3 − 84c3s6 + 8cs8) + i(9c8s− 75c6s3 + 126c4s5 − 36c2s7 + s9)

⇒ tan 9θ =
(9c8s− 75c6s3 + 126c4s5 − 36s2c7 + s9)

(c9 − 36c7s2 + 126c5s4 − 84c3s6 + 8cs8)

=
9t− 75t3 + 126s5 − 36t7 + t9

1− 36t2 + 126t4 − 84t6 + 8t8

=
t(t2 − 3)(t6 − 33t4 + 27t2 − 3)

(3t2 − 1)(3t6 − 27t4 + 33t2 − 1)

If we consider tan 9θ = 0 it will have the roots θ = nπ
9 , n ∈ Z, in particular, the numer-

ator of our fraction for tan 9θ will be zero for t = 0, tan π
9 , tan

2π
9 , tan 3π

9 , tan 4π
9 , tan 5π

9 , tan 6π
9 , tan 7π

9 , tan 8π
9 .

It’s worth noting all other values of θ will repeat these values. Also note that
0, tan π

3 , tan
2π
3 are the roots of t and t2 − 3 respectively. Therefore the other values

are the roots of our sextic. However, also note that tan 8π
9 = − tan π

9 and similar,
therefore we can notice that all the roots in pairs can be mapped to tan π

9 , tan
2π
9

and tan 4π
9 and all those values are squared, so the roots of:

x3 − 33x2 + 27x− 3 will be tan2 π
9 , tan

2 2π
9 and tan2 4π

9 .

The product of the roots will be 3, so

tan2
π

9
tan2

2π

9
tan2

4π

9
= 3

⇒ tan
π

9
tan

2π

9
tan

4π

9
= ±

√
3
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⇒︸︷︷︸
all positive

tan
π

9
tan

2π

9
tan

4π

9
=

√
3

Notice that x3 + y3 + z3 − 3xyz = (x+ y + z)((x+ y + z)2 − 3(xy + yz + zx))

Therefore

tan6
(π
9

)
+ tan6

(
2π

9

)
+ tan6

(
4π

9

)
= 33(332 − 3 · 27) + 3 · 3

= 33 273

Question (1990 STEP III Q4)

Given that sinβ ̸= 0, sum the series

cosα+ cos(α+ 2β) + · · ·+ cos(α+ 2rβ) + · · ·+ cos(α+ 2nβ)

and

cosα+

(
n

1

)
cos(α+ 2β) + · · ·+

(
n

r

)
cos(α+ 2rβ) + · · ·+ cos(α+ 2nβ).

Given that sin θ ̸= 0, prove that

1+cos θ sec θ+cos 2θ sec2 θ+· · ·+cos rθ secr θ+· · ·+cosnθ secn θ =
sin(n+ 1)θ secn θ

sin θ
.

n∑
r=0

cos(α+ 2rβ) =
n∑

r=0

Re (exp(i(α+ 2rβ)))

= Re

(
n∑

r=0

exp(i(α+ 2rβ))

)

= Re

(
eiα

n∑
r=0

(ei2β)r

)

= Re

(
eiα

e2(n+1)βi − 1

e2βi − 1

)

= Re

(
eiα

e(n+1)βi(e(n+1)βi − e−(n+1)βi)

eβi(eβi − e−βi)

)

= Re

(
eiαe(n+1)βi

eβi
sin(n+ 1)β

sinβ

)

= Re

(
ei(α+nβ) sin(n+ 1)β

sinβ

)
=

cos(α+ nβ) sin(n+ 1)β

sinβ
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n∑
r=0

(
n

r

)
cos(α+ 2rβ) =

n∑
r=0

Re

((
n

r

)
exp(i(α+ 2rβ))

)

= Re

(
n∑

r=0

(
n

r

)
exp(i(α+ 2rβ))

)
= Re

(
eiα(e2βi + 1)n

)
= Re

(
eiαenβi(eβi + e−βi)n

)
= Re

(
eiαenβi2n cosn β

)
= 2n cos(α+ nβ) cosn β

n∑
r=0

cos rθ secr θ =

n∑
r=0

Re(eirθ) secr θ

= Re

(
n∑

r=0

eirθ secr θ

)

= Re

(
ei(n+1)θ secn+1 θ − 1

eiθ sec θ − 1

)

= Re

(
ei(n+1)θ secn θ − cos θ

eiθ − cos θ

)

= Re

(
ei(n+1)θ secn θ − cos θ

i sin θ

)
=

1

sin θ
Im
(
ei(n+1)θ secn θ − cos θ

)
=

sin(n+ 1)θ secn θ

sin θ

Question (1991 STEP I Q3)

A path is made up in the Argand diagram of a series of straight line segments
P1P2, P2P3, P3P4, . . . such that each segment is d times as long as the previous
one, (d ̸= 1), and the angle between one segment and the next is always θ (where
the segments are directed from Pj towards Pj+1, and all angles are measured in
the anticlockwise direction). If Pj represents the complex number zj , express

zn+1 − zn
zn − zn−1

as a complex number (for each n ⩾ 2), briefly justifying your answer. If z1 = 0
and z2 = 1, obtain an expression for zn+1 when n ⩾ 2. By considering its
imaginary part, or otherwise, show that if θ = 1

3π and d = 2, then the path
crosses the real axis infinitely often.
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|zn+1 − zn
zn − zn−1

| = d

arg

(
zn+1 − zn
zn − zn−1

)
= arg(zn+1 − zn)− arg(zn − zn−1)

= θ

⇒ zn+1 − zn
zn − zn−1

= deiθ

z1 = 0

z2 = 1

z3 − z2
z2 − z1

= deiθ

⇒ z3 = deiθ + 1

z4 − z3
z3 − z2

= deiθ

⇒ z4 = (deiθ)2 + deiθ + 1

⇒ zn+1 =
(deiθ)n − 1

deiθ − 1

If d = 2, θ = 1
3π, then, 2e

i
1
3π = 1 +

√
3i

Im(zn+1)) = Im

(2ei
1
3π)n − 1

2ei
1
3π − 1


= Im

(2ei
1
3π)n − 1√
3i


= − 1√

3
Re
(
2nei

n
3
π
)
+

1√
3

Which clearly changes sign infinitely many times, ie crosses the origin infinitely many
times.
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Question (1992 STEP III Q8)

Show that

sin(2n+ 1)θ = sin2n+1 θ

n∑
r=0

(−1)n−r

(
2n+ 1

2r

)
cot2r θ,

where n is a positive integer. Deduce that the equation

n∑
r=0

(−1)r
(
2n+ 1

2r

)
xr = 0

has roots cot2(kπ/(2n+ 1)) for k = 1, 2, . . . , n.

Show that

(i)
n∑

k=1

cot2
(

kπ

2n+ 1

)
=

n(2n− 1)

3
,

(ii)
n∑

k=1

tan2
(

kπ

2n+ 1

)
= n(2n+ 1),

(iii)
n∑

k=1

cosec2
(

kπ

2n+ 1

)
=

2n(n+ 1)

3
.

Question (1995 STEP I Q4)

By applying de Moivre’s theorem to cos 5θ + i sin 5θ, expanding the result using
the binomial theorem, and then equating imaginary parts, show that

sin 5θ = sin θ
(
16 cos4 θ − 12 cos2 θ + 1

)
.

Use this identity to evaluate cos2 1
5π, and deduce that cos 1

5π = 1
4(1 +

√
5).

(cos θ + i sin θ)n = cosnθ + i sinnθ

n = 5 : cos 5θ + i sin 5θ = (cos θ + i sin θ)5

Im : sin 5θ =

(
5

1

)
cos4 θ sin θ +

(
5

3

)
cos2 θ(− sin3 θ) +

(
5

5

)
sin5 θ

= sin θ(5 cos4 θ − 10 cos2 θ sin2 θ + sin4 θ)

= sin θ(5 cos4 θ − 10 cos2 θ(1− cos2 θ) + (1− cos2 θ)2)

= sin θ((5 + 10 + 1) cos4 θ + (−10− 2) cos2 θ + 1)

= sin θ(16 cos4 θ − 12 cos2 θ + 1)

Suppose θ = π
5 , then sin 5θ = 0, sin θ ̸= 0, therefore if c = cos θ we must have
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0 = 16c4 − 12c2 + 1

⇒ c2 =
3±

√
5

8

=
6± 2

√
5

16

=
(1±

√
5)2

16

⇒ c = ±1±
√
5

4

Since c > 0 we either have cos 1
5π = 1+

√
5

4 or cos 1
5π =

√
5−1
4 , however

√
5− 1 < 1.5

and so
√
5−1
4 < 1

2 = cos 1
3π we must have cos 1

5π = 1+
√
5

4

Question (1995 STEP II Q6)

If u and v are the two roots of z2+az+ b = 0, show that a = −u−v and b = uv.

Let α = cos(2π/7) + i sin(2π/7). Show that α is a root of z6 − 1 = 0 and express
the roots in terms of α. The number α+α2+α4 is a root of a quadratic equation

z2 +Az +B = 0

where A and B are real. By guessing the other root, or otherwise, find the
numerical values of A and B.

Show that

cos
2π

7
+ cos

4π

7
+ cos

8π

7
= −1

2
,

and evaluate

sin
2π

7
+ sin

4π

7
+ sin

8π

7
,

making it clear how you determine the sign of your answer.

0 = z2 + az + b

= (z − u)(z − v)

= z2 − (u+ v)z + uv

Therefore by comparing coefficients, a = −u− v and b = uv.

Suppose α = cos(2π/7)+i sin(2π/7), then by De Moivre, α7 = cos(2π)+i sin(2π) = 1,
ie α7 − 1 = 0.

Notice that (α+ α2 + α4) + (α3 + α5 + α6) = −1 and

P = (α+ α2 + α4)(α3 + α5 + α6)

= α4 + α6 + α7 + α5 + α7 + α8 + α7 + α9 + α10

= 3 + α+ α2 + α3 + α4 + α5 + α6

= 2
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Therefore it is a root of x2 + x+ 2 = 0 ⇒ x = −1±i
√
7

2

Therefore cos 2π
7 + cos 4π

7 + cos 8π
7 = Re(α+ α2 + α4) = −1

2

And sin 2π
7 + sin 4π

7 + sin 8π
7 = Im(α+ α2 + α4) = ±

√
7
2 since it is positive it is

√
7
2

Question (1996 STEP III Q5)

Show, using de Moivre’s theorem, or otherwise, that

tan 7θ =
t(t6 − 21t4 + 35t2 − 7)

7t6 − 35t4 + 21t2 − 1
,

where t = tan θ.

(i) By considering the equation tan 7θ = 0, or otherwise, obtain a cubic equation
with integer coefficients whose roots are

tan2
(π
7

)
, tan2

(
2π

7

)
and tan2

(
3π

7

)
and deduce the value of

tan
(π
7

)
tan

(
2π

7

)
tan

(
3π

7

)
.

(ii) Find, without using a calculator, the value of

tan2
( π

14

)
+ tan2

(
3π

14

)
+ tan2

(
5π

14

)
.

None

Question (1997 STEP III Q3)

By considering the solutions of the equation zn − 1 = 0, or otherwise, show that

(z − ω)(z − ω2) . . . (z − ωn−1) = 1 + z + z2 + · · ·+ zn−1,

where z is any complex number and ω = e2πi/n. Let A1, A2, A3, . . . , An be points
equally spaced around a circle of radius r centred at O (so that they are the
vertices of a regular n-sided polygon). Show that

−−→
OA1 +

−−→
OA2 +

−−→
OA3 + · · ·+

−−→
OAn = 0.

Deduce, or prove otherwise, that

n∑
k=1

|A1Ak|2 = 2r2n.
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Question (2000 STEP II Q4)

Prove that

(cos θ + i sin θ)(cosϕ+ i sinϕ) = cos(θ + ϕ) + i sin(θ + ϕ)

and that, for every positive integer n,

(cos θ + i sin θ)n = cosnθ + i sinnθ.

By considering (5− i)2(1 + i), or otherwise, prove that

arctan

(
7

17

)
+ 2arctan

(
1

5

)
=

π

4
.

Prove also that

3 arctan

(
1

4

)
+ arctan

(
1

20

)
+ arctan

(
1

1985

)
=

π

4
.

[Note that arctan θ is another notation for tan−1 θ.]

Question (2000 STEP III Q3)

Given that α = eiπ/3 , prove that 1 + α2 = α.

A triangle in the Argand plane has vertices A, B, and C represented by the
complex numbers p, qα2 and −rα respectively, where p, q and r are positive
real numbers. Sketch the triangle ABC.

Three equilateral triangles ABL, BCM and CAN (each lettered clockwise) are
erected on sides AB, BC and CA respectively. Show that the complex number
representing N is (1− α)p− α2r and find similar expressions for the complex
numbers representing L and M .

Show that lines LC, MA and NB all meet at the origin, and that these three
line segments have the common length p+ q + r.

177



SM UFM Pure (with Solutions)

Question (2005 STEP III Q6)

In this question, you may use without proof the results

4 cosh3 y − 3 cosh y = cosh(3y) and arcosh y = ln(y +
√

y2 − 1).

[ Note: arcoshy is another notation for cosh−1 y ] Show that the equation
x3−3a2x = 2a3 coshT is satisfied by 2a cosh

(
1
3T
)
and hence that, if c2 ≥ b3 > 0,

one of the roots of the equation x3−3bx = 2c is u+
b

u
, where u = (c+

√
c2 − b3)

1
3 .

Show that the other two roots of the equation x3 − 3bx = 2c are the roots of
the quadratic equation

x2 +
(
u+

b

u

)
x+ u2 +

b2

u2
− b = 0 ,

and find these roots in terms of u, b and ω, where ω = 1
2(−1 + i

√
3).

Solve completely the equation x3 − 6x = 6 .

Question (2009 STEP III Q6)

Show that
∣∣eıβ − eıα

∣∣ = 2 sin 1
2(β − α) for 0 < α < β < 2π . Hence show that∣∣eıα − eıβ

∣∣ ∣∣eıγ − eıδ
∣∣+ ∣∣eıβ − eıγ

∣∣ ∣∣eıα − eıδ
∣∣ = ∣∣eıα − eıγ

∣∣ ∣∣eıβ − eıδ
∣∣ ,

where 0 < α < β < γ < δ < 2π. Interpret this result as a theorem about cyclic
quadrilaterals.

Question (2010 STEP III Q3)

For any given positive integer n, a number a (which may be complex) is said to
be a primitive nth root of unity if an = 1 and there is no integer m such that
0 < m < n and am = 1. Write down the two primitive 4th roots of unity. Let
Cn(x) be the polynomial such that the roots of the equation Cn(x) = 0 are the
primitive nth roots of unity, the coefficient of the highest power of x is one and
the equation has no repeated roots. Show that C4(x) = x2 + 1 .

(i) Find C1(x), C2(x), C3(x), C5(x) and C6(x), giving your answers as unfac-
torised polynomials.

(ii) Find the value of n for which Cn(x) = x4 + 1.

(iii) Given that p is prime, find an expression for Cp(x), giving your answer as
an unfactorised polynomial.

(iv) Prove that there are no positive integers q, r and s such that Cq(x) ≡
Cr(x)Cs(x) .
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The primitive 4th roots of unity are i and −i. (Since the other two roots of x4 − 1
are also roots of x2 − 1

C4(x) = (x− i)(x+ i) = x2 + 1 as required.

(i)

C1(x) = x− 1

C2(x) = x+ 1

C3(x) = x2 + x+ 1

C5(x) = x4 + x3 + x2 + x+ 1

C6(x) = x2 − x+ 1

(ii) Since (x4 + 1)(x4 − 1) = x8 − 1 we must have n | 8. But n ̸= 1, 2, 4 so n = 8.

(iii) Cp(x) = xp−1 + xp−2 + · · ·+ x+ 1

(iv) Suppose Cq(x) ≡ Cr(x)Cs(x), then if ω is a primitive qth root of unity we must
Cq(ω) = 0, but that means that one of Cr(ω), Cs(ω) is 0. But that’s only possible
if r or s = q. If this were the case, then what would the other value be? There
are no possible values, hence it’s not possible.

Question (2011 STEP III Q3)

Show that, provided q2 ̸= 4p3, the polynomial

x3 − 3px+ q (p ̸= 0, q ̸= 0)

can be written in the form

a(x− α)3 + b(x− β)3 ,

where α and β are the roots of the quadratic equation pt2 − qt+ p2 = 0, and a
and b are constants which you should express in terms of α and β. Hence show
that one solution of the equation x3 − 24x+ 48 = 0 is

x =
2(2− 2

1
3 )

1− 2
1
3

and obtain similar expressions for the other two solutions in terms of ω, where
ω = e2πi/3 .

Find also the roots of x3 − 3px + q = 0 when p = r2 and q = 2r3 for some
non-zero constant r.
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Question (2013 STEP III Q4)

Show that (z − eiθ)(z − e−iθ) = z2 − 2z cos θ + 1 . Write down the (2n)th roots
of −1 in the form eiθ, where −π < θ ≤ π, and deduce that

z2n + 1 =
n∏

k=1

(
z2 − 2z cos

(
(2k−1)π

2n

)
+ 1
)
.

Here, n is a positive integer, and the
∏

notation denotes the product.

(i) By substituting z = i show that, when n is even,

cos
(

π
2n

)
cos
(
3π
2n

)
cos
(
5π
2n

)
· · · cos

(
(2n−1)π

2n

)
= (−1)

1
2
n
21−n .

(ii) Show that, when n is odd,

cos2
(

π
2n

)
cos2

(
3π
2n

)
cos2

(
5π
2n

)
· · · cos2

(
(n−2)π

2n

)
= n21−n .

You may use without proof the fact that 1 + z2n = (1 + z2)(1− z2 + z4 −
· · ·+ z2n−2) when n is odd.

(z − eiθ)(z − e−iθ) = z2 − (eiθ + e−iθ)z + 1

= z2 − 2 cos θz + 1

The 2nth roots of −1 are e
i(2k+1)π

2n , k ∈ {−n, · · · , n− 1} or e
ikπ
2n , k ∈ {−2n+1,−2n+

3, · · · , 2n− 3, 2n− 1}

z2n + 1 = (z − e−i(2n−1)/2n) · (z − e−i(2n−3)/2n) · · · (z − ei(2n−3)/2n) · (z − ei(2n−1)/2n)

=
n∏

k=1

(
z − ei

2k−1
2n

π
)(

z − e−i 2k−1
2n

π
)

=
n∏

k=1

(
z2 − 2z cos

(
(2k − 1)π

2n

)
+ 1

)
(i)

i2n + 1 =

n∏
k=1

(
i2 − 2i cos

(
(2k − 1)π

2n

)
+ 1

)

⇒ (−1)n + 1 = (−1)n2nin
n∏

k=1

cos

(
(2k − 1)π

2n

)

⇒
n∏

k=1

cos

(
(2k − 1)π

2n

)
= 21−n(−1)n/2 (if n ≡ 0 (mod 2))

(ii) When n is odd, we notice that two of the roots are i and −i, if we exclude those,
(ie by factoring out z2 + 1, we see that

180



SM UFM Pure (with Solutions)

1− z2 + z4 − · · ·+ z2n−2 =
n∏

k=1,2k−1̸=n

(
z2 − 2z cos

(
(2k − 1)π

2n

)
+ 1

)

=

(n−1)/2∏
k=1

(
z2 − 2z cos

(
(2k − 1)π

2n

)
+ 1

) n∏
k=(n+1)/2

(
z2 − 2z cos

(
(2k − 1)π

2n

)
+ 1

)

=

(n−1)/2∏
k=1

(
z2 − 2z cos

(
(2k − 1)π

2n

)
+ 1

) (n−1)/2∏
k=1

(
z2 + 2z cos

(
(2k − 1)π

2n

)
+ 1

)

⇒ 1− i2 + i4 + · · ·+ i2n−2 =

(n−1)/2∏
k=1

(
2 cos

(
(2k − 1)π

2n

)) (n−1)/2∏
k=1

(
2 cos

(
(2k − 1)π

2n

))

⇒ n = 2n−1

(n−1)/2∏
k=1

cos2
(
(2k − 1)π

2n

)

⇒
(n−1)/2∏
k=1

cos2
(
(2k − 1)π

2n

)
= n21−n
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Question (2013 STEP III Q8)

Evaluate

n−1∑
r=0

e2i(α+rπ/n) where α is a fixed angle and n ≥ 2. The fixed point O

is a distance d from a fixed line D. For any point P , let s be the distance from
P to D and let r be the distance from P to O. Write down an expression for s
in terms of d, r and the angle θ, where θ is as shown in the diagram below.

r

O
θ

E

d

sP

D

The curve E shown in the diagram is such that, for any point P on E, the
relation r = ks holds, where k is a fixed number with 0 < k < 1. Each of the n
lines L1, . . . , Ln passes through O and the angle between adjacent lines is π

n .
The line Lj (j = 1, . . . , n) intersects E in two points forming a chord of length
lj . Show that, for n ≥ 2,

n∑
j=1

1

lj
=

(2− k2)n

4kd
.

n−1∑
r=0

e2i(α+rπ/n) = e2iα
n−1∑
r=0

(
e2iπ/n

)r
= e2iα

1−
(
e2iπ/n

)n
1− e2iπ/n

= 0

d = s+ r cos θ ie s = d− r cos θ

Therefore d = r
k+r cos θ ⇒ r = kd

1+k cos θ . The lj will come from r(α+ jπ
n )+r(α+π+ jπ

n )

lj = r(α+
(j − 1)π

n
) + r(α+ π +

(j − 1)π

n
)
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=
kd

1 + k cos
(
α+ (j−1)π

n

) +
kd

1 + k cos
(
α+ π + (j−1)π

n

)
=

kd

1 + k cos
(
α+ (j−1)π

n

) +
kd

1− k cos
(
α+ (j−1)π

n

)
=

2kd

1− k2 cos2
(
α+ (j−1)π

n

)
⇒

n∑
j=1

1

lj
=

n−1∑
j=0

1− k2 cos2
(
α+ jπ

n

)
2kd

=
n

2kd
− k2

2kd

n−1∑
j=0

cos2
(
α+

jπ

n

)

=
n

2kd
− k2

2kd

n−1∑
j=0

1 + cos
(
2α+ 2jπ

n

)
2

=
n

2kd
− nk2

2kd
− k2

4kd

n−1∑
j=0

cos

(
2α+

2jπ

n

)

=
n

2kd
− nk2

2kd
− k2

4kd
Re

n−1∑
j=0

e2i(α+
jπ
n
)


︸ ︷︷ ︸

=0

=
n

2kd
− nk2

4kd

=
n(2− k2)

4kd
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Question (2015 STEP III Q4)(i) If a, b and c are all real, show that the equa-
tion

z3 + az2 + bz + c = 0 (∗)

has at least one real root.

(ii) Let

S1 = z1 + z2 + z3, S2 = z21 + z22 + z23 , S3 = z31 + z32 + z33 ,

where z1, z2 and z3 are the roots of the equation (∗). Express a and b in
terms of S1 and S2, and show that

6c = −S3
1 + 3S1S2 − 2S3 .

(iii) The six real numbers rk and θk (k = 1, 2, 3), where rk > 0 and −π < θk < π,
satisfy

3∑
k=1

rk sin(θk) = 0 ,
3∑

k=1

r2k sin(2θk) = 0 ,
3∑

k=1

r3k sin(3θk) = 0 .

Show that θk = 0 for at least one value of k. Show further that if θ1 = 0
then θ2 = −θ3 .

(i) Let z ∈ R and let z → ±∞ then z3 + az2 + bz + c changes sign, therefore
somewhere it must have a real root.

(ii)

z3 + az2 + bz + c = (z − z1)(z − z2)(z − z3)

= z3 − (z1 + z2 + z3)z
2 + (z1z2 + z2z3 + z3z1)z − (z1z2z3)

⇒ S1 = z1 + z2 + z3

= −a

⇒ S2 = z21 + z22 + z23

= (z1 + z2 + z3)
2 − 2(z1z2 + z2z3 + z3z1)

= a2 − 2b

⇒ a = −S1

b =
1

2

(
S2
1 − S2

)
0 = z3i + az2i + bzi + c

⇒ 0 = S3 + aS2 + bS1 + 3c

= S3 − S1S2 +
1

2

(
S2
1 − S2

)
S1 + 3c
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⇒ 0 = 2S3 − 3S1S2 + S3
1 + 6c

(iii) Let zk = rke
iθk , then we have Im(Sk) = 0 and so the polynomial with roots

zk has real coefficients, and therefore at least one root is real. This root will
have θk = 0. Moreover, since if w is a root of a real polynomial w is also a root,
and therefore if θ1 = 0, we must have that z2 and z3 are complex conjugate, ie
θ2 = −θ3

Question (2016 STEP III Q7)

Let ω = e2πi/n, where n is a positive integer. Show that, for any complex number
z,

(z − 1)(z − ω) · · · (z − ωn−1) = zn − 1 .

The points X0, X1, . . . , Xn−1 lie on a circle with centre O and radius 1, and
are the vertices of a regular polygon.

(i) The point P is equidistant from X0 and X1. Show that, if n is even,

|PX0| × |PX1| × · · · × |PXn−1| = |OP |n + 1 ,

where |PXk| denotes the distance from P to Xk.

Give the corresponding result when n is odd. (There are two cases to
consider.)

(ii) Show that
|X0X1| × |X0X2| × · · · × |X0Xn−1| = n .

None
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Question (2017 STEP III Q2)

The transformation R in the complex plane is a rotation (anticlockwise) by an
angle θ about the point represented by the complex number a. The transforma-
tion S in the complex plane is a rotation (anticlockwise) by an angle ϕ about
the point represented by the complex number b.

(i) The point P is represented by the complex number z. Show that the image
of P under R is represented by

eiθz + a(1− eiθ) .

(ii) Show that the transformation SR (equivalent to R followed by S) is a
rotation about the point represented by c, where

c sin 1
2(θ + ϕ) = a eiϕ/2 sin 1

2θ + b e−iθ/2 sin 1
2ϕ ,

provided θ + ϕ ̸= 2nπ for any integer n.

What is the transformation SR if θ + ϕ = 2π?

(iii) Under what circumstances is RS = SR?

(i) We can map a 7→ 0, rotate the whole plane, then shift the plane back to a, so

z 7→ (z − a) 7→ eiθ(z − a) 7→ a+ eiθ(z − a) = eiθz + a(1− eiθ)

(ii) z 7→ eiθz + a(1− eiθ) 7→ eiϕ
(
eiθz + a(1− eiθ)

)
+ b(1− eiϕ)

eiϕ
(
eiθz + a(1− eiθ)

)
+ b(1− eiϕ) = ei(ϕ+θ)z + aeiϕ − aei(θ+ϕ) + b(1− eiϕ)

Therefore this is rotation by angle ϕ+ θ and about

aeiϕ − aei(θ+ϕ) + b(1− eiϕ)

1− ei(ϕ+θ)
=

e−i
(ϕ+θ)

2

(
aeiϕ − aei(θ+ϕ) + b(1− eiϕ)

)
e−i

(ϕ+θ)
2 − ei

(ϕ+θ)
2

=

(
aei

ϕ−θ
2 − aei

(θ+ϕ)
2 + b(e−i

(ϕ+θ)
2 − ei

(ϕ−θ)
2 )

)
e−i

(ϕ+θ)
2 − ei

(ϕ+θ)
2

=
aei

ϕ
2 2i sin( θ2) + be−i θ

2 2i sin ϕ
2

2i sin(ϕ+θ
2 )

as required.

If ϕ+ θ = 2π, then z 7→ z + (b− a)(1− eiϕ) which is a translation.
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(iii) If ϕ+ θ ̸= 2π then RS = ST if

a eiϕ/2 sin 1
2θ + b e−iθ/2 sin 1

2ϕ = b eiθ/2 sin 1
2ϕ+ a e−iϕ/2 sin 1

2θ

a (eiϕ/2 − e−iϕ/2) sin 1
2θ + b (e−iθ/2 − e+iθ/2) sin 1

2ϕ = 0

a sin
ϕ

2
sin

θ

2
− b sin

θ

2
sin

ϕ

2
= 0

⇔ a = b or sin
θ

2
= 0 or sin

ϕ

2
= 0

⇔ a = b or θ = 0 or ϕ = 0

If ϕ+ θ ̸= 2π then RS = ST if b = a or eiϕ = eiθ ie rotation through the same
angle.

Question (2018 STEP III Q7)(i) Use De Moivre’s theorem to show that, if
sin θ ̸= 0 , then

(cot θ + i)2n+1 − (cot θ − i)2n+1

2i
=

sin (2n+ 1) θ

sin2n+1 θ
,

for any positive integer n. Deduce that the solutions of the equation(
2n+ 1

1

)
xn −

(
2n+ 1

3

)
xn−1 + · · ·+ (−1)n = 0

are

x = cot2
(

mπ

2n+ 1

)
where m = 1, 2, . . . , n .

(ii) Hence show that

n∑
m=1

cot2
(

mπ

2n+ 1

)
=

n (2n− 1)

3
.

(iii) Given that 0 < sin θ < θ < tan θ for 0 < θ < 1
2π, show that

cot2 θ <
1

θ2
< 1 + cot2 θ.

Hence show that
∞∑

m=1

1

m2
=

π2

6
.

(i)

(cot θ + i)2n+1 − (cot θ − i)2n+1

2i
=

1

sin2n+1 θ

(cos θ + i sin θ)2n+1 − (cos θ − i sin θ)2n+1

2i
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=
1

sin2n+1 θ

ei(2n+1)θ − e−i(2n+1)θ

2i

=
sin(2n+ 1)θ

sin2n+1 θ

Notice that:

(cot θ + i)2n+1 − (cot θ − i)2n+1 =

2n+1∑
k=0

(
2n+ 1

k

)
(i)k · cot2n+1−k θ −

2n+1∑
k=0

(
2n+ 1

k

)
(−i)k · cot2n+1−k θ

=
2n+1∑
k=0

(
2n+ 1

k

)(
ik − (−i)k

)
· cot2n+1−k θ

=
n∑

l=0

(
2n+ 1

2l + 1

)(
i2l+1 − (−i)2l+1

)
· cot2n+1−(2l+1) θ

=
n∑

l=0

(
2n+ 1

2l + 1

)
2i · cot2(n−l) θ

= 2i

n∑
l=0

(
2n+ 1

2l + 1

)
cot2(n−l) θ

Therefore if θ satisfies sin(2n+1)θ

sin2n+1 θ
= 0 then z = cot2 θ satisfies the equation. But

θ = mπ
2n+1 ,m = 1, 2, . . . , n are n distinct all the roots must be cot2 mπ

2n+1 .

(ii) Notice that the sum of the roots will be

(
2n+1

3

)(
2n+1

1

) =
(2n+ 1) · 2n · (2n− 1)

3! · (2n+ 1)
=

n · (2n− 1)

3
and so

n∑
m=1

cot2
(

mπ

2n+ 1

)
=

n (2n− 1)

3
.

(iii) For 0 < θ < 1
2π,

0 < sin θ < θ < tan θ

⇔ 0 < cot θ <
1

θ
<

1

sin θ

⇔ 0 < cot2 θ <
1

θ2
<2 θ = 1 + cot2 θ

Therefore

N∑
n=1

cot2
nπ

2N + 1
<

N∑
n=1

(2N + 1)2

n2π2
< N +

N∑
n=1

cot2
nπ

2N + 1

188



SM UFM Pure (with Solutions)

⇒ 1

(2N + 1)2
N(2N − 1)

3
<

N∑
n=1

1

n2π2
<

1

(2N + 1)2

(
N(2N − 1)

3
+ 1

)

⇒ lim
N→∞

1

(2N + 1)2
N(2N − 1)

3
< lim

N→∞

N∑
n=1

1

n2π2
< lim

N→∞

1

(2N + 1)2

(
N(2N − 1)

3
+ 1

)

⇒ 1

6
≤ lim

N→∞

N∑
n=1

1

n2π2
≤ 1

6

⇒
N∑

n=1

1

n2
=

π2

6

Question (1987 STEP I Q7)

Sum each of the series

sin

(
2π

23

)
+ sin

(
6π

23

)
+ sin

(
10π

23

)
+ · · ·+ sin

(
38π

23

)
+ sin

(
42π

23

)
and

sin

(
2π

23

)
− sin

(
6π

23

)
+ sin

(
10π

23

)
− · · · − sin

(
38π

23

)
+ sin

(
42π

23

)
,

giving each answer in terms of the tangent of a single angle.

[No credit will be given for a numerical answer obtained purely by use of a
calculator.]

sinx = eix−e−ix

2i . Also let z = e
2πi
23

10∑
k=0

sin

(
(4k + 2)π

23

)
=

10∑
k=0

Im

(
exp

(
(4k + 2)πi

23

))

= Im

(
10∑
k=0

exp

(
(4k + 2)πi

23

))

= Im

(
e

2πi
23

10∑
k=0

z2k

)

= Im

(
z

(
z22 − 1

z2 − 1

))
= Im

(
z

(
z11(z11 − z−11)

z(z − z−1)

))
= Im

(
z112i sin 22π

23

2i sin 2π
23

)
enumi

=
sin 22π

23

sin 2π
23

Im(z11)

=
sin2 22π

23

sin 2π
23
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=
sin2 π

23

2 sin π
23 cos

π
23

=
1

2
tan

π

23

Similarly,

10∑
k=0

(−1)k sin

(
(4k + 2)π

23

)
=

10∑
k=0

Im

(
(−1)k exp

(
(4k + 2)πi

23

))

= Im

(
10∑
k=0

(−1)k exp

(
(4k + 2)πi

23

))

= Im

(
e

2πi
23

10∑
k=0

(−1)kz2k

)

= Im

(
z

(
z22 + 1

z2 + 1

))
= Im

(
z

(
z11(z11 + z−11)

z(z + z−1)

))
= Im

(
z112 cos 22π

23

2 cos 2π
23

)
enumi

=
cos 22π

23

cos 2π
23

Im(z11)

=
cos 22π

23 sin 22π
23

cos 2π
23

=
1

2

sin 44π
23

cos 2π
23

=
1

2

− sin 2π
23

cos 2π
23

= −1

2
tan

2π

23
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Question (1987 STEP II Q4)

Explain the geometrical relationship between the points in the Argand diagram
represented by the complex numbers z and zeiθ. Write down necessary and
sufficient conditions that the distinct complex numbers α, β and γ represent the
vertices of an equilateral triangle taken in anticlockwise order. Show that α, β
and γ represent the vertices of an equilateral triangle (taken in any order) if and
only if

α2 + β2 + γ2 − βγ − γα− αβ = 0.

Find necessary and sufficient conditions on the complex coefficients a, b and c
for the roots of the equation

z3 + az2 + bz + c = 0

to lie at the vertices of an equilateral triangle in the Argand digram.

The point zeiθ is obtained by rotating the point z about 0 by an angle θ anticlockwise.

The complex numbers α, β and γ will form an equilateral triangle iff the angles
between each side are π

3 , ie


γ − β = ei

π
3 (β − α)

α− γ = ei
π
3 (γ − β)

β − α = ei
π
3 (α− γ)

We don’t need all these equations, since the first two are equivalent to the third.

Combining the first two equations, we have

γ − β

β − α
=

α− γ

γ − β

⇔ (γ − β)2 = (α− γ)(β − α)

⇔ γ2 + β2 − 2γβ = αβ − α2 − γβ + γα

⇔ α2 + β2 + γ2 − βγ − γα− αβ = 0

as required.

If the roots of z3+az2+bz+c = 0 are α, β, γ then α+β+γ = −a and βγ+γα+αβ = b.
We also have that a2−2b = α2+β2+γ2. Therefore there roots will lie at the vertices
of an equilateral triangle iff a2 − 3b = 0
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Question (1987 STEP III Q3)(i) If z = x+ iy, with x, y real, show that

|x| cosα+ |y| sinα ⩽ |z| ⩽ |x|+ |y|

for all real α.

(ii) By considering (5− i)4(1 + i), show that

π

4
= 4 tan−1

(
1

5

)
− tan−1

(
1

239

)
.

Prove similarly that

π

4
= 3 tan−1

(
1

4

)
+ tan−1

(
1

20

)
+ tan−1

(
1

1985

)
.

(i) If z = x+ iy then |z|2 = x2 + y2 ≤ x2 + y2 + 2|x||y| ≤ (|x|+ |y|)2.

The LHS is Cauchy-Schwarz with the vectors

(
|x|
|y|

)
and

(
cosα
sinα

)
, although

that’s not in the spirit of the question.

Consider eiαz = (cosαx− sinαy) + i(sinαx+ cosαy) then
∣∣Re(eiαz)∣∣ ≤ |z| for

all values of α and in particular we can choose α to match the signs of the x and
y to prove the result in question.

(ii) Consider (5− i)4(1 + i), then

arg
(
(5− i)4(1 + i)

)
= arg(5− i)4 + arg(1 + i)

= 4 arg(5− i) + arg(1 + i)

= −4 tan−1 1

5
+ tan−1 1

= arg((24− 10i)2(1 + i))

= arg(4(12− 5i)2(1 + i))

= arg((119− 120i)(1 + i))

= arg(239− i)

= − tan−1 1

239

Therefore
π

4
= 4 tan−1 1

5
− tan−1 1

239

Consider (4− i)3(1 + i)(20− i) then

arg
(
(4− i)3(1 + i)(20− i)

)
= −3 tan−1 1

4
+ tan−1 1− tan−1 1

20

192



SM UFM Pure (with Solutions)

= arg ((15− 8i)(4− i)(1 + i)(20− i))

= arg ((52− 47i)(1 + i)(20− i))

= arg ((99 + 5i)(20− i))

= arg(1985 + i)

= tan−1 1

1985

Therefore
π

4
= 3 tan−1 1

4
+ tan−1 1

20
+ tan−1 1

1985

Question (2025 STEP III Q8)(i) Show that

zm+1 − 1

zm+1
=

(
z − 1

z

)(
zm +

1

zm

)
+

(
zm−1 − 1

zm−1

)
Hence prove by induction that, for n ≥ 1,

z2n − 1

z2n
=

(
z − 1

z

) n∑
r=1

(
z2r−1 +

1

z2r−1

)
Find similarly z2n − 1

z2n
as a product of (z + 1

z ) and a sum.

(ii) i. By choosing z = eiθ, show that

sin 2nθ = 2 sin θ
n∑

r=1

cos(2r − 1)θ

ii. Use this result, with n = 2, to show that cos 2π
5 = cos π

5 − 1
2 .

iii. Use this result, with n = 7, to show that cos 2π
15 +cos 4π

15 +cos 8π
15 +cos 16π

15 =
1
2 .

(iii) Show that sin π
14 − sin 3π

14 + sin 5π
14 = 1

2 .

(i)

RHS =

(
z − 1

z

)(
zm +

1

zm

)
+

(
zm−1 − 1

zm−1

)
= zm+1 +

1

zm−1
− zm−1 − 1

zm+1
+ zm−1 − 1

zm−1

= zm+1 − 1

zm+1

= LHS

.
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Claim: For n ≥ 1,

z2n − 1

z2n
=

(
z − 1

z

) n∑
r=1

(
z2r−1 +

1

z2r−1

)
Proof: (By Induction) Base Case: (n = 1).

LHS = z2 − 1

z2

= (z − 1

z
)(z +

1

z
)

= (z − 1

z
)

1∑
r=1

(
z +

1

z

)

= (z − 1

z
)

1∑
r=1

(
z2r−1 +

1

z2r−1

)
= RHS

as required. Inductive step: Suppose our result is true for some n = k, then
consider n = k + 1.

RHS =

(
z − 1

z

) k+1∑
r=1

(
z2r−1 +

1

z2r−1

)

=

(
z − 1

z

) k∑
r=1

(
z2r−1 +

1

z2r−1

)
+

(
z − 1

z

)(
z2k+1 +

1

z2k+1

)
= z2k − 1

z2k
+

(
z − 1

z

)(
z2k+1 +

1

z2k+1

)
= z2k+2 − 1

z2k+2

= LHS

.

Therefore if our result is true for n = k is true, it is true for n = k + 1. Since it
is also true for n = 1 it is true for all n ≥ 1 but the principle of mathematical
induction.

Since zm+1 − 1

zm+1
=

(
z +

1

z

)(
zm − 1

zm

)
+

(
zm−1 − 1

zm−1

)
, we must have

z2n − 1

z2n
=

(
z +

1

z

) n∑
r=1

(
z2r−1 − 1

z2r−1

)

(ii) i. Since

z2n − 1

z2n
=

(
z − 1

z

) n∑
r=1

(
z2r−1 +

1

z2r−1

)
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we have

e2nθi − e−2nθi =
(
eθi − e−θi

) n∑
r=1

(
e(2r−1)θi + e−(2r−1)θi

)
⇒ 2i sin 2nθ = 2i sin θ

n∑
r=1

2 cos(2r − 1)θ

⇒ sin 2nθ = 2 sin θ
n∑

r=1

cos(2r − 1)θ

ii. When n = 2, θ = π
5 we have:

sin
4π

5
= 2 sin

π

5
(cos

π

5
+ cos

3π

5
)

sin
π

5
= 2 sin

π

5
(cos

π

5
− cos

2π

5
)

1

2
= cos

π

5
− cos

2π

5

⇒ cos
2π

5
= cos

π

5
− 1

2

iii. When n = 7, θ = π
15 we have:

sin
14π

15
= 2 sin

π

15

7∑
r=1

cos(2r − 1)
π

15

⇒ 1

2
= cos

π

15
+ cos

3π

15
+ cos

5π

15
+ cos

7π

15
+ cos

9π

15
+ cos

11π

15
+ cos

13π

15

= − cos
16π

15
+ cos

3π

15
+ cos

5π

15
− cos

8π

15
+ cos

9π

15
− cos

4π

15
− cos

2π

15

= −
(
cos

2π

15
+ cos

4π

15
+ cos

8π

15
+ cos

16π

15

)
+ cos

π

5
+ cos

π

3
+ cos

3π

5

= −
(
cos

2π

15
+ cos

4π

15
+ cos

8π

15
+ cos

16π

15

)
+

1

2
+

1

2

⇒ 1

2
= cos

2π

15
+ cos

4π

15
+ cos

8π

15
+ cos

16π

15

(iii) By using z = eiθ we have that:

z2n − 1

z2n
=

(
z +

1

z

) n∑
r=1

(
z2r−1 − 1

z2r−1

)

⇒ e2nθi − e−2nθi = (eθi + e−θi)

n∑
r=1

(e(2r−1)θi − e(2r−1)θi)

⇒ 2i sin 2nθ = 2 cos θ

n∑
r=1

2i sin(2r − 1)θ

⇒ sin 2nθ = 2 cos θ
n∑

r=1

sin(2r − 1)θ
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When n = 3, θ = π
14 we must have:

sin
3π

7
= 2 cos

π

14
(sin

π

14
+ sin

3π

14
+ sin

5π

14
)

= 2 sin
(π
2
− π

14

)
(sin

π

14
+ sin

3π

14
+ sin

5π

14
)

= 2 sin
3π

7
(sin

π

14
+ sin

3π

14
+ sin

5π

14
)

⇒ 1

2
= sin

π

14
+ sin

3π

14
+ sin

5π

14

as required.

Question (1988 STEP III Q7)

For n = 0, 1, 2, . . . , the functions yn satisfy the differential equation

d2yn
dx2

− ω2x2yn = −(2n+ 1)ωyn,

where ω is a positive constant, and yn → 0 and dyn/dx → 0 as x → +∞ and as
x → −∞. Verify that these conditions are satisfied, for n = 0 and n = 1, by

y0(x) = e−λx2
and y1(x) = xe−λx2

for some constant λ, to be determined. Show that

d

dx

(
ym

dyn
dx

− yn
dym
dx

)
= 2(m− n)ωymyn,

and deduce that, if m ̸= n, ∫ ∞

−∞
ym(x)yn(x) dx = 0.

y0(x) = e−λx2

lim
x→±∞

y0(x) = 0 ⇔ λ > 0

lim
x→±∞

y′0(x) = lim
x→±∞

2xλe−λx2

= 0 ⇔ λ > 0

y′′0(x) = 4x2λ2e−λx2
+ 2λe−λx2

y′′0 − ω2x2y0 + (2 · 0 + 1)ωy0 = e−λx2 (
4x2λ2 + 2λ− ω2x2 + ω

)
= 0 ⇔ λ = ±ω

2

Therefore y0 satisfies if λ = ω
2

Similarly for y1,

y1(x) = xe−λx2

196



SM UFM Pure (with Solutions)

lim
x→±∞

y1(x) = 0 ⇔ λ > 0

lim
x→±∞

y′1(x) = lim
x→±∞

(
−2x2λe−λx2

+ e−λx2
)

= 0 ⇔ λ > 0

y′′0(x) = e−λx2 (
4x3λ2 − 4xλ− 2xλ

)
= e−λx2 (

4x3λ2 − 6xλ
)

y′′1 − ω2x2y1 + (2 · 1 + 1)ωy1 = e−λx2 (
4x3λ2 − 6xλ− ω2x3 + 3ωx

)
= 0 ⇔ λ = ±ω

2

Therefore y1 satisfies if λ = ω
2

d

dx

(
ym

dyn
dx

− yn
dym
dx

)
= y′my′n + ymy′′n − y′ny

′
m − yny

′′
m

= ymy′′n − yny
′′
m

= ym(ω2x2yn − (2n+ 1)ωyn)− yn(ω
2x2ym − (2m+ 1)ωym)

= ymyn(2m− 2n)ω

= 2(m− n)ωymyn

Therefore:

∫ ∞

−∞
ym(x)yn(x)dx =

∫ ∞

−∞

1

2(m− n)

d

dx

(
ym

dyn
dx

− yn
dym
dx

)
dx

=
1

2(m− n)

[
ym

dyn
dx

− yn
dym
dx

]∞
−∞

→ 0

This condition is known as Orthogonality. In fact this question is talking about a
Sturm-Liouville orthogonality condition, in particular for the quantum harmonic
oscillator, and the eigenfunctions are related to Hermite polynomials.

Question (1989 STEP II Q7)

By means of the substitution xα, where α is a suitably chosen constant, find the
general solution for x > 0 of the differential equation

x
d2y

dx2
− b

dy

dx
+ x2b+1y = 0,

where b is a constant and b > −1. Show that, if b > 0, there exist solutions
which satisfy y → 1 and dy/dx → 0 as x → 0, but that these conditions do not
determine a unique solution. For what values of b do these conditions determine
a unique solution?

Let z = xα, dzdx = αxα−1, then

dy

dx
=

dy

dz

dz

dx
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= αxα−1dy

dz

d2y

dx2
=

d

dx

(
αxα−1dy

dz

)
= α(α− 1)xα−2dy

dz
+ αxα−1d

2y

dz2
dz

dx

= α(α− 1)xα−2dy

dz
+ α2x2α−2d

2y

dz2

0 = x
d2y

dx2
− b

dy

dx
+ x2b+1y

= x

(
α(α− 1)xα−2dy

dz
+ α2x2α−2d

2y

dz2

)
− b

(
αxα−1dy

dz

)
+ x2b+1y

= α2x2α−1d
2y

dz2
+
(
α(α− 1)xα−1 − bαxα−1

) dy
dz

+ x2b+1y

If we set α = b+ 1 the middle term disappears, so we get

0 = (b+ 1)2x2b+1d
2y

dz2
+ x2b+1y

⇒ 0 = (b+ 1)2
d2y

dz2
+ y

⇒ y = A sin

(
z

b+ 1

)
+B cos

(
z

b+ 1

)
= A sin

(
xb+1

b+ 1

)
+B cos

(
xb+1

b+ 1

)

lim
x→0

: y → B

dy

dx
= Axb cos

(
xb+1

b+ 1

)
−Bxb sin

(
xb+1

b+ 1

)
b > 0 :

dy

dx
→ 0

So there are infinitely many different solutions with B = 1 and A is anything it
wants to be.

If b = 0 y′ → A so A = 0 and unique.

If b < 0 xb → ∞ so we need A = 0, unique. However, we also need y′ → 0, so we

need to check y′ = −xb sin
(
xb+1

b+1

)
→ 0,

y′ = −xb sin

(
xb+1

b+ 1

)
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≈ −xb
(
xb+1

b+ 1

)
= −x2b+1

b+ 1

so we need 2b+ 1 > 0 ⇒ b > −1
2 .

Therefore the solution is unique on (−1
2 , 0]

Question (1995 STEP I Q8)

Find functions f, g and h such that

d2y

dx2
+ f(x)

dy

dx
+ g(x)y = h(x) (∗)

is satisfied by all three of the solutions y = x, y = 1 and y = x−1 for 0 < x < 1.

If f, g and h are the functions you have found in the first paragraph, what
condition must the real numbers a, b and c satisfy in order that

y = ax+ b+
c

x

should be a solution of (∗)?

None

Question (1995 STEP III Q3)

What is the general solution of the differential equation

d2x

dt2
+ 2k

dx

dt
+ x = 0

for each of the cases: (i) k > 1; (ii) k = 1; (iii) 0 < x < 1? In case (iii) the
equation represents damped simple harmonic motion with damping factor k.
Let x(0) = 0 and let x1, x2, . . . , xn, . . . be the sequence of successive maxima
and minima, so that if xn is a maximum then xn+1 is the next minimum. Show
that |xn+1/xn| takes a value α which is independent of n, and that

k2 =
(lnα)2

π2 + (lnα)2
.

None
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Question (1995 STEP III Q5)

Show that y = sin2(m sin−1 x) satisfies the differential equation

(1− x2)y(2) = xy(1) + 2m2(1− 2y),

and deduce that, for all n ⩾ 1,

(1− x2)y(n+2) = (2n+ 1)xy(n+1) + (n2 − 4m2)y(n),

where y(n) denotes the nth derivative of y.

Derive the Maclaurin series for y, making it clear what the general term is.

Question (1996 STEP II Q8)

Suppose that
f′′(x) + f(−x) = x+ 3 cos 2x

and f(0) = 1, f′(0) = −1. If g(x) = f(x) + f(−x), find g(0) and show that
g′(0) = 0. Show that

g′′(x) + g(x) = 6 cos 2x,

and hence find g(x). Similarly, if h(x) = f(x)− f(−x), find h(x) and show that

f(x) = 2 cosx− cos 2x− x.

g(0) = f(0) + f(−0) = 2f(0) = 2

g′(x) = f ′(x)− f ′(−x)

g′(0) = f ′(0)− f ′(−0) = 0

g′′(x) = f ′′(x) + f ′′(−x)

⇒ g′′(x) + g(x) = f ′′(x) + f ′′(−x) + f(x) + f(−x)

= f ′′(x) + f(−x) + f ′′(−x) + f(x)

= x+ 3 cos 2x+ (−x+ 3 cos(−2x))

= 6 cos 2x

Considering the homogeneous part, we should expected a solution of the form
g(x) = A sinx+B cosx. Seeking an integrating factor of the form g(x) = C cos 2x
we see that −4C cos 2x+ C cos 2x = 6 cos 2x ⇒ −3C = 6 ⇒ C = −2. Therefore the
general solution is

g(x) = A sinx+B cosx− 2 cos 2x

g(0) = B − 2 = 2

g′(0) = A = 0

⇒ g(x) = 4 cosx− 2 cos 2x

h(0) = f(0)− f(−0) = 0
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h′(x) = f ′(x) + f ′(−x)

h′(0) = f ′(0) + f ′(−0) = −2

h′′(x) = f ′′(x)− f ′′(−x)

⇒ h′′(x)− h(x) = f ′′(x)− f ′′(−x)− (f(x)− f(−x))

= f ′′(x) + f(−x)− (f ′′(−x) + f(x))

= x+ 3 cos 2x− (−x+ 3 cos(−2x))

= 2x

Considering the homogeneous part, we should expect a solution of the form Aex +
Be−x. For a specific integral, we can take −2x, ie

h(x) = Aex +Be−x − 2x

h(0) = A+B = 0

h′(0) = A−B − 2 = −2

⇒ A = B = 0

⇒ h(x) = −2x

Therefore

f(x) = 1
2(f(x) + f(−x)) + 1

2(f(x)− f(−x)) = 2 cosx− cos 2x− x

Question (1997 STEP III Q6)

Suppose that yn satisfies the equations

(1− x2)
d2yn
dx2

− x
dyn
dx

+ n2yn = 0,

yn(1) = 1, yn(x) = (−1)nyn(−x).

If x = cos θ, show that
d2yn
dθ2

+ n2yn = 0,

and hence obtain yn as a function of θ. Deduce that for |x| ⩽ 1

y0 = 1, y1 = x,

yn+1 − 2xyn + yn−1 = 0.
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Question (1999 STEP I Q7)

Show that sin(k sin−1 x), where k is a constant, satisfies the differential equation

(1− x2)
d2y

dx2
− x

dy

dx
+ k2y = 0. (∗)

In the particular case when k = 3, find the solution of equation (∗) of the form

y = Ax3 +Bx2 + Cx+D,

that satisfies y = 0 and
dy

dx
= 3 at x = 0. Use this result to express sin 3θ in

terms of powers of sin θ.

Question (1999 STEP III Q8)

The function y(x) is defined for x ≥ 0 and satisfies the conditions

y = 0 and
dy

dx
= 1 at x = 0.

When x is in the range 2(n− 1)π < x < 2nπ, where n is a positive integer, y(t)
satisfies the differential equation

d2y

dx2
+ n2y = 0.

Both y and
dy

dx
are continuous at x = 2nπ for n = 0, 1, 2, . . . .

(i) Find y(x) for 0 ≤ x ≤ 2π.

(ii) Show that y(x) = 1
2 sin 2x for 2π ≤ x ≤ 4π, and find y(x) for all x ≥ 0.

(iii) Show that ∫ ∞

0
y2 dx = π

∞∑
n=1

1

n2
.

Question (2001 STEP I Q8)

Given that y = x and y = 1− x2 satisfy the differential equation

d2y

dx2
+ (x)

dy

dx
+ (x)y = 0 ,

show that (x) = −2x(1+x2)−1 and (x) = 2(1+x2)−1. Show also that ax+b(1−x2)
satisfies the differential equation for any constants a and b. Given instead that
y = cos2(12x

2) and y = sin2(12x
2) satisfy the equation (∗), find (x) and (x).

y = x
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y′ = 1

y′′ = 0

⇒ 0 = 0 + p(x) + xq(x) (1)

y = 1− x2

y′ = −2x

y′′ = −2

⇒ 0 = −2− 2xp(x) + (1− x2)q(x) (2)

2x ∗ (1) + (2) : 2 = (2x2 + 1− x2)q(x)

⇒ q(x) = 2(1 + x2)−1

⇒ p(x) = −2x(1 + x2)−1 (by (1))

d2

dx2
(
ax+ b(1− x2)

)
+ p(x)

d

dx

(
ax+ b(1− x2)

)
+ q(x)

(
ax+ b(1− x2)

)
= a

d2x

dx2
+ b

d2

dx2
(
1− x2

)
+ ap(x)

dx

dx
+ bp(x)

d

dx

(
1− x2

)
+ aq(x)x+ bq(x)(1− x2)

= a

(
d2x

dx2
+ p(x)

dx

dx
+ q(x)x

)
+ b

(
d2

dx2
(
1− x2

)
+ p(x)

d

dx

(
1− x2

)
+ q(x)(1− x2)

)
= 0

y = cos2(12x
2) =

1

2

(
1 + cos(x2)

)
y′ = −x sin(x2)

y′′ = −2x2 cos(x2)− sin(x2)

⇒ 0 = −2x2 cos(x2)− sin(x2) + p(x)(−x sin(x2)) +
1

2

(
1 + cos(x2)

)
q(x)

⇒ 2x2 cos(x2) + sin(x2) = −x sin(x2)p(x) +
1

2
(1 + cos(x2))q(x) (3)

y = sin2(12x
2) =

1

2

(
1− cos(x2)

)
y′ = x sin(x2)

y′′ = 2x2 cos(x2) + sin(x2)

⇒ 0 = 2x2 cos(x2) + sin(x2) + p(x)x sin(x2) +
1

2

(
1− cos(x2)

)
q(x)

⇒ −2x2 cos(x2)− sin(x2) = p(x)x sin(x2) +
1

2

(
1− cos(x2)

)
q(x) (4)

(3) + (4) : 0 = q(x)

⇒ p(x) = −2x2 cos(x2) + sin(x2)

x sin(x2)
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Question (2007 STEP III Q8)(i) Find functions a(x) and b(x) such that u = x
and u = e−x both satisfy the equation

d2u

dx2
+ a(x)

du

dx
+ b(x)u = 0 .

For these functions a(x) and b(x), write down the general solution of the

equation. Show that the substitution y =
1

3u

du

dx
transforms the equation

dy

dx
+ 3y2 +

x

1 + x
y =

1

3(1 + x)
(∗)

into
d2u

dx2
+

x

1 + x

du

dx
− 1

1 + x
u = 0

and hence show that the solution of equation (∗) that satisfies y = 0 at x = 0

is given by y =
1− e−x

3(x+ e−x)
.

(ii) Find the solution of the equation

dy

dx
+ y2 +

x

1− x
y =

1

1− x

that satisfies y = 2 at x = 0.

Question (2008 STEP III Q6)

In this question, p denotes
dy

dx
.

(i) Given that
y = p2 + 2xp ,

show by differentiating with respect to x that

dx

dp
= −2− 2x

p
.

Hence show that x = −2
3p+Ap−2 , where A is an arbitrary constant. Find

y in terms of x if p = −3 when x = 2.

(ii) Given instead that
y = 2xp+ p ln p ,

and that p = 1 when x = −1
4 , show that x = −1

2 ln p−
1
4 and find y in terms

of x.
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Question (2009 STEP III Q2)(i) Let y =

∞∑
n=0

anx
n , where the coefficients an

are independent of x and are such that this series and all others in this
question converge. Show that

y′ =

∞∑
n=1

nanx
n−1 ,

and write down a similar expression for y′′. Write out explicitly each of the
three series as far as the term containing a3.

(ii) It is given that y satisfies the differential equation

xy′′ − y′ + 4x3y = 0 .

By substituting the series of part (i) into the differential equation and
comparing coefficients, show that a1 = 0. Show that, for n ≥ 4,

an = − 4

n(n− 2)
an−4 ,

and that, if a0 = 1 and a2 = 0, then y = cos(x2) . Find the corresponding
result when a0 = 0 and a2 = 1.

(i) Let y =

∞∑
n=0

anx
n then

y′ =
d

dx

( ∞∑
n=0

anx
n

)

=
∞∑
n=0

d

dx
(anx

n)

=

∞∑
n=0

nanx
n−1

=
∞∑
n=1

nanx
n−1

y′′ =
d

dx

( ∞∑
n=1

nanx
n−1

)

=
∞∑
n=1

d

dx

(
nanx

n−1
)

=

∞∑
n=1

n(n− 1)anx
n−2

=
∞∑
n=2

n(n− 1)anx
n−2
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y = a0 + a1x+ a2x
2 + a3x

3 + · · ·
y′ = a1 + 2a2x+ 3a3x

2 + · · ·
y′′ = 2a2 + 6a3x+ · · ·

(ii)

0 = xy′′ − y′ + 4x3y

= x
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n−1 + 4x3

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=1

nanx
n−1 +

∞∑
n=0

4anx
n+3

=

∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=1

nanx
n−1 +

∞∑
n=4

4an−4x
n−1

=

∞∑
n=4

(n(n− 1)an − nan + 4an−4)x
n−1 + 2a2x+ 6a3x

2 − a1 − 2a2x− 3a3x
2

=

∞∑
n=4

(n(n− 2)an + 4an−4)x
n−1 + 3a3x

2 − a1

Therefore since all coefficients are 0, a1 = 0, a3 = 0 and an = − 4

n(n− 2)
an−4.

If a0 = 1, a2 = 0, and since a1 = 0, a3 = 0 the only values which will take non-
zero value are a4k. We can compute these values as: a4k = − 4

(4k)(4k−2)a4k−4 =

1
2k(2k−1)a4k−r so a4k = (−1)k

(2k)! , which are precisely the coefficients in the expansion

cosx2.

If a0 = 0, a2 = 1 then since a1 = 0, a3 = 0 the only values which take non-zero
values are a4k+2 we can compute these values as:

a4k+2 = − 4
(4k+2)(4k)a4k−2 = − 1

(2k+1)2ka4k−2 so we can see that a4k+2 = (−1)k

(2k+1)!

precisely the coefficients of sinx2
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Question (2009 STEP III Q7)(i) The functions fn(x) are defined for n = 0, 1,
2, . . . , by

f0(x) =
1

1 + x2
and fn+1(x) =

dfn(x)

dx
.

Prove, for n ≥ 1, that

(1 + x2)fn+1(x) + 2(n+ 1)xfn(x) + n(n+ 1)fn−1(x) = 0 .

(ii) The functions Pn(x) are defined for n = 0, 1, 2, . . . , by

Pn(x) = (1 + x2)n+1fn(x) .

Find expressions for P0(x), P1(x) and P2(x).

Prove, for n ≥ 0, that

Pn+1(x)− (1 + x2)
dPn(x)

dx
+ 2(n+ 1)xPn(x) = 0 ,

and that Pn(x) is a polynomial of degree n.

Question (2009 STEP III Q10)

A light spring is fixed at its lower end and its axis is vertical. When a certain
particle P rests on the top of the spring, the compression is d. When, instead, P
is dropped onto the top of the spring from a height h above it, the compression at
time t after P hits the top of the spring is x. Obtain a second-order differential
equation relating x and t for 0 ≤ t ≤ T , where T is the time at which P first
loses contact with the spring. Find the solution of this equation in the form

x = A+B cos(ωt) + C sin(ωt) ,

where the constants A, B, C and ω are to be given in terms of d, g and h as
appropriate. Show that

T =
√

d/g
(
2π − 2 arctan

√
2h/d

)
.
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Question (2010 STEP I Q6)

Show that, if y = ex, then

(x− 1)
d2y

dx2
− x

dy

dx
+ y = 0 . (∗)

In order to find other solutions of this differential equation, now let y = uex,
where u is a function of x. By substituting this into (∗), show that

(x− 1)
d2u

dx2
+ (x− 2)

du

dx
= 0 . (∗∗)

By setting
du

dx
= v in (∗∗) and solving the resulting first order differential

equation for v, find u in terms of x. Hence show that y = Ax+ Bex satisfies
(∗), where A and B are any constants.

Question (2010 STEP III Q10)

A small bead B, of mass m, slides without friction on a fixed horizontal ring of
radius a. The centre of the ring is at O. The bead is attached by a light elastic
string to a fixed point P in the plane of the ring such that OP = b, where b > a.
The natural length of the elastic string is c, where c < b− a, and its modulus of
elasticity is λ. Show that the equation of motion of the bead is

maϕ̈ = −λ

(
a sinϕ

c sin θ
− 1

)
sin(θ + ϕ) ,

where θ = ∠BPO and ϕ = ∠BOP .

Given that θ and ϕ are small, show that a(θ+ ϕ) ≈ bθ. Hence find the period of
small oscillations about the equilibrium position θ = ϕ = 0.
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Question (2011 STEP III Q1)(i) Find the general solution of the differential
equation

du

dx
−
(
x+ 2

x+ 1

)
u = 0 .

(ii) Show that substitutingy = ze−x (where z is a function of x) into the second
order differential equation

(x+ 1)
d2y

dx2
+ x

dy

dx
− y = 0 (∗)

leads to a first order differential equation for
dz

dx
. Find z and hence show

that the general solution of (∗) is

y = Ax+Be−x ,

where A and B are arbitrary constants.

(iii) Find the general solution of the differential equation

(x+ 1)
d2y

dx2
+ x

dy

dx
− y = (x+ 1)2.

(i)

0 =
du

dx
−
(
x+ 2

x+ 1

)
u

⇒
∫

1

u
du =

∫
1 +

1

x+ 1
dx

⇒ ln |u| = x+ ln |x+ 1|+ C

⇒ u = A(x+ 1)ex

(ii) If y = ze−x, y′ = (z′ − z)e−x, y′′ = (z′′ − 2z′ + z)e−x

0 = (x+ 1)
d2y

dx2
+ x

dy

dx
− y

y = ze−x : 0 = (x+ 1)

(
d2z

dx2
− 2

dz

dx
+ z

)
e−x + x

(
dz

dx
− z

)
e−x − ze−x

= (x+ 1)
d2z

dx2
− (x+ 2)

dz

dx

⇒ d

dx

(
dz

dx

)
=

(
x+ 2

x+ 1

)
dz

dx

Therefore dz
dx = A(x+ 1)ex and so

z = A

∫
(x+ 1)exdx
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= A

(
[(x+ 1)ex]−

∫
exdx

)
= A(x+ 1)ex −Aex +B

y = Ax+Be−x

(iii) We have found the complementary solution. To find a particular integral consider
y = ax2 + bx+ c, then y′ = 2ax+ b, y′′ = 2a and we have

x2 + 2x+ 1 = 2a(x+ 1) + x(2ax+ b)− (ax2 + bx+ c)

⇒ x2 + 2x+ 1 = ax2 + 2ax+ 2a− c

⇒ a = 1,c = 1

so the general solution should be

y = Ax+Be−x + x2 + 1

Question (2012 STEP III Q1)

Given that z = yn
(
dy

dx

)2
, show that

dz

dx
= yn−1 dy

dx

(
n

(
dy

dx

)2
+ 2y

d2y

dx2

)
.

(i) Use the above result to show that the solution to the equation(
dy

dx

)2
+ 2y

d2y

dx2
=

√
y (y > 0)

that satisfies y = 1 and
dy

dx
= 0 when x = 0 is y =

(
3
8x

2 + 1
) 2

3 .

(ii) Find the solution to the equation(
dy

dx

)2
− y

d2y

dx2
+ y2 = 0

that satisfies y = 1 and
dy

dx
= 0 when x = 0.

z = yn
(
dy

dx

)2

⇒ dz

dx
= nyn−1

(
dy

dx

)3

+ yn · 2
(
dy

dx

)(
d2y

dx2

)
= yn−1

(
dy

dx

)(
n

(
dy

dx

)2

+ 2y
d2y

dx2

)
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(i) Let z = y(y′)2, then

dz

dx
= y′

√
y

=
√
z

⇒
∫

z−1/2dz = x+ C

⇒ 2
√
z = x+ C

x = 0, z = 0 : C = 0

⇒ y(y′)2 =
1

4
x2

⇒ √
y
dy

dx
=

1

2
x

⇒
∫

√
ydy =

∫
1

2
xdx

⇒ 2

3
y3/2 =

1

4
x2 +K

x = 0, y = 1 : K =
2

3

⇒ y =

(
3

8
x2 + 1

)2/3

(ii) Let z = y−2(y′)2

dz

dx
= y−3 dy

dx

(
−2

(
dy

dx

)
+ 2y

d2y

dx2

)
= y−3 dy

dx
2y2

= 2y−1(y′) = 2
√
z

⇒ 2
√
z = 2x+ C

x = 0, z = 0 : C = 0

⇒ z = x2

⇒ dy

dx
= xy

⇒ ln |y| = 1

2
x2 +K

x = 0, y = 1; K = 0

⇒ y = e
1
2
x2
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Question (2012 STEP III Q7)

A pain-killing drug is injected into the bloodstream. It then diffuses into the
brain, where it is absorbed. The quantities at time t of the drug in the blood
and the brain respectively are y(t) and z(t). These satisfy

ẏ = −2(y − z) , ż = −ẏ − 3z ,

where the dot denotes differentiation with respect to t. Obtain a second order
differential equation for y and hence derive the solution

y = Ae−t +Be−6t , z = 1
2Ae−t − 2Be−6t ,

where A and B are arbitrary constants.

(i) Obtain the solution that satisfies z(0) = 0 and y(0) = 5. The quantity of
the drug in the brain for this solution is denoted by z1(t).

(ii) Obtain the solution that satisfies z(0) = z(1) = c, where c is a given constant.
The quantity of the drug in the brain for this solution is denoted by z2(t).

(iii) Show that for 0 ≤ t ≤ 1,

z2(t) =

0∑
n=−∞

z1(t− n) ,

provided c takes a particular value that you should find.
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Question (2013 STEP III Q7)(i) Let y(x) be a solution of the differential equa-

tion
d2y

dx2
+ y3 = 0 with y = 1 and

dy

dx
= 0 at x = 0, and let

E(x) =

(
dy

dx

)2
+ 1

2y
4 .

Show by differentiation that E is constant and deduce that |y(x)| ≤ 1 for all
x.

(ii) Let v(x) be a solution of the differential equation
d2v

dx2
+ x

dv

dx
+ sinh v = 0

with v = ln 3 and
dv

dx
= 0 at x = 0, and let

E(x) =

(
dv

dx

)2
+ 2 cosh v .

Show that
dE

dx
≤ 0 for x ≥ 0 and deduce that cosh v(x) ≤ 5

3 for x ≥ 0.

(iii) Let w(x) be a solution of the differential equation

d2w

dx2
+ (5 coshx− 4 sinhx− 3)

dw

dx
+ (w coshw + 2 sinhw) = 0

with
dw

dx
=

1√
2
and w = 0 at x = 0. Show that coshw(x) ≤ 5

4 for x ≥ 0.

Question (2013 STEP III Q9)

A sphere of radius R and uniform density ρs is floating in a large tank of liquid
of uniform density ρ. Given that the centre of the sphere is a distance x above
the level of the liquid, where x < R, show that the volume of liquid displaced is

π

3
(2R3 − 3R2x+ x3) .

The sphere is acted upon by two forces only: its weight and an upward force
equal in magnitude to the weight of the liquid it has displaced. Show that

4R3ρs(g + ẍ) = (2R3 − 3R2x+ x3)ρg .

Given that the sphere is in equilibrium when x = 1
2R, find ρs in terms of ρ.

Find, in terms of R and g, the period of small oscillations about this equilibrium
position.

None
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Question (2014 STEP III Q10)

Two particles X and Y , of equal mass m, lie on a smooth horizontal table
and are connected by a light elastic spring of natural length a and modulus of
elasticity λ. Two more springs, identical to the first, connect X to a point P on
the table and Y to a point Q on the table. The distance between P and Q is 3a.

Initially, the particles are held so that XP = a, Y Q = 1
2a , and PXY Q is a

straight line. The particles are then released. At time t, the particle X is a
distance a+ x from P and the particle Y is a distance a+ y from Q. Show that

m
ḋ2x

ḋt2
= −λ

a
(2x+ y)

and find a similar expression involving
ḋ2y

ḋt2
. Deduce that

x− y = A cosωt+B sinωt

where A and B are constants to be determined and maω2 = λ. Find a similar
expression for x+ y. Show that Y will never return to its initial position.

Question (2018 STEP III Q3)

Show that the second-order differential equation

x2y′′ + (1− 2p)x y′ + (p2 − q2) y = f(x) ,

where p and q are constants, can be written in the form

xa
(
xb(xcy)′

)′
= f(x) , (∗)

where a, b and c are constants.

(i) Use (∗) to derive the general solution of the equation

x2y′′ + (1− 2p)xy′ + (p2 − q2)y = 0

in the different cases that arise according to the values of p and q.

(ii) Use (∗) to derive the general solution of the equation

x2y′′ + (1− 2p)xy′ + p2y = xn

in the different cases that arise according to the values of p and n.

Consider xa
(
xb(xcy)′

)′
then

xa
(
xb(xcy)′

)′
= xa

(
bxb−1(xcy)′ + xb(xcy)′′

)
= xa

(
bxb−1(cxc−1y + xcy′) + xb(c(c− 1)xc−2y + 2cxc−1y′ + xcy′′)

= xa+b+cy′′ + (2cxc−1+b+a + bxc+b−1+a)y′ + (c(b+ c− 1))xa+b+c−2y
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So we need:


a+ b+ c = 2

2c+ b = 1− 2p

c(b+ c− 1) = p2 − q2

⇒ c((1− 2p)− 2c+ c− 1) = p2 − q2

⇒ c2 + 2pc = q2 − p2

Question (1987 STEP III Q6)

The functions x(t) and y(t) satisfy the simultaneous differential equations

dx

dt
+ 2x− 5y = 0

dy

dt
+ ax− 2y = 2 cos t,

subject to x = 0,
dy

dt
= 0 at t = 0. Solve these equations for x and y in the case

when a = 1. Without solving the equations explicitly, state briefly how the form
of the solutions for x and y if a > 1 would differ from the form when a = 1.

Letting x =

(
x(t)
y(t)

)
and A =

(
−2 5
−a 2

)
then our differential equation is x′ =

Ax+

(
0

2 cos t

)
.

Looking at the eigenvalues of A, we find:

det

(
−2− λ 5
−a 2− λ

)
= (λ2 − 4) + 5a

= λ2 + 5a− 4

Therefore if a = 1, λ = ±i.

In which case we should expect the complementary solutions to be of the form

x =

(
A sin t+B cos t
C sin t+D cos t

)
. The first equation tells us that (A− 5D +B) cos t+ (−B +

5C) sin t = 0 so the complementary solution is:x =

(
5(D − C) sin t+ 5C cos t

C sin t+D cos t

)
.

Looking for a particular integral, we should expect to try something like x =(
Et cos t+ Ft sin t
Gt cos t+Ht sin t

)
and we find
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Question (2019 STEP III Q1)

The coordinates of a particle at time t are x and y. For t ≥ 0, they satisfy the
pair of coupled differential equations{

ẋ = −x− ky

ẏ = x− y

where k is a constant. When t = 0, x = 1 and y = 0.

(i) Let k = 1. Find x and y in terms of t and sketch y as a function of t. Sketch
the path of the particle in the x-y plane, giving the coordinates of the point
at which y is greatest and the coordinates of the point at which x is least.

(ii) Instead, let k = 0. Find x and y in terms of t and sketch the path of the
particle in the x-y plane.

(i) Let k = 1, then

ẋ = −x− y

ẏ = x− y

ẋ− ẏ = −2x

ẍ = −ẋ− ẏ

= −ẋ− (ẋ+ 2x)

= −2ẋ− 2x

ẋ+ ẏ = −2y

ÿ = ẋ− ẏ

= −2y − 2ẏ

So we have an auxiliary equation for x and y which is λ2+2λ+2 = 0 ⇒ λ = −1±i.

Therefore x = Ae−t cos t+Be−t sin t, y = Ce−t cos t+De−t sin t. We also must
have that, A = 1, C = 0, so x = e−t cos t+Be−t sin t and y = De−t sinx.

ẏ = −De−t sin t+De−t cos t

= e−t cosx+Be−t sin t−De−t sin t

therefore B = 0, D = 1 and x = e−t cos t, y = e−t sin t
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y = e−t sin t

t

y

y = e−t sin t

ẏ = −e−t sin t+ e−t cos t

ẋ = e−t cos t− e−t sin t

(
1√
2
e−π/4, 1√

2
e−π/4

)
(
− 1√

2
e−3π/4, 1√

2
e−3π/4

)
t

y
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(ii)

ẋ = −x

ẏ = x− y

So x = e−t. ẏ + y = e−t so y = (t+B)e−t and so y = te−t.

t

y

Question (2025 STEP II Q7)

The differential equation
d2x

dt2
= 2x

dx

dt

describes the motion of a particle with position x(t) at time t. At t = 0, x = a,
where a > 0.

(i) Solve the differential equation in the case where dx
dt = a2 when t = 0. What

happens to the particle as t increases from 0?

(ii) Solve the differential equation in the case where dx
dt = a2 + p when t = 0,

where p > 0. What happens to the particle as t increases from 0?

(iii) Solve the differential equation in the case where dx
dt = a2 − q2 when t = 0,

where q > 0. What happens to the particle as t increases from 0? Give
conditions on a and q for the different cases which arise.

Let v = dx
dt and notice that d

dt

(
dx
dt

)
= d

dx (v)
dx
dt = v dv

dx . Also notice that:
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v
dv

dx
= 2xv

⇒ dv

dx
= 2x

⇒ v = x2 + C

⇒ dx

dt
= x2 + C

(i) When t = 0, dxdt = a2 so C = 0, therefore dx
dt = x2 ⇒ t = −x−1 + k and so

k = a−1 and x = a
1−at . As t increases from 0 the particle heads to infinity at an

increasing rate, ‘reaching’ infinity around t = 1
a

(ii) When t = 0, dxdt = a2+p so C = p. Therefore dx
dt = x2+p ⇒ t = 1√

p tan
−1
(

x√
p

)
+c.

When c = − 1√
p tan

−1
(

a√
p

)
, so

t =
1
√
p
tan−1

(
x
√
p

)
− 1

√
p
tan−1

(
a
√
p

)
=

1
√
p
tan−1

(√
p(x− a)
√
p− ax

)
⇒

√
p(x− a)
√
p− ax

= tan(
√
pt)

⇔ √
p(x− a) = tan(

√
pt)(

√
p− ax)

⇔ x(
√
p+ a tan(

√
pt)) =

√
p(tan(

√
pt) + a)

⇔ x =

√
p(tan(

√
pt) + a)

√
p+ a tan(

√
pt)

The particle heads to
√
p
a .

(iii) When t = 0, dxdt = a2 − q2 so C = −q2. Therefore

dx

dt
= x2 − q2

⇒
∫

dt =

∫
1

(x− q)(x+ q)
dx

=
1

2q

∫ (
1

x− q
− 1

x+ q

)
dx

=
1

2q
(ln(x− q)− ln(x+ q))

=
1

2q
ln

(
x− q

x+ q

)
⇒ x− q

x+ q
= Ae2qt
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⇒︸︷︷︸
t=0

A =
a− q

a+ q

⇒ x− q =
a− q

a+ q
e2qt(x+ q)

⇔ x

(
1− a− q

a+ q
e2qt
)

= q

(
1 +

a− q

a+ q
e2qt
)

⇔ x = q
1 + a−q

a+qe
2qt

1− a−q
a+qe

2qt
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